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.THERMODYNAMICS OF ELECTROLYTES. V. EFFECTS OF 

HIGHER ORDER ELECTROSTATIC TERMS 

Kenneth S. Pitzer 

Inorganic Materials Research Division of the 
Lawrence Berkeley Laboratory and Department of Chemistry, 

University of California, Berkeley, California 94720 

(ABSTRACT) 

The contribution of higher order electrostatic terms 

LBL 3105 

(beyon4 the Debye-Huckel approximation) to the thermodynamic 
I 

i ' 
properties of mixed and pure electrolytes is investigated. 

It is found that these effects are important for cases of 

unsymmetrical mixing-especially when one 1on has a charge 

of three units or more. The appropriate correction can 

be made by a purely electrostatic function since the mutual 

repulsion of ions of the same sign keeps them far enough 

apart that short range forces have little effect. This 

function is evaluated, and several convenient approximations 

are also given. Application is made to various systems 

mixing ions ofthe type 1-2 and 1-3. Higher order limiting 

laws exist for symmetrical mixtures and for pure, unsym-

metrical solutes, but these effects were not found to be 

significant in relationship to existing activity or osmotic 

coefficient data. 
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At finite concentration the properties of an electrolyte 

solution depend in a very complex way on short-range forces 

between solute ions, both direct and as modified by the 
' 

solvent, in addition to the long-range electrostatic forces. 

However, knowledge of the limiting or idealized behavior 

arising purely from electrostatic forces, with the solvent 

as a dielectric, is extremely valuable in the form of the 

limiting law of Debye and HUcke!. 

The Debye-HUckel limiting law arises from a mathematical 

·approximation, and v•rious authors have pointed out that, in 

at least three cases, higher terms in the mathematical 

expansion yield "higher order" limiting laws of the same 

sort, i.e., arisin~ purely from electrostatic effects. In 

this paper these higher-order electrostatic effects will be 

explored in connection with the general equations presented 

in Part I(l) of this series and applied extensively to most 

pure ·and mixed electrolytes· in Parts II ,CZ) III, ( 3) and IvC 4) 

(hereafter cited as I, II, etc.). Insofar as possible, 

however, we shall consider the entire electrostatic effect 

(in excess of the Debye-HUckel limiting law)~ rather than 

merely the next term in the series expansion. 

One case arises with unsymmetrical pure electrolytes, 

e.g., MgC1 2 or A1C1 3 , where the existence of a higher-order 

term was noted by Gronwall, LaMer, and Sandved(S) in 1928. 

This effect has never been found to be distinguishable from 

the effects of short-range forces; although there is no 

reason to doubt its theoretical existence. Recent freezing-
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point-lowering data for a 6-1 electrolyte(6) allows us to 

make a more searching test than heretofore, but the result 

is similarly negative. 

The other cases relate to mixed electrolytes. If ions 

of different charges of the same sign are mixed, e.g., HC1 

with A1C1 3 , there is a higher-order electrostatic function( 7) 

which we shall find to be significant and useful. Most of 

the paper will be concerned with this effect which is, small 

for 2-1 mixing and can be omitted without large error but 

which must be included to deal wfth 3-1 or more unsymmetrical 

types of mixing. 

Even for the mixing of ions of the same charge, but with 

different short-range interactions, Friedman( 7) has shown 

that there is a higher-order limiting l~w; but in this case 

as in the first, its effect is too small to be of.practical 

importance. (B) 
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Theory for Unsymmetrical Mixing 

The mixing of ions of different charge of the same sign 

is best discussed theoretically by the cluster-integral method 

introduced for electrolytes by Mayer( 9) and applied with 

generality by Friedman.C 7) Since the theoretical infra

structure is extensive, it will not be repeated here. 

Including only interactions between pairs of solute ions, 

Friedman obtains the following equation for the.excess free 

energy. 

K3 211' Z • Z • R. 
rz.rr +I L c.c.[ 1

2
3 J .. (K,z:,z., ... )] 

i j 1 J K 1J 1 J 
(1) 

2 
R. - e I DkT. ( 2) 

Here V is the volume, K is the us·ual Debye-Hi.ickel parameter, 

c. 
1 

is the concentration and z. 
1 

the number of charges (sign 

included) on the i-th ion, D is the dielectric constant, 

and e, k, and T have familiar meanings. The function J 

depends on the interionic potential and K~ If the potential 

is 

v .. = u .. + z. z.R./r 
1J 1J 1 J 

where the short~range potential u .. 
1J 

interionic distance r, then J is 

J .. 
1J 

= - [exp(q .. -u .. /kT) 
1J 1J . 

is a function of 

1-q .. 
1J 

( 3) 

( 4) 

- I 
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q .. = -(z.z.t/r) 
l.J . l. J 

-Kr e . 

In general the integral and J cannot be evaluated 

( 5) 

wi~hout explicit knowledge of the short-range potential u .. ' 1J 

but for our particular purposes a simplification is possible 

as will be shown below. 

Since we wish to work in macroscopic units, in particular 

molalities, these equations are restated below. We omit the 

secondary terms whic~ arise from differences between concen-

tration and molality, etc., since these can be accommodated 

within the virial coefficients we add for the effects of all 

short-range forces. 

Gex/RT = -4A~ I 312 +. \ \ m.m.(z.z./4I) J .. 
't' l l 1 J 1 J 1J i j 

A~= l/3(2~N d /1000) 1/ 2 1 3/ 2 . 
't' 0 w 

Here A4> is the Debye-Hlickel coefficient for•the osmotic 

coefficient, Gex is for a solution containing one kilogram 

of solvent of density d and m. w 1 
is the molality of the 

( 6) 

(7) 

i-th species. The ionic strength I . . f. 1 "' 2 
1 s , o . course , -2 L. m. z . . 

1 1 

where 

The corresponding general equation adopted in I is 

f(I) 

f(I) + I I m.m. A.·. (I) 
1 J 1 J. 1J 

( 8) 

(9) 



-6-

Here A• is the same Debye-Hilckel constant defined above and 

b was chosen to be 1.2 for all solutions. The second 

virial coefficients 

indicated . 

>.... 
1J 

are functions of ionic strength as 

. Clearly there is a close analogy between the first term 

on the right in (6) and (8), each of which co"ntain the 

Debye-Hilckel limiting la~. Also each of the second virial 

coefficients A.. in (8) is analogous to the corresponding 
1J 

terms involving J .. in (6). 
1J 

It is possible to divide f(I) into two terms: one 

is identical with the corresponding term-in (6) while the 

remainder can be further divided into terms which can be . 
combined with the A's. Indeed, this was done in exploratory 

calculations, but it was found to offer no practical advantage. 

It seems preferable to assume that these terms base~ on the 

difference 0f our f(I) from the first term in (6) are 

combined with effects of short-range forces and of the use of· 

molalities instead of concentrations in the virial coefficients . 
• If we proceed now to the experimentally observable 

combinations of A's as defined in I, the properties of a 

pure electrolyte MX are related to 

(10) 

In mixtures the properties depend also on quantities of the type 

(11) 
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These same combinations of the J's will yield the corresponding 

quantities for the cluster-integral theory. 

In order to proceed further in general one must have the 

expression for u .. , the potential for short-range interionic 
1] 

interaction. But for pairs of ions of the same sign, if the 

electrostatic repulsion is strong enough, the ions will seldom 

approach one another closely; hence the short-range potential 

should have little or no effect. This can be seen mathematically 

in equation (4). If qi~ is large and negative for the range 

of r for which u.{ differs from zero, then the value of 
1] 

exp(q .. ) is extremely small throughout this range. Thus, 
. 1] 

provided 

effect of 

u .. 
1] 

u .. 
1] 

is positive (or if negative is small), the 

will be negligible. 

In view of this situation we can evaluate the effect of 

electrostatic forces on the difference terms eMN or 8XY 

without making any detailed assumption about short-range 

forces. Let us write 

where the first term on the right arises from the combined 

effects of short-range forces acting directly or through the 

solvent, of the use of molalities instead of concentration) 

(12) 

and Of the difference in the Debye-Hilckel term in equation (8) 

from that in (6). The second term EaMN will be calculated 

from the corresponding terms of the cluster-integral theory 

with the omission of short-range forces. From the definition 

of. eMN we have 



-8-

EA..= (z.z./4!) J .. 
1J 1 J 1J 

J ... = 
1J 

. 2 
K 

z.z . .t 
1 J 

With the substitutions 

J(x) -1 J: = X 

J~ (1 + 

0· 

y = Kr 

X = z.z . .tK 
1 J 

q = -(x/y) 

(1 + q + 

e -y 

1 2 
2 q 

with u .. = 0 
1J 

q.. 2 
e 1 J) r dr. 

- eq) y2dy. 

The integrals of the second and third terms within the 

parentheses are straightiorward and yield 

J(x) = 1 
4 X - 1 + J 2 (x) 

J2 (x) 
-1 J: (1 

- eq) 2 
= X y dy. 

There is no simple integral for J 2 , but this function is 

readily evaluated by direct numerical integration on modern 

computers. 

For very large X one finds that J 2. is small, and 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

( 21) 

the first two terms of equation (20) give a limiting a~proxi

mation. For very small x an alt~rnate expansion is possible 

yielding a series whose leading term is 
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J(x) = - ~ x2 (!nx + 0.419711). 

From equation (22) one notes the limiting form (omitting the 

0.419711) for very small x ~hich has been stated( 7) 

previously as a "limiting law". We find, however, that this 

limiting form,is not a good approximation in the range of 

practical application and use the full expression for J in 

all of our work. 

The derivative of J is also readily comp·uted by 

numerical integration. The resulting curves for J and J' 

are shown in Figure 1. For practical calculations it is 

( 22) 

convenient to use simpler approximate expressions for J and 

J'; several examples are given in the Appendix together with 

further discussion of the evaluation of these functions and 

a table of numerical values. In our working units 

x .. = 6z.z. A~ I 1/ 2 
lJ 1 J 'I' 

and 

E I E 2 
eMN = -( 8MN/I) + (zMzN/8I )[xMN J'(xMN) 

- ~ xMM J'(xMM) - ~ xNN J'(xNN)]. 

It should be emphasized that these results apply over 

the full range of ionic strength, and therefore have much 

greater applicability than an expression which applies only 

in the limit at low concentration. 

(23) 

(24) 

(2 5) 
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E E I Figure 2 shows the values of ( e + I e ). for mixing 

ions of charge types 2-1, 3-1, and 4-1. This quantity may be 

compared with e or Sa values to judge the magnitude of 

the ef~ect we are discussing. Since typical e values range 

up to about 0.1, it is clear that the effect is significant 

for 2-1 mixing and large for 3-1 or 4-1 systems. Also 

note the marked increase of (Ee + I Ee') as ionic strength 

decreases. 
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Data for Unsymmetrical Mixing 

The most interesting systems for. application of these 

equations are those of the types HCt - Atct 3 and HCt - Bact 2 
where the activity coefficient of HCt is measured. For the 

type HX - NX z the activity coefficient of HX 

equation (15) of IV which reduces to: 

c = cM<f>X;zzl/2: MX · 

is given by 

(30) 

Here the S(O), sCI), and c<f> values are those determined from 

the respective pure electrolytes and a = 2 for all cases of 

type under consideration. Also equation (12} for e has been 

introduced; but the term s ' 8 has been omitted since in IV it 

was found that such terms were negligible. The term 
E I 
. 8 , on 

the contrary, is quite important. 
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Next we define 11 tn yHX as the difference betw·een the 

experimental value of tn yHX and that calculated from 

equation (26) with all pure electrolyte terms included, 

s d with . ~a an 

E E ' a and a . 

~ zero, and, alternatively with or without 

The relationship 

shows that a plot of the left side of this equation against 

l/2(mH+mX) should give a straight line with intercept Sa 

and slope ~. 

' ' (10 11) The results for the systems HCt - SrCt 2 ' and 

HCt - AtCt
3
(lZ,l 3) are shown on Figure 3 where the open 

circles and triangles indicate results including Ee and 

E ' a and the solid circles and triangles indicate values 

excluding those terms . .:rhe estimated effect of experimental 

uncertainty is shown by error bars where it i~ significant. 

It is apparent from Figure 3 that the inclusion of the 

additional electrostatic terms and E ' a is essential 

in order to treat HCt - AtCt 3 satisfactorily. For 

(31) 

HCt - Srct 2 the discrepancy without those terms is somewhat 

greater ~han.the experimental uncertainty whereas ~y including 

those terms the agreement is excellent. Similar results are 

bt · d f th t Hen - Bacn
2

.Cl 4 ,lS) o a1ne · or e sys em ~ k For other 

systems of these types, the data are much less extensive, 

but in all cases examined there is no difficulty fitting the 

results when and E ' 8 are included. 

The results shown in Figure 3 clearly confirm the 

correctness of the high-er-order electrostatic contribution 
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to the l··nteractl. on of H+ and N+z · · th 1ons 1n ese systems. 

Also they show that this effect is of a significant magnitude 

and should be included in practical ~alculations, especially 

when z is 3 or greater. 

Mixtures of singly and doubly charged ions were treated 

in IV with considerable success without the inclusion of Ee 
E I . . Ee and e . Most of these calculations were repeated with 

and Ee' included, and .the results for mixtures with a 

common ion are shown in Table 1. It is apparent that the 

inclusion of these .term~· improves the fit significantly for 

s.~'veral sys terns, most notably the first three, while it makes 

little difference in other cases. The values of 5 e are 

increased over the values of e (without Ee and Ee') by 

about 0.07 while the new values of ~ are decreased by 

about 0.01 from those reported before. 

Two systems of mixing without a common ion were also 

Ee Ea I recalculated with and and with the other parameters 

determined from the data for mixing with a common ion. The 

resulting fits for NaCi- MgS04 and for Na 2so4 .- MgCi 2 
yielded the same a values as were obtain~d without Ee 

and E ' e . 

One may conclude that the E· e and E ' e terms should be 

included for systems mixing singly and doubly charged if 

maximum accuracy is desired. But in most practical cases of 

this type, these terms may be omitted provided the appropriite 

e · and ~ values are used. It is essential, however, to 

· t · · · 1· ·f Ea and Ea 
1 

·are l··n· eluded ma1n a1n cons1stency, 1.e., 
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Table 1 

Systems Mixing Doubly and Singly Charged Ions 

Ee Ee I Ee Ee I 

System with and without and 
·a 1/1 a e 1/1 a Ref. 

HCR. - srct 2 .065 .003 .002 -.020 0.018 0.010 10, 11 

HCR. - Bact 2 
.072 .000 .003 -.036 .024 .005 14, 15 

HCR. - MnCR. 2 .075 -.007 .002 .000 .000 .008 16 

LiCR. - · Bact
2 .000 .009 .002 -.070 .019 . 00 2 17 

NaCR. MgCR. 2 . 070 -. 010 .001 .000 .000 .002 18 

Na 2so4 - MgS04 . 0 70 -.023 :oo3 .000 . 0.00 .005 18 

NaCR. - cact 2 .070 -. 00 7 - .003 .000 .000 .004 19 

NaCR. - Bact 2 .067 -.012 .001 -.003 .000 .001 20 

NaCR. MnC£ 2 .082 -.0174 .002 .000 -.003 .003 21 

KCR. - cact 2 .032 -.025 .004 -.040 -.015 .003 22 

KCR. Bact 2 .010 -.017 .002 -.072 .000 .001 23 

Cs CR. - Bact 2 -.070 -.015 .0025 -.150 .000 .003 17 

NaCR. - Na 2so4 .020 .0014 .002 -.035 .007 .002 18 

KCR. - K2so4 .020 .000 .002 -.035 .000 .002 24 

MgC£ 2 - MgS0
4 

.020 -.014 .002 -.035 .000 .002 18 
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the values of 5 a and ~ must be those derived on that basis 

whereas if Ea and 
E I a 

and ~ must be used. 

are omitted the corresponding 

For the system HCi - AtCt 3 the parameters are 

sa= 0.185, ~ = 0.013 which yield a good fit, a = 0.006. 

e 

There are no other systems involving 3-1 mixing for which 

comparably accurate and extensive data are available. The 
(25-27) . (28) results for HC1 - LaCt 3 . and for HC1 - CeC1 3 show 

behavior, similar to that of HCi - Atct 3 in the dilute range 
I 

which fully confirms the need for the additional electrostatic 

terms Ee and Ea'. In the more concentrated range, however, 
' 

the data are sufficiently scattered that I hesitate to 

recommend specific values of Sa and ~- One can use either 

zero values for these quantities or the values for HC1 - A1C1 3 
if estimates ·are desired. 
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Symmetrical Mixing 

The higher order electrostatic terms considered above 

for unsymmetrical mixtures vanish if the ions mixed have the 

same charge. Friedman( 7) has shown, however~ that there is 

a different and more subtle limiting law applicable to 

symmetrical mixtures. In terms of our parameters this is 

lim ainleMNI 2 
= 6z Atf. 

I-+-O ai~ 'I' 

where z is the number of charges on the ions mixed and Act> 

is the Debye-Hiickel, coefficient for the osmotic coefficient. 

Robinson, Wood, and Reilly(S) gave an alternate derivation 

of this limiting law in simple terms but were unable to find 

experimental confirmation of it with isopiestic data. This 

was not surpTising since Friedman's sample calculations 

indicated an approach to equation (32) only below an ionic 

strength of .0.01. 

( 32) 

The physical basis of this law may be related to the 

change with ionic strength of the radial distribution function 

at repulsive contact for ions of the same sign of charge. 

This is shown in Figure 3 of paper I. It is this change with 

ionic strength of the radial distribution functions that 

leads to the ionic strength dependence of the second virial 

coefficients for pure electrolytes. Thus it seems reasonable 

to assume the same mathematical form for eMN as for . B.MX" 
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For the combination appearing 1n the osmotic coefficient this 

yields 

a + re• = aCO) + aCl) -cxl~ 
e 

Then one obtains 

lim atnlel = _ 
r~o~ 

jcxcaCl) ;aC0)) 

l+(aCl);aCO))-

2 . 
6z Act> 

One may now make the reasonable assumption that ex retains 

the same value 2.0 for these expressions as for the second 

vi rial coefficients of most pure electrolytes; then th.e 

numerical relationship of aCl) to is determined. 

Equations (33) and (34) thus yield a plausible function 

for e at all concentrations which is consistent with the 

limiting law. These equations were appl~ed to the systems 

HCR. - KCt( 29 ~ and HCR. - CsCt( 30) for which the activity 

coefficient measurements appeared most likely to yield 

confirmation of this effect. While no contradiction was 

obser~~a, the use of equations (33) and (34) gave so little 

(34) 

improvement over the use of constant a's that the complexity 

is unjustified. 

There is a corresponding limiting law for heats of mixing, . 
and Falcone, Levine, a~d Wood( 3l) have presented experimental 

d&..t,~ on mixing for the sys terns LiCR. ·_ CsCR. and n-Bu
4

NCR. - KCR. 
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l 
which tend to confirm that law. While the concepts behind 

equations (33) and (34) could be applied to the enthalpy, 

this approach will not be carried further at present. 
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Unsymmetrical Pure Electrolytes 

The theory for a higher-order limiting law for unsym

metrical pure electrolytes has been well established by 

several authors.(S,?) It can be expressed for the osmotic 

coefficient by the·equation 

2 
lim (<j>-1-DliLL)= 3 n3 A2 R.n I 
m+O I 2'n2 <1> 

with similar expressions for the activity coefficient and 

(35) 

the excess Gibbs energy. Here DHLL refers to the appropriate 

expression for the Debye-Huckel limiting law, A<l> is the 

coefficient in that law for the osmotic coefficient and n3 
and n 2 are, respectively, the third and second moments of. 

concentration of charge types. In contrast to the case 

discussed above for unsymmetrical mixing, it is not possible 

to extend this law over a finite range of concentration 

without mak1ng some assumption concerning short-range forces. 

Fried~an ( 7) showed that the experimental data available 

in 1962 did not extend to low enough concentration with high 

enough precision to confirm this law, although there was no 

conflict with the law. Recently Sto~k and Plewinsky( 6) 

presented data for an even more unsymmetrical electrolyte of 

the 6-1 typ~ Na6 (H 2w12o40 ). Their freezing-point measuremen~s 

were shown to be consistent with the Debye-Hlitkel limiting la~ 

for that charge type, but the higher-order law was not 

considered. 
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First the experimental data are fitted to the equation 

employed throughout this series of papers. For a z-1 charge 

type of pure electrolyte MXz of molality m it becomes 

~-1 = zf~ + m[2z/(z+l)] B~X 

= aCO) + aCl) exp(-ai~) 
MX MX 

I = mz(z+l)/2. 

The experimental data range from to 

(36) 

( 37) 

(38) 

Below O.OOlM, however, the freezing-point depression becomes 

so small that the data do not contribute to the determination 

of these constants nor to the detection of the higher-order 
-limiting law. Since the highest concentration is relatively 

low, the third virial coefficient C~ was omitted. A good 

fit is obtained with the following values 

(12/7) aCO) = -11. 

(12/7) aCl) = 112. 

(] = 0.005. 

While the above treatment showed no_ discrepancies suggestive 

of the higher-order limiting law, the original data are also 

presented in Figure 4 in a form suggested by Friedman. The 

.higher order limiting law requires the slope to approach that 

of the dashed line eventually as iog I becomes more negative. 
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Again it is apparent that the data above O.OOlM, tog I = -1.7, 

show no confirmation of the higher-order limiting law. Below 

this concentration the effect of experimental error becomes 

so great that nothing can be concluded. Thus the higher-order 

law, although undoubtedly valid as I ~ 0, is not useful at 

experimentally accessible concentrations and its effect on 

measureable properties ii negligible by present standards. 
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Discussion 

While there seems no doubt about the ,theoretical validity 

of the higher-order limiting laws, and there is good experi

mental confirmation in the case of unsymmetrical mixing, it 

is difficult to offer any simple physical picture. 

Mathematically these laws arise from additional terms 1n the 

expansion in series of the Boltzmann factor after the 

separation of the first terms which yield the Debye-Htickel 

limiting law (or are zero by electrical neutrality). The 

physical concept of a statistical distribution governed by 

the Boltzmann expression is clear enough, but it is not easy 

to picture the meaning of individual terms in the series 

expansion of the exponential. One can say that these effects 

arise from modifications of the radial distribution function 

from its linearized (Debye-Hfickel) approximation. Possibly 

future statistical calculations of distribution functions 

for appropriate examples will clarify this matter. 
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APPENDIX 

The evaluation of the function J(x) 

J(x) 

q = -(x/y) -y e. 

1 2 q 2 
+ q + 2 q - e ) y dy (19) 

(18) 

was discussed briefly in the text. Additional details including 

empirical equations for convenient, approximate calculations 

are presented here. 

The corresponding function for an ionic model with a 

hard-core potential was evaluated by Friedman( 7) and his 

numerical results can be extrapolated to zero core diameter 

to yield our J(x) over a considerable range of x. His 

methods of calculation appear to be less convenient, however, 

than the di~ect numerical integration suggested above for the 

expression 

2 y dy. (21) 

·The other terms in (19) are simply integrated to yield 

1 J(x) = ~ x- 1 + J 2(x). (20) 

.\. 
The same method is readily applied to the calculation of the 

derivative of J. 

J' dJ/dx = 1 = - - (J /x) + J 3 4 2 
(39) 

J3 
-1 I: -y q y dy. = X e e (40) 
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Some numeiical values of J and J' calculated by this 

method are given in Table II. 

It is also pos·sible to. obtain a series expression for 

J valid for small x. One may break the integration into 

two ranges and use different expansions of equation (19) for 

each range. It is convenient to divide the ranges at 

y = x/1 where' L is a constant and 1 >> x. Then one has 

J
x/1 · 

(1 

0 

(41) 

= x2/313 -1 + ~-x/1 (l+x/1) + (x/4)(1-e-Zx/L) (42) 

J
x/1 

= -x-1_ y2 dy(e-x/y) (ex) (e~xy/2) (exy
2
/6) 

0 . (43) 

= -x2ex[1- 3E4 (1)- ~ ~ 2 1- 4E 5 (1) + (~ x3 
+ ~ x 4) L- 5E6 (L)---] 

J6 
-1 LL 1 2 eq) 2 dy = X (1 + q + 2 q - y 

2 
()() 

(Lp- 3 /p !) = X l EP_ 2(px/1). ( 44) 
p=3 

One may now insert the series expressions foi the exponential 

integrals and collect all terms by powers of x. Terms 

involving 1 ·cancel, and there results: 
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Table II 

Values of the Functions J and J' 

X J J' i 

0.01 0.0000706 0.0127 

0.02 0.0002387 0.0207 

0.03 0.0004806 0.0275 

0.04 0.0007850 0.0333 

0.05 0. 0011443 0.0385 

0.06 0.0015529 0.0432 

0.07 0.0020063 0.0475 

0.08 0.0025010 0. 0 514 

0.09 0.0030340 0.0551 

0.10 0.0036028 0.0586 

0.12 0.0048393 0.0649 

0.14 0.0061961 0.0706 

0.16 0.0076615 0.0758 

0.18 0.0092260 0.0806 

0.20 0.010882 0.0850 

0.24 0.014441 0.0928 

0.28 0.018295 0.0997 

0.32 0.022409 0 .10 59 

0.36 0.026755 0.1114 

o·. 40 0.031313 0.1164 

0'. 44 0.036061 0.1210 

0.48 0.040985 0.1252 

0. 52 0.046070 0.1291 

' 
-_.~ 

\ 
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Table II (continued) 

X J J' 

0.56 0.051306 0.1327 

0.60 0.056680 0.1360 

0.80 0.085346 0.1499 

1. 00 0. ~1644 0.1605 

1.20 0.14941 0.1689 
' 
1. 40 0.18390 0.1758 

1. 60 0.21965 0.1815 

1.80 0.25645 0.1864 

2.00 0.29416 0.1906 

3.00 0.49283 0.2053 

4.00 0.70293 0.2142 

5.00 0.92035 0.2202 

6.00 1.14288 0.2246 

7.00 1.36918 0. 2 2 79 

·8.oo 1. 59839 0.2304 

9.00 1.82990 0.2325 

.10. 00 2.06328 0.2342 

12.00 2.53446 0.2368 

16.00 3.48916 0.2402 

20.00 4.45453 0.2423 

24.00 5.57865 0.2374 

28.00 6.40378 0.2447 ., 

. 32.00 ,7.38429 0.2455 
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Table II (continued) 

36.00 8.36745 0.2461 

40.00 9.35270 0.2465 

50.00 11.82248 0.2474 

60.00 14.29890 0.2479 

70.00 16.77979 0.2483 

80.00 19.26387 0.2485 

90.00 21.75033 0.2487 

100.00 24.23861 0.2489 

200.00 49.17099 0.2496 

400.00 99.11907 0.2498 

600.00 149.09520 0.2499 

800.00 199.08083 0.2499 

1000.00 249.07101 0.2500 

L000.00 499.04682 0. 2 500 

4000.00 999.03028 0.2500 

·6000. 00 . 1499.02328 0. 2 500 

8000.00 1999.01925 0. 2500 
. ' 

ioooo.oo 2499.01659 '0.2500 

-:·.~::_-.... · 



co 

J = - 2 
p=3 
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[xp-l pp- 3 /p! (p-3)!] (R.n x + K ) 
p (45) 

The quantities Kp are.constants given as sums involving 

Euler's constant, R.n p, and integral fractions; the first few 

values are: K3 = 0.419710, K4 = -0.292608, K5 = -0.369464, 

K
6 

= -3.00381. 

Equation (45) shows the limiting behavior of J for 

very small x, but it is convenient for numerical calculation 

only up to about x = 0.10. 

Since only app'loximate· values of J are needed for use 

with experimental data, simpler expressions w.ere developed 

for convenience in practical calculations. The two most 

useful expressions are 

2 6 
J = - ! x2(R.n x) e-lOx + ( L Ck x-k)-1 

k=l 

-c · c 
J ~ x[4 + c

1 
x 2 exp(-c3 x 4)]-l 

( 46) 

( 4 7) 

with the parameters given in Table III. Either equation (46) 

or (47) is fully adequate for practical calculations with 

experimental data of presently available accurac~. Equation 

(46) includes the correct limiting law for low x and is 

accurate to 2% . or better over the important range 0.1 ~ x 

~ 80. It .does deviate by as much as 10% near x = .02. 

Equation (47) includes the correct limiting fotm for large x 

and is accurate to 2% or. better for x greater than 0. 03 

a~d its maximum deviation for smaller x is 6 x 10- 6 . 
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Since this function and its'derivative are used only for 

relatively small terms in the expressions for thermodynamic 

functions, this accuracy is adequate. 

,_ 
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Table II I 

Parameters for Equations (46) ·and (47) 

Eq. ( 46) Eq. ( 47) 

c1 4.118 4.581 

Cz 7.247 0.7237 

c3 -4.408 0.0120 

c4 1. 837 0.528 

c5 -0.251 

c6 
- 0.0164 
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Figur.e 1. The functions J and J' . 
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Figure 2. The functions - Ee (so1id.curves) and 

I Ee• (dashed curves) for mixing ions of 

charge types 2-1, 3-1, and 4-1. 
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Figure· 3. Fits 6f equation (31) to the activity 
coefficient of ~C~ in HC~-Sr~~ 2 and 
HC1-A1C1~ solut1ons. Open c1rcles 
and triangles show results calculated 
including Ee and Ee' while solid 
circles and triangles show results · 
without those terms. 
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Fr~ezing point data for Na6(H2W12b4o) presented as 
deviations from the Debye-Hiickel limiting law. The 
dashed line shews the slope of the higher order limiting 
law which must be approached at large negative values of 
~og I. The solid curve is defined in the text. 
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