
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Play the Imitation Game: Model Extraction Attack against Autonomous Driving Localization

Permalink
https://escholarship.org/uc/item/9dn9p7f0

Author
Zhang, Qifan

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dn9p7f0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Play the Imitation Game: Model Extraction Attack against Autonomous Driving
Localization

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Qifan Zhang

Thesis Committee:
Assistant Professor Zhou Li, Chair

Associate Professor Mohammad Abdullah Al Faruque
Assistant Professor Qi Alfred Chen

2022

© 2022 Qifan Zhang

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Background 5
2.1 AD Localization . 5

2.1.1 MSF algorithms . 7
2.2 Kalman Filter based Multi-Sensor Fusion . 7

2.2.1 Additive White Guassian Noise and Kalman Filter 7
2.2.2 Error-State Kalman Filter in AD system 10

2.3 AD Controller . 11

3 Attack Overview 14
3.1 Adversary Motivation . 14

3.1.1 Existing protections . 15
3.1.2 Generalizability of the extracted model 15
3.1.3 Hacking AV to extract KF parameters . 17

3.2 Adversary Model . 17
3.2.1 AS1: Intrusive In-AV Attacker . 18
3.2.2 AS2: Non-intrusive In-AV Attacker . 18
3.2.3 AS3: AV Follower . 19

3.3 KF Model Extraction . 19
3.3.1 Challenges . 20

4 Attack Implementation 22
4.1 Extracting ESKF Alone . 23

4.1.1 Search-space reduction of Q . 24
4.1.2 Search-space reduction of RG, R

p
L and Ry

L 25
4.1.3 Multi-stage optimization . 25

ii

4.2 Extracting ESKF with Controllers . 26

5 Evaluation 32
5.1 Experiment Settings . 33

5.1.1 Evaluation datasets . 33
5.1.2 Evaluation metrics . 33
5.1.3 Experiment parameters . 35
5.1.4 Experiment environment . 35

5.2 Extracting Sola-ESKF . 36
5.2.1 Result on AS1 (Intrusive In-AV Attacker) 36
5.2.2 Result on AS2 (Non-intrusive In-AV Attacker) 38
5.2.3 Result on AS3 (AV Follower) . 38

5.3 Impact of Parameters . 40
5.3.1 The number of points for training (N) 40
5.3.2 Weights in loss function (λp, λd and λa) 42
5.3.3 Initialization and controller parameters 42

5.4 Extracting Apollo-ESKF . 43
5.5 Modeling ESKF with RNN . 45
5.6 Comparison to Other System Identification Methods 49
5.7 Spoofing Attacks . 50

6 Discussion 52
6.1 Generalization to other KF models . 52
6.2 Limitations . 53
6.3 Defense . 54
6.4 Future works . 54

7 Conclusion 55

8 Related Work 56
8.1 Security of AD . 56
8.2 Model Extraction . 57
8.3 System Identification . 57
8.4 Kalman Filter Tuning . 58

Bibliography 60

iii

LIST OF FIGURES

Page

2.1 AD Architecture Example. 6
2.2 Workflow of ESKF. The flows of GNSS and LiDAR both generate Update

states, but the values could be different. 12

3.1 Adversary model. δ is the function adding noises. 18

4.1 Training strategy of ESKF. 24
4.2 Workflow of ESKF combined with controllers. Anomaly filter is an optional

component included by some AD like Baidu Apollo. 28

5.1 Loss in every 10 epochs during training with λd = 1. The targeted model is
Sola-ESKF. local08 is used for training. 41

5.2 Distribution of RMSE on 2D locations in AS1 on Apollo-ESKF. The training
trace is highway17 and the testing trace is local08. 45

5.3 The structure of ESKF emulated with RNN. 47

iv

LIST OF TABLES

Page

4.1 Symbols used in Section 4. “Dim” is for Dimension. “cov” is for covariance
matrix. “*” marks the secret to be inferred by TaskMaster. 22

5.1 Evaluation result on Sola-ESKF. The result of each testing trace is represented
as SER. PER is the same for each training trace. PER could be larger than
1 if the error between the extracted value and the ground truth is larger than
the ground truth itself. AS3E, AS3G and AS3R are AS3 under Exponen-
tial, Gamma and Rayleigh noises. “lo” and “hi” are short for “local” and
“highway”. 36

5.2 The impact of N on AS1. The targeted model is Sola-ESKF. local08 and
highway17 are for training and testing. 40

5.3 Comparison of PER under different parameter initialization ranges in Sola-ESKF.
The training trace is local08. “Original” are the values (matrices) used in pre-
vious evaluation. 40

5.4 Comparison of SER under different parameter initialization ranges in Apollo-ESKF
in AS2. The training trace is local08 and the testing trace is highway17. . . . 40

5.5 Comparison of PER under different controller parameter initialization ranges
in Sola-ESKF in AS2. The training trace is local08 and the testing trace is
highway17. 41

5.6 Evaluation result on Apollo-ESKF. The result in each cell is represented as
SER, as Apollo-ESKF is blackbox. 43

5.7 Comparison between Sola-ESKF and Apollo-ESKF on the same KAIST dataset. 44
5.8 Comparison between System Identification (SI) and Sola-ESKF on local08 and

highway17 in AS1. 49

v

ACKNOWLEDGMENTS

I would like to thank my committee chair, also my advisor, Assistant Professor Zhou Li, for
his gracious and constant support for my research.

I would also like to thank my committee members, Associate Professor Mohammad Abdullah
Al Faruque, and Assistant Professor Qi Alfred Chen, for providing me collaboration and
feedback. Without their help, I can not complete this thesis.

I would also like to thank my collaborators of this work, Junjie Shen, Mingtian Tan, Pro-
fessor Zhe Zhou from Fudan University, and Professor Haipeng Zhang from ShanghaiTech
University, for their collaboration and supervision in machine-learning-based model extrac-
tion attack against autonomous driving localization, and for their intellectual support with
my research.

vi

ABSTRACT OF THE THESIS

Play the Imitation Game: Model Extraction Attack against Autonomous Driving
Localization

By

Qifan Zhang

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2022

Assistant Professor Zhou Li, Chair

The security of the Autonomous Driving (AD) system has been gaining researchers’ and

public’s attention recently. Given that AD companies have invested a huge amount of re-

sources in developing their AD models, e.g., localization models, these models, especially

their parameters, are important intellectual property and deserve strong protection.

In this work, we examine whether the confidentiality of production-grade Multi-Sensor Fu-

sion (MSF) models, in particular, Error-State Kalman Filter (ESKF), can be stolen from an

outside adversary. We propose a new model extraction attack called TaskMaster that can

infer the secret ESKF parameters under black-box assumption. In essence, TaskMaster

trains a substitutional ESKF model to recover the parameters, by observing the input and

output to the targeted AD system. To precisely recover the parameters, we combine a set

of techniques, like gradient-based optimization, search-space reduction and multi-stage opti-

mization. The evaluation result on real-world vehicle sensor dataset shows that TaskMas-

ter is practical. For example, with 25 seconds AD sensor data for training, the substitutional

ESKF model reaches centimeter-level accuracy, comparing with the ground-truth model.

vii

Chapter 1

Introduction

In the recent decades, the advancement of technologies in machine learning, sensing, and

control has elevated autonomous vehicles (AV) from ideation to reality. A growing number

of AV companies have emerged and some have pushed their products to public roads. For

instance, Google and Baidu have been operating self-driving taxis [24, 82] for years. Among

all the components inside AV, the Autonomous Driving (AD) system is the most important

piece, acting as the AV’s “brain”. The AD system commands the actuators according to the

prediction of perception models.

One key component in the pipeline of AD is localization, which computes the real-time vehicle

position. Ensuring the accuracy of localization is fundamental to the safety of AV, for which

most of the AV companies use a complex Multi-Sensor Fusion (MSF) model [106, 93] to fuse

the readings of multiple sensors. Essentially, MSF takes input from sensors like GPS, IMU

and LiDAR, and runs a state estimation model, e.g., Kalman Filter (KF), to predict AV’s

state, including position, heading direction, velocity, etc. As a result, the prediction made

by MSF is highly robust, even in bad weather conditions or when one sensor is under attack,

like GPS spoofing [34]. Yet, Shen et al. [90] showed that the integrity of a MSF model can

1

be violated, by demonstrating a successful attack on the production-grade AD system, i.e.,

Baidu Apollo [8]. In the meantime, the confidentiality of a MSF has not been discussed, not

to mention the demonstration of attacks and defense. Considering the importance of MSF,

we study the MSF confidentiality issues in this thesis.

Confidentiality of MSF models. By examining the production-grade MSF implemen-

tation, e.g., the one from Baidu Apollo, we found confidentiality is indeed a great concern.

Although Apollo is an open-sourced project, the source code of MSF module is not released

and cannot be decompiled into a readable format. In fact, based on our discussion with

industrial partners, the parameters of MSF are considered as the project’s top intellectual

property, since they devoted years of hard work to tune the parameters and localization

became the deciding factor for their product to outperform their competitors.

On the other hand, previous works in ML security has demonstrated model extraction at-

tacks [101, 50, 19], which queries a blackbox ML models on a remote server (e.g., public

cloud), can infer the secret parameters of ML models. Given that the input to and the out-

put from a MSF model can be observed, a natural idea is to borrow such model extraction

technique to attack MSF. Yet, a few challenges prevent the direct application of the existing

model extraction attacks, including the physical-world constraints to attacker’s observations,

the complexity of MSF models, and its interaction with other controller components (detailed

in Section 3.3).

Our attack. To tackle these challenges in extracting MSF models, we leverage the two main

insights of the AD system: 1) Though MSF models differ from ML models, their parameters

can be approximated through gradient-based optimization, as their equations are derivable.

2) When the input or output is inaccessible, in particular, when the MSF’s output is only

sent to AD controllers and the channel between them might not be interceptable, we can

emulate derivable AD controllers and use their output for optimization. In fact, the emulated

2

AD controllers do not need to be the exact same implementations, and the only requirement

is that their performance is comparable to the ones in the target AD system.

Based on the above insights, we propose TaskMaster1, a new model extraction attack

against MSF models, with a set of techniques, like training unrolling, search-space reduction,

and multi-stage optimization. Though our approach can be classified as system identification

(SI) [64], we found none of the existing approaches directly work in our setting due to

the complexity of MSF in AV and the constraints on attacker’s data access. We examine

TaskMaster under three attack settings (intrusive in-AV attacker, non-intrusive in-AV

attacker, and AV follower), and evaluate it on the real-world vehicle sensor traces (the KAIST

Complex Urban sensor traces [52]). The evaluation shows that model extraction attack is a

practical threat. As a highlight of our findings, by collecting data points within 25-second

window of a targeted AV, we can train an ESKF model (a variation of KF model used by

AV companies) reaching centimeter -level accuracy to the ground-truth model. Starting from

the extracted model, the cost of the adversary (e.g., unethical competitors) can be greatly

reduced.

Contributions. We summarize the contributions of this work as follows:

• We present the first study about the confidentiality of the AD localization models.

• To address the new challenges posed by the unique structure of MSF, we develop a

new model extraction approach, TaskMaster, comprising optimization techniques

tailored to the control-theory models.

• We examine TaskMaster under three attack settings with the real-world sensor

traces, and our result indicates model extraction attack is feasible and could benefit

an unethical competitors.

1TaskMaster is a fictional character in Marvel Comics who can mimic any fighting style of a superhero.

3

• The implementations of TaskMaster will be open-sourced (also attached in the sub-

mission).

Ethics and disclosure. We disclosed our findings to developers of the Baidu Apollo team

and are in discussion about the attack impact and potential fix.

4

Chapter 2

Background

In this section, we first overview the architecture of Autonomous Driving (AD) system of

an Autonomous Vehicle (AV), focusing on the localization module and its design based on

Multi-Sensor Fusion (MSF). Then, we describe the most popular MSF algorithm that is

based on Kalman Filter. Finally, we introduce another AD component that is investigated

in this work, AD controller.

2.1 AD Localization

Generally, an AD system is composed of 3 main modules: sensor/information collector, on-

board computer and actuator/command executor. Their connections and sub-modules are

illustrated in Figure 2.1, which is abstracted from AD systems like Baidu Apollo [8] and

Autoware [59]. Specifically, the sensor/information collector takes input from sensors like

GNSS (Global Navigation Satellite System) receiver, LiDAR, IMU (Inertial Measurement

Unit), camera and communication devices like LTE/5G Antenna. The data is sent to the on-

board computer to infer a model of the world. Based on the destination and route planning,

5

Autonomous Driving
(AD) System

Camera GNSS IMU LiDAR Radar

Infrastructure

Perception Localization

Map Database

Steering Wheel Brake / Throttle

Prediction Planning Control CAN Bus

Figure 2.1: AD Architecture Example.

the controller inside the computer generates the control vector to direct the vehicle, including

three parameters: steering control, throttle control and brake control. These 3 controlling

parameters will be fed to the actuator/command executor to change the physical position

of the vehicle and also affect the running state of the AD system.

In this work, we investigate the localization (or state estimation) component, which computes

the real-time ego-vehicle position on the map. Localization is critical in ensuring the driving

safety and correctness, requiring centimeter-level accuracy [85], robustness under the severe

weather and road condition, and high-fidelity under cyber-attacks. A trivial solution for

localization is to directly use the input from GNSS. However, GNSS signal significantly

degrades due to atmosphere delays and multi-path effect [41]. Moreover, civilian GNSS

lacks signal authentication and is vulnerable under spoofing attack [99], in which the attacker

can override the authentic signal with stronger power. Using LiDAR, which measures the

reflection of laser light, individually is also fragile for localization, especially under poor

weather conditions like rain [34]. Hence, localization based on Multi-Sensor Fusion (MSF),

6

which fuses the input from multiple sensors like GPS, IMU and LiDAR, has become the

optimal solution so far, as it delivers much more accurate and robust result, by addressing

the weakness of individual sensors [106, 93].

2.1.1 MSF algorithms

Among the existing MSF algorithms, Kalman Filter (KF)-based MSF [67] has gained much

broader adoption, compared to the others (e.g., Particle Filter [42]). According to the survey

by Shen et al. [90], out of the 18 top-tier robotics papers for 2018-2019, 14 papers adopted

KF-based MSF. Baidu Apollo [8], an open-source AD system that has gained prominent

buy-in from AD industry [18] (e.g. being deployed in the self-driving taxi services in China

[82]), also chooses KF-based MSF [106].

We focus on the confidentiality of KF-based MSF model, and the ESKF (Error-State Kalman

Filter) model used by AV (e.g., Baidu Apollo ESKF) is our primary target, mainly because

it reaches the highest localization accuracy among all papers surveyed by [90], and its imple-

mentation has been considered as a secret (detailed in Section 3.1). It is worth mentioning

that our approach can be generalized to other KF-based MSF models, e.g., Extended Kalman

filter (EKF).

2.2 Kalman Filter based Multi-Sensor Fusion

2.2.1 Additive White Guassian Noise and Kalman Filter

Additive White Guassian Noise (AWGN) is a basic and common noise model to imitate the

random process in the nature. It follows normal distribution with zero mean. Each element

in AWGN is independent of other elements. Therefore, suppose there is an AWGN w ∈ Rn,

7

its distribution is:

w ∼ N(0,R) (2.1)

Where R is a n × n diagonal matrix.

Kalman Filter (KF) [63], also known as linear quadratic estimation (LQE), uses prior state

measurements to produce estimates of the posterior states. Equation 2.2 and 2.3 show the

how a state in time k is estimated from a state in time k −1. The advantage of KF is that it

solves LQE with recursive methods. For each estimation, KF could make the prediction only

with its previous state and its related state estimation. Since traditional KF adapts linear

optimization methods with small amounts of computation, which is suitable for computers,

KF is widely used in Multi-Sensor Fusion (MSF) algorithms.

xk = Fxk−1 +Buk−1

Pk = FPk−1F ⊺ +Q
(2.2)

K ′ = PkH
⊺
k (HkPkH

⊺
k +R)−1

x̂k = xk +K ′(zk −Hkxk)

P̂k = Pk −K ′HkPk

(2.3)

KF is a kind of Bayesian filter. It is also an algorithm to make accurate predictions on a

series of uncertain states using time-series observations with noises. KF makes two basic

assumptions:

• The whole system is a linear dynamic system.

• Each observation contains a noise, and that noise is an AGWN.

8

With the two assumptions held, KF optimizes observed states by minimizing Mean Square

Error (MSE).

In particular, KF iteratively executes two phases: Prediction and Update. For Prediction

(Equation 2.2), xk (the predicted state at k) and Pk (the predicted covariance matrix mea-

suring the confidence of xk) are computed based on xk−1, Pk−1 and uk−1 (the measurement of

kinetics). For Update (Equation 2.3), the observations of the real-world environment (e.g.,

through sensors), denoted as zk, are used to refine xk and Pk to x̂k and P̂k, in order to reduce

prediction errors. Hk is used to map the true state space (where xk resides) into the observed

space (where zk resides). Q and R are the covariance matrix of the process noise and the

covariance matrix of the observation noise. F and B represent the state-transition model

and the control-input model.

During execution, KF iterates its two phases (Prediction (Equation 2.2) and Update (Equa-

tion 2.3). This property ensures KF to make accurate estimations for a series of observations.

Therefore, KF could make predictions without interfering sensors for observations, such as

GNSS and LiDAR. KF itself will make predictions on the current state and its uncertainty,

based on its previous state and its related uncertainty matrix, combined with current obser-

vations.

In update part, KF will minimize the error state, i.e., minimizing E[(xk − x̂k)2]. In practice,

KF reaches this goal by minimizing its state estimation and the trace of related covariance

matrix. This is because the trace of a covariance matrix is the summation of the variances

of its related state estimation. With the reduction of its trace, total estimation error will

be minimized. Therefore, the whole state will be more accurate by minimizing the trace of

covariance matrices.

9

2.2.2 Error-State Kalman Filter in AD system

We use the MSF implemented by Baidu Apollo to demonstrate how KF is applied for AD.

Specifically, Baidu Apollo fuses the readings from IMU, LiDAR and GNSS with Error-State

Kalman Filter (ESKF), a variant of KF [106]. IMU measures the acceleration (accelk−1) and

angular velocity (omegak−1) of the AV, which are used to construct the control vector uk−1 =

(accelk−1, omegak−1)⊺, for Prediction phase. The predicted state xk is a vector consisting of

16 values. It is represented as (posk, velk, quatk, bak, bgk)⊺, where posk represents the AV’s

current location (3 elements), quatk represents the heading direction in form of quaternion

(4 elements), velk represents velocity (3 elements), bak represents accelerometer bias (3

elements), and bgk represents gyrometer bias (3 elements). Pk is a 15 × 15 matrix. For

Update phase, the position measurements from GNSS and the position measurements and

car heading measurements from LiDAR are considered as the observations zk after data

processing. When Update phase is finished, an Error-state Reset phase (P̂k = GP̂kG⊺) is

introduced by ESKF to reset P̂k, to address the issue of observation drifting [106]. G is

defined in Equation 2.4.

G =

⎛
⎜⎜⎜⎜⎜⎜
⎝

I6 0 0

0 I3 − [12 δ̂θ] 0

0 0 I9

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.4)

Where In represents an n×n identity matrix and δ̂θ represents the error state of the AD car

heading (in euler angles).

In addition, Baidu Apollo uses different R and H for GNSS and LiDAR. For GNSS, we

assume RG (noise distribution injected into GNSS data) and HG are used to replace R and

H in Equation 2.3, changing the Update phase to Equation 2.5. For LiDAR, the Update

phase is separated into two sub-phases that uses the position sensing data and pose (or

10

yaw of the AD car) sensing data separately. The output of the first sub-phase is fed to the

second sub-phase. The Update phase is changed to Equation 2.6. To notice, Prediction phase

happens whenever IMU sends new input, and Update phase happens whenever LiDAR or

GNSS sends new input. Hence, Prediction and Update do not necessarily happen in turns.

Figure 2.2 illustrates the workflow of ESKF.

K ′ = PkH
⊺
G(HGPkH

⊺
G +RG)−1

x̂k = xk +K ′(zk −HGxk)

P̂k = Pk −K ′HGPk

(2.5)

K ′ = Pk(Hp
L)⊺(H

p
LPk(Hp

L)⊺ +R
p
L)−1

x′k = xk +K ′(zpk −H
p
Lxk)

P ′k = Pk −K ′Hp
LPk

K ′′ = Pk(Hy
L)⊺(H

y
LPk(Hy

L)⊺ +R
y
L)−1

x̂k = x′k +K ′′(zyk −H
y
Lxk)

P̂k = P ′k −K ′′Hy
LPk

(2.6)

Where Rp
L,H

p
L,z

p
k and Ry

L,H
y
L,z

y
k are related to position and yaw observations separately.

2.3 AD Controller

After localization, the estimated vehicle status is combined with the output of path planning,

collision avoidance, etc. in the navigation stack, and sent to the controller module to guide

actuators/command executors. We briefly overview this module here, since it has to be

emulated for the attack scenarios when the output to ESKF is not directly observable to the

adversary (see Section 3.2).

11

Update（LiDAR）

Update（GNSS）

Prediction

Error-state Reset

ESKF

IMU input: 𝒖𝒖𝒌𝒌−𝟏𝟏

GNSS input: 𝒛𝒛𝒌𝒌

LiDAR input : 𝒛𝒛𝒌𝒌

Prior state: 𝒙𝒙𝒌𝒌−𝟏𝟏 and 𝑷𝑷𝒌𝒌−𝟏𝟏

Predicted state:
𝒙𝒙𝒌𝒌 and 𝑷𝑷𝒌𝒌

Updated state:
�𝒙𝒙𝒌𝒌 and �𝑷𝑷𝒌𝒌

Updated state:
�𝒙𝒙𝒌𝒌 and �𝑷𝑷𝒌𝒌

𝑸𝑸

𝑹𝑹𝑮𝑮

𝑹𝑹𝑳𝑳
𝒚𝒚, 𝑹𝑹𝑳𝑳

𝒑𝒑

Figure 2.2: Workflow of ESKF. The flows of GNSS and LiDAR both generate Update
states, but the values could be different.

An AD controller is normally divided into 2 sub-components: lateral controller and longitu-

dinal controller. The lateral controller makes decisions on the angular velocity change (i.e.

steering) while the longitudinal controller makes decisions on the acceleration (i.e. throttle

and brake). Both the lateral controller and the longitudinal controller share the same in-

put data, and their output, including steering, throttle and brake, forms a complete control

vector.

The AD controller solves the optimal control problem in a dynamic system. As such, it

uses the existing classic control algorithms. For Baidu Apollo [9], the LQR (linear-quadratic

regulator) algorithm [31] is used for lateral control while the PID (proportional-integral-

derivative) algorithm [88] is used for longitudinal control. LQR controller uses a cost function

defined by human, in the form of a sum of the deviations of key measurements, and finds the

controller settings that minimizes the cost. PID controller calculates proportional, integral,

12

and derivative responses after reading the sensors, and sums them to compute the actuator

output. LQR controller produces better response compared to PID controller, as it aims to

achieve optimal control states, though at the cost of higher complexity.

13

Chapter 3

Attack Overview

In this section, we first describe the motivation of our adversary. Then, we describe the three

scenarios that the attack could happen, differentiated by attackers’ capabilities. Finally, we

overview the workflow of our attack, termed TaskMaster.

3.1 Adversary Motivation

Though the procedure and equation of KF (including ESKF) are known and it is expected

that every AD system follows them in implementation, the parameters of KF can be varied

among AD systems, resulting in different localization performance. According to [106], the

production-grade implementation by Baidu Apollo achieves 0.054 meters accuracy, which

outperforms the academic KF implementations by a large margin (1.17 meters for JS-

MSF [92] and 1.91 meters for ETH-MSF [28]). A lot of driving data from a human driver

needs to be collected and different tuning approaches have to be experimented by profes-

sional AV engineers [90]. In fact, we reached out to one author of Baidu Apollo ESKF [106],

and learnt that it takes more than 6 months for a specialized team to tune ESKF. As such,

14

the parameters of KF are considered as “intellectual property”, and kept as secret by the

AV companies (e.g., Baidu’s leadership decides to keep the current and future versions of

ESKF close-source, as we learnt from the author of [106]).

3.1.1 Existing protections

Specifically, the GitHub repo [8] of Baidu Apollo embeds ESKF in a binary file

liblocalization msf.so, though other parts have source code. We have attempted to

reverse engineer this binary file for 5 weeks but were unable to extract its ESKF parameters.

First, we try to decompile this binary, and found SIMD vectorization [60] is heavily used,

which makes the decompiled code (including the pre- and post-processing) less readable. We

have used reverse-engineer tools including IDA Pro [37], Snowman [110], and McSema [100]

(an LLVM IR lifting tool), and all failed. Though McSema claims that AVX instructions

can be handled, SIMD Instructions still cannot be decompiled. Second, we also tried binary

analysis tools like Intel Pin [49] and Frida [30] to recover the secret values at the runtime,

but were also unsuccessful. Regarding the information learnt from the 5 weeks’ efforts, we

roughly know the execution steps of ESKF, such as IMU prediction, measurement update,

outlier detection, after reading the disassembled code. We also discovered that the ESKF

prediction and updates occurred asynchronously with multi-threading, which increases the

difficulty for reverse engineering.

3.1.2 Generalizability of the extracted model

This work focuses on the confidentiality of four covariance matrices Q, RG, Rp
L and Ry

L

(process noises, GNSS noises, position observation noises and yaw observation noises) of

an ESKF model, which are explained in Section 2.2. R (including RG, Rp
L and Ry

L) in

particular depends on the sensors (e.g., GNSS and LiDAR). For two AVs, if their sensors are

15

similar, their R can be similar. As a supporting evidence, we collected a trace (local08) from

KAIST Complex Urban [52] (described in Section 5.1), which contains the sensor input and

localization results when the tested AV is driven by a human. We consider its localization

results as the ground truth, and compare to the localization results generated by Baidu

Apollo’s ESKF (using the sensor input from local08), in order to assess how well the ESKF

can adapt to different vehicles (the default vehicle supported by Baidu Apollo is different

from the KAIST vehicle) with similar sensors (e.g., their LiDAR sensors are the same). We

found that the root mean squared error (RMSE) between the ground truth and Apollo’s

output is only 0.074m, reaching cm-level error, suggesting the industry-grade MSF has good

adaptability.

When the sensors are quite different, directly using the stolen R parameters for attacker’s

ESKF model might yield sub-optimal result. We consider the re-tuning of R in certain cir-

cumstances as limitation (also described in Section 6), but we expect heavy re-tuning is un-

necessary in most case. In fact, a few sensor providers are very popular among the car manu-

facturers. For instance, (1) the default LiDAR sensors supported by Baidu Apollo were man-

ufactured by Velodyne [105], which were also integrated by AVs from Google/Alphabet [3],

Ford [86, 87, 103], Toyota [47], Mercedes-Benz [15], Hyundai Mobis [48], ThroDrive [104],

etc; (2) most car manufacturers purchase GNSS/IMU sensors from Novatel [38].

Aside from R and Q, the other matrices, including F , B, HG, H
p
L and Hy

L, are determined by

the vehicle kinematics and sensor measurement models, which can be obtained from textbook

or tutorials [92]. Since sensors do not have lots of measurement variations – they typically

measure vehicle positions in global coordinate systems such as longitude/latitude/altitude,

these matrices usually will not change for different sensors.

16

3.1.3 Hacking AV to extract KF parameters

Hacking into the AD system of the targeted AV and then stealing the KF model is another

unethical approach for the same attacker’s goal. A few recent works demonstrated it is

feasible to exploit the vulnerabilities in Wi-Fi modules of Tesla, send messages through

CAN (Controller Area Network) bus, and take control of the AD system remotely, e.g., by

opening a Linux shell [76, 97]. However, due to the high investment into AV security by AV

companies (e.g., Tesla puts US$1 million for bug bounty [22]), such vulnerabilities are very

rare, and can be quickly patched. Moreover, even if the shell is obtained by an adversary

who is interested in KF parameters, the files containing KF models are very likely to be

protected (e.g., the AVs using Baidu Apollo), and the KF parameters stored in memory or

CPU registers are very difficult to be inferred.

3.2 Adversary Model

We assume the adversary wants to steal the KF model of a competitor’s AV and integrate

it into her own AV products, to save the hard work for KF tuning. The vehicles with the

similar kinematics or sensor installment are expected to be compatible to such KF models.

Instead of assuming “whitebox” access and directly extracting the model parameters (e.g.,

by reading the files/memory/registers containing the KF parameters), our adversary has

“blackbox” access to a KF model, meaning she can observe the input and output, and use

the information to infer the KF parameters of victim’s AV1. As such, defending against

our attack, or TaskMaster, is significantly more challenging as no software/hardware

vulnerability is exploited. We assume 3 attack scenarios based on adversary’s capabilities,

which are also summarized in Figure 3.1.

1Similar as blackbox model extraction attacks against DNN [101], the attacker needs to know the structure
of KF ahead.

17

AS1: Intrusive In-AV Attacker AS2: Non-intrusive In-AV Attacker AS3: AV Follower

𝒖𝒖𝒌𝒌−𝟏𝟏, 𝒛𝒛𝒌𝒌

Target
(𝑶𝑶)

IMU,
LiDAR,
GNSS

Predicted
States

Attacker’s �𝑶𝑶
𝒙𝒙𝒌𝒌

Optimization

Target
(𝑶𝑶)

IMU,
LiDAR,
GNSS

Attacker’s �𝑶𝑶
𝒚𝒚𝒌𝒌

Optimization

Cont-
roller

Steering,
braking,
throttling

𝒖𝒖𝒌𝒌−𝟏𝟏, 𝒛𝒛𝒌𝒌

Target
(𝑶𝑶)

IMU,
LiDAR,
GNSS

Attacker’s �𝑶𝑶
𝜹𝜹(𝒚𝒚𝒌𝒌)

Optimization

Cont-
roller

Steering,
braking,
throttling

𝜹𝜹(𝒖𝒖𝒌𝒌−𝟏𝟏, 𝒛𝒛𝒌𝒌)

Figure 3.1: Adversary model. δ is the function adding noises.

3.2.1 AS1: Intrusive In-AV Attacker

We assume the attacker has exclusive physical access to the targeted AV, e.g., by purchasing,

renting or borrowing the AV, and the attacker is able to sniff the data transmitted within

the AD system, by inserting the sniffers directly onto the paths between ECUs (Electronic

Control Units). As such, the attacker is able to observe the input to ESKF (uk−1 and zk),

and the output from ESKF (x̂k). With such information, the attacker attempts to extract a

victim AV’s ESKF model.

3.2.2 AS2: Non-intrusive In-AV Attacker

We assume the attacker cannot sniff the data within the AD system, but she can plug in

a CAN transceiver (e.g., TI VP232 CAN transceiver [98]) onto the AV’s CAN bus, let the

AV drive through a planned path, and use the transceiver to read the messages (which

are unencrypted by CAN standard), which include the readings of sensors (IMU, LiDAR,

and GNSS) [43]. Alternatively, the attacker can bring her own sensors. For example,

LiBackpack [36] integrate LiDAR and GNSS at the backpack size, and mobile devices usually

have IMU sensors [95]. On the other hand, the attacker cannot observe the data between

ESKF and controller, therefore she has no direct visibility into x̂k. The output of the

controller, termed yk, including steering, throttling, and braking, can be observed, by sniffing

the command issued to those actuators. To notice, we assume the attacker does not know

which controller is used by the AV or how it is designed, and we do not consider controller

18

parameters as a secret.

3.2.3 AS3: AV Follower

This scenario has the most stringent attack condition that the attacker has to be outside of

the AV. On the other hand, the attacker is able to drive another car and follow the AV in

close vicinity. With high-resolution sensors on her AV, including GNSS, LiDAR and camera,

the attacker collects the motion traces of the victim AV, and infers the sensor readings of

the victim AV (uk−1 and zk) and the controller output (yk), but the readings are inaccurate.

We model the input to victim’s KF as the combination of the sensor readings of attacker’s

AV and attacker’s measurement noises. Shen et al. [90] adopts a similar approach to model

the inaccurate attacker’s readings when launching GPS spoofing against another AV on the

move.

3.3 KF Model Extraction

At the high level, extracting KF model resembles extracting machine-learning (ML) mod-

els, of which the related works are surveyed in Section 8. In essence, model extraction

against ML models also assumes blackbox access, though which the attacker uses the pre-

diction APIs provided by the deployed model O ∶ X → Y to issue queries (e.g., requesting

classification of images) X ⊂ X , and obtains the responses, including the labels Y ⊂ Y,

and optionally confidence scores SY or logits LY . With X, Y (together with SY or LY if

available), the attacker runs an extraction algorithm A and obtains an extracted model Ô.

The extraction is considered successful, if Ô matches one of the criteria [51]: 1) Functional

equivalent: ∀x ∈ X , Ô(x) = O(x); 2) High fidelity: for a target distribution DF over X ,

Prx∼DF
[S(Ô(x),O(x))] is maximized, where S is a similarity function; 3) High accuracy:

19

given a true task distribution DA over X × Y, Pr(x,y)∼DA
[argmax(Ô(x)) = y] is maximized.

Ô with high fidelity tries to replicate the decisions of O, including mis-classifications, while

Ô with high accuracy aims to match or even exceed the accuracy of O.

Following the above terminology, we aim to recover a KF model, in particular Q, RG, R
p
L

and Ry
L, at high accuracy or high fidelity, and we focus on ESKF in this work. A variety of

learning-based approaches have been developed towards this goal [101, 50, 19]. For instance,

Tramer et al. applies active learning to adaptively train Ô by selecting data points to query

in each round [101]. Though none of the related works investigated control-theory models, we

found the learning-based approaches hold promises in addressing our problem here. When

considering ESKF in isolation, our task is similar as model extraction against RNN models,

as both RNN and ESKF have feedback loop between output and input. As such, we can try

to find the best parameters that minimize the error between the predicted states outputted by

the targeted ESKF O (ground-truth) and attacker’s ESKF Ô. Gradient-based optimization

can be applied here because the ESKF functions are derivable.

A similar research direction is system identification [64], which aims to construct the math-

ematical models of dynamic systems from measured input-output data. Section 8 reviews

the existing methods, but we found none of the are directly applicable to the complex MSF

models, in particular ESKF, used by AVs.

3.3.1 Challenges

Yet, extracting the parameters from KF models, especially ESKF models encounter promi-

nent challenges that cannot be addressed by the existing approaches. 1) ESKF is complex,

which takes the input generated by the heterogeneous sensors (GNSS, LiDAR and IMU) at

vastly different pace. Applying the classical methods under system identification does not

yield satisfactory result, as indicated by our evaluation in Section 5.6. 2) AV is not always

20

controlled by the attacker (e.g., under AS3), and the number of traces about the targeted

AV might be small. Given that the search space of the secret is not small (e.g., Q and R

are 15x15, 3x3 matrices), the attacker’s search strategy has to be highly efficient. 3) When

the output of ESKF (i.e., x̂ and P̂) is not directly observable, e.g., under scenario AS2 and

AS3, the data available to the model extraction is incomplete.

To address these challenges, we proposed a novel method for learning-based KF model extrac-

tion, termed TaskMaster, involving techniques like multi-stage optimization, search-space

reduction and controller simulation. The details are described next.

21

Chapter 4

Attack Implementation

The goal of the attacker is to learn an ESKF model Ô that mimics the target model O. In

this section, we first describe how we optimize the training procedure of ESKF to learning

Ô in an efficient way when the ESKF output is available. Then, we describe how to train Ô

without the ESKF output, by emulating controllers. We summarize the symbols in Table 4.1.

Symbol Description Dim

uk−1 IMU measurement 2 × 1
zpk Position measurement 3 × 1
zyk Yaw measurement 4 × 1
xk Predicted state 16 × 1
Pk Predicted cov 15 × 15
yk Controller output 4 × 1
pk Position control 2 × 1
ai Acceleration control 1 × 1
di Yaw control 1 × 1
*Q Observation noise cov 15 × 15
*RG GNSS noise cov 3 × 3
*Rp

L LiDAR position noise cov 3 × 3
*Ry

L LiDAR yaw noise cov 3 × 3
O Ground-truth model -

Ô Extracted model -

Table 4.1: Symbols used in Section 4. “Dim” is for Dimension. “cov” is for covariance
matrix. “*” marks the secret to be inferred by TaskMaster.

22

4.1 Extracting ESKF Alone

Under AS1, TaskMaster uses uk−1, z
p
k, z

y
k (ESKF input, position measurement and yaw

measurement) and xk (ESKF output) to train Ô. The attacker can directly sniff IMU output

to get uk−1. By sniffing GNSS output, zpk is obtained. By sniffing LiDAR locator output, zpk

and zyk are obtained. In the end, the attacker obtains a time sequence T = [t1, ..., ti, ...] as

input, where ti is uk−1, z
p
k or zyk . For output, x̂k can be intercepted from the wires between

ECUs within AD system, which are produced after ti is processed by the ESKF. We train Ô

in a recurrent way. Specifically, for each round i, Ô uses ti and the last state Pi−1 as input,

and predicts a new state xi and its covariance Pi. The same input is sent to O to generate

the predicted state x′i and its covariance P ′i . Notably, O is treated as a blackbox here. The

difference between the output of O and Ô is leveraged to update Ô.

We use an optimizer penalized by the logarithmic value of Mean Squared Error (MSE)

(denoted as L) between xi and x′i, as shown in Equation 4.1. The difference between Pi and

P ′i is not integrated because P ′i is an internal variable that cannot be obtained when O is

considered blackbox. We compute the logarithmic MSE to make the convergence process

faster.

L(x,x′) = log(1
N

N

∑
i=1
∣∣xi − x′i∣∣2) (4.1)

Training Ô is similar as training an LSTM model at the high level, where unrolling is

performed on the ESKF model, as illustrated in Figure 4.1. All “ESKF”s in Figure 4.1 right

refer to only one ESKF model, which is the unrolled version of the left figure. Therefore, when

training, the feed-forward process that calculates the series x′k one by one (i.e., unrolled) and

then calculates the loss according to Equation 4.1. While in the back-propagation process,

the parameters of the ESKF model are only updated once according to the gradient from

the loss to each variable (as if not unrolled).

23

ESKF

𝑥𝑥𝑘𝑘′

𝑧𝑧𝑘𝑘𝑃𝑃, 𝑧𝑧𝑘𝑘𝑦𝑦

𝑢𝑢 ESKF ESKF ESKF

Time𝑧𝑧𝑘𝑘−1𝑃𝑃, 𝑧𝑧𝑘𝑘−1𝑦𝑦 𝑧𝑧𝑘𝑘+1𝑃𝑃, 𝑧𝑧𝑘𝑘+1𝑦𝑦𝑧𝑧𝑘𝑘𝑃𝑃, 𝑧𝑧𝑘𝑘𝑦𝑦

𝑥𝑥𝑘𝑘−1′ 𝑥𝑥𝑘𝑘′ 𝑥𝑥𝑘𝑘+1′

unroll

…

… …

…

𝑢𝑢𝑘𝑘−1 𝑢𝑢𝑘𝑘

Figure 4.1: Training strategy of ESKF.

With the above strategy, we train a shadow ESKF model Ô. Alternatively, we can train

a shadow LSTM model to extract Ô. However, we found this approach did not work well,

because some operations like pose transformation are not modeled well under LSTM, and it

is hard to make the training converge with unbalanced data (e.g., IMU, LiDAR and GNSS

are 50:6.5:1 in data volume).

4.1.1 Search-space reduction of Q

Though Q is a 15x15 matrix, we found not every value has to be tuned. According to [92],

Q can be described with Equation 4.2.

Vi = σ2
an(∆t)2I

Θi = σ2
ωn
(∆t)2I

Ai = σ2
aω∆tI

Ωi = σ2
ωω
∆tI

Q = diag(Vi,Θi,Ai,Ωi)

(4.2)

where Vi, Θi, Ai and Ωi represent velocity, quaternion/pose, accelerometer error state and

gyrometer error state. ∆t is the difference between timestamps. σan , σωn , σaω and σωω

are the standard deviation of velocity, pose, accelerometer and gyrometer, and they are the

variables to be optimized. Each of them is a scalar variable and they are located at the

24

diagonal of the Q matrix. Hence, we limit the optimization process on the 4 variables while

avoid touching the others (they can be set to 0), reducing the variables to be optimized from

225 (15x15) to 4.

4.1.2 Search-space reduction of RG, R
p
L and Ry

L

Similar to Q, the search-space of RG, R
p
L and Ry

L can be reduced based on the constraints

of the physical world and control theory. As described in Section 2.2, RG, R
p
L and Ry

L are

covariance matrices describing deviation of Gaussian noise injected into the related sensor

observations, all of them have two properties: 1) it is a diagonal matrix, 2) elements on the

diagonal of are non-negative. These properties are based on the related mathematical equa-

tions that hold universally [109, 79]. According to previous works on both GNSS and LiDAR

sensor development [106], variance of each dimension in the measurements are independent

from other elements. Hence, we can fix the values of the elements not on the diagonal and

add a check to avoid updating the diagonal elements to negative values. The number of

elements to be optimized is reduced from 27 (RG, R
p
L and Ry

L are all 3×3 matrices) to 9 (the

diagonal elements), and the search space of each element is cut to half.

4.1.3 Multi-stage optimization

Learning Ô could be based on maximum likelihood estimation (MLE), which seeks a set of

parameters that maximizes a likelihood function. However, MLE assumes that the output is

solely dependant on the current input. When the output is also dependent on latent variables

(i.e., unobserved or hidden variables), MLE does not work well [74]. Such problem exists

in ESKF: the input from sensors as well as the ESKF model states decide the prediction.

In addition, the data generation frequencies of IMU, LiDAR and GNSS are vastly different

(roughly 50:6.5:1 on the KAIST dataset we use [52]), resulting in unstable input dimensions

25

that cannot be easily handled by MLE.

To address the aforementioned issues, expectation maximization (EM) [74] can be performed

which introduces an extra estimation step. EM has been particularly effective in learn-

ing Gaussian Mixture Model (GMM). The dataset used to train GMM consists of points

generated from one or more Gaussian processes in different paces. The two steps of EM are:

• E-Step. Estimate the expected value for each latent variable.

• M-Step. Optimize the parameters using maximum likelihood.

Under EM, the initial estimation by E-step can assign random values to the latent variables.

Along the iterations, the optimized model from M-step can estimate the latent parameters

for existing and new data points. We adopt this idea and develop a multi-stage optimization

technique for ESKF. Specifically, Q, RG, R
p
L and Ry

L are partitioned into two groups, i.e.,

G1 = [Q] and G2 = [RG,R
p
L,R

y
L]. Since the two groups have different frequencies and

dimensions, we can choose different learning rate and decay rate. For G1, parameters in

RG,R
p
L,R

y
L will be treated as constant and only Q will be optimized. For G2, Q will be

constant and other parameters will be optimized.

Notably, EM has been leveraged to tune KF, but it has to be adjusted under TaskMaster

because we use the input and output of another blackbox KF model for optimization. In

Algorithm 1, we summarize the whole training process.

4.2 Extracting ESKF with Controllers

Under AS2 and AS3, the adversary has no visibility to the ground-truth output (x′k) of O,

so the loss L cannot be directly computed for training. On the other hand, x′k is sent to the

controller, who outputs yk (including steering, throttling and braking) as the control signal,

26

Algorithm 1: Attack workflow under AS1

Input : N measurement T = [t1, ..., tN], the output of O refStates, MaxEpoch
Output: Inferred Q, RG, R

p
L, R

y
L

Initialize x0, P0, Q, RG, R
p
L, R

y
L, myStates;

xk−1 ← x0; Pk−1 ← P0; cnt ← 1;
for i ← 1 to MaxEpoch do

while cnt ≤ N do
tk ← get(T,cnt);
if tk is from IMU then

xk, Pk ← predictIMU(xk−1, Pk−1, tk);
end
if tk is from GNSS then

xk, Pk ← updateGNSS(xk−1, Pk−1, tk);
end
if tk is from LiDAR then

xk, Pk ← updateLiDAR(xk−1, Pk−1, tk);
end
add xk into myStates;
xk−1 ←xk; Pk−1 ←Pk;cnt ← cnt + 1;

end
Loss ← log(MSE(myStates, refStates)) ;
optimize(Q,Loss);
optimize(RG, R

p
L, R

y
L,Loss);

end
Return Q, RG, R

p
L, R

y
L;

which is nonetheless observable. Hence, the attacker may regard the ESKF and the trailing

controller as a whole, so she can train the series (ESKF + controller) with the observable

ESKF input (uk−1, z
p
k, z

y
k) and the observable controller output(yk). Then she can readily

extract the ESKF O from the trained series. Noticeably, the attacker does not need to

know what controllers are used by the victim AVs, and we do not consider controller as a

secret. In fact, the attacker can implement a trainable controller or even use an out-of-box,

open-source implementation.

Below, we first introduce the mechanisms of AD controllers, and then describe how we adjust

the workflow of AS1 to fit AS2 and AS3. Finally, we describe of an optional component,

anomaly filter.

27

𝑧𝑧𝑘𝑘𝑃𝑃, 𝑧𝑧𝑘𝑘𝑦𝑦 ESKF Anomaly
Filter

𝑢𝑢

PID

Stanley

PID

𝑝𝑝𝑘𝑘

𝑑𝑑𝑘𝑘

𝑎𝑎𝑘𝑘
Figure 4.2: Workflow of ESKF combined with controllers. Anomaly filter is an optional
component included by some AD like Baidu Apollo.

Mechanisms of the AD controllers. As described in Section 2.3, Baidu Apollo uses PID

controller for longitudinal control and LQR controller for lateral control (steering). When

an AV receives a map and a destination point, it generates a planned trajectory consisting

of a sequence of reference positions on the map (tp∗), and the AD controller generates

corresponding control vectors to minimize the error between the current position and the

reference positions. PID controller in AD generates the longitudinal control vector, based on

the predicted position (posk) and velocity (velk) from the ESKF output xk. The PID control

vector contains the planned next position (pk) and acceleration (ak), which are used to derive

control commands (throttle and brake). They can be computed through the equation below:

pk =Kpp ×MinDist(tp∗, posk) +Kip ×
k−1
∑

m=k−M
(pm)

ak =Kpa × (max speed − velk) +Kia ×
k−1
∑

n=k−N
(an)

(4.3)

Where MinDist computes the minimum distance between the reference positions tp∗ and the

current position posk, max speed represents the maximum speed allowed on the AV during

navigation, M and N are the number of positions and accelerations from the controller

28

output in the past, pm and an are the corresponding positions and accelerations. Kpp,

Kip, Kpa and Kia are the controller parameters. Notably, the above equation contains

“Integral” (modeling the past) and “Proportional” (modeling the present), but does not

contain “Derivative” (modeling the future), which is based on Apollo’s implementation.

Similar to PID controller, LQR controller generates the lateral control vector (yaw) to derive

the control commands (steering), based on the planned trajectory, the past states, and

the present state (from ESKF output). However, this process requires solving Discrete-

time Arithmetic Riccati Equation (DARE), which cannot be implemented compatible with

gradient descending. Specifically, people use iterative methods to get numerical solution

of the equation, whose process is not derivable. As such, if we simulate LQR controller

after ESKF, we will not be able to derive the gradients to optimize ESKF parameters. To

address this issue, we implement Stanley controller [40] and use it replace LQR controller.

Stanley controller was used for lateral control during the 2005 DARPA Grand Challenge of

Autonomous Robotic Ground Vehicles [23] by the Stanford team, who won the first place.

It is a perfect match for our goal because its equations related to yaw computation are

derivable, as shown in Equation 4.4. Since TaskMaster does not extract the controller

parameters, using another controller of similar performance is acceptable.

front axle vec = (cos(yawk +
π

2
),− sin(yawk +

π

2
))⊺

error front axle = (xmin∗ , ymin∗)⊺ ⋅ front axle vec

θe = normalize angle(cyawmin∗ − yawk)

θd = arctan2(k × error front axle, velk)

dk = θe + θd

(4.4)

Where yawk is the yaw (or heading) derived from quatk of ESKF’s output, front axle vec is

the estimated front axle velocity, xmin∗ and ymin∗ are the x and y coordinates of the nearest

position on the planned trajectory to the current position, error front axle represents the

29

error to the reference states on the front axle, cyawmin∗ is the yaw associated with the nearest

position, normalize angle normalizes the difference between cyawmin∗ and yawk into [−π,π],

θd and θe are the cross track error and the heading error, and di is the resulted yaw control

vector. k is the only tuning parameter and it can be optimized along with ESKF in our

method.

Extracting Ô. In Figure 4.2, we illustrate how ESKF, PID controller and Stanley controller

are connected for AS2 and AS3. Compared to AS1, xk is replaced by pk, dk and ak (position,

yaw, and acceleration). To accommodate this change, we modify the loss of Equation 4.1 to

Equation 4.5.

L(p, d, a, p′, d′, a′) = λplog(
1

N

N

∑
i=1
∣∣pi − p′i∣∣2)

+ λdlog(
1

N

N

∑
i=1
(di − d′i)2)

+ λalog(
1

N

N

∑
i=1
(ai − a′i)2)

(4.5)

Where ⟨p, d, a⟩ and ⟨p′, d′, a′⟩ are the controller outputs linked to Ô and O. λp, λd and λa

are the weights for each controller loss. After empirical analysis, we found the optimization

process converges faster when λp is much higher than λa and λd, since values of position

coordinates (∼ 3e+5) are much larger than that of yaw (∼ 1e+2) and acceleration (∼ 1e+1).

Another difference to AS1 is that ⟨p, d, a⟩ will not be fed back to train Ô, thereby training

becomes non-recurrent. We make such change to avoid amplifying the error to ESKF caused

by the inaccurate modeling of the controllers. Training ESKF under AS2 and AS3 follow

the same workflow, except the input to ESKF and the output of controllers have noises.

Anomaly filter We found some AD systems add another anomaly filter between MSF and

controller, when the output of MSF is too too noisy to direct the controller. For instance,

Baidu Apollo takes the output of ESKF (xk) and corrects it with other information, before

30

feeding it to the controllers, as shown in Figure 4.2. Since the source code of the anomaly

filter is not released in Baidu Apollo, we introduce a Multilayer Perceptron (MLP) model

to replace it, which can be trained together with ESKF, under the same loss function. We

choose MLP because the input size is small (xk is 16x1). Our MLP has 5 layers, and each

layer has 16 neurons. The activation function is ReLU. The MLP model is initialized by

identity matrices and all zero bias.

31

Chapter 5

Evaluation

In this section, we evaluate how TaskMaster recovers ESKF models with the real-world

data. To evaluate TaskMaster against different models, we re-implemented one ESKF

model based on [92] (termed Sola-ESKF), and obtained the blackbox ESKF model of Baidu

Apollo v2.5 (termed Apollo-ESKF), which is also the major evaluation platform for AD

security research (e.g., [17, 54, 94]). For Stanley and PID controllers, we re-implemented

them based on [89] and [9]. Our implementation of TaskMaster includes 756 LoC (lines of

code) for ESKF and data pre-processing, 213 LoC for controller and 348 LoC for the training

process.

We first describe the experiment settings. Then, we elaborate the attack results on Sola-ESKF

and Apollo-ESKF under the three attack settings. Finally, we compare TaskMaster

against the baseline system identification and evaluate how TaskMaster can help the

spoofing attack proposed in [90]. In Section 5.3, we evaluate the influence of different pa-

rameters.

32

5.1 Experiment Settings

5.1.1 Evaluation datasets

To evaluate TaskMaster, we use the KAIST Complex Urban sensor traces [52] (termed

KAIST hereinafter). The authors of [52] collected sensor data, including Image, LiDAR, GPS,

IMU and Encoder, from the complex urban areas of four different cities, with a mapping

vehicle. In total there are 31 traces (each trace corresponds to one trip of the vehicle), and

12 are in highway and 19 are in downtown. Similar to [90], we selected 5 traces among

them for evaluation, which are labeled as local08, local31, local07, highway06 and highway17

by KAIST, because Sola-ESKF and Apollo-ESKF cannot achieve reliable performance on the

rest. According to Section 6.2 of [90], the 5 selected traces have the smallest average MSF

state uncertainty in their categories (i.e., local and highway). According to the extended

version of [90], these traces all have complete sensor data (e.g., some other traces do not

have complete IMU data) and provide a complete motion history.

We use the KAIST sensor data as input and feed them to the two ESKF models to obtain

two sets of ESKF states output as the ground-truth. We name the dataset consisting of the

ESKF states output from Sola-ESKF as Sola-Output. The second dataset has the ESKF

states output from Apollo-ESKF, and we name it Apollo-Output.

5.1.2 Evaluation metrics

We consider two metrics to evaluate TaskMaster, focusing on fidelity and accuracy.

• Difference between the parameters (PER). Since Sola -ESKF is implemented by

us, we have the ground-truth about the secret parameters. Therefore, we compute the

difference between the parameter values learnt from the evaluation datasets and the

33

ground-truth values, which we term Parameter Error Rate (PER) and show in the

equation below:

PER =
∣θ̂ − θ∣
∣θ∣

(5.1)

Where θ̂ represents the learnt parameter of the substitutional model and θ represents

the ground truth. The matrix mean is computed on their difference. This metric

evaluates the fidelity of TaskMaster. In real-world settings, when the ESKF model

parameters are proprietary, we cannot compute this metric. So we compute PER only

for Sola-ESKF.

• Distance between the predicted states (SER). The ultimate goal of the adversary

is to build an ESKF model of high prediction accuracy, and the parameters stolen by

TaskMaster should serve this purpose. Hence, for each trace, we use the inferred

ESKF and the ground-truth ESKF to predict the vehicle states using the sensor inputs,

and compute the Root Mean-Squared Error (RMSE) between the states, termed State

Error Rate (SER), with the equation below:

SER =
¿
ÁÁÀ 1

N

N

∑
i=1
∣∣yi − y′i∣∣2 (5.2)

Where N represents the number of positions, y′i and yi represent the predicted states

(they are vectors) by the ground-truth ESKF O and the inferred ESKF Ô. Since the

states can be generated by a blackbox ESKF, we evaluate against both Sola-ESKF and

Apollo-ESKF.

34

5.1.3 Experiment parameters

We choose Adam as the optimizer. We set the maximum number of epochs to 200 for the

training process. For the learning rate, we adopt step decay [62]. For Q, the learning rate

is set to 1e − 3 for the first 10 epochs and then changed to 1e − 4, 1e − 5 and finally 1e − 6

for the following 30, 70 and 100 epochs respectively. For R, the learning rate is set to 1e− 5

initially for first 10 epochs, and then 1e − 6, 1e − 7 and finally 1e − 8 after 30, 70 and 100

epochs respectively. When the anomaly filter is emulated, its replacement MLP also needs

to be trained, and we set the learning rate to 1e − 9 initially and then decreased to 1e − 10

and 1e − 11 after 30 and 80 epochs respectively.

We select a subset of one trace (its positions and corresponding ESKF output) for training,

because 1) using the whole trace is time-consuming (it contains hundreds of thousands of

samples), and 2) the initialization stage (usually the first 40 seconds) of an MSF module

yields unreliable output which should be removed. All the other traces are used for testing

(the first 40 seconds’ data are removed similarly). We term the number of selected positions

for training as N , and set it to 1000 after empirical analysis. Other parameters for training,

including the three loss weights of Equation 4.5 (λp, λa and λd) are set to 100, 1, and

0.1 respectively. The impact of different parameter values in training (N , λp, λa and λd),

initialization and controllers will be evaluated in Section 5.3.

5.1.4 Experiment environment

The training and testing process are done on a workstation of one NVIDIA RTX 2080 Ti

GPU and one AMD 5950x with 32 GB memory. The code runs on PyTorch 1.11.0 with

Nvidia CUDA 11.5 support. All the data used in the experiments are in float64 format.

35

AS Training PER
Testing (SER)

lo08 lo07 lo31 hi06 hi17

AS1
lo08 0.01347 - 0.067 0.042 0.076 0.089

hi17 0.01297 0.043 0.029 0.073 0.038 -

AS2
lo08 0.00978 - 0.018 0.028 0.026 0.036

hi17 0.00206 0.024 0.013 0.018 0.036 -

AS3E
lo08 4.5431 - 1.76 1.24 1.33 3.15

hi17 4.6247 1.43 2.88 2.28 4.19 -

AS3G
lo08 3.9916 - 1.53 1.89 2.57 1.21

hi17 4.3111 1.51 0.58 1.43 5.67 -

AS3R
lo08 5.8869 - 4.24 2.10 1.11 1.33

hi17 4.2485 2.12 1.87 4.11 0.88 -

Table 5.1: Evaluation result on Sola-ESKF. The result of each testing trace is represented
as SER. PER is the same for each training trace. PER could be larger than 1 if the error
between the extracted value and the ground truth is larger than the ground truth itself.
AS3E, AS3G and AS3R are AS3 under Exponential, Gamma and Rayleigh noises. “lo” and
“hi” are short for “local” and “highway”.

5.2 Extracting Sola-ESKF

In this subsection, we evaluate the effectiveness of TaskMaster when extracting the secret

parameters from Sola-ESKF. Since we have white-box access to it, we assess both PER (it

is averaged for Q, RG, R
p
L and Ry

L) and SER. To show the impact of the training traces,

we selected 2 different traces to train each model. The extracted models are tested on all 5

traces. Table 5.1 summarizes the results.

5.2.1 Result on AS1 (Intrusive In-AV Attacker)

The 2 training traces are local08 and highway06, which represents local (roads of downtown

areas) and highway navigation respectively. As their environments are vastly different, the

sensor noises and the AV kinetics (positions, velocities and heading poses) also have big

36

differences. In general, local08 has a smaller value variation than highway06. For example,

both x and y coordinate of local08 traces vary in 100-meter level (between 3.511e + 5 and

3.514e + 5, 4.022e + 5 and 4.023e + 5, respectively), while x and y coordinate of highway06

traces vary in 1000-meter level (between 3.49e + 5 and 3.53e + 5, 4.02e + 5 and 4.03e + 5,

respectively). For trace length, local08 has 30,704 recorded data points while highway06 has

205,375 recorded data points.

For a training trace, we select N points (set to 1000) to construct the training dataset,

following this rule: from the first 15000 points, we randomly select a starting point from

the points indexed in [1001,10000], and consecutively collect the following 1000 points for

training. We drop the first N points, as ESKF is in the “warm-up” stage in the beginning,

and the ESKF output is less stable. The same strategy has been adopted by [90]. For each

testing trace, we select the points indexed in [1001,15000] to construct the dataset. The

secret parameters of Ô are all set to random values before training.

As shown in Table 5.1, the extracted Ô is quite similar as the ground-truth O: PER is

0.01347 and 0.01483 for the two traces. It indicates TaskMaster is able to learn the secret

parameters at very high fidelity. SER ranges from 0.042 to 0.089 (the unit is m). Given

that L4-standard AV asks for centimeter-level (0.01) RMSE, this result is satisfactory: if the

targeted ESKF has reached centimeter-level RMSE, tuning Ô to the same level is deemed

much easier comparing to tuning from the scratch.

We also found the impact of the training traces is fairly small. The average SER resulted

from local08 and highway17 are 0.0685 and 0.0458 separately. Our result also suggests the

cost of attack is quite low: by just collecting 1000 data points on one trace (about 25 seconds

of AV driving), the attacker can extract a high-fidelity and high-accuracy ESKF model. In

Section 5.3, we show that increasing N from 1000 to 5000, a small performance gain can be

obtained but the training overhead also significantly increase.

37

5.2.2 Result on AS2 (Non-intrusive In-AV Attacker)

Since the attacker cannot get the output of the ESKF model, but only the output of the

followed controllers in this setting, the extracted Ô is expected to be less accurate. We follow

the same training and testing strategy as AS1 (N is also 1000 points).

Interestingly, the result shows AS2 can achieve even lower PER and SER compared to AS1,

e.g., 0.013 vs 0.029 SER when training on highway17 and testing on local07. We speculate

controller outputs actually enhance the training performance, as controllers also handle

noises.

5.2.3 Result on AS3 (AV Follower)

In this setting, we injected noises into the sensor input and controller output.

Though noises following normal distributions are usually used in academic studies about

AV security (e.g., [90]), the real-world noises are often more complex. As such, we select

Exponential, Gamma and Rayleigh noises based on a survey of noises [14], These noise

models are widely used in radiation-based systems, such as X-ray, LiDAR and MRI systems.

We define the model of the noise injection as follows.

δ(uk−1) = uk−1 + n1

δ(zpk) = z
p
k + n2

δ(zyk) = z
y
k + n3

δ(yk) = yk + n4

(5.3)

where δ(uk−1), δ(zpk), δ(z
y
k) and δ(yk) are measurements from uk−1, z

p
k, z

y
k and yk under the

influence of noises n1, n2, n3 and n4. We adapt three noise models – Exponential noise,

38

Gamma noise, and Rayleigh noise – for noise injection in AS3 based on a survey [14]. λ, α,

β and σ are model parameters. Three noise models are described as below:

Exponential noise. Exponential noise follows a distribution whose probability density

function (PDF) is:

f(x;λ) = λe−λx (5.4)

where λ > 0. Mean of Exponential noise is 1
λ , and standard deviation is also 1

λ .

Gamma noise. Gamma noise follows a distribution whose PDF is:

f(x;α,β) = βα

Γ(α)x
α−1e−βx (5.5)

where α > 0, β > 0, and Γ(⋅) is gamma function [4]. Mean of Gamma noise is α
β , and standard

deviation is
√
α
β .

Rayleigh noise. Rayleigh noise follows a distribution whose PDF is:

f(x;σ) = x

σ2
e−x

2/2σ2
(5.6)

where σ > 0. Mean of Rayleigh noise is σ
√

π
2 , and standard deviation is σ

√
4−π
2 .

For n1, n2 and n3, we select λ1 = 10 for Exponential noises, α1 = 0.1, β1 = 2 for Gamma

noises, and σ1 = 0.05 for Rayleigh noises. For n4, we select λ2 = 1 for Exponential noises, α2 =

1, β2 = 2 for Gamma noises, and σ2 = 0.5 for Rayleigh noises. These settings are considered

reasonable given that the extracted ESKF can tolerate meter-level error and sensors can

tolerate decimeter-level errors. According to Table 5.1, we found PER is significant higher,

however, this is expected, as the KF parameters have to be changed to tolerate the noises.

SER ranges from 1.26 to 3.07, showing the impact of noises cannot be neglected. Yet, given

39

that the academic implementations of ESKF have meter-level RMSE (see Section 3.1), our

RMSE is comparable.

5.3 Impact of Parameters

100 500 1000 2000 3000 4000 5000

PER 0.4377 0.1274 0.01347 0.01562 0.01285 0.02014 0.009974

SER (m) 0.59 0.27 0.03 0.08 0.05 0.05 0.04

Training Time (s) 11762.11 13270.62 13878.90 14957.63 15724.83 16765.74 17833.91

Time per Iteration (s) 168.03 189.58 198.27 213.68 224.64 239.51 254.77

Table 5.2: The impact of N on AS1. The targeted model is Sola-ESKF. local08 and
highway17 are for training and testing.

Q R

AS Original [1e − 3,1e − 2] [1e − 2,1e − 1] [1e − 1,1e0] [1e − 6,1e − 5] [1e − 5,1e − 4] [1e − 4,1e − 3]
AS1 0.01347 0.01220 0.01265 0.14031 0.03868 0.10514 0.92062

AS2 0.00978 0.09540 0.12428 0.17274 0.12237 0.16641 0.50272

Table 5.3: Comparison of PER under different parameter initialization ranges in
Sola-ESKF. The training trace is local08. “Original” are the values (matrices) used in pre-
vious evaluation.

Q R

Original [1e − 3,1e − 2] [1e − 2,1e − 1] [1e − 1,1e0] [1e − 6,1e − 5] [1e − 5,1e − 4] [1e − 4,1e − 3]
0.85 0.97 1.03 1.73 0.88 2.43 5.64

Table 5.4: Comparison of SER under different parameter initialization ranges in
Apollo-ESKF in AS2. The training trace is local08 and the testing trace is highway17.

5.3.1 The number of points for training (N)

We set N to 1000 as the default setting. Here, we evaluate how TaskMaster is influenced

by different N . Intuitively, a small N will introduce more errors to each state, as ESKF

might not be stabilized yet. Though a large N can overcome this issue, the training process

will be longer, and more storage will be consumed to store the prior states.

40

Kpp Kpa

Original [1e − 1,1e0] [1e0,1e + 1] [1e + 1,1e + 2] [1e − 2,1e − 1] [1e − 1,1e0] [1e0,1e + 1]
0.00978 0.01027 0.05147 7.34141 0.03107 0.36186 16.85203

Table 5.5: Comparison of PER under different controller parameter initialization ranges in
Sola-ESKF in AS2. The training trace is local08 and the testing trace is highway17.

Figure 5.1: Loss in every 10 epochs during training with λd = 1. The targeted model is
Sola-ESKF. local08 is used for training.

We vary N from 100 to 5000 and evaluate Sola-ESKF. It turns out PER and SER are

significantly decreased (from 0.4377 to 0.01347 and from 0.59 to 0.03) when N is increased

from 100 to 1000, as shown in Table 5.2. When N > 1000, PER and SER remain the same

level. However, the time overhead increases greatly (from 198.27s to 254.77s per iteration)

with increasing N from 1000 to 5000. The benefit brought by a larger N is diminished by

the overhead it incurs, and therefore we use N = 1000 as default.

41

5.3.2 Weights in loss function (λp, λd and λa)

As described in Section 4.2 and Equation 4.5, we assign different weights to the loss incurred

by different controller output. We assess how the ratio between them impacts the prediction

results. We fix λd to 1, and change λp from 1 to 1000, and λa from 1 to 100. Figure 5.1

shows the loss in every 10 epochs given different combination of λp and λa.

When setting λp as 1, with the increase of the λa, the optimization process converges similarly

comparing to λa = 1, 10 and 100. In contrast, we can observe a significant improvement on

the convergence speed with the increase of λp. The reason for this improvement is that the

value scale of position (1e+5) is far larger than the velocity (1e+2) and the heading angle

(between 1e0 and 1e+2). Therefore, we set λp to 100 with the other two weights as 1.

5.3.3 Initialization and controller parameters

We initialize the values of Q and R based on the results of existing works [92]. Here we

assess the effectiveness of TaskMaster when different initial values are chosen.

We first assess the impact on Sola-ESKF, where the ground-truth of Q and R are known.

We tested with 3 different ranges: [1e− 3,1e− 2], [1e− 2,1e− 1] and [1e− 1,1e0] for Q, and

[1e − 6,1e − 5], [1e − 5,1e − 4] and [1e − 4,1e − 3] for R. In each range, we draw 50 random

values in uniform distribution, and run the experiment 50 times with the same setting as

Section 5.2. Table 5.3 compares the average PER in AS1 and AS2. As we can see, the

impact is relatively small for both settings, except when Q falls in [1e−1,1e0] and R falls in

[1e−4,1e−3]. The impact by R is larger, and we speculate this is because the ground-truth

R are in smaller range (1e − 5 level) compared with Q (1e − 2 level).

We then assess Apollo-ESKF in AS2. As the initial values of Q and R are not far away

from the values of Sola-ESKF, we can learn whether starting from another ESKF model is

42

important to get closer to an industry-grade ESKF. The answer seems to be negative. For

Q and R, the same ranges are tested as the previous experiment. The result is summarized

in Table 5.4.

For AS2 and AS3, PID and Stanley controllers need to be simulated. According to Equa-

tion 4.3, some controller parameters need to be initialized ahead. Here we evaluate the

impact of these parameters and show the results about two parameters Kpp and Kpa. We

chose Sola-ESKF as the target model and show its PER under AS2 when different values are

used. The results are shown in Table 5.5. It turns out the performance of extracted model

degrades drastically, when the controller parameters are in different ranges. To notice, the

controller parameters are not secret, and the original values we use come from the online

implementations [89]. Therefore, simulating functional controllers are important for attacks

under AS2 and AS3, but they do not need to be the same as the targeted AV.

5.4 Extracting Apollo-ESKF

AS Training
Testing (SER)

l08 l07 lo31 hi06 hi17

AS1
lo08 - 0.37 0.42 0.91 1.18

hi17 0.95 0.72 0.68 0.89 -

AS2
lo08 - 1.26 1.01 1.03 0.62

hi17 1.12 0.96 0.88 0.79 -

AS3E
lo08 - 1.72 1.82 2.03 1.96

hi17 1.92 1.48 2.41 1.27 -

AS3G
lo08 - 1.45 1.63 2.11 3.07

hi17 1.26 1.43 1.55 1.90 -

AS3R
lo08 - 1.78 2.08 2.13 1.49

hi17 1.71 1.82 1.56 1.33 -

Table 5.6: Evaluation result on Apollo-ESKF. The result in each cell is represented as SER,
as Apollo-ESKF is blackbox.

43

In this subsection, we report our results of extracting Apollo-ESKF, which is blackbox and

might have components not modeled by us. In Table 5.6, we show the SER of the 5 testing

traces, paired to the two training traces (local08 and highway17). We only measure SER, as

we have no knowledge about the ground-truth parameters of Apollo-ESKF.

It turns out for AS1 and AS2, the error rate significantly increased. There are 6 cases with

SER more than 1 in testing, e.g., training on local08 and testing on highway17 (1.18) in

AS1 / local07 (1.26), local31 (1.01) and highway06 (1.03) in AS2. All the other SERs are

in decimeter level. We speculate the rise of SER is caused by the additional procedures of

Apollo-ESKF not implemented by us. In addition to the SER on a whole trace, we also take

a closer look at the error distribution on different trace locations. In Figure 5.2, we show the

distribution of RMSE on 2D locations of local08 under AS1, and it turns out 60% locations

have less than 0.95 SER, and only a small fraction (around 5%) of locations have high SER

(more than 2).

With noises injected in AS3, errors of attacker’s observation rise to meter-level: the average

SER training on local08 under Exponential, Gamma and Rayleigh noises rise to 1.88, 2.67

and 1.87, respectively. Interestingly, the SERs between Sola-ESKF and Apollo-ESKF are

much closer comparing to AS1 and AS2.

Testing (SER)
local08 local07 local31 highway06 highway17

12.60 8.15 9.18 7.90 5.31

Table 5.7: Comparison between Sola-ESKF and Apollo-ESKF on the same KAIST dataset.

Still, we want to point out that the inferred ESKF is useful. In particular, we run Sola-ESKF

and Apollo-ESKF on KAIST and derive SER on their output (Sola-Output and Apollo-Output),

under AS2. Table 5.7 shows the SER of all 5 traces. The best case has 5.31 SER while the

worst case has as high as 12.60 SER, and the average is 8.63. In the meantime, our extracted

Ô trained on local08 has 0.98 SER in average. Hence, starting from the extracted model,

parameter tuning is expected to be much easier for an adversary.

44

Figure 5.2: Distribution of RMSE on 2D locations in AS1 on Apollo-ESKF. The training
trace is highway17 and the testing trace is local08.

5.5 Modeling ESKF with RNN

Given that the output of ESKF is also leveraged as input to generate the next state, we

can emulate ESKF with an RNN, and leverage the existing libraries and optimizers from

ML frameworks like PyTorch to train it. Here we show the structure of Simple RNN [27] in

Equation 5.7.

ht = σh(Whxt +Uhht−1 + bh)

yt = σy(Wyht + by)
(5.7)

Where xt is the input vector, ht is the hidden layer, xt is the output vector, Wh, Uh, Wy, bh

and by are parameter matrices and vectors, σh and σy are activation functions.

If aligning the equations of ESKF (Equation 2.2, 2.3, 2.5, 2.6) to RNN (Equation 5.7) to

45

draw their connections, uk−1 and zk can be mapped to xt, xk can be mapped to yt, and Pk

can be mapped to ht. The matrices to be tuned, including Q, RG, RLp and RLy, can be

mapped to the parameter matrices. The other matrices and vectors (e.g., G in Equation 2.4)

can be considered as constant, i.e., not to be tuned. Since the ESKF used in AD system

separates the processing pipelines of IMU, GNSS and LiDAR, as described in Section 2.2,

we build three RNNs to emulate the three pipelines, as illustrated in Figure 5.3.

The simple RNN uses only one hidden layer. Through the initial exploration, we found the

optimization result is unsatisfactory, in part of the higher complexity of ESKF model. For

instance, F in Equation 2.2 of KF is changed to A in Baidu’s implementation, which also

depends on the previous state estimation. Hence, we choose to stack more layers to each

RNN to capture such complex input-to-output relations. Stacking layers is a widely used

technique for domains like NLP. For instance, stacked LSTM [35, 80] allows the hidden state

to operate at different timescale.

In the end, we choose to stack 5, 2, 4 hidden layers for the pipelines of IMU, GNSS and

LiDAR respectively. We double the number of layers for LiDAR comparing to GNSS because

it takes two sub-phases to update LiDAR, for position state and pose state. When training

Ô, the output of the target ESKF, termed xk,ref , will be compared to the output of Ô, or

xk, under a loss function, termed L, to guide optimization. We use logarithmic of Mean

Squared Error (MSE) as L, which can be written as Equation 5.8, where N means the total

number of output values, x (xk ∈ x) and xref (xk,ref ∈ xref) mean all output values.

L(x,xref) = log(
1

N

N

∑
k=1
(xk − xk,ref)2) (5.8)

Yet, we found emulating ESKF with RNN does not yield satisfactory result. The main

reason is that, ESKF directly connects the prior state xk−1 and current state xk, but a RNN

model does not have such direct connection. In Section ??, we evaluate this RNN-based

46

Figure 5.3: The structure of ESKF emulated with RNN.

implementation and compare to the structure adopted by TaskMaster.

Attack result. However, it performs not well. The first reason for this poor performance is

that current RNN cell could not get direct access to the previous state (i.e. yk−1)

to perform the current prediction. The formation of the current transition matrix

A directly depends on qk−1, i.e. quaternion in the previous state estimation. However,

calculation of the current state yk could only depends on the previous hidden state hk−1

to get the previous state estimation. Though hk−1 is the only external input to generate

previous state estimation yk−1, parametersWy and by will affect the final estimation. Also, the

estimation will be processed by an activation function, which will make the whole estimation

process non-linear. However, the real process of generating the transition matrix A, as well

as the whole prediction part of ESKF, does not involve in any non-linear process. This may

lead to more parameters or more layers of RNN cells to make the emulate more accurate.

However, since each state estimation of our ESKF module is very large (16 elements for

each state estimation), an additional RNN cell stacked in our module will mean 3 more

47

15× 15 matrices (Wh, Uh and Wy) and 2 more 15× 1 vectors (bh and by) to be trained in our

RNN-based module. More variables to train means more states to generate and larger time

consumption during training period. Also, difficulty on making the module converged will

be greatly increased with more variables.

What makes it worse is that generation of the current hidden state also involves an activation

function. Together with the one in generation of the current state estimation, there are in

total 3 non-linear processes involved for the current state estimation to get the previous state

estimation (yk−1 → hk−1, hk−1 → hk and hk → yk). In conclusion, 1) formation of transition

matrix A, 2) getting direct access to the previous state estimation from hk−1 make training

the RNN-based module for the prediction part very difficult.

Modules for GNSS and LiDAR update part perform poorly as well. Difficulty

to get previous state estimation is also one reason for poor training performance of RNN-

based GNSS and LiDAR update part. The other problem is that lack of enough data for

RNN-based module training. As analyzed in Section 3.3, proportion for IMU, LiDAR and

GNSS data is 50:6.5:1. Data is enough for prediction part training since large proportion

data is for prediction part. For GNSS and LiDAR part, data only takes a small proportion,

which means a module with too many parameters to train will be very difficult to converge.

Theoretically, increase length of the trace for training (i.e. N in Formula 5.8) may mitigate

this problem. However, time consumption for training will be greatly raised with N getting

larger. Also, GPU memory will get overflowed if N is set too large (>25000 in our experiment

setting) during back propagation period. Lack of data also limits us to stack more RNN cells

to make better emulate performance.

In conclusion, inability of getting indirect access to previous state estimation, too

many parameters for training and lack of GNSS and LiDAR are 3 key problems for

our failure in emulaing ESKF using RNN-based modules. In order to solve these 3 problems,

we build our own ESKF module and emulating Baidu Apollo ESKF directly.

48

Trace Name PER of Q, SI PER of RG, SI PER of Rp
L and Ry

L, SI PER of TaskMaster

local08 0.01181 2.0984 5.1024 0.01347

highway17 0.01431 4.3518 5.3141 0.01297

Table 5.8: Comparison between System Identification (SI) and Sola-ESKF on local08 and
highway17 in AS1.

5.6 Comparison to Other System Identification Meth-

ods

TaskMaster leveraged a novel optimization framework to find the best Q and R. Here we

compare the performance TaskMaster and the baseline system identification (SI) methods

given the same training traces (local08 and highway17). To save space, we only show the

result (i.e., PER) when Sola-ESKF is used under AS1.

Specifically, we use the SI toolbox from Matlab [46], define the ESKF structure as a grey-box

parametric model [45], and estimate Q and R. Though we found there are other open-source

and close-source tools to tune specific models, e.g., LTV Models [7] and Matlab Time-

Varying MPC [68], none can be directly used to tune ESKF, because 1) ESKF are time

varying, and 2) ESKF contains some nonlinear operations in both prediction and update

modules. Building a customized SI baseline for ESKF tuning would take considerable human

efforts, so we choose the generic Matlab’s SI toolbox.

From Table 5.8, it can be seen that SI toolbox achieves similar results in estimating Q

compared to TaskMaster, but it performs much worse in R (PERs of R are all over 1

for SI toolbox while TaskMaster has less than 0.02 PER). We speculate the reason is

that Q has a simple relation to the input, as shown in Equation 2.2, but R is used in the

Update phase, which introduces many non-linear operations like pose transformation among

quaternion, Euler angles and rotation matrices (see Appendix ??). Previous works [25, 84]

also reveal that classical SI methods could not achieve good results on non-linear models,

and Section 8 elaborates the comparison.

49

5.7 Spoofing Attacks

For the attacks against ML models, learning the model parameters can facilitate the pertur-

bation attacks that manipulate the model’s classification result, as shown in [44]. Here, we are

interested in whether the breach of ESKF confidentiality facilitates the attack against its in-

tegrity, similar to the above ML setting. To this end, we evaluate Fusionripper [90], a recently

proposed spoofing attack against localization, with extracted models from TaskMaster.

Fusionripper is an opportunistic GNSS spoofing method targeting ESKF-based MSF local-

ization. Despite being effective at attacking MSF from a single sensor source (i.e., GNSS),

Fusionripper requires a profiling stage to find the effective attack parameters, during which

the attacker needs to tailgate victim’s AV (or same model) on public roads, and perform

trials of attack with different combinations of attack parameters, i.e., constant spoofing dis-

tance d and scaling factor f . The profiling effort can be prominent (half a day as mentioned

in [90]), and likely expose the attacker. Ideally, with TaskMaster, we can construct a

shadow ESKF model, search for the best attack parameters on attacker’s computer, and

directly attack the on-road victim. As such, the costly profiling stage can be skipped.

Since the shadow ESKF model is an approximation of the targeted model, we are interested in

whether Fusionripper on the shadow ESKF model can maintain the similar level of success

rate as which on the targeted model. We have obtained the code and a trace (termed

ba-local) from the authors of Fusionripper, and tested the cases when Sola-ESKF and

Apollo-ESKF are the targeted model. We first apply the Fusionripper attack on the shadow

ESKF by iterating over the same ranges of the attack parameters as used in [90]. We then

calculate the attack success rates of all attack parameter combinations and obtain the attack

parameter (d and f) that can achieve the highest success rate. Next, we apply this attack

parameter combination onto the target model.

In the end, we found the success rate is 100% on Sola-ESKF but only 7% on Apollo-ESKF.

50

The main reason why the success rate is low on Apollo-ESKF might be that the stolen model

has not yet reached close enough performance to the ground-truth model. We believe by

simulating other components surrounding Apollo-ESKF, we can significantly improve the

result of this task.

51

Chapter 6

Discussion

6.1 Generalization to other KF models

AD may use variants of KF models in localization. For example, unscented Kalman filter

and Extended Kalman filter (EKF) are good candidates as they work better with non-linear

systems [32].

We believe TaskMaster can also be used to extract these variants, when the structure

is approximately known by the attacker. As for the reasons, 1) these variants have similar

structure with ESKF (for instance, EKF differs from ESKF only in the equations deriving

xk, Pk and K ′ [67]), and 2) these models are derivable. With the above reasons, the attacker

can adopt a similar methodology of TaskMaster.

52

6.2 Limitations

1) We did not deploy the extracted ESKF models on real AV and evaluate them on the

real roads, given we have no access to the AV testing and manufacturing process. Yet, we

use the real-world traces (KAIST) and target ESKF models (Apollo-ESKF), and the result

shows TaskMaster is effective. We are discussing with the AV vendors to obtain their

feedback to our study, as an indicator of the attack practicality. 2) When the AD of the

attacker uses a set of sensors with very different settings as the targeted AD, the stolen

parameters cannot be directly used. However, as described in Section 3.1, industry-grade

models like Apollo-ESKF is able to achieve good performance on different AVs even without

re-tuning. Hence, we believe stealing such models should be useful to attackers in most

cases. 3) TaskMaster is less effective against Apollo-ESKF comparing to Sola-ESKF. We

believe the main reason is that Apollo-ESKF is more complex than Sola-ESKF, and we are

unable to emulate all components surrounding Apollo-ESKF. 4) Except Baidu Apollo, we

have not found another AD system to verify if obfuscation is applied on the localization

module. Though Autoware [5] is another popular open-source AD system, we found it only

uses LiDAR for localization by default. Though extracting binaries from an AV can help

us get another ground-truth MSF, it is impossible without vulnerability exploitation. In

the meantime, we will keep inquiring the AD community. 5) We evaluated TaskMaster

against Baidu Apollo v2.5 while the latest version is v6.0. The ESKF version is upgraded

from v1.0.3 to v1.0.4. We plan to test the latest version, but we expect the changes to be

small.

53

6.3 Defense

Though there are a number of extraction attacks against ML models, recent works show

defenses are possible. An example is PRADA [58], which analyses the distribution of client’s

queries and detect the ones that deviate the normal ones. However, these works assume

MLaaS (Machine-learning as a Service) settings, where the queries can be audited. This

is very difficult in our setting, as attacker’s observation cannot be blocked under AS3, and

there is no need to actively query ESKF under AS1 and AS2.

A partial solution, which is practical under AS1 and AS2, could be mediating the access

to ECUs. Specifically, AV vendors may add “self-destruction” modules to ECUs. Once an

attacker tries to break the ECU to get the output of ESKF, the ECUs can wipe out the

parameters of ESKF. Additionally, AV vendors can encrypt all the messages over CAN bus.

6.4 Future works

Moving beyond localization models, one interesting yet unsolved research problem is, is

control-theory models that are derivable generally vulnerable to model extraction attacks?

Given there are many such models operated in the safety-critical settings (e.g., drones),

gaining insights into this problem is important. One research path is to examine whether

the existing model extraction attacks against ML models can be transferred to this new

setting.

The outcome of model extraction attacks against ML models can help the attacks who aim

to break the integrity of ML models [78] (e.g., test-time evasion attacks). Such analogy could

be drawn on the localization models. Section 5.7 makes a preliminary attempt against MSF

and we will futher explore this direction.

54

Chapter 7

Conclusion

In this thesis, we systematically studied the confidentiality issues underlying the AD control

models, in particular ESKF model used for localization, which has been considered as an

intellectual property by AD companies. We designed TaskMaster, a novel optimization-

based framework to infer the secret parameters by observing the input and output of an

AD. Under 3 practical adversarial settings, we found TaskMaster can achieve very high

accuracy for Sola-ESKF and comparable accuracy for a complex, industry-grade model

Apollo-ESKF. We also demonstrated that the classical SI-based methods cannot achieve

the similar performance, and TaskMaster can facilitate the attack against the integrity

of the localization model. As the first study on the AD model confidentiality, we hope our

findings can attract attention from AD industries and security community in addressing this

new threat.

55

Chapter 8

Related Work

8.1 Security of AD

The research into the security of modern vehicles has been started a decade ago [20, 61, 81,

21], and the attack surface on wireless protocols, CAN bus, etc. was explored. The security

of AD has attracted attention from the research community only recently. One direction is

to study the sensors leveraged by AD, including LiDAR, IMU, perception, etc. [17, 94, 102,

13, 29, 65, 55, 112, 16, 56, 107], and defense based on physical invariants was proposed [83].

Attacks against the traditional computing architecture, like cache side-channel attacks [66]

and malware attacks [53], were examined and found feasible against the software stack of

AD. Regarding the security of MSF, only Shen et al. [90] demonstrated its integrity can be

tampered, while TaskMaster looks into the confidentiality issues of MSF models.

56

8.2 Model Extraction

Similar to KF models, the parameters of machine-learning models, including the classic

models like logistic regression, and DNN, can be considered as secret. Given that a lot of

deployed models offer cloud-based API access, an adversary can issue queries and use the

detailed responses (e.g., confidence score) to guess the model parameters. As the first step,

Tramer et al. proposed equation-solving attack and path-finding attack [101]. Wang et al.

studied how the model hyper-parameters used to balance between the loss function and the

regularization terms can be stolen [108]. Juuti et al. improved on the existing attacks by

generating synthetic queries and proposed defenses [58]. The attack precision is further im-

proved with semi-supervised learning [50] and active learning [19]. While prior works focused

on CNN when attacking DNN, recently, attack against RNN was demonstrated feasible [96].

But as described in Section 3.3, successful model extraction against KF against has to over-

come a few new challenges, which are addressed by the new design of TaskMaster. Our

work also broadens the scope of model extraction attacks from machine-learning models to

control-theory models.

8.3 System Identification

System identification (SI) [64] builds mathematical model for a dynamic system with statisti-

cal analysis. The related methods can be divided into 4 categories [73], but we found directly

using SI to steal ESKF parameters does yield satisfactory results. 1) The Bayesian Method

treats parameter update as a Bayesian update [1], but a Bayesian optimal estimation might

be unrealizable [39]. 2) Maximum Likelihood carries out non-linear, gradient-based optimiza-

tion to minimize the difference between model prediction and measurement [12, 1, 111], and

Expectation Maximization [91, 10] attempts to avoid the non-linear optimization. However,

57

the optimization process is time-consuming. 3) Covariance Matching runs Monte Carlo sim-

ulation and checks if the sampled statistics are internally consistent [75, 33, 72, 10]. Though

faster, Covariance Matching leads to sub-optimal result. 4) Correlation Techniques assume

the sequence of prediction error is zero-mean white Gaussian noise when the model is optimal,

and tune the control parameters towards this criteria [69, 70, 77]. However, this assumption

does not always hold. Some works have applied SI on simple KF models [57, 11, 26], but

none of them are applicable to the MSF models adopted by AVs, especially ESKF. In fact,

ESKF is an LTV (linear time-variant) system while KF is an LTI (linear time-invariant)

system, and many properties from LTI systems do not hold in LTV systems. Recently,

deep-learning based models have been used for SI [71, 2] but again none of them work on

ESKF.

8.4 Kalman Filter Tuning

There are two kinds of methods in Kalman Filter tuning: 1) tuning by brutal force [6], 2) tune

target parameters iteratively with the mathematical properties of Kalman Filter. Efficiency

for traditional brutal force tuning is quite low, and results are not satisfactory (RMSE=1.5),

compared with the results of TaskMaster. The only advantage of brutal force tuning

compared with TaskMaster is that it does not require any preliminary knowledge of the

given model. The tuning process is completely based on random selection in parameter

space, respectively. This is also the reason why it could achieve precise and stable tuning

results.

The mathematics-based Kalman Filter tuning improves its tuning accuracy and stability

to some extent (RMSE<1), compared with brutal force tuning. It takes half as much time

as what brutal force tuning takes after optimization on algorithm and compilation levels.

However, its accuracy and time efficiency is still lower than TaskMaster proposed in this

58

work. What is more, mathematical properties will vary when MSF modules change, which

reduces its generality. Therefore, attackers need to re-evaluate mathematical properties of

the MSF module under a specific circumstance, e.g., ESKF in Baidu Apollo AV system,

and re-implement the whole tuning procedure. In conclusion, mathematics-based tuning

approaches are limited in real-world tuning.

59

Bibliography

[1] D. Alspach. A parallel filtering algorithm for linear systems with unknown time varying
noise statistics. IEEE Transactions on Automatic Control, 19(5):552–556, 1974.

[2] B. P. Amiruddin, E. Iskandar, A. Fatoni, and A. Santoso. Deep learning based system
identification of quadcopter unmanned aerial vehicle. In 2020 3rd International Con-
ference on Information and Communications Technology (ICOIACT), pages 165–169.
IEEE, 2020.

[3] ars technica. Google’s waymo invests in lidar technology, cuts costs by 90 per-
cent. https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lid

ar-technology-cuts-costs-by-90-percent/, 2017.

[4] E. Artin. The gamma function. Courier Dover Publications, 2015.

[5] Autoware. Autoware-ai/autoware.ai: Open-source software for self-driving vehicles.
https://github.com/Autoware-AI/autoware.ai, 2020.

[6] awerries. kalman-localization. https://github.com/awerries/kalman-localizatio
n, 2022.

[7] F. Bagge Carlson. Machine learning and system identification for estimation in physical
systems, 12 2018.

[8] Baidu. Apolloauto/apollo: An open autonomous driving platform. https://github

.com/ApolloAuto/apollo, 2020.

[9] Baidu. Baidu apollo controller module. https://github.com/ApolloAuto/apollo/t
ree/r2.5.0/modules/control, 2020.

[10] V. A. Bavdekar, A. P. Deshpande, and S. C. Patwardhan. Identification of process
and measurement noise covariance for state and parameter estimation using extended
kalman filter. Journal of Process control, 21(4):585–601, 2011.

[11] M. C. Best, A. P. Newton, and S. Tuplin. The identifying extended kalman filter: para-
metric system identification of a vehicle handling model. Proceedings of the Institution
of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(1):87–98, 2007.

[12] T. Bohlin. Four cases of identification of changing systems. In Mathematics in Science
and Engineering, volume 126, pages 441–518. Elsevier, 1976.

60

https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/
https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/
https://github.com/Autoware-AI/autoware.ai
https://github.com/awerries/kalman-localization
https://github.com/awerries/kalman-localization
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo/tree/r2.5.0/modules/control
https://github.com/ApolloAuto/apollo/tree/r2.5.0/modules/control

[13] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking
vision-based perception in end-to-end autonomous driving models. Journal of Systems
Architecture, page 101766, 2020.

[14] A. K. Boyat and B. K. Joshi. A review paper: noise models in digital image processing.
arXiv preprint arXiv:1505.03489, 2015.

[15] Business Line. Velodyne lidar awarded perception system contract from mercedes-benz.
https://www.thehindubusinessline.com/business-wire/velodyne-lidar-awa

rded-perception-system-contract-from-mercedesbenz/article9856916.ece,
2018.

[16] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen, M. Liu, and B. Li.
Invisible for both camera and lidar: Security of multi-sensor fusion based perception
in autonomous driving under physical-world attacks. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 176–194. IEEE, 2021.

[17] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.
Mao. Adversarial sensor attack on lidar-based perception in autonomous driving. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2267–2281, 2019.

[18] CBINSIGHTS. Android of the auto industry? how baidu may race ahead of google,
tesla, and others in autonomous vehicles. https://www.cbinsights.com/research/
baidu-china-autonomous-vehicles/, 2018.

[19] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and S. Yan. Exploring con-
nections between active learning and model extraction. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pages 1309–1326, 2020.

[20] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimental analyses of
automotive attack surfaces. In USENIX Security Symposium, volume 4, pages 447–
462. San Francisco, 2011.

[21] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle intrusion
detection. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages
911–927, 2016.

[22] CISOMAG. Tesla offers us$1 million and a car as bug bounty re-
ward. https://cisomag.eccouncil.org/tesla-offers-us1-million-and-a-car

-as-bug-bounty-reward/, 2020.

[23] DARPA. The darpa grand challenge: Ten years later. https://www.darpa.mil/news
-events/2014-03-13, 2014.

[24] M. DeBord. Waymo has launched its commercial self-driving service in phoenix - and
it’s called ’waymo one’. https://www:businessinsider:com/waymo-one-driverles
s-car-servicelaunches-in-phoenix-arizona-2018-12, 2018.

61

https://www.thehindubusinessline.com/business-wire/velodyne-lidar-awarded-perception-system-contract-from-mercedesbenz/article9856916.ece
https://www.thehindubusinessline.com/business-wire/velodyne-lidar-awarded-perception-system-contract-from-mercedesbenz/article9856916.ece
https://www.cbinsights.com/research/baidu-china-autonomous-vehicles/
https://www.cbinsights.com/research/baidu-china-autonomous-vehicles/
https://cisomag.eccouncil.org/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://cisomag.eccouncil.org/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://www.darpa.mil/news-events/2014-03-13
https://www.darpa.mil/news-events/2014-03-13
https://www:businessinsider:com/waymo-one-driverless-car-servicelaunches-in-phoenix-arizona-2018-12
https://www:businessinsider:com/waymo-one-driverless-car-servicelaunches-in-phoenix-arizona-2018-12

[25] D. Di Ruscio. Subspace System Identification of the Kalman Filter. Modeling, Identi-
fication and Control, 24(3):125–157, 2003.

[26] D. Di Ruscio. Subspace system identification of the kalman filter. 2003.

[27] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[28] ETH Zürich. Ethzasl msf framework. https://github.com/ethz-asl/ethzasl_msf,
2018.

[29] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning visual clas-
sification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1625–1634, 2018.

[30] Frida. Dynamic instrumentation toolkit for developers, reverse-engineers, and security
researchers. https://frida.re/, 2022.

[31] B. Friedland. Control system design: an introduction to state-space methods. Courier
Corporation, 2012.

[32] Q. B. Ge, W. B. Li, R. Y. Sun, and Z. Xu. Centralized fusion algorithms based on
ekf for multisensor non-linear systems. Zidonghua Xuebao/Acta Automatica Sinica,
39(6):816–825, 2013.

[33] R. Gemson. Estimation of aircraft aerodynamic derivatives accounting for measure-
ment and process noise by ekf through adaptive filter tuning. Bangalore, India: De-
partment of Aerospace Engineering, Indian Institute of Science, 1991.

[34] C. Goodin, D. Carruth, M. Doude, and C. Hudson. Predicting the influence of rain on
lidar in adas. Electronics, 8(1):89, 2019.

[35] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pages 6645–6649. IEEE, 2013.

[36] GreenValley International. Libackpack - mobile handheld lidar - 3d mapping system.
https://greenvalleyintl.com/hardware/libackpack/, 2020.

[37] Hex Rays. Ida pro. https://hex-rays.com/ida-pro/, 2022.

[38] HEXAGON. Easymile and velodyne lidar announce three-year agreement.
https://insideunmannedsystems.com/easymile-and-velodyne-lidar-annou

nce-three-year-agreement/, 2020.

[39] C. G. Hilborn and D. G. Lainiotis. Optimal estimation in the presence of unknown
parameters. IEEE Transactions on Systems Science and Cybernetics, 5(1):38–43, 1969.

62

https://github.com/ethz-asl/ethzasl_msf
https://frida.re/
https://greenvalleyintl.com/hardware/libackpack/
https://hex-rays.com/ida-pro/
https://insideunmannedsystems.com/easymile-and-velodyne-lidar-announce-three-year-agreement/
https://insideunmannedsystems.com/easymile-and-velodyne-lidar-announce-three-year-agreement/

[40] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun. Autonomous automobile
trajectory tracking for off-road driving: Controller design, experimental validation and
racing. In 2007 American control conference, pages 2296–2301. IEEE, 2007.

[41] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS–global navigation satel-
lite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media,
2007.

[42] T. N. N. Hossein, S. Mita, and H. Long. Multi-sensor data fusion for autonomous
vehicle navigation through adaptive particle filter. In 2010 IEEE Intelligent Vehicles
Symposium, pages 752–759. IEEE, 2010.

[43] S. C. HPL. Introduction to the controller area network (can). Application Report
SLOA101, pages 1–17, 2002.

[44] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu, T. Sherwood,
et al. Deepsniffer: A dnn model extraction framework based on learning architectural
hints. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 385–399, 2020.

[45] T. M. Inc. Nonlinear grey-box model - MATLAB idnlgrey. Natick, Massachusetts,
United State, 2021.

[46] T. M. Inc. System Identification Toolbox User’s Guide. Natick, Massachusetts, United
State, 2021.

[47] Informed Infrastructure. Velodyne’s lidar division announces agreement with caterpil-
lar for laser imaging technology. https://informedinfrastructure.com/25630/ve

lodynes-lidar-division-announces-agreement-with-caterpillar-for-laser

-imaging-technology-2/, 2012.

[48] Inside Unmanned Systems. Easymile and velodyne lidar announce three-year agree-
ment. https://insideunmannedsystems.com/easymile-and-velodyne-lidar-ann

ounce-three-year-agreement/, 2020.

[49] Intel. Pin - a dynamic binary instrumentation tool. https://www.intel.com/cont

ent/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumenta

tion-tool.html, 2022.

[50] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot. High accuracy
and high fidelity extraction of neural networks. In 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[51] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot. High Accuracy
and High Fidelity Extraction of Neural Networks . In Proceedings of the 29th USENIX
Security Symposium (USENIX Security ’20), Boston, MA, August 2020.

63

https://informedinfrastructure.com/25630/velodynes-lidar-division-announces-agreement-with-caterpillar-for-laser-imaging-technology-2/
https://informedinfrastructure.com/25630/velodynes-lidar-division-announces-agreement-with-caterpillar-for-laser-imaging-technology-2/
https://informedinfrastructure.com/25630/velodynes-lidar-division-announces-agreement-with-caterpillar-for-laser-imaging-technology-2/
https://insideunmannedsystems.com/easymile-and-velodyne-lidar-announce-three-year-agreement/
https://insideunmannedsystems.com/easymile-and-velodyne-lidar-announce-three-year-agreement/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

[52] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim. Complex urban dataset with
multi-level sensors from highly diverse urban environments. The International Journal
of Robotics Research, page 0278364919843996, 2019.

[53] S. Jha, S. Cui, S. S. Banerjee, J. Cyriac, T. Tsai, Z. Kalbarczyk, and R. K. Iyer.
Ml-driven malware that targets AV safety. In 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2020, Valencia, Spain, June
29 - July 2, 2020, pages 113–124. IEEE, 2020.

[54] S. Jha, S. Cui, S. S. Banerjee, T. Tsai, Z. Kalbarczyk, and R. Iyer. Ml-driven malware
that targets av safety. arXiv preprint arXiv:2004.13004, 2020.

[55] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling de-
tection alone is not enough: Adversarial attack against multiple object tracking. In
International Conference on Learning Representations, 2019.

[56] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu. Too good to
be safe: Tricking lane detection in autonomous driving with crafted perturbations. In
30th USENIX Security Symposium (USENIX Security 21), pages 3237–3254, 2021.

[57] J.-N. Juang, M. Phan, L. G. Horta, and R. W. Longman. Identification of ob-
server/kalman filter markov parameters-theory and experiments. Journal of Guidance,
Control, and Dynamics, 16(2):320–329, 1993.

[58] M. Juuti, S. Szyller, S. Marchal, and N. Asokan. Prada: protecting against dnn
model stealing attacks. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 512–527. IEEE, 2019.

[59] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware On Board: Enabling Au-
tonomous Vehicles with Embedded Systems. In ICCPS’18, pages 287–296. IEEE Press,
2018.

[60] E. Khartchenko. Vectorization: A key tool to improve performance on modern
cpus. https://software.intel.com/content/www/us/en/develop/articles/vect

orization-a-key-tool-to-improve-performance-on-modern-cpus.html, 2018.

[61] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, et al. Experimental security analysis of a modern
automobile. In 2010 IEEE Symposium on Security and Privacy, pages 447–462. IEEE,
2010.

[62] S. Lau. Learning rate schedules and adaptive learning rate methods for deep learn-
ing. https://towardsdatascience.com/learning-rate-schedules-and-adaptiv

e-learning-rate-methods-for-deep-learning-2c8f433990d1, 2017.

[63] S. L. Lauritzen. Time series analysis in 1880: A discussion of contributions made by
tn thiele. International Statistical Review/Revue Internationale de Statistique, pages
319–331, 1981.

64

https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

[64] L. Ljung. System identification. Wiley encyclopedia of electrical and electronics engi-
neering, pages 1–19, 1999.

[65] J. Lu, H. Sibai, and E. Fabry. Adversarial examples that fool detectors. arXiv preprint
arXiv:1712.02494, 2017.

[66] M. Luo, A. C. Myers, and G. E. Suh. Stealthy tracking of autonomous vehicles with
cache side channels. In 29th {USENIX} Security Symposium ({USENIX} Security 20),
pages 859–876, 2020.

[67] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. A robust and modular
multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ interna-
tional conference on intelligent robots and systems, pages 3923–3929. IEEE, 2013.

[68] Mathworks. Time-varying mpc. https://www.mathworks.com/help/mpc/ug/time-v
arying-mpc.html, 2022.

[69] R. Mehra. On the identification of variances and adaptive kalman filtering. IEEE
Transactions on automatic control, 15(2):175–184, 1970.

[70] R. Mehra. Approaches to adaptive filtering. IEEE Transactions on automatic control,
17(5):693–698, 1972.

[71] S. S. Miriyala and K. Mitra. Deep learning based system identification of industrial
integrated grinding circuits. Powder Technology, 360:921–936, 2020.

[72] A. Mohamed and K. Schwarz. Adaptive kalman filtering for ins/gps. Journal of geodesy,
73(4):193–203, 1999.

[73] S. Mohan M, N. Naik, R. Gemson, and M. Ananthasayanam. Introduction to the
kalman filter and tuning its statistics for near optimal estimates and cramer rao bound.
arXiv, pages arXiv–1503, 2015.

[74] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[75] K. Myers and B. Tapley. Adaptive sequential estimation with unknown noise statistics.
IEEE Transactions on Automatic Control, 21(4):520–523, 1976.

[76] S. Nie, L. Liu, and Y. Du. Free-fall: Hacking tesla from wireless to can bus. Briefing,
Black Hat USA, 25:1–16, 2017.

[77] B. J. Odelson, A. Lutz, and J. B. Rawlings. The autocovariance least-squares method
for estimating covariances: application to model-based control of chemical reactors.
IEEE transactions on control systems technology, 14(3):532–540, 2006.

[78] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. Sok: Security and privacy
in machine learning. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 399–414. IEEE, 2018.

65

https://www.mathworks.com/help/mpc/ug/time-varying-mpc.html
https://www.mathworks.com/help/mpc/ug/time-varying-mpc.html

[79] K. I. Park. Fundamentals of Probability and Stochastic Processes with Applications to
Communications. Springer Publishing Company, Incorporated, 1st edition, 2017.

[80] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026, 2013.

[81] J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE
Transactions on Intelligent transportation systems, 16(2):546–556, 2014.

[82] S. C. M. Post. Chinese internet giant baidu offers free trial robotaxi rides through
search and map apps in changsha. https://www.scmp.com/tech/apps-social/arti
cle/3080712/chinese-internet-giant-baidu-offers-free-trial-robotaxi-r

ides, 2020.

[83] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin. {SAVIOR}:
Securing autonomous vehicles with robust physical invariants. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages 895–912, 2020.

[84] M. J. u. Rehman, S. C. Dass, and V. S. Asirvadam. Nonlinear dynamical system
identification using unscented kalman filter. In AIP Conference Proceedings, volume
1787, page 020003. AIP Publishing LLC, 2016.

[85] T. G. Reid, S. E. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora, and G. Pandey.
Localization requirements for autonomous vehicles. arXiv preprint arXiv:1906.01061,
2019.

[86] Renovo.auto Blog. Renovo selects velodyne as reference lidar provider for advanced
automotive development projects. https://medium.com/renovo-auto-blog/renovo
-selects-velodyne-as-reference-lidar-provider-for-aware-automated-mob

ility-operating-system-f8001b91c6c, 2017.

[87] Reuters. Ford dissolves its 7.6% stake in velodyne lidar. https://www.reuters.com/
article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velod

yne-lidar-idUSKBN2AF1B7?il=0, 2021.

[88] D. E. Rivera, M. Morari, and S. Skogestad. Internal model control: Pid controller
design. Industrial & engineering chemistry process design and development, 25(1):252–
265, 1986.

[89] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques. Pythonrobotics:
a python code collection of robotics algorithms. CoRR, abs/1808.10703, 2018.

[90] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. Drift with Devil: Security of Multi-Sensor
Fusion based Localization in High-Level Autonomous Driving under GPS Spoofing. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security ’20), Boston,
MA, August 2020.

[91] R. H. Shumway and D. S. Stoffer. Time series analysis and its applications: with R
examples. Springer, 2017.

66

https://www.scmp.com/tech/apps-social/article/3080712/chinese-internet-giant-baidu-offers-free-trial-robotaxi-rides
https://www.scmp.com/tech/apps-social/article/3080712/chinese-internet-giant-baidu-offers-free-trial-robotaxi-rides
https://www.scmp.com/tech/apps-social/article/3080712/chinese-internet-giant-baidu-offers-free-trial-robotaxi-rides
https://medium.com/renovo-auto-blog/renovo-selects-velodyne-as-reference-lidar-provider-for-aware-automated-mobility-operating-system-f8001b91c6c
https://medium.com/renovo-auto-blog/renovo-selects-velodyne-as-reference-lidar-provider-for-aware-automated-mobility-operating-system-f8001b91c6c
https://medium.com/renovo-auto-blog/renovo-selects-velodyne-as-reference-lidar-provider-for-aware-automated-mobility-operating-system-f8001b91c6c
https://www.reuters.com/article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0
https://www.reuters.com/article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0
https://www.reuters.com/article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0

[92] J. Sola. Quaternion kinematics for the error-state kalman filter. arXiv preprint
arXiv:1711.02508, 2017.

[93] J. K. Suhr, J. Jang, D. Min, and H. G. Jung. Sensor fusion-based low-cost vehicle
localization system for complex urban environments. IEEE Transactions on Intelligent
Transportation Systems, 18(5):1078–1086, 2016.

[94] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao. Towards robust lidar-based percep-
tion in autonomous driving: General black-box adversarial sensor attack and counter-
measures. In 29th {USENIX} Security Symposium ({USENIX} Security 20), pages
877–894, 2020.

[95] System Plus Consulting. Bosch’s 6-axis imu in the apple iphone x.
https://www.systemplus.fr/reverse-costing-reports/boschs-6-axis-imu

-in-the-apple-iphone-x/, 2018.

[96] T. Takemura, N. Yanai, and T. Fujiwara. Model extraction attacks against recurrent
neural networks. arXiv preprint arXiv:2002.00123, 2020.

[97] Tencent Keen Security Lab. Exploiting wi-fi stack on tesla model s. https://keenlab.
tencent.com/en/2020/01/02/exploiting-wifi-stack-on-tesla-model-s/, 2020.

[98] Texas Instruments. 3.3-v can transceivers. https://www.ti.com/cn/lit/ds/slo

s346h/slos346h.pdf, 2006.

[99] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun. On the requirements
for successful gps spoofing attacks. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 75–86, 2011.

[100] Trail of Bits. Mcsema. https://github.com/lifting-bits/mcsema, 2022.

[101] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learn-
ing models via prediction apis. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 601–618, 2016.

[102] Y. Tu, Z. Lin, I. Lee, and X. Hei. Injected and delivered: Fabricating implicit con-
trol over actuation systems by spoofing inertial sensors. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1545–1562, 2018.

[103] United States Securities and Exchange Commission. Schedule 13g under
the securities exchange act of 1934 (amendment no. 1) – velodyne lidar,
inc. https://www.reuters.com/article/us-velodyne-lidar-stake/ford-disso

lves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0, 2020.

[104] Unmanned Systems Technology. Velodyne lidar partners with nikon for autonomous
vision. https://www.unmannedsystemstechnology.com/2018/12/velodyne-lidar

-partners-with-nikon-for-autonomous-vision/, 2018.

[105] Velodyne. Velodyne lidar: Envision the future. https://velodynelidar.com/, 2022.

67

https://www.systemplus.fr/reverse-costing-reports/boschs-6-axis-imu-in-the-apple-iphone-x/
https://www.systemplus.fr/reverse-costing-reports/boschs-6-axis-imu-in-the-apple-iphone-x/
https://keenlab.tencent.com/en/2020/01/02/exploiting-wifi-stack-on-tesla-model-s/
https://keenlab.tencent.com/en/2020/01/02/exploiting-wifi-stack-on-tesla-model-s/
https://www.ti.com/cn/lit/ds/slos346h/slos346h.pdf
https://www.ti.com/cn/lit/ds/slos346h/slos346h.pdf
https://github.com/lifting-bits/mcsema
https://www.reuters.com/article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0
https://www.reuters.com/article/us-velodyne-lidar-stake/ford-dissolves-its-7-6-stake-in-velodyne-lidar-idUSKBN2AF1B7?il=0
https://www.unmannedsystemstechnology.com/2018/12/velodyne-lidar-partners-with-nikon-for-autonomous-vision/
https://www.unmannedsystemstechnology.com/2018/12/velodyne-lidar-partners-with-nikon-for-autonomous-vision/
https://velodynelidar.com/

[106] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song. Robust and
precise vehicle localization based on multi-sensor fusion in diverse city scenes. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 4670–4677.
IEEE, 2018.

[107] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen. Too Afraid
to Drive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous Driving
Planning under Physical-World Attacks. In Network and Distributed System Security
(NDSS) Symposium, 2022, April 2022.

[108] B. Wang and N. Z. Gong. Stealing hyperparameters in machine learning. In 2018
IEEE Symposium on Security and Privacy (SP), pages 36–52. IEEE, 2018.

[109] G. Welch, G. Bishop, et al. An introduction to the kalman filter. 1995.

[110] yegord. Snowman. https://github.com/yegord/snowman, 2022.

[111] M. A. Zagrobelny and J. B. Rawlings. Identification of disturbance covariances using
maximum likelihood estimation. Technical report, No. 2014–02, 2014.

[112] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen. Seeing isn’t believ-
ing: Towards more robust adversarial attack against real world object detectors. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1989–2004, 2019.

68

https://github.com/yegord/snowman

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	AD Localization
	MSF algorithms

	Kalman Filter based Multi-Sensor Fusion
	Additive White Guassian Noise and Kalman Filter
	Error-State Kalman Filter in AD system

	AD Controller

	Attack Overview
	Adversary Motivation
	Existing protections
	Generalizability of the extracted model
	Hacking AV to extract KF parameters

	Adversary Model
	AS1: Intrusive In-AV Attacker
	AS2: Non-intrusive In-AV Attacker
	AS3: AV Follower

	KF Model Extraction
	Challenges

	Attack Implementation
	Extracting ESKF Alone
	Search-space reduction of Q
	Search-space reduction of RG, RLp and RLy
	Multi-stage optimization

	Extracting ESKF with Controllers

	Evaluation
	Experiment Settings
	Evaluation datasets
	Evaluation metrics
	Experiment parameters
	Experiment environment

	Extracting Sola-ESKF
	Result on AS1 (Intrusive In-AV Attacker)
	Result on AS2 (Non-intrusive In-AV Attacker)
	Result on AS3 (AV Follower)

	Impact of Parameters
	The number of points for training (N)
	Weights in loss function (p, d and a)
	Initialization and controller parameters

	Extracting Apollo-ESKF
	Modeling ESKF with RNN
	Comparison to Other System Identification Methods
	Spoofing Attacks

	Discussion
	Generalization to other KF models
	Limitations
	Defense
	Future works

	Conclusion
	Related Work
	Security of AD
	Model Extraction
	System Identification
	Kalman Filter Tuning

	Bibliography

