
Lawrence Berkeley National Laboratory
Recent Work

Title
VECTOR AND PARALLEL COMPUTERS FOR QUANTUM MONTE CARLO COMPUTATIONS

Permalink
https://escholarship.org/uc/item/9dn694gp

Author
Reynolds, P.J.

Publication Date
1985-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dn694gp
https://escholarship.org
http://www.cdlib.org/

•

... ·-'
J .. t .•

LBL-20085
<'.~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Materials & Molecular
Research Division

RECEIVED
WRENCE

BERI<FLEY LAW~Pil.TORY

t\uv 15 ·1~85

LIBRARY AND

Presented at the Conference on Supercon\tftf~~_t=NTS SECTION
Simulations in Chemistry, Montreal, Quebec,
Canada, August 25-27, 1~85

VECTOR AND PARALLEL COMPUTERS FOR
QUANTUM MONTE CARLO COMPUTATIONS

P.J. Reynolds, S. Alexander, D. Logan, and
W.A. Lester, Jr. __--- ~ r-- ;.:~3.·~.~~·."·

•• <],:;.

August 1985 rwo-WEEK LOAN COPY "~,
. . library Circulating Copy ·:~

Thrs rs a d for two weeks. ~ .. ·
.whic;h rna . be borrow~ .. !c- ~-;. .. ·.

~· ·-._..._...,.f ...

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

...

..

LBL 20085

Vector and Parallel Computers for Quantum Monte Carlo Computations*

P. J. Reynoldsa, S. Alexandera t, D. Logan6 t, and W. A. Lester, Jr. a§

a Materials and Molecular Research Division and
6 Advanced Computer Architecture Laboratory

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

Abstract

Monte Carlo simulations are inherently compute-bound. Although short computa
tions may provide order-of-magnitude estimates, long CPU times are generally required
to achieve the accuracy needed for reliable comparison of Monte Carlo results with
experiment or theory. The advent of supercomputers, which have made possible
significantly increased computer speeds for those applications which are amenable to vec
tor or parallel processing, thus offers promise for Monte Carlo applications. In fact,
l\'fonte Carlo codes are often highly parallel, and offer multiple avenues for both paralleli
sation and vectorization.

'vVe explore the gains to be obtained with supercomputers for the quantum Monte
Carlo (Qi\IC) method. The QMC algorithm treated here is used in quantum mechanical
molecular calculations, to obtain solutions to the Schrodinger equation. This approach
has recently been shown to achieve high accuracy in electronic structure computations.
Q~·fC is here demonstrated to fully take advantage of parallel and vector processor sys
tems. Levels of parallelism are discussed, and an overview of parallel computer architec
tures, as well as present vector supercomputers is given. 'vVe also discuss how one adapts
Q~vfC to these machines. Performance ratios (versus scalar operation) for a number of
supercomputer systems are given .

Th1s work was supported by the director, Office of Energy Research. Office of Basic Energy Sciences,
Chem1cal Sciences D1vision of the U. S. Department of Energy under contract number DE-AC03-76SF00098

t Present address Quantum Theory Project, University of Flonda. Gainesville, FL 3~611
: Permanent address: 18~1 Research Laboratory, Kingston, l'rY l~-101
~Alo:.::>, Department of Chemistry, University of California. Berkeley, C.-\ 9-17~0

2

I. Introduction

Many-body problems m physics are often treated by a Monte Carlo approach [1].

The Monte Carlo method is statistical in nature; based on the generation of "random"

numbers or "coin tosses," it derives its name from a city famous for the random

numbers embodied in its games of chance. Easy as it is to imagine using the Monte

Carlo method for treating inherently statistical models, or even for numerical integration

[2], it is less obvious how to solve many-body problems. Nevertheless, many such prob

lems are readily treated by Monte Carlo. Of particular interest to chemistry are the

quantum mechanical Monte Carlo methods [3!. These have recently been applied sucess

fully to a number of molecular problems [4-9], where they have achieved very high accu

racy compared to experiment and exact results (where available). In most cases, 90-

100% of the correlation energy has been obtained. Such quantum Monte Carlo (QMC)

approaches stochastically solve the Schrodinger equation. Thus QMC provides an alter

native to the conventional techniques of quantum chemistry.

Monte Carlo algorithms are almost entirely compute-bound, doing almost no I/0

and requiring minimal memory. Since Monte Carlo is a statistical procedure, high preci

sion (i.e., knowledge of many decimal places) can require long computer runs. This is

because statistical uncertainty decreases slowly with computational time, going as

c (time)--12, where c is a constant. Because high precisi,on is required in chemistry,

where most properties are obtained _as differences of alm_os_~ equal large numbers, long

computation times are often necessary.

One direction in addressing the problem of high preciSion is strictly algorithmic.

An algorithm which has a significantly smaller value for the constant c will run faster

by the ratio of these constants. Importance sampling [2,3) falls into this category of

algorithmic approach. Other algorithmic approaches, like differential Monte Carlo

methods [10), mcrease preciSion by computing energy differences directly. A

...

3

complementary direction m obtaining higher precision is machine oriented. In Monte

Carlo applications, increases in computational speed translate into increases in precision.

Vector and parallel processors promise vast enhancements in speed for those codes able

to take advantage of these architectures. Most Monte Carlo codes, and the molecular

QMC code in particular, can use these architectures extremely efficiently.

In Section II we highlight some features of QMC theory and the corresponding algo

rithm, exploring levels of parallelism. In Sect. III we present an overview of vector pro

cessors, vectorizing QMC for these machines, and the enhancements in speed thus

obtained. Sect. IV gives a discussion of parallel processing, including the various types

of architectures which are categorized under this heading. Further, we discuss the gains

that QMC can obtain through the use of parallel machines in terms of efficiency in using

all processors. In conclusion, Sect. V gives a brief comparison of the quantum Monte

Carlo speed enhancements achieved on supercomputers with those achieved by ab initio

methods.

II. Quantum Monte Carlo

For the purpose of this discussion, our goal will be the solution of the time

independent Schrodinger equation H 'li=E \ll for the energy E. Expectation values,

<A >=<'lll A I '11>, can also be_obtained, however these details [11] obscure the

main features of the approach, and so here we focus on E. It is readily apparent that

the ground state of the time-independent Schrodinger equation is the steady-state solu-

. tion to the equation [5,6]

~~ =D 'V 2\ll + [E-V (R)]'li(R ,t) . (1)

Here R is the vector of coordinates of .all N particles in the system. If the particles

being treated quantum mechanically are all electrons, 'V 2 is simply the 3-N dimensional

4

Laplacian and D =~2/2me . Note that Eq. 1 is simply a diffusion equation combined with

a first-order rate process. The function 'II(R ,t) has the meaning of the density of

diffusing particles, which may increase or decrease locally according to the rate term

[E-V (R)]'II(R). Such a diffusion process is readily simulated on a computer, and such

simulations have been performed for simple molecules as long as a decade ago [12].

A key issue in treating molecular systems is the proper handling of the Fermi

nature of electrons. The requirement that the wave function 'II be antisymmetric with

respect to particle exchange leads to a wave function which, for more than two electrons,

must have negative as well as positive values. In this situation, Eq. 1 may no longer be

simulated as a diffusion process, since the density of diffusers 'II(R ,t) would no longer be

everywhere positive. A number of methods have been proposed to deal with fermions

[13,14]; the most stable algorithmically, as well as precise statistically, entails a small

variational approximation known as the fixed-node approximation [13]. The antisym

metry constraint on 'II(R) is built in by specifying in advance the nodes of the wave

function to be those of a trial wave function 'llr (R). A random walk simulation is per

formed separately in each volume element bounded by these nodes. Since the sign of 'II

does not change within a volume element, the problem with 'II being a density is

removed. (Excited-state Fermi calculations may be done similarly, using such built-in

nodal constraints [15].) The function 'II T (R) can further serve as a guiding function for

importance sampling, during the Monte Carlo random walk. Such a guided walk pre

ferentially samples regions of configuration space where the true wave function is

expected to be large, and avoids divergent rate coefficients, such as that which occurs in

Eq. 1 when an electron approaches either another electron or a nucleus.

The result of introducing importance sampling and the fixed-node approximation

into Eq. 1, is to leave it as essentially a diffusion equation with branching-- though now

...

5

with an overall drift, and a modified branching term. The resulting equation is solved

stochastically by allowing a set of diffusers ("random walkers") to evolve in time until a

steady-state asymptotic distribution, is obtained [5]. Properties such as the energy are

measured as the walkers proceed in this asymptotic distribution, and are thus averages

over that distribution. The time evolution is achieved by using a Green function

G (R -R I ,7) which evolves a walker at time t at coordinate R to time t+7 at coordi

nate R 1
. The algorithm which performs this time evolution by Monte Carlo is quite

simple. It is summarized here.

(1) Nested loops over initial conditions. In most cases, a number of different initial con

ditions are of interest. For example, in calculating a potential-energy surface, various

separate calculations at different nuclear geometries must be performed. In other calcu

lations, a number of different trial functions may be used, for example to ascertain

basis-set dependence. ln. still other instances a n urn her of calculations with different

time-steps 7 are required for extrapolation to 7-0, if the short-time approximation [5,6]

is used. One may also want to perform a set of runs differing only in the initial "seed"

for the random number generator. Such runs would not suffer from the serial correlation

present in the block averages (see below). It is furthermore conceivable (and common) to

need to loop over multiple initial conditions. For example, one may need to loop over

geometries, at each geometry perform a loop over 7, and perhaps, at each 7 perform a

loop over random seeds. Each of these loops is entirely independent of one another.

For a given set of initial conditions, one generates an ensemble of Nc (typically 100-

500) spatial "configurations" of the N-electron system. These coordinates may be chosen

randomly, or for greater efficiency in reaching the asymptotic distribution, they may be

drawn from the distribution I 'l'r{R) 1
2.

{2) Loop over blocks. A block IS an almost statistically independent

6

"sampling unit." Each block is a complete Monte Carlo "run," which

provides estimates of the properties being sampled. Generally, the total

microscopic sampling time (or "target time") in a block is taken as

approximately one atomic unit or longer, in order to minimize the statisti

cal (serial) correlation between blocks. This target time defines the length

of a block. Calculation of a block entails:

(3) Loop over configurations in the ensemble. For a partic

ular configuration, one "measures" the properties of

interest, such as the energy. (When using a trial function,

the energy measured is the local energy. In the case of Eq.

1, the potential energy is measured.) Perform the random

walk by:

(4) Loop over the electrons. Each electron

will diffuse and drift as prescribed by the

Green function. One must check if a node

has been crossed in this process. In the

fixed-node approximation, if the answer IS

"yes," eliminate the configuration. If no,

Continue the loop over electrons.

After all electrons have been moved, one advances the time

in the current configuration by T. The branching factor, or

multiplicity M, which is also given by the Green function,

is computed. This factor comes from the rate part of the

differential equation (see e.g. Eq. 1). M copies of the

current configuration are placed in the ensemble in place of

the starting configuration. Averages for this configuration

7

are weigh ted by M.

Continue the loop over configurations .
.

At this point, all surviving configurations in the ensemble have reached

the target time. The current block is finished. Store the current aver-..
ages. "Renormalize" the ensemble back to Nc to avoid the otherwise

inevitable overflow, or total death, of configurations in the ensemble.[3]

Continue the loop over blocks.

The pre-determined number of blocks have now been computed. Averages and standard

deviations over the blocks are 'computed. This provides a Monte -Carlo estimate of the

mean and standard errors of the quantities of interest for a particular initial condition.

Continue the loops over initial conditions.

In this outline, we have not included many of the details of the calculation, in order

to focus more on the levels of parallelism and nesting. We have mentioned the key

loops--many of which are totally independent of one another. This allows for a variety

of options in creating efficient vector and parallel algorithms. The nominal communica-

tion overhead is particularly attractive, as it is beneficial in virtually every parallel archi-

tecture. 'We note, however, that the choice of loops vectorized can have an appreciable
.

impact on the amount of memory required. Replicating the whole program over initial

conditions is only practical if the original code uses very little memory--as is the case for

QMC.

Iii. Vector processors

..
Scalar computers perform sequential arithmetic operations on individual data ele-

ments. These are single-instruction, single-data (SISD) architecture machines. In con-

trast, vector processors are designed to perform identical arithmetic operations simul-

8

taneously on multiple data elements (single-instruction, multiple-data or SIMD). Thus,

in order that vectorization can be performed, there needs to be one operation to be per

formed on many data elements at a given moment. (However, only certain operations on

these elements are allowed.) Generally the compiler, together with some user directives,

is responsible for finding such operations. What the compiler can recognize, even with

user directives, is critically dependent on a program's overall structure. Thus structure

as much as such conventional factors as cycle time, compiler efficiency, and memory

access time, has a major effect on speed. A useful measure of the adaptability of a

specific program to a vector machine is the ratio of its scalar run time to its vector run

time on the same machine. For inherently scalar programs this number will be close to

unity. Programs which make full use of ·a vector processor's capabilities will have much.

larger ratios. T~ examine the adaptability of QMC to vector processors, we performed

test runs on a two-pipe and a four-pipe CDC Cyber 205, and on a Cray IS and one pro

cessor of a Cray X?vfP.

The CDC Cyber 205 [16], cons~sts of a fast scalar processor in addition to a

memory-to-memory vector processor. Vector arithmetic instructions are executed in two

phases. General-purpose functional units (pipes) are initially filled or emptied during the

startup phase. The time consumed during this period is independent of the vector

length, and typically takes on the order of 50 machine cycles. During the stream phase,

CPU time consumed is directly proportional to the vector length, and inversely propor

tional to the number of pipes. On a two-pipe machine, fot example, a vector addition

.uses the first pipe to add the odd pairs of operands, while the second pipe simultane

ously adds the even pairs. This sort of operation yields two results per cycle. Similarly

a four-pipe machine produces four results every cycle. Up to a maximum of four pipes

are available on the Cyber 205. It should be noted, however, that not all vector opera-

•

9

tions benefit from increasing the number of pipes. Furthermore, for a fixed number of

pipes, certain operations are performed faster than others. Thus the ultimate speed

attainable on the Cyber 205 is dependent not only on the degree to which the code can

be vectorized, but also on the type of vector operations being performed. Further,

although floating-point operations are normally done in full precision {64 bits), a facility

'"' has been provided for the user to code in half-precision {32 bits). In most cases this dou

bles both the speed and the amount of memory available [17]. Another feature of the

Cyber 205 is the large, diverse instruction set available to the FORTRAN user. This

enables one to convert many standard FORTRAN constructs directly into vector

instructions. Thus vectorization of an algorithm does not depend strictly on the clever

ness of the compiler.

'"

The Crays [18], like the Cyber 205, combine fast scalar capability with vector pro

cessmg. Unlike the Cyber 205, however, Crays are not memory-to-memory machines.

Instead, vectors are loaded from memory into one of 8 vector registers, each holding 64

words of 64 bits each. From these registers the numbers are sent to one of 12 specialized

functional units where arithmetic operations are performed .. Operations involving

seperate functional units can proceed concuren tly. All result vectors are returned to the

vector registers. Since each operand does not have to be fetched or each result stored in

memory, operations are performed much faster. The vector registers act a.s fa.st cache

memory. As a result Cray vector instructions are characterized by relatively short

startup times, rangmg from 2 to 14 clock cycles. Clock cycles range from 12.5

nanoseconds on the Cray IS to 9.5 ns on the Cray XMP -.:. in constrast to 20 ns for the

Cyber 205. On the other hand, Cray machines have a relatively small number of

instructions available to the FORTRAN user, which can hinder vectorization of some

codes.

10

Direct quantitative comparison of the Cyber 205 and the Crays is difficult because

their different capabilities give rise to differen't optimal coding techniques. Nevertheless,

some general conclusions may be drawn. In applications involving short vectors, the

Crays seem to be superior due to their shorter startup times. Their faster clock cycles

will also give them an advantage in many applications. However, for long loops, and in

cases where explicit vector instructions are necessary, the Cyber 205 (especially with 4

pipes) may be more desirable, due to its higher processing rate per machine cycle, and its

large, diverse set of vector FORTRAN instructions.

The QMC algorithm, as described in Sect. II, is well suited to scalar machines.

However, this structure prevents it from being vectorized efficiently. Typically only the

inner loops of a program can be vectorized. The longer a loop the more efficient the pro-

cess [19]. The innermost loops, however, are over the electrons and over the basis func-

tions. The number of electrons, and even the number of basis functions, is relatively

small for the systems currently being considered. For example, vectorizing these loops

for CH'> [20] yields a scalar/vector ratio very close to unity on both the Cray 1 and the .. '

Cyber 205. A similar result is obtained for the carbon atom [21]. This algorithm is

clearly not taking advantage of the vector architecture. Even writing explicit vector

code (for the Cyber) [20] and using it only for vectors longer than an optimized length

C • ~16 (optimized to minimize the effect of the vector start-up time) leads to a

scalar/vector ratio only in the range of 1-1.5, depending on the number of basis func-

tions. Much longer vectors are clearly needed for these machines to show their abilities.

A more appropriate arrangement of the. code -- that will allow the compiler to

create a long vector -- is to make the loop over configurations innermost. This involves

storing a linear array the size of the ensemble for every quantity in the original loop over

configurations. Since each configuration is independent of the others, and since the

.•

11

number of configurations is usually quite large, this restructured algorithm should be

much more efficient. Certain operations in the inner loop pose something of a problem,

however, since they are performed on some configurations but not others. These can

nevertheless be vectorized by using special mask operations available on all the machines

we considered. The restructured algorithm does, however, require considerably more

memory than the original form. Nevertheless, the minimal memory requirements of the

scalar algorithm are such that the vector code still requires only a small memory alloca

tion.

We note that even the scalar VAX time obtained with the restructured algorithm

shows a speed-up in execution of about 40%. This type of tradeoff between speed and

memory is common. When automatic vectorization is invoked on the Crays and Cybers,

CPU time drops by a factor of roughly three. The current generation of compilers, how

ever, have only a limited capability to recognize vectorizable code. To achieve faster

execution it was necessary to explicitly hand-vectorize portions of the program. In

Tables i and 2 we present the results achieved. Scalar /vector ratios range from 5-6 for

a vector length of 100, and from 6-10 for a vector length of 500. (In actual QMC calcu

lations the ensemble size is generally in the range of 100 to 500.) Thus overall, for avec

tor length of 500, we achieve a factor of 117-186 over a VAX 11/780 running the same

code, and a factor of 192-304 over the same V A.X running the original algorithm. It is

also important to note that in comparing speeds with the V A..X we are comparing single

prec1s1on on the VAX (32-bits--this is all that QMC requires in most cases) with single

prec1s1on on the supercomputers (64 bits). For comparisons with equal numbers of

significant figures, one must use single precision on the VAX and half precision on the

supercomputers (where available), or double precision on the VA ... X and single precision

on the supercomputers. In such a comparison (for a vector length of 500) we expect to

12

achieve a speed-up over the VAX (for the same code) of roughly 370 on the Cray XMP

and about the same on the four-pipe Cyber 205. This is a significant increase, especially

when compared with the naive vectorization [20] of the scalar algorithm, which only led

to factors of 20 to 30. Expressed in millions of .floating-point operations per second

(MFLOPS), we obtain an average rate of roughly 70 MFLOPS on the Cray XMP and on

the four-pipe Cyber 205 at a vector length of 500. This is to be compared to the 14

Livermore kernels, which range from 3-150 MFLOPS on the Cray XMP, and average

either 50 or 58 MFLOPS depending on the use of compiler directives [22a]. The har

monic mean, which is a better indicator of the actual speed of a code running sections

going at different rates, gives an average rate of roughly 14 MFLOPS for the Livermore

kernels on the Cray XMP [22b]. On the other hand, in half-precision we would expect

our code to achieve an average rate of about 140 MFLOPS. We note especially that

these rates are for the code ove.rall, not just for selected parts of it.

IV. Parallel Processing

A more ambitious approach than the SIMD vector machines are the fully parallel

:MIMD (multiple-instruction, multiple-data) structures, in which parallelism is achieved

at the processor level, rather than with the functional units. The two approaches, how

ever, should not be viewed as mutually exclusive. Ideally, one can envision a system

that encompasses both strategies, i.e., a multiprocessor system whose component proces

sors are capable of vector processing. Such an approach allows for more rapidly solving

those problems that are vector decomposable, as well as solving a multitude of problems

that are not [23]. QMC (and other Monte Carlo) can be decomposed simultaneously into

vector and parallel parts, gaining from both types of architecture.

A number of new computational issues arise when approaching a parallel processing

system. Thf: first, of course, is in understanding the level of parallelism that a problem

·-,·

13

manifests. Such parallalism may exist, for example, at the "fine-grained" instruction

level. Pipelining techniques of the vector supercomputers currently avail themselves of

this form of parallelism. More ambitious approaches have been concerned with the con

struction of multiple-instruction pipes [24j and with data-flow architectures [25j. At the

opposite extreme, the highest level of parallelism may be the segmentation of a problem

in to a group of concurrent co-operative sub tasks, or even replication of the entire pro

gram with, for example, differing initial conditions, constraints, etc. (see Sect. II).

Closely related to the understanding of a program's parallelism is the question of

how best to express this in a programming language. Is it adequate to modify an exist

ing language with appropriate constructs, as done for vectorization, or must a new

language be defined? Further, to what relative degrees shall the programmer or the

compiler be responsible for the program decomposition? To a first approximation, it is

generally conceded that the finer the grain size, the more emphasis must be placed upon

the "intelligence" of the compiler. The higher levels will require greater participation of

the programmer with perhaps interactive compilers.

Even with some understanding of the level of parallelism that a problem exhibits,

and of how to map it onto a system of co-operative processors, there remains the critical

issue of how best to implement processor coordination. This is related to the general

issue of communication. Two broad approaches have been most extensively analysed in

this regard: tightly- and loosely-coupled systems. Tightly-coupled systems may be

thought of as a collection of processors that share a global memory. Important for such

systems is the selection of a processor/memory interconnection network [26]. This net

work must ensure that the potentially very high interprocessor communication

bandwidth is not degraded by memory contention conflicts and slow arbitration schemes.

Further, in the event that the processors retain an additional private memory or data

14

cache, it is vitally important that local data be correct in a global sense, i.e., data

updates or modifications must be distributed across private memory boundaries. This

latter criterion is the essence of what is known as the cache coherency problem [27]. The

loosely-coupled alternative approach encompasses multiprocessor systems that operate as

high-speed local-area networks. Here the problem of resource contention and validity is

replaced by the concern with how interprocessor communication may be most effectively

implemented, and the degree of system-wi~e connectivity that the applications merit. In

the event that complete pairwise connectivity is required, bus structures may be

employed. Higher communication band-width, however, requires more elaborate and

costly interconnection networks [26]. Alternatively, in some applications static

geometries of processors with solely nearest-neighbor communication abilities are

sufficient. These generally are special-purpose machines with only a few applications. A

number of such systems have been designed with topologies such as grids, rings, trees,

pyramids, hypercubes, and other exotic structures [26,28]. In examples such as these,

the architecture is designed to embody as closly as pbssible the "model of computation"

required by the application. Every problem has some "natural connectivity" [28]. Hav

ing established the connection scheme, there still remains the specification of communi

cation protocols and communication method (e.g., packet switching, memory circuit

switching, etc.).

However the issue of processor coordination is resolved--whether in favor of loosely

or tightly-coupled architectural approaches--there still remain other issues. For example,

should an application require intensive data throughput (> 10 Mbytejsec), it may be

necessary to design specialized input and output processors, an addition~! interconnec

tion network to distribute data, and sophisticated mass storage subsystems. Other

system-level issues to be dealt with are job dispatching, fault tolerance, the ability to

15

control synchronization and data broadcasting among processors, and of vital impor

tance, the ability to monitor system performance while experimenting with problem

decomposition.

At present there exists no consensus as to what approach is best. While many sys

tems have been suggested, relatively few have actually been constructed and tested.

Moreover, those that have, of necessity have been prototypes with small numbers of pro

cessors (~ 2-64) and usually with limited memory and .J/0 capability. Thus the bench

marking of real, large-scale problems has consisted primarily o_f extrapolation of the

results obtained on these prototypes, into the region of the large numbers of processors

(~ 1~1000) envisioned for future systems. These considerations led to the design and

construction of a parallel processing system called MIDAS [29] at the Advanced Com

puter Architecture Laboratory at the Lawrence Berkeley Laboratory. MIDAS (Modular

InteraCtive Data Analysis Systems) has combined many of the advantages of both

loosely- and tightly-coupled architectures (high communication speeds without resource

contention), and dealt explicitly with 1/0 intensive problems.

Since Monte Carlo probl"ems are so ideally suited to multiprocessor systems, we

have adapted QMC to MIDAS (and MIDAS to QMC) [30]. The most intuitive and usu

ally most efficient means of distributing a Monte Carlo computation is such that each

processor is responsible for performing an independent statistical sample. An ensemble

average replaces a time average in those Monte Carlo applications where equilibrium

time averaging is performed. Actually, one has an ensemble average of time-averaged

quantities. Increasing the number of processors substitutes more elements in the ensem

ble for parts of the time average. This, however, also raises the overhead of equilibrat.

ing all members of the ensemble. Some Monte Carlo applications involve only ensemble

averaging, and these are most readily modified for parallel execution. The decomposition

18

of QMC chosen for MIDAS was to give each procesor initially an equal fraction of the

total ensemble. This choice, rather than e.g. breaking up the calculation over blocks or

initial conditions, was dictated by the limited memory size of the individual processors

(128 Kwords).

In Monte Carlo, the necessity of inter-processor communication is primarily depen

dent on whether the sampling conditions or rules change as a function of previous sam

ple estimates. In the event that such conditions remain constant, communication may

be unnecessary (other than that required for averaging the final estimates of each proces

sor). If, on the other hand, the set of estimates from all processors needs to be assessed

for the purpose of defining a new sampling condition, periodic communication is

required. Such a synchronization step represents a "critical section" of the problem.

The computation may be thought of as a "fork and join" process, wherein processors

fork to arrive at their estimates, followed by a join operation to define the new sampling

condition. The join represents the critical section that must be performed prior to

another fork. This type of critical section was explicitly realized in the QMC calculation:

Each processor calculated an estimated energy by allowing its configurations to perform

random walks for a fixed number of time steps. When the last processor completed this

operation, all local estimates of the energy were combined to update the trial energy for

the next sample period.

The MIDAS structure can be configured in a number of ways. The structure

chosen to implement QMC was that of a master /slave topology. In this configuration, a

single processor acts as the master and performs the join operation of updating the trial

energy. Thus it was responsible for polling the slaves to ascertain whether they had

completed their samples. In the event that all were completed, it read the current

energy value, recalculated the trial energy, wrote this value into each slave processor's

..

17

memory, and initiated (forked) the next sample period. At a lower level, the master was

also responsible for detecting abnormal conditions or failures in each of the slave proces

sors (underflow, overflow, memory parity errors, etc.). In the event that such conditions

were uncorrectable, the master deallocated the processor in question, while increasing the

sub-ensemble populations in the remaining processors such that the total ensemble

remained constant. If any processor's population of configurations died entirely during a

sample period (as happens more frequently with larger time steps) the master was

responsible for downloading a new set of configurations to that processor prior to initiat

ing a new sample period. This process of augmenting a processor's population was made

by randomly selecting surviving configurations from neighbor processors.

Modifications to the original serial QMC code were fairly minor [30]. A subroutine

was added that· performed all of the master functions described above. It is called in the

master once all initial conditions have been set, and the sampling portion of the code

downloaded and initiated in each slave processor. This routine, consisting of several

hundred lines of FORTRAN, executes system routines [31] which read and write selected

variables within slave processors' memories, which poll processor status conditions, and

which start execution at selected program addresses. Modification of the QMC code that

was executed in each slave was minimal. It consisted of setting software flags for various

conditions at the end of a sample period, and thereafter calling a system routine that

suspended execution at a particular instruction address. This latter address and condi

tion was recognized by the master as the termination of a normal sample period.

We now address how well QMC performs on a parallel system. Since the efficiency

of a multiprocessor calculation may be defined as the fraction of time that an average

processor is employed in performing useful work, 100% efficiency corresponds to a P-fold

increase in speed over a uniprocessor, for a ?-processor machine. Because of the random

18

nature of the QMC birth/death process, the time for a gtven processor to complete

(before the next "join") isitself randomly distributed. Hence, in this implementation, a

processor upon completion of its calculation, is forced to remain idle until the last pro

cessor has finished. Only at that point does the master compute the new trial energy

and reinitiate the slave processors. Thus the efficiency can be approximated as

tave / t maz, where tave is the average time at which the processors finish and t maz is the

average time at which the last processor finishes. With MIDAS configured with 8 slave

processors, calculations were performed for the saddle-point energy of H3, and the

ground-state energies of N and of N2. These calculations ran at approximately 95%,

85%, and 80% efficiencies respectively. Decreasing the number of processors increased

the efficiencies to a small extent, but, of course, at the expense of decreasing the overall

computational rate. The decrease in efficiency with the number of processors is attribut~

able to t maz increasing with P, as one samples further under the tail of the distribution

of finishing times. The decrease in efficiency with the larger molecules may be attributed

to sampling from a broader distribution.

Although the actual calculations were performed as described above, the parallel

algorithm can be readily modified to improve overall performance. The master can be

programmed to perform dynamic load balancing as the sampling process proceeds. Any

processor completing its work can be given additional configurations, extracted from pro

cessors which still have unfinished ones waiting to run. It should also be noted that the

need for even the minimal interprocessor communication, and its resultant inefficiency,

could have been entirely eliminated had each slave processor had sufficient, memory to

hold the entire ensemble. In this case the loop over blocks or any (or all) of the loops

over initial conditions (see Sect. II) could have been decomposed over the processors.

Thus each processor could have run at 100% efficiency. This demonstrates clearly how

..

19

the actual strategy for parallelising depends on external factors, such as memory con

staints.

The n urn her of available processors also dictates the strategy for parallelising an

application. Consider the availability of an unlimited number of processors. Then an

ideal parallelisation of QMC would follow the nested nature of the algorithm. At the

top level, independent processors would run differing sets of initial conditions--e.g.

nuclear geometries. Each such processor, however, would itself be a parallel processor,

·running multiple (identical) codes, differing e.g. in the time-step size. Each of these pro

cessors would be a multi-processor also. These next-lower-level processors could run sta

tistically independent samples by using different random number generators, or (if this is

deemed unnecessary) by using differing seeds for the same generator. These processors

could be further subdivided, with separate processors handling parts of the ensemble -

as was actually implemented on MIDAS and described above. All the above steps can be

run at virtually 100% efficiency, leading to increases in execution speed of P, the number

of processors. In a truly massively parallel architecture, if there are more processors

available than can be used in this description, one can further parallelise the random

walk algorithm, for example, parallelising the computation of the Coulomb potential. At·

this stage, efficiency would begin to drop, although speed would continue to increase, but

no longer as rapidly. At a certain point saturation will set in, and speed will no longer

rise even linearly with the number of processors. For QMC however, this stage

apparently will not be reached until P is quite large indeed.

V. Comparison with conventional ab initio methods.

As we have seen, Monte Carlo is a computationally intensive method, but one that

requires relatively little memory. The independence of the configurations, the near

independence of the blocks, and the possibility of parallelising over initial conditions,

20

makes QMC particularly well suited to vector and parallel machines. Furthermore, the

relatively small size of most Monte Carlo codes (roughly 1500 lines of FORTRAN in the

present case) allows the user to easily optimize the algorithm to a specific machine. In

this section we discuss whether these factors allow QMC to make more efficient use of

current supercomputers and upcoming parallel computers, than more traditional ab ini

tio methods (e.g., Hartree-Fock, multiconfiguration Hartree-Fock, configuration interac

tion)-- as the latter also benefit from the new computer architectures.

Scalar/vect?r ratios of from 10 to 50 have been quoted by Rappe [32] for selected

portions of SCF and MCSCF codes on a two-pipe Cyber 205. The corresponding rates

are from 26-100 MFLOPS. (This implies that at least in part his high ratios result from

a scalar execution rate of only approximately 2 MFLOPS, in contrast to the more usual

scalar rate of 5 MFLOPS.) It should also be noted that only 14% of his CPU time is

spent in the sections going at the highest rates [32]. In programs containing a mixture of

vectorizable and nonvectorizable code, the nonvectorizable part dominates the calcula

tion [33]. The question of how much vectorization helps his SCF codes overall is not

addressed. Sanders and Guest [34] discuss rates for somewhat larger program sections

than Rappe. Their rates on a Cray 1S range from 10 MFLOPS for the Hartree-Fock sec

tion to 1~0 MFLOPS for the CI part. However the overall benefit remains an open ques

tion here too. (This question has, ho"wever, been addressed recently for ab initio calcula

tions performed on an FPS 164 array processor [35] where relative to a VA.:"'{ an overall

enhancement of 10-12 was achieved.)

For QMC, virtually the entire code vectorizes. In fact, usmg a formula from

Ahlrichs et a/ [36] we estimate that oyer 90% of the code must vectorize to achieve the

rates attained. Further, QMC can be decomposed in a number of ways into virtually

identicaL non-communicating parts suitable for parallel processing. Although ab initio

21

codes can be decomposed over some initial conditions as well, the increase in memory

. required for such program replication makes this degree of parallelism impractical in

most cases. Analysis of recent work in optimizing ab ·initio codes for parallel processors

shows efficiencies ranging from 50-95%, depending on the type of code, and the number

of processors [37]. We note, however, that these efficiencies are generally not linear in P,

and begin to saturate (i.e. deviate from linearity) for P quite small (on the order of 4-10

processors). J:hus, overall it appears that QMC can more easily and efficiently take

advantage of the new computer architectures than conventional ab initio approaches.

Acknowledgements. We thank the Control Data Corporation and Cray Research Inc.

for ·grants of computer time on their machines, and for assistance in carrying out parts

of these calculations. Helpful comments on the manuscript by R. N. Barnett and B. L.

Hammond are also gratefully acknowledged.

22

References.

[I] See, e.g., Monte Carlo Methods in Statistical Physics, K. Binder, ed. (Springer-Verlag,
Berlin, I979).

[2] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, (Chapman and Hall,
London, I964) .

. [3] M. H. Kalos, Phys. Rev. I28. 1791 (1962); J. Comp. Phys. 1.. 257 (1967); M. H. Kalos,
D. Levesque, and L. Verlet, Phys. Rev. A~ 2178 (1974); D. M. Ceperley and M. H.
Kalos, in Ref. [I]; D. M. Ceperley, J. Comp. Phys. Q.L. 404 (1983).

[4] J. B. Anderson, J. Chern. Phys. ZQ... 3897 (I980); F. Mentch and J. B. Anderson, J.
Chern. Phys. 11... 6307 (I98I). ·

[5] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chern. Phys.
TL. 5593 (I982).

[6] J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos, J. Chern. Phys. ZL.
349 (1982).

[7] P. J. Reynolds, R. N. Barnett, and W. A. Lester, Jr., Int. J. Quant. Chern. Symp. ~
709 (1984); F. Mentch and J. Anderson, J. Chern. Phys. & 2675 (1984); R. N. Barnett,
P. J. Reynolds, and W. A. Lester, Jr., J. Chern. Phys., ~ 2700 (1985).

[8] P. J. Reynolds, M. Dupuis, and W. A. Lester, Jr., J. Chern. Phys. ~ I983 (1985).

[9] R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., "Electron Affinity of Fluorine:
Quantum Monte Carlo Study " in preparation.

[10] B. Holmer and D. M. Ceperley, private communication; B.. vVells, P. J. Reynolds,
and W. A. Lester, Jr., unpublished; B. Hammond, P. J. Reynolds, and vV. A. Lester, Jr.,
unpublished; B. H. \Veils, Chern. Phys. Lett. 115. 89 (1985).

[11] M. H. Kalos, Phys. Rev. A~ 250 (1970); R. N. Barnett, P. J. Reynolds, and vV. A.
Lester, Jr., "Molecular Properties by Quantum Monte Carlo" in preparation.

[12] J. B. Anderson, J. Chern. Phys. ~ 1499 (1975); ruL. 4121 (1976).

[13] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. ~ 566 (1980); D. M. Ceperley in
Recent Progress in AJany -Body Theories, edited by J. G. Zabolitzky, M. de Llano,
M. Fortes, and J. W. Clark {Springer- Verlag, Berlin, 1981).

[14] J. Carlson and M. H. Kalos, "Mirror Potentials," preprint {1985).

[15] R. N. Grimes, R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., "Molecular
Excited States with Fixed-Node Quantum Monte Carlo" in preparation.

[16] M.J. Kascic Jr., Vector Processing on the Cyber 200 (available from the Control
Data. Corporation)

;.-

....

..

23

[17] See, for example, A. Dickinson, Comp. Phys. Comm. ~ 459 (1982).

[18] W. P. Petersen, Comm. of the ACM ~ 1008 (1983)

[19] See, for example, the Cyber 205 User Guide (available from Control Data Corpora
tion), and Cray Computer Systems Technical Note - Optimization· Guide (available from
Cray Research) .

[20] P. J. Reynolds and W. A. Lester, Jr., Proceedings of the Cyber 200 Applications
Seminar, NASA Conferance Proceedings 2295 (1983).

[21] S. Alexander, P. J. Reynolds, R. N. Barnett, and W. A. Lester, Jr., "Vectorization of
Molecular Quantum Monte Carlo" in preparation.

[22] (a) H. Bruijnes, NMFECC Buffer~ No. 6, 1 (1985); (b) J. Worlton, Datamation,
pp 121-30, 1 Sept~mber 1984.

[23] G. Rodrique, E. D. Giroux, and M. Pratt, Computer~ 65 (1980).

[24] CDC - Cyberplus announcement, based on the AFP processor designed by Control
Data Corp.

[25] J. B. Dennis, Proc. First Int. Conf. on Distributed Computing Systems, p. 430
(1979).

[26] Interconnection Networks for Parallel and Distributed Processing, C-L. Wu and T
Y. Feng, eds. (IEEE Comp. Society Press, Silver Spring, 1984). ·

[27] M. Dubois and S. Briggs, IEEE Trans Comp, C31. 1083 (1982).

[28] Physics Today, May 1984.

[29] For a detailed description of the MIDAS architecture see C. Maples and D. Logan,
SIAM, in press, and references therein.

[30] P. J. Reynolds, D. Logan, C. Maples, and W. A. Lester, Jr., "Parallelism in Quan
tum Monte Carlo: Calculation of the Binding Energy of the Nitrogen Molecule" in
preparation.

[31] D. Logan, C. Maples, D. Weaver, and W. Rathbun, Proc. 13th Int. Conf. on Parallel
. Processing, p. 15 (1984) .

[32] A. K. Rappe, J. Comp. Chern. ~ 471 (1984).

"' [33] I.Y. Bucher and J.W. Moore, "Comparative Performance Evaluation of Two Super
computers: CDC Cyber-205 and CRI Cray-1," Los Alamos Scientific Report LA-2629
(1981).

[3-l] V. R. Sanders and M. F. Guest, Comp. Phys. Comm. ~ 389 (1982); Martyn F.
Guest and s·tephen Wilson, in Supercomputers in Chemistry, Peter Lykos and I. Shavitt
eds. (American Chemical Society, Washington D.C., 1981).

24

[35] R. A. Bair and T. H. Dunning, Jr., J. Comp. Chern. ~ 44 (1984).

[36] R. Ahlrichs, H-J. Bohm, C. Ehrhardt, P. Scharf, H. Schiffer, H. Lischka, and M.
Schindler, J. Comp. Chern. Q.. 200 (1985).

[37] E. Clementi, G. Corongiu, J. Detrich, S. Chin, and L. Domingo, Int. J. Quant.
Chern. Symp. 1].. 601 (1984).

..

25

Table 1. Comparative run times for the restructured algorithm with an ensemble size of
100 .. Single precision is used on all machines. ·

Machine
VAX 11/780
Cyber 205 (2 pipe)
Cyber 205 (4 pipe)
Cray 1S
Crav XMPa

scalar seconds
1620.0

82.4
81.7
70.5
49.8

vector seconds

16.7
13.9
14.5
9.9

a All calculations were done using only one processor.

Table 2. Comparative run times for the restructured algorithm with an ensemble size
of 500. Single precision is used on all machines. Other than the ensemble size, all
parameters are the same as in Table 1. Thus the scalar time rises by a factor of 5, but
the vector times rise less rapidly.

Machine
VAX 11/780
Cyber 205 (2 pipe)
Cyber 205 (4 pipe)
Crav XMPa

scalar seconds
8100.0

413.6
415.9
246.7

vector seconds

69.2
43.6
44.4

a All calculations were done using only one processor.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

"~;t~~~~~

LAWRENCE BERKELEY LAB ORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~~--~:._

··:,

