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ABSTRACT OF THE DISSERTATION

Statistical methods for molecular quantitative trait locus analysis

by

Heather Zhou

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Jingyi Li, Chair

Molecular quantitative trait locus (molecular QTL, henceforth “QTL”) analysis investigates

the relationship between genetic variants and molecular traits, helping explain findings in

genome-wide association studies. This dissertation addresses two major problems in QTL

analysis: hidden variable inference problem and eGene identification problem.

Estimating and accounting for hidden variables is widely practiced as an important step

in QTL analysis for improving the power of QTL identification. However, few benchmark

studies have been performed to evaluate the efficacy of the various methods developed for

this purpose. In my first project, I benchmark popular hidden variable inference methods

including surrogate variable analysis (SVA), probabilistic estimation of expression residu-

als (PEER), and hidden covariates with prior (HCP) against principal component analysis

(PCA)—a well-established dimension reduction and factor discovery method—via 362 syn-

thetic and 110 real data sets. I show that PCA not only underlies the statistical methodology

behind the popular methods but is also orders of magnitude faster, better performing, and

much easier to interpret and use. To help researchers use PCA in their QTL analysis, I

provide an R package PCAForQTL along with a detailed guide, both of which are available
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at https://github.com/heatherjzhou/PCAForQTL. I believe that using PCA rather than

SVA, PEER, or HCP will substantially improve and simplify hidden variable inference in

QTL mapping as well as increase the transparency and reproducibility of QTL research.

A central task in expression quantitative trait locus (eQTL) analysis is to identify cis-

eGenes (henceforth “eGenes”), i.e., genes whose expression levels are regulated by at least

one local genetic variant. Among the existing eGene identification methods, FastQTL is

considered the gold standard but is computationally expensive as it requires thousands of

permutations for each gene. Alternative methods such as eigenMT and TreeQTL have

lower power than FastQTL. In my second project, I propose ClipperQTL, which reduces the

number of permutations needed from thousands to 20 for data sets with large sample sizes (>

450) by using the contrastive strategy developed in Clipper; for data sets with smaller sample

sizes, it uses the same permutation-based approach as FastQTL. I show that ClipperQTL

performs as well as FastQTL and runs about 500 times faster if the contrastive strategy

is used and 50 times faster if the conventional permutation-based approach is used. The

R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.

This project demonstrates the potential of the contrastive strategy developed in Clipper and

provides a simpler and more efficient way of identifying eGenes.
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LIST OF FIGURES

2.1 Overall comparison of PCA, SVA, PEER, and HCP and summary of their inputs

and outputs. In this work, we use K to denote the number of inferred covariates,

which are called PCs, SVs, PEER factors, and HCPs in PCA, SVA, PEER,

and HCP, respectively. a PCA is faster, better-performing, and much easier

to interpret and use. For speed and performance comparison, see Section 2.1.1

(and to a lesser extent, Sections 2.1.2 and 2.1.3). For interpretability and ease

of choosing K, see Sections 2.1.4 and 2.1.5, respectively. In terms of software

usability, SVA is difficult to apply in QTL settings (Section 3.4), PEER is difficult

to install, and HCP is poorly documented. In addition, PEER suffers from the

disadvantage that there is no consensus in the literature on how it should be

used (Section 3.4). b Inputs (green boxes) and outputs (brown boxes) of the

four methods. The fully processed molecular phenotype matrix (after the effects

of the known covariates are regressed out in the case of PCA resid; Table 2.1)

is a required input for all four methods and is thus omitted in the diagram.

Dashed arrows indicate optional inputs. PEER outputs both inferred covariates

and residuals of the inputted molecular phenotype matrix [1]. . . . . . . . . . . 16
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2.2 Runtime and AUPRC comparison of all 15 methods (Table 2.1) in Simulation

Design 1 and Simulation Design 2. a, c PCA and HCP each takes within a few

seconds, SVA takes up to a few minutes, and PEER takes up to about 1,000

minutes, equivalent to about 17 hours. In particular, PEER takes longer to run

when K is larger (dark orange vs. light orange boxes). b, d PCA outperforms

SVA, PEER, and HCP in terms of AUPRC. The height of each bar represents

the average across simulated data sets. For ease of visualization, in d, the y-axis

displays (AUPRC− AUPRCUnadjusted) /AUPRCUnadjusted. In this work, error bars

indicate standard errors unless otherwise specified (whiskers in box plots are not

considered error bars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Detailed runtime and AUPRC comparison of the selected representative meth-

ods (Table 2.1) in Simulation Design 2. Each point represents the average

across simulated data sets. The x-axes are: number of effect SNPs per gene

(numOfEffectSNPs), number of simulated covariates (numOfCovariates; includ-

ing known and hidden covariates), proportion of variance explained by genotype

(PVEGenotype), and proportion of variance explained by covariates (PVECovariates)

(Section 3.3). a PCA and HCP are orders of magnitude faster than SVA, which

in turn is orders of magnitude faster than PEER. b PCA outperforms SVA,

PEER, and HCP in terms of AUPRC across different simulation settings. For

ease of visualization, the y-axis displays (AUPRC− AUPRCIdeal) /AUPRCIdeal.

Consistent with our expectation, the performance gap between Unadjusted and

Ideal is the largest (and thus accounting for hidden covariates is the most im-

portant) when numOfCovariates is small, when PVEGenotype is small, and when

PVECovariates is large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.4 In the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3], PEER

factors can be highly correlated with each other to the extent that many or all

of them are practically identical. a Correlation heatmaps of PEER factors for

Brain Hippocampus. For ease of visualization, the PEER factors are reordered

based on results from hierarchical clustering (Section 2.1.2) in each heatmap. b

The x-axis shows 12 randomly selected tissue types with increasing sample sizes.

The y-axis shows the number of PEER factors requested (orange line) or the

number of PEER factor clusters. Given a set of PEER factors, we group them into

clusters such that in each cluster, the correlation between any two PEER factors is

above 0.99, 0.9, or 0.8 in absolute value (Section 2.1.2). Therefore, the number of

PEER factor clusters can be interpreted as the number of distinct or nonrepetitive

PEER factors. We find that in many cases, the number of distinct PEER factors

is considerably smaller than the number of PEER factors requested, and when

this issue is severe (e.g., “No transformation” and “INT within sample”), the

PEER factors fail to capture important variance components of the molecular

phenotype data (Figure 3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.5 PEER factors are almost identical to PCs in GTEx eQTL and sQTL data [4]. a

The y-axis shows all 49 tissue types with GTEx QTL analyses ordered by sample

size (from small to large). Given a fully processed molecular phenotype matrix, we

summarize the correlation matrix (in absolute value) between the PEER factors

obtained and used by GTEx and the top PCs into two numbers: the average

of the diagonal entries and the average of the off-diagonal entries. With the

exception of Kidney - Cortex sQTL data, the diagonal entries have averages close

to one, and the off-diagonal entries have averages close to zero (both have minimal

standard errors). b A typical correlation heatmap showing near-perfect one-to-

one correspondence between the PEER factors and the top PCs. c In Kidney

- Cortex sQTL data, the PEER factors and the top PCs do not have a perfect

one-to-one correspondence. The reason is because the PEER factors are highly

correlated with each other (d), while PCs are always uncorrelated (Section 3.5.1).

The numbers in parentheses represent sample sizes. To produce this figure, we

reorder the PEER factors based on the PCs (Algorithm 1), although in almost all

cases, this reordering does not change the original ordering of the PEER factors

because PEER initializes with PCs [5]. . . . . . . . . . . . . . . . . . . . . . . . 21
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2.6 PCA, SVA, PEER, and HCP are closely related statistical methods despite their

apparent dissimilarities. In particular, the methodology behind SVA, PEER,

and HCP can all be traced back to PCA. PCA [6–10] is traditionally derived

by optimizing some objective functions (either maximum variance or minimum

reconstruction error; Section 3.5.1), but more recently, it is shown that PCA can

be derived as a limiting case of probabilistic principal component analysis (PPCA)

[11], which in turn is a special case of factor analysis [7, 12]. PEER [1, 5] is based

on a Bayesian probabilistic model and can be considered a Bayesian version of

factor analysis. SVA [13, 14] is purely algorithmic and is not defined based on

a probabilistic model or objective function. The steps of the SVA algorithm are

complicated [15], but in a nutshell, SVA iterates between two steps: (1) reweight

the features of the molecular phenotype matrix, and (2) perform PCA on the

resulting matrix (with centering but without scaling) [14]. Lastly, HCP [16]

is defined by minimizing a loss function that is very similar to the minimum-

reconstruction-error loss function of PCA (Section 3.5.2). . . . . . . . . . . . . . 22
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2.7 PCA provides insight into the choice of K. Recall from Section 2.1.3 that PEER

factors are almost identical to PCs in GTEx eQTL data [4]. Therefore, for each

tissue type, we compare the number of PEER factors selected by GTEx to (1) the

number of PCs chosen via an automatic elbow detection method (Algorithm 2)

and (2) the number of PCs chosen via the BE algorithm (Algorithm 3; the default

parameters are used). a Example scree plots. b This scatter plot contains 49 dots

of each color, corresponding to the 49 tissue types with GTEx eQTL analyses.

The number of PEER factors selected by GTEx far exceeds the number of PCs

chosen via BE for many tissue types with sample size above 350 (dashed line),

suggesting that the number of PEER factors selected by GTEx may be too large.

c For the eight tissue types with the largest absolute differences between the

number of PEER factors chosen by GTEx and the number of PCs chosen via BE

(all eight tissue types have sample size above 350), we replace the PEER factors

with smaller numbers of PCs in GTEx’s FastQTL pipeline [4, 17] and find that

we can reduce the number of inferred covariates to between 20% (12/60 = 20%,

Colon - Transverse) and 40% (22/60 ≈ 36.67%, Esophagus - Mucosa) of the

number of PEER factors selected by GTEx without significantly reducing the

number of discovered cis-eGenes. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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3.1 Comparison of all 15 methods (Table 2.1) in terms of power and adjusted R2

measures in Simulation Design 1 (the height of each bar represents the average

across simulated data sets) and an example scree plot. a, b PCA is more powerful

than SVA, PEER, and HCP both when we consider all QTL relations (a) and

when we focus on trans-QTL relations (b). Binary decisions are made based

on p-values using the Benjamini-Hochberg (BH) procedure and a target false

discovery rate of 0.05. c, d, e PCA performs the best in terms of concordance

score. PEER with a largeK (dark orange bars) performs well in terms of adjusted

R2 but less well in terms of reverse adjusted R2. f An example scree plot that

unambiguously suggests the true number of hidden covariates, seven in this case,

as the reasonable number of PCs to choose (the y-axis represents the proportion

of variance explained). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 In Simulation Design 2, we find that Binom (1000, prob = 1/1000) approximates

the empirical distribution of the number of independent cis-eQTLs per gene in

GTEx data [4] well. a Given a tissue type, which corresponds to a sample size,

we plot the proportion of genes with 0, 1, 2, 3, 4, or 5 or more independent

cis-eQTLs (the proportions add up to one; data from GTEx [4]). We find that

the proportions stabilize once the sample size reaches about 517 (dashed line). b

For the eight tissue types with sample size ≥ 517, we take the average proportion

of genes with 0 independent cis-eQTLs, 1 independent cis-eQTL, etc. and plot

them in the blue bars. The green bars represent the probability mass function of

Binom (1000, prob = 1/1000) (with the tail probabilities combined together). . 35
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3.3 This figure shows how we select a few representative methods from the 15 methods

for detailed comparison in Simulation Design 2 (a, b, c) and a dataset-by-dataset

comparison of the selected representative methods (d). The x-axis and y-axis

both represent AUPRCs of different methods. Each scatter plot contains 352

points, each of which corresponds to a simulated data set in Simulation Design 2.

The number on the upper-left corner of each scatter plot represents the proportion

of points that satisfy y > 1.02 x, and the number on the lower-right corner repre-

sents the proportion of points that satisfy x > 1.02 y, where x and y denote the

coordinates of each point. a The two PCA methods perform almost identically,

so for simplicity, we select PCA direct screeK. The two SVA methods perform

almost identically as well, so we select SVA BE. b Whether the known covariates

are inputted when PEER is run has little effect on the AUPRC. c When we use

the true K, the factor approach outperforms the residual approach, but when we

use a large K, the residual approach outperforms the factor approach. Therefore,

we select PEER withCov trueK factors and PEER withCov largeK residuals as

the representative PEER methods. d Among the selected representative meth-

ods, PCA outperforms SVA, PEER, and HCP in terms of AUPRC in 11% to

88% of the simulated data sets and underperforms them in close to 0% of the

simulated data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Detailed adjusted R2, reverse adjusted R2, and concordance score comparison of

the selected representative methods (Table 2.1) in Simulation Design 2. Each

point represents the average across simulated data sets. PCA performs the best

in all three regards. PEER with a large K (dark orange line) performs well in

terms of adjusted R2 but falls short in terms of reverse adjusted R2. . . . . . . . 37
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3.5 In the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3],

PEER factors fail to capture important variance components of the molecular

phenotype data when the data transformation method is “No transformation” or

“INT within sample” (a; the numbers of PCs are chosen via BE (Algorithm 3)).

On the other hand, PEER factors span roughly the same linear subspace as the

top PCs when the data transformation method is “Center and scale” or “INT

within feature”, but the top PCs can almost always capture the PEER factors

better than the PEER factors can capture the top PCs (b; the numbers of PCs are

equal to the numbers of PEER factors). Given m PEER factors and n PCs from

the same post-transformation molecular phenotype matrix (m ≥ n in a, m = n

in b), we calculate m adjusted R2’s by regressing each PEER factor against the

PCs and plot the average in blue. Similarly, we calculate n adjusted R2’s by

regressing each PC against the PEER factors and plot the average in orange. . . 41

3.6 In GTEx eQTL data [4], PEER is at least three orders of magnitude slower than

PCA (a), and replacing the PEER factors with PCs in GTEx’s FastQTL pipeline

[4, 17] does not change the cis-eQTL results much (b, c, d). The x-axis shows

10 randomly selected tissue types with increasing sample sizes. a For a given

gene expression matrix, running PEER without the known covariates (GTEx’s

approach) takes up to about 1,900 minutes (equivalent to about 32 hours; Whole

Blood), while running PCA (with centering and scaling; our approach) takes no

more than a minute. For comparison, we also run PEER with the known covari-

ates using the numbers of PEER factors selected by GTEx. This approach takes

even longer (up to about 4,600 minutes, equivalent to about 77 hours; Esopha-

gus - Mucosa). b The p-values produced by GTEx’s approach and our approach

are highly correlated (correlations between the negative common logarithms are

shown). c, d The overlap of the identified eGenes and eQTL pairs between the

two approaches is generally around 90% (see Figure 3.7 for more detail). . . . . 42
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3.7 Following the analysis in Figure 3.6, we find that the eGenes uniquely identified

by PCs or PEER factors have marginal p-values compared to those identified by

both methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Joint analysis of results from Simulation Design 1, Simulation Design 2, and

GTEx eQTL data [4]. The x-axes of a, c, and e show the concordance between

PEER factors and top PCs (defined analogously as the concordance score; Sec-

tion 2.2.1). The x-axes of b, d, and f show the percentage of QTL discoveries

shared between PEER and PCA (in b and d, for each method, binary deci-

sions are made based on p-values using the Benjamini-Hochberg (BH) procedure

and a target false discovery rate of 0.05). In a through d, the y-axes show

(AUPRCPEER − AUPRCPCA) /AUPRCPCA, the blue lines are the simple linear

regression lines, and the Pearson correlation coefficients are shown on the bottom

right. a and b each contains 10 data points, corresponding to the 10 simulated

data sets in Simulation Design 1. c and d each contains 352 data points, corre-

sponding to the 352 simulated data sets in Simulation Design 2. The methods

compared in a through d are PCA direct screeK and PEER noCov trueK factors.

e presents similar information as Figure 2.5; the total count is 49, which is the

number of tissue types with GTEx eQTL analyses. f is based on Figure 3.6(d);

the total count is 10, which is the number of tissue types randomly selected for

analysis in Figure 3.6. We find that the percentage of QTL discoveries shared is

a good predictor of the relative performance of PEER versus PCA and is a better

predictor than concordance. This plot is also evidence that Simulation Design 2

is more realistic than Simulation Design 1 because the ranges that concordance

and percentage of QTL discoveries shared fall in in e and f agree better with

those in c and d than those in a and b. . . . . . . . . . . . . . . . . . . . . . . 44
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4.1 Number of eGenes comparison based on GTEx expression data [4] (Table 4.1;

see Section 4.1.1 for the analysis details). Each dot corresponds to a tissue.

The x-axis and y-axis both represent numbers of eGenes identified by different

methods. Diagonal lines through the origin are shown to help with visualization.

a-c The four variants of FastQTL identify almost the same numbers of eGenes

as one another. d-f eigenMT and TreeQTL methods identify fewer eGenes than

FastQTL. g-i ClipperQTL methods identify almost the same numbers of eGenes

as FastQTL in tissues with the appropriate sample sizes (Section 4.2.2). We use

465 as the sample size cutoff because the next largest sample size is 396. See

Figure 5.2 for an analysis of the overlap between identified eGenes. . . . . . . . 58

4.2 Run time comparison based on GTEx expression data [4] (Table 4.1; see Sec-

tion 4.1.1 for the analysis details). Each dot corresponds to a tissue. FastQTL 1K-

10K takes under 500 CPU hours. FastQTL 1K takes under 50 CPU hours. Clip-

perQTL standard 1K takes under 10 CPU hours. ClipperQTL Clipper 20 takes

under 1 CPU hour. Run times of ClipperQTL Clipper 20 and ClipperQTL Clipper 50

are only shown for tissues with sample sizes ≥ 465 (Figure 4.1). . . . . . . . . . 59

4.3 Power and FDR comparison of all 11 methods based on our simulation study

(Table 4.1; Section 4.1.2). The target FDR is set at 0.05 (grey shaded area in b).

The height of each bar represents the average across simulated data sets. Error

bars indicate standard errors. In a, a horizontal line at the height of the bar for

FastQTL 1K-10K beta is shown to help with visualization. All methods except

Matrix eQTL can approximately control the FDR. FastQTL and ClipperQTL

methods have higher power than eigenMT and TreeQTL methods. . . . . . . . . 60
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5.1 Scatter plot of pt (Algorithm 6) from FastQTL 1K-10K beta versus sample size in

GTEx expression data [4] (see Section 4.1.1 for the analysis details). This scatter

plot contains 49 dots, each corresponding to a tissue. We see that pt increases

roughly linearly with sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Overlap between eGenes identified by various methods and eGenes identified by

FastQTL 1K-10K beta—the default FastQTL method—in GTEx expression data

[4] (Table 2.1; see Section 4.1.1 for the analysis details). Each dot corresponds to

a tissue. Given two sets, A and B, the overlap is defined as |A∩B|/min(|A|, |B|),
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CHAPTER 1

Introduction

1.1 Hidden variable inference problem

Genome-wide association studies (GWASs) have identified thousands of genetic variants

associated with human traits or diseases [21–24]. However, the majority of GWAS variants

are located in non-coding regions of the genome, making it challenging to interpret the

GWAS associations [25, 26]. In response to this, molecular quantitative trait locus (molecular

QTL, henceforth “QTL”) analysis has emerged as an important field in human genetics,

interrogating the relationship between genetic variants and intermediate, molecular traits

and potentially explaining GWAS findings [27, 28].

Based on the type of molecular phenotype studied, QTL analyses can be categorized into

gene expression QTL (eQTL) analyses [3, 4], alternative splicing QTL (sQTL) analyses [4],

three prime untranslated region alternative polyadenylation QTL (3′aQTL) analyses [2], and

so on [27, 28]. Among these categories, eQTL analyses, which investigate the association

between genetic variants and gene expression levels, are the most common. To date, most

(single-tissue) QTL studies are carried out using regression-based methods such as Matrix

eQTL [29] and FastQTL [17].

In QTL analysis, a major challenge is that measurements of gene expression levels and

other molecular phenotypes can be affected by a number of technical or biological variables

other than the genetic variants, such as batch, sex, and age. If these variables are known,

then they can be directly included in the QTL pipeline as covariates. However, many of these
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variables may be unknown or unmeasured. Therefore, it has become standard practice to first

infer the hidden variables and then include the inferred variables as covariates or otherwise

account for them in the QTL pipeline [2–4, 30–39] (see Section 2.2.3 for a numerical example).

This type of approach has been shown to both improve the power of QTL identification in

simulation settings [5] and empirically increase the number of discoveries in QTL studies

[3, 4, 32, 37–39].

Surrogate variable analysis (SVA) [13, 14] is one of the first popular hidden variable

inference methods for large-scale genomic analysis. Although initially proposed as a hidden

variable inference method for both QTL mapping and differential expression (DE) analysis,

currently SVA is primarily used in DE and similar analyses as opposed to QTL mapping

[40–43]. We believe this is partly because the SVA package [44] is difficult to apply in QTL

settings in that it requires the user to input at least one variable of interest and using too

many variables of interest causes the package to fail (Figure 2.1; Section 3.4); while there are

usually at most a few variables of interest in a DE study, there are often millions of single

nucleotide polymorphisms (SNPs; variables of interest) in a QTL study. Historically, there

have been two versions of the SVA method: two-step SVA [13] and iteratively reweighted

SVA (IRW-SVA) [14]; the latter supersedes the former. Therefore, we focus on IRW-SVA in

this work.

Probabilistic estimation of expression residuals (PEER) [1, 5] is currently the most pop-

ular hidden variable inference method for QTL mapping by far. It is used in the Genotype-

Tissue Expression (GTEx) project [3, 4] and many other high-impact studies [2, 30–37]. The

PEER method has two main perceived advantages: (1) it can take known covariates into

account when estimating the hidden covariates, and (2) its performance does not deteriorate

as the number of inferred covariates increases (i.e., it does not “overfit”). One drawback

of PEER, though, is that there is no consensus in the literature on how it should be used.

For example, when there are known covariates available, PEER can be run with or without

the known covariates—Stegle et al. [1] do not give an explicit recommendation as to which
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approach should be used, and both approaches are used in practice (e.g., [3, 4] vs. [2, 32]).

Further, PEER outputs both inferred covariates and residuals of the inputted molecular

phenotypes (Figure 2.1), so the user needs to decide which set of outputs to use (Section 3.4;

we refer to the approach using the inferred covariates as the “factor approach” and the ap-

proach using the residuals as the “residual approach”). Such “flexibility” of PEER could be

considered a benefit, but we believe it not only leads to confusion for practitioners who try

to use the method but also reduces the transparency and reproducibility of published QTL

research.

Hidden covariates with prior (HCP) [16] is another popular hidden variable inference

method for QTL mapping. Though less popular than PEER, it has also been used in some

high-impact studies [38, 39]. To determine which method is the best and whether PEER

indeed has the perceived advantages, we thoroughly evaluate SVA, PEER, and HCP for the

first time in the literature. Given that principal component analysis (PCA) [6–10] underlies

the methodology behind each of these methods (Section 2.1.4) and has indeed been used

for the same purpose [45, 46], we also include PCA in our evaluation. Through simulation

studies (Section 2.1.1) and real data analysis (Sections 2.1.2, 2.1.3 and 2.1.5), we show that

PCA is orders of magnitude faster, better-performing, and much easier to interpret and use

(Figure 2.1).

1.2 eGene identification problem

Molecular quantitative trait locus (molecular QTL, henceforth “QTL”) analysis investigates

the relationship between genetic variants and molecular traits, helping explain findings in

genome-wide association studies [27, 28]. Based on the type of molecular phenotype stud-

ied, QTL analyses can be categorized into gene expression QTL (eQTL) analyses [3, 4],

alternative splicing QTL (sQTL) analyses [4], three prime untranslated region alternative

polyadenylation QTL (3′aQTL) analyses [2], and so on [27, 28]. Among these categories,
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eQTL analyses, which investigate the association between genetic variants and gene expres-

sion levels, are the most common. Therefore, in this work, we focus on eQTL analyses as

an example, although everything discussed in this work is applicable to other types of QTL

analyses as well.

A central task in eQTL analysis is to identify cis-eGenes (henceforth “eGenes”), i.e., genes

whose expression levels are regulated by at least one local genetic variant. This presents a

multiple-testing challenge as not only are there many candidate genes, each gene can have

up to tens of thousands of local genetic variants, and the local genetic variants are often in

linkage disequilibrium (i.e., associated) with one another.

Existing eGene identification methods include FastQTL [17], eigenMT [47], and TreeQTL

[48]. All three methods share the same two-step approach: first, obtain a gene-level p-value

for each gene; second, apply a false discovery rate (FDR) control method on the gene-level p-

values to call eGenes. The key difference between the three methods lies in how the gene-level

p-values are obtained.

Among the existing eGene identification methods, FastQTL [17] is considered the gold

standard and is currently the most popular. It uses permutations to obtain gene-level p-

values. There are four main ways to use FastQTL, depending on (1) whether the direct or

the adaptive permutation scheme is used and (2) whether proportions or beta approximation

is used (Table 2.1). The default way of using FastQTL is to use the adaptive permutation

scheme with beta approximation [4, 17]. The adaptive permutation scheme means the num-

ber of permutations is chosen adaptively for each gene (between 1000 and 10,000 by default

[4, 17]); the beta approximation helps produce higher-resolution gene-level p-values given

the numbers of permutations (Algorithm 5). The main drawback of FastQTL is the lack of

computational efficiency as it requires thousands of permutations for each gene. A faster

implementation of FastQTL named tensorQTL has been developed [49], but it relies on

graphics processing units (GPUs), which are not universally available.

eigenMT [47] and TreeQTL [48] have been proposed as faster alternatives to FastQTL.
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Neither method uses permutations. In a nutshell, eigenMT uses Bonferroni correction to

calculate a gene-level p-value for each gene but estimates the effective number of local genetic

variants for each gene by performing a principal component analysis (conceptually speaking;

instead of using the actual number of local genetic variants). On the other hand, TreeQTL

uses Simes’ rule [50] to calculate a gene-level p-value for each gene. Our analysis shows that

both eigenMT and TreeQTL have lower power than FastQTL (Figures 4.1 and 4.3).

Clipper [51] is a p-value-free FDR control method. Given a large number of features (e.g.,

genes), a number of measurements under the experimental (e.g., treatment) condition, and

a number of measurements under the background (e.g., control) condition, Clipper works as

the following: first, obtain a contrast score for each feature based on the experimental and

background measurements (for example, the contrast score may be the average experimental

measurement minus the average background measurement); second, given a target FDR (e.g.,

0.05), obtain a cutoff for the contrast scores; lastly, call the features with contrast scores

above the cutoff as discoveries. The idea is that the contrast scores of the uninteresting

features (e.g., genes whose expected expression levels are not increased by the treatment)

will be roughly symmetrically distributed around zero, and the outlying contrast scores in

the right tail likely belong to interesting features. Notably, Clipper produces a q-value for

each feature (similar to Storey’s q-values [52]), so that the features can be ranked from the

most significant to the least significant.

In this work, we propose ClipperQTL for eGene identification [53], which reduces the

number of permutations needed from thousands to 20 for data sets with large sample sizes

(> 450) by using the contrastive strategy developed in Clipper; for data sets with smaller

sample sizes, it uses the same permutation-based approach as FastQTL. Unlike tensorQTL,

our ClipperQTL software does not rely on GPUs. We show that ClipperQTL performs as well

as FastQTL and runs about 500 times faster if the contrastive strategy is used and 50 times

faster if the conventional permutation-based approach is used (we refer to the two variants

of ClipperQTL as the Clipper variant and the standard variant, respectively; Section 4.2.2).
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CHAPTER 2

PCA outperforms popular hidden variable inference

methods for molecular QTL mapping

2.1 Results

2.1.1 Comprehensive simulation studies show that PCA is faster and better-

performing

We compare the runtime and performance of 15 methods (Table 2.1), including Ideal (as-

suming the hidden covariates are known), Unadjusted (not estimating or accounting for the

hidden covariates), and 13 variants of PCA, SVA, PEER, and HCP, based on two simulation

studies. In the first simulation study (Simulation Design 1; Section 3.2), we follow the data

simulation in Stegle et al. [5]—the original PEER publication—while addressing its data

analysis and overall design limitations (Section 3.1). In the second simulation study (Sim-

ulation Design 2; Section 3.3), we further address the data simulation limitations of Stegle

et al. [5] (Section 3.1) by simulating the data in a more realistic and comprehensive way,

roughly following Wang et al. [20]—the SuSiE publication—but introducing the existence of

known and hidden covariates. A summary of the main differences between the two simu-

lation designs is provided in Table 3.1. The key difference is that in Simulation Design 1,

the gene expression levels are primarily driven by trans-regulatory effects rather than cis-

regulatory effects or covariate effects (Table 3.2), inconsistent with the common belief that

trans-regulatory effects are generally weaker than cis-regulatory effects. In contrast, in Sim-

ulation Design 2, we focus on cis-QTL detection and carefully control the genotype effects
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and covariate effects in 176 experiments with two replicates per experiment (Section 3.3).

The details of the 15 methods are described in Section 3.4, and the evaluation metrics

are described in Section 2.2.1. For convenience, we refer to the simulated molecular phe-

notypes as gene expression levels throughout our simulation studies; however, they can be

interpreted as any type of molecular phenotype after data preprocessing and transformation,

e.g., alternative splicing phenotypes and alternative polyadenylation phenotypes (Table 3.3).

The results from our simulation studies are summarized in Figures 2.2, 2.3, 3.1, 3.3, and

3.4. We find that PCA and HCP are orders of magnitude faster than SVA, which in turn is

orders of magnitude faster than PEER, and that PCA outperforms SVA, PEER, and HCP

in terms of the area under the precision-recall curve (AUPRC) of the QTL result (Figures 2.2

and 2.3). On a dataset-by-dataset basis, PCA outperforms the other methods in terms of

AUPRC in 11% to 88% of the simulated data sets and underperforms them in close to 0%

of the simulated data sets in Simulation Design 2 (Figure 3.3(d)). In addition, PCA has the

highest average concordance scores, a metric for the concordance between the true hidden

covariates and the inferred covariates (Section 2.2.1; Figures 3.1 and 3.4), which explains

why PCA performs the best in terms of AUPRC.

To contrast the results in Stegle et al. [5], we also compare the powers of the different

methods in Simulation Design 1 (Figure 3.1). We find that PCA is more powerful than

SVA, PEER, and HCP. Notably, SVA and PEER have very low power in identifying trans-

QTL relations—an especially unfavorable result for SVA and PEER, considering that the

gene expression levels are primarily driven by trans-regulatory effects in Simulation Design 1

(Table 3.2).

Incidentally, Figures 2.2 and 3.3 also provide us with the following insights into the

different ways of using PEER (Section 3.4). First, running PEER with the known covariates

has no advantage over running PEER without the known covariates in terms of AUPRC,

given the choice of K (the number of inferred covariates) and the choice between the factor

approach and the residual approach. In fact, running PEER with the known covariates
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significantly increases the runtime of PEER in real data (Section 2.1.3). Second, contrary

to claims in Stegle et al. [1, 5], the performance of PEER does deteriorate as the number

of PEER factors increases. The only exception is when the residual approach is used in

Simulation Design 1 (Figure 2.2). But given that Simulation Design 2 is more realistic than

Simulation Design 1 and that the factor approach is more popular than the residual approach

[2–4, 33–36], the take-home message should be that in general, the performance of PEER is

worse when we use a large K rather than the true K. Third, whether the factor approach

or the residual approach performs better depends on the choice of K. When we use the true

K, the factor approach performs better, but when we use a large K, the residual approach

performs better. All in all, PCA outperforms all different ways of using PEER in both of

our simulation studies (Figure 2.2).

2.1.2 PEER factors sometimes fail to capture important variance components

of the molecular phenotype data

For our real data analysis, we examine the most recent GTEx eQTL and sQTL data [4]

(Sections 2.1.3 and 2.1.5) and the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-

seq reads [3] (Section 2.1.2). While the exact data analysis pipelines are different (Table 3.3),

these studies all choose PEER as their hidden variable inference method.

Unlike PCs, which are always uncorrelated (Section 3.5.1), PEER factors are not guar-

anteed to be uncorrelated. Here we show through the above-mentioned 3′aQTL data that

PEER factors can be highly correlated with each other (to the extent that many or all of

them are practically identical) and thus fail to capture important variance components of

the molecular phenotype data.

Given a post-imputation alternative polyadenylation phenotype matrix (each entry is

between zero and one, representing a proportion), Li et al. [2] run PEER without further

data transformation using the number of PEER factors chosen by GTEx [3] (Table 3.3).

To assess the impact of data transformation on the PEER factors, we also run PEER after
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transforming the data in three ways: (1) center and scale (to unit variance) each feature,

(2) apply inverse normal transform (INT) [18] to each feature (“INT within feature”), and

(3) apply INT to each sample (“INT within sample”). Among these methods, GTEx [3, 4]

uses “INT within feature” for its eQTL data and “INT within sample” for its sQTL data

(Table 3.3). To quantify how many “distinct” or “nonrepetitive” PEER factors there are,

given a set of PEER factors, we group them into clusters such that in each cluster, the

correlation between any two PEER factors is above a pre-defined threshold (0.99, 0.9, or

0.8) in absolute value (this is done via hierarchical clustering [54] with complete linkage

and the distance defined as one minus the absolute value of the correlation). Therefore, the

number of PEER factor clusters can be interpreted as the number of distinct or nonrepetitive

PEER factors.

Our results show that in many cases, the number of distinct PEER factors is considerably

smaller than the number of PEER factors requested (Figure 2.4), and when this issue is severe

(e.g., “No transformation” and “INT within sample”), the PEER factors fail to capture

important variance components of the molecular phenotype data (Figure 3.5). Since the

numbers of discoveries increase substantially with the numbers of PEER factors in GTEx’s

eQTL analyses [3, 4], where the PEER factors are essentially identical to PCs (Section 2.1.3),

it is possible that replacing the nearly-all-identical PEER factors with appropriate numbers

of PCs in Li et al. [2]’s 3′aQTL analysis can lead to more discoveries. This is a potential

direction for a future study.

2.1.3 PEER factors are almost identical to PCs but take three orders of mag-

nitude longer to compute in GTEx eQTL and sQTL data

We report the surprising finding that in both GTEx eQTL and sQTL data [4], the PEER

factors obtained by GTEx and used in its QTL analyses are almost identical to PCs. Specif-

ically, given a fully processed molecular phenotype matrix, there is almost always a near-

perfect one-to-one correspondence between the PEER factors and the top PCs (Figure 2.5).
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This means that after the variational Bayesian inference in PEER initializes with PCs [5], it

does not update the PCs much beyond scaling them (see Section 2.1.4 for an explanation).

Therefore, it is no surprise that replacing the PEER factors with PCs in GTEx’s FastQTL

pipeline [4, 17] does not change the QTL results much (Figures 3.6 and 3.7) because in linear

regressions (the basis of both Matrix eQTL [29] and FastQTL [17]), scaling and/or shifting

the predictors does not change the p-values of t-tests for non-intercept terms (neither does

scaling and/or shifting the response, for that matter).

However, PEER is at least three orders of magnitude slower than PCA (Figure 3.6). For

a given expression matrix, running PEER without the known covariates (GTEx’s approach)

takes up to about 32 hours, while running PCA (with centering and scaling; our approach)

takes no more than a minute.

To draw a connection between our simulation results and real data results, we analyze

them jointly in Figure 3.8 and make the following two key observations. First, we find

that in the simulation studies, PCA almost always outperforms PEER in terms of AUPRC

(confirming our results in Section 2.1.1), and the percentage of QTL discoveries shared

between PEER and PCA is a good predictor of the relative performance of PEER versus

PCA—the higher the percentage of QTL discoveries shared, the smaller the performance

gap between PEER and PCA. Second, the percentages of QTL discoveries shared between

the two methods in GTEx eQTL data [4] fall comfortably within the range of percentage

of QTL discoveries shared in Simulation Design 2. These two observations together suggest

that PCA likely outperforms PEER in GTEx eQTL data [4] even though the results largely

overlap.

2.1.4 PCA, SVA, PEER, and HCP are closely related statistical methods

We report that PCA, SVA, PEER, and HCP are closely related statistical methods despite

their apparent dissimilarities. In particular, the methodology behind SVA, PEER, and HCP

can all be traced back to PCA (Figure 2.6). We have previously reviewed these methods in
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detail in Zhou [15]. Here we aim to provide a brief summary and highlight their connections.

PCA [6–10] is traditionally derived by optimizing some objective functions (either max-

imum variance or minimum reconstruction error; Section 3.5.1), but more recently, it is

shown that PCA can be derived as a limiting case of probabilistic principal component anal-

ysis (PPCA) [11], which in turn is a special case of factor analysis [7, 12]—a dimension

reduction method commonly used in psychology and the social sciences that is based on a

frequentist probabilistic model.

PEER [1, 5] is based on a Bayesian probabilistic model and can be considered a Bayesian

version of factor analysis (with the not-very-useful ability to explicitly model the known

covariates; see Section 2.1.1 for why we do not find this ability useful). Inference is performed

using variational Bayes and initialized with the PCA solution [5]. Given that PCA underlies

the PEER model (Figure 2.6) and PEER initializes with PCs, it is not surprising that PEER

factors are almost identical to PCs in GTEx eQTL and sQTL data [4] (Section 2.1.3).

SVA [13, 14] is purely algorithmic and is not defined based on a probabilistic model or

objective function. The steps of the SVA algorithm are complicated [15], but in a nutshell,

SVA iterates between two steps: (1) reweight the features of the molecular phenotype matrix,

and (2) perform PCA on the resulting matrix (with centering but without scaling) [14].

Lastly, HCP [16] is defined by minimizing a loss function that is very similar to the

minimum-reconstruction-error loss function of PCA (Section 3.5.2). The optimization is

done through coordinate descent with one deterministic initialization (see source code of the

HCP R package [16]). In short, SVA, PEER, and HCP can all be considered extensions or

more complex versions of PCA, though we show that the complexity is a burden rather than

a benefit (Figure 2.1).
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2.1.5 PCA provides insight into the choice of K

Choosing K, the number of inferred covariates in the context of hidden variable inference

or the number of dimensions or clusters in more general contexts, is always a difficult task.

Nonetheless, based on the proportion of variance explained (PVE) by each PC (Section 3.5.1),

PCA offers convenient ways of choosing K such as the elbow method and the Buja and

Eyuboglu (BE) algorithm [55] (more details below). Since SVA is heavily based on PCA

(Section 2.1.4), it is able to adapt and make use of the BE algorithm. In contrast, PEER

and HCP do not offer easy ways of choosing K; for lack of a better method, users of PEER

and HCP often choose K by maximizing the number of discoveries [3, 4, 32, 37–39]. Not

only is this approach of choosing K extremely computationally expensive and theoretically

questionable, here we also show from the perspective of PCA that it may yield inappropriate

choices of K.

Recall from Section 2.1.3 that PEER factors are almost identical to PCs in GTEx eQTL

data [4] (the number of PEER factors is chosen by maximizing the number of discovered

cis-eGenes for each pre-defined sample size bin; Table 3.3). Therefore, for each tissue type,

we compare the number of PEER factors selected by GTEx to (1) the number of PCs chosen

via an automatic elbow detection method (Algorithm 2) and (2) the number of PCs chosen

via the BE algorithm (Algorithm 3; the default parameters are used). The BE algorithm is a

permutation-based approach for choosing K in PCA. Intuitively, it retains PCs that explain

more variance in the data than by random chance and discards those that do not. Hence,

based on the statistical interpretation of the BE algorithm and the scree plots (examples

shown in Figure 2.7), we believe that the number of PCs chosen via BE should be considered

an upper bound of the reasonable number of PCs to choose in GTEx eQTL data [4].

Our results show that the number of PEER factors selected by GTEx is almost always

greater than the number of PCs chosen via BE, which in turn is almost always greater than

the number of PCs chosen via elbow (Figure 2.7). In particular, the number of PEER factors
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selected by GTEx far exceeds the number of PCs chosen via BE for many tissue types with

sample size above 350, suggesting that the number of PEER factors selected by GTEx may

be too large. This hypothesis is further supported by the fact that we can reduce the number

of inferred covariates to between 20% and 40% of the number of PEER factors selected by

GTEx without significantly reducing the number of discovered cis-eGenes (Figure 2.7).

2.2 Methods

2.2.1 Evaluation metrics

Given a simulated data set, we evaluate each of the 15 methods in Table 2.1 mainly in three

ways (when applicable): runtime, AUPRC, and adjusted R2 measures (including adjusted

R2, reverse adjusted R2, and concordance score).

First, we record the runtime of the hidden variable inference step (Section 3.4; not ap-

plicable for Ideal and Unadjusted).

Second, we calculate the area under the precision-recall curve (AUPRC) of the QTL

result. We use AUPRC rather than the area under the receiver operating characteristic

curve (AUROC) because AUPRC is more appropriate for data sets with imbalanced classes

(there are far more negatives than positives in our simulated data sets and in QTL settings

in general). Since AUPRC measures the trade-off between the true positive rate (i.e., power)

and the false discovery rate (i.e., one minus precision), it is a more comprehensive metric

than power. However, to contrast the results in Stegle et al. [5], we also compare the powers

of the different methods in Simulation Design 1.

Third, for each simulated data set, each method except Ideal and Unadjusted gets an

adjusted R2 score (short as “adjusted R2”), a reverse adjusted R2 score (short as “reverse

adjusted R2”), and a concordance score. The adjusted R2 score summarizes how well the

true hidden covariates can be captured by the inferred covariates; the reverse adjusted R2
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score summarizes how well the inferred covariates can be captured by the true hidden co-

variates (a low score indicates that the inferred covariates are invalid or “meaningless”);

lastly, the concordance score is the average of the previous two scores and thus measures

the concordance between the true hidden covariates and the inferred covariates. Specifically,

given m true hidden covariates and n inferred covariates, first, we calculate m adjusted R2’s

(regressing each true hidden covariate against the inferred covariates) and n reverse adjusted

R2’s (regressing each inferred covariate against the true hidden covariates); then, we average

the m adjusted R2’s to obtain the adjusted R2 score and average the n reverse adjusted

R2’s to obtain the reverse adjusted R2 score; finally, we define the concordance score as the

average of the adjusted R2 score and the reverse adjusted R2 score.

2.2.2 Selection of representative methods for detailed comparison

Here we describe how we select a few representative methods from the 15 methods for

detailed comparison in Simulation Design 2 (Table 2.1). From Figures 2.2(d) and 3.3,

we see that the two PCA methods perform almost identically, so for simplicity, we select

PCA direct screeK. The two SVA methods perform almost identically as well, so we select

SVA BE. For PEER, whether the known covariates are inputted when PEER is run has

little effect on the AUPRC. Further, we observe that when we use the true K, the factor

approach outperforms the residual approach, but when we use a large K, the residual ap-

proach outperforms the factor approach. Therefore, we select PEER withCov trueK factors

and PEER withCov largeK residuals as the representative PEER methods. In addition,

Ideal, Unadjusted, and HCP trueK are selected.

2.2.3 A numerical example

Here we provide a simple numerical example of QTL analysis with hidden variable inference

by summarizing the setup of GTEx’s cis-eQTL analysis for Colon - Transverse [4].
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Let Y denote the n× p fully processed gene expression matrix with n = 368 samples and

p = 25,379 genes. Let X1 denote the n × K1 known covariate matrix with K1 = 8 known

covariates, which include the top five genotype PCs, WGS sequencing platform (HiSeq 2000

or HiSeq X), WGS library construction protocol (PCR-based or PCR-free), and donor sex.

Let Xinferred denote the n ×K inferred covariate matrix with K = 60 PEER factors, which

are obtained by running PEER on Y (Table 3.3). For gene j, j = 1, · · · , p , the relevant

genotype data is stored (conceptually speaking) in Sj , the n × qj genotype matrix, where

each column of Sj corresponds to a local common SNP for gene j, and qj is typically under

15,000.

Given these input data, the nominal pass (the first step) of FastQTL [17], or equivalently,

Matrix eQTL [29], performs a linear regression for each gene and each of its local common

SNPs. Specifically, for j = 1, · · · , p , l = 1 · · · , qj , the linear regression represented by the

following R lm() formula is run:

Y [ , j] ∼ Sj[ , l] + X1 + Xinferred

(where Y [ , j] denotes the jth column of Y , and Sj[ , l] denotes the lth column of Sj), and

the p-value for the null hypothesis that the coefficient corresponding to Sj[ , l] is zero (given

the covariates) is retained. The top five genotype PCs in X1 are included in the analysis to

correct for population stratification [3, 4] and are typically considered known covariates (see

Section 6.1).
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2.3 Tables and figures

a b

Inferred 
covariates

Residuals

Variable(s) 
of interest

Known 
covariates

K

Priors / tuning
parameters

K
PCA

SVA

HCP

PEER

PCA SVA PEER HCP

Software usability

Ease of choosing K

Interpretability

Performance

Speed

Good
Fair
Poor

Figure 2.1: Overall comparison of PCA, SVA, PEER, and HCP and summary of their inputs
and outputs. In this work, we use K to denote the number of inferred covariates, which are
called PCs, SVs, PEER factors, and HCPs in PCA, SVA, PEER, and HCP, respectively.
a PCA is faster, better-performing, and much easier to interpret and use. For speed and
performance comparison, see Section 2.1.1 (and to a lesser extent, Sections 2.1.2 and 2.1.3).
For interpretability and ease of choosing K, see Sections 2.1.4 and 2.1.5, respectively. In
terms of software usability, SVA is difficult to apply in QTL settings (Section 3.4), PEER
is difficult to install, and HCP is poorly documented. In addition, PEER suffers from
the disadvantage that there is no consensus in the literature on how it should be used
(Section 3.4). b Inputs (green boxes) and outputs (brown boxes) of the four methods. The
fully processed molecular phenotype matrix (after the effects of the known covariates are
regressed out in the case of PCA resid; Table 2.1) is a required input for all four methods
and is thus omitted in the diagram. Dashed arrows indicate optional inputs. PEER outputs
both inferred covariates and residuals of the inputted molecular phenotype matrix [1].
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Inference method Method Response, covariates Method abbr. (if selected)

(A) (B) (C) (D)

1 Ideal Y , X1 + X2 Ideal

2 Unadjusted Y , X1 Unadjusted

3 PCA direct PCA direct screeK Y , X1 (filtered) + top PCs PCA

4 PCA resid PCA resid screeK Y , X1 + top PCs

5 SVA trueK SVA trueK Y , X1 + SVs

6 SVA BE SVA BE Y , X1 + SVs SVA

7
PEER noCov trueK

PEER noCov trueK factors Y , X1 (filtered) + PEER factors

8 PEER noCov trueK residuals Yresid, NULL

9
PEER noCov largeK

PEER noCov largeK factors Y , X1 (filtered) + PEER factors

10 PEER noCov largeK residuals Yresid, NULL

11
PEER withCov trueK

PEER withCov trueK factors Y , X1 + PEER factors PEER, true K, factors

12 PEER withCov trueK residuals Yresid, NULL

13
PEER withCov largeK

PEER withCov largeK factors Y , X1 + PEER factors

14 PEER withCov largeK residuals Yresid, NULL PEER, large K, residuals

15 HCP trueK HCP trueK Y , X1 + HCPs HCP

Table 2.1: Summary of the 15 methods we compare based on simulation studies, including
Ideal, Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Section 3.4). Out of the
15 methods, we select a few representative methods (Section 2.2.2) for detailed comparison
in Simulation Design 2, the abbreviations of which are shown in (D). Y denotes the gene
expression matrix, Yresid denotes the residual matrix outputted by PEER, X1 denotes the
known covariate matrix, and X2 denotes the hidden covariate matrix. In Line 3, PCA is
run on Y directly; in Line 4, PCA is run after the effects of X1 are regressed out from Y
(Section 3.4). The addition signs in (C) denote column concatenation. “filtered” means
that we filter out the known covariates that are captured well by the inferred covariates
(unadjusted R2 ≥ 0.9); this filtering is only needed when the hidden variable inference
method in (A) does not explicitly take the known covariates into account.
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Figure 2.2: Runtime and AUPRC comparison of all 15 methods (Table 2.1) in Simulation
Design 1 and Simulation Design 2. a, c PCA and HCP each takes within a few seconds, SVA
takes up to a few minutes, and PEER takes up to about 1,000 minutes, equivalent to about 17
hours. In particular, PEER takes longer to run whenK is larger (dark orange vs. light orange
boxes). b, d PCA outperforms SVA, PEER, and HCP in terms of AUPRC. The height of
each bar represents the average across simulated data sets. For ease of visualization, in d,
the y-axis displays (AUPRC− AUPRCUnadjusted) /AUPRCUnadjusted. In this work, error bars
indicate standard errors unless otherwise specified (whiskers in box plots are not considered
error bars).
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Figure 2.3: Detailed runtime and AUPRC comparison of the selected representative methods
(Table 2.1) in Simulation Design 2. Each point represents the average across simulated
data sets. The x-axes are: number of effect SNPs per gene (numOfEffectSNPs), number of
simulated covariates (numOfCovariates; including known and hidden covariates), proportion
of variance explained by genotype (PVEGenotype), and proportion of variance explained by
covariates (PVECovariates) (Section 3.3). a PCA and HCP are orders of magnitude faster
than SVA, which in turn is orders of magnitude faster than PEER. b PCA outperforms
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of visualization, the y-axis displays (AUPRC− AUPRCIdeal) /AUPRCIdeal. Consistent with
our expectation, the performance gap between Unadjusted and Ideal is the largest (and thus
accounting for hidden covariates is the most important) when numOfCovariates is small,
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Figure 2.4: In the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3],
PEER factors can be highly correlated with each other to the extent that many or all of them
are practically identical. a Correlation heatmaps of PEER factors for Brain Hippocampus.
For ease of visualization, the PEER factors are reordered based on results from hierarchical
clustering (Section 2.1.2) in each heatmap. b The x-axis shows 12 randomly selected tissue
types with increasing sample sizes. The y-axis shows the number of PEER factors requested
(orange line) or the number of PEER factor clusters. Given a set of PEER factors, we
group them into clusters such that in each cluster, the correlation between any two PEER
factors is above 0.99, 0.9, or 0.8 in absolute value (Section 2.1.2). Therefore, the number of
PEER factor clusters can be interpreted as the number of distinct or nonrepetitive PEER
factors. We find that in many cases, the number of distinct PEER factors is considerably
smaller than the number of PEER factors requested, and when this issue is severe (e.g.,
“No transformation” and “INT within sample”), the PEER factors fail to capture important
variance components of the molecular phenotype data (Figure 3.5).
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Figure 2.5: PEER factors are almost identical to PCs in GTEx eQTL and sQTL data [4].
a The y-axis shows all 49 tissue types with GTEx QTL analyses ordered by sample size
(from small to large). Given a fully processed molecular phenotype matrix, we summarize
the correlation matrix (in absolute value) between the PEER factors obtained and used by
GTEx and the top PCs into two numbers: the average of the diagonal entries and the average
of the off-diagonal entries. With the exception of Kidney - Cortex sQTL data, the diagonal
entries have averages close to one, and the off-diagonal entries have averages close to zero
(both have minimal standard errors). b A typical correlation heatmap showing near-perfect
one-to-one correspondence between the PEER factors and the top PCs. c In Kidney -
Cortex sQTL data, the PEER factors and the top PCs do not have a perfect one-to-one
correspondence. The reason is because the PEER factors are highly correlated with each
other (d), while PCs are always uncorrelated (Section 3.5.1). The numbers in parentheses
represent sample sizes. To produce this figure, we reorder the PEER factors based on the
PCs (Algorithm 1), although in almost all cases, this reordering does not change the original
ordering of the PEER factors because PEER initializes with PCs [5].
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Figure 2.6: PCA, SVA, PEER, and HCP are closely related statistical methods despite their
apparent dissimilarities. In particular, the methodology behind SVA, PEER, and HCP can
all be traced back to PCA. PCA [6–10] is traditionally derived by optimizing some objective
functions (either maximum variance or minimum reconstruction error; Section 3.5.1), but
more recently, it is shown that PCA can be derived as a limiting case of probabilistic principal
component analysis (PPCA) [11], which in turn is a special case of factor analysis [7, 12].
PEER [1, 5] is based on a Bayesian probabilistic model and can be considered a Bayesian
version of factor analysis. SVA [13, 14] is purely algorithmic and is not defined based on a
probabilistic model or objective function. The steps of the SVA algorithm are complicated
[15], but in a nutshell, SVA iterates between two steps: (1) reweight the features of the
molecular phenotype matrix, and (2) perform PCA on the resulting matrix (with centering
but without scaling) [14]. Lastly, HCP [16] is defined by minimizing a loss function that is
very similar to the minimum-reconstruction-error loss function of PCA (Section 3.5.2).
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Figure 2.7: PCA provides insight into the choice of K. Recall from Section 2.1.3 that PEER
factors are almost identical to PCs in GTEx eQTL data [4]. Therefore, for each tissue type,
we compare the number of PEER factors selected by GTEx to (1) the number of PCs chosen
via an automatic elbow detection method (Algorithm 2) and (2) the number of PCs chosen
via the BE algorithm (Algorithm 3; the default parameters are used). a Example scree
plots. b This scatter plot contains 49 dots of each color, corresponding to the 49 tissue types
with GTEx eQTL analyses. The number of PEER factors selected by GTEx far exceeds
the number of PCs chosen via BE for many tissue types with sample size above 350 (dashed
line), suggesting that the number of PEER factors selected by GTEx may be too large. c
For the eight tissue types with the largest absolute differences between the number of PEER
factors chosen by GTEx and the number of PCs chosen via BE (all eight tissue types have
sample size above 350), we replace the PEER factors with smaller numbers of PCs in GTEx’s
FastQTL pipeline [4, 17] and find that we can reduce the number of inferred covariates to
between 20% (12/60 = 20%, Colon - Transverse) and 40% (22/60 ≈ 36.67%, Esophagus -
Mucosa) of the number of PEER factors selected by GTEx without significantly reducing
the number of discovered cis-eGenes.
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2.4 Availability of data and materials

The R package PCAForQTL and a tutorial on using PCA for hidden variable inference in

QTL mapping are available at https://github.com/heatherjzhou/PCAForQTL [56]. The

code used to generate the results in this work is available at https://doi.org/10.5281/

zenodo.6788888 [57]. In addition, this work makes use of the following data and software:

• GTEx V8 public data [4], including fully processed gene expression matrices, fully

processed alternative splicing phenotype matrices, known covariates, PEER factors,

and QTL results, are downloaded from https://gtexportal.org/home/datasets.

• GTEx V8 protected data [4], specifically, the whole genome sequencing (WGS) phased

genotype data, are downloaded from the AnVIL repository with an approved dbGaP

application (see https://gtexportal.org/home/protectedDataAccess).

• 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3] are available from

the authors by request.

• SVA R package Version 3.40.0 (https://bioconductor.org/packages/sva/, accessed

on October 15, 2021).

• PEER R package Version 1.3 (https://bioconda.github.io/recipes/r-peer/README.

html, accessed before October 15, 2021).

• HCP R package Version 1.6 (https://rdrr.io/github/mvaniterson/Rhcpp/, ac-

cessed on October 15, 2021).

• FastQTL (https://github.com/francois-a/fastqtl, accessed before October 15,

2021).
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CHAPTER 3

Supplementary materials for PCA outperforms

popular hidden variable inference methods for

molecular QTL mapping

3.1 Limitations of the original PEER simulation study

The simulation study in the original PEER publication [5] is limited. We categorize its

limitations into three categories: (1) data analysis limitations, (2) overall design limitations,

and (3) data simulation limitations.

The data analysis limitations include:

(a) The study only compares PEER against the other methods in terms of power, not in

terms of false positive rate or false discovery rate (see Section 2.2.1 for our evaluation

metrics).

(b) The study does not use PCA or SVA properly (we do; Section 3.4).

(c) The study does not evaluate the different ways of using PEER (we do; Section 3.4).

(d) The study uses ad hoc priors for PEER that are different from the default priors (we

use the default priors; Section 3.4).

The overall design limitations include:

(a) The study only simulates one replicate of one experiment. That is, the entire simula-

tion study is based on one simulated data set (we simulate 10 replicates in our first

simulation study; Section 3.2).

25



The data simulation limitations include (see Table 3.1 for our solutions):

(a) The data dimensions are minimal, with q = 100 SNPs in the entire genome.

(b) The SNP genotypes are simulated independently and identically with a target minor

allele frequency (MAF) of 0.4, so there is no linkage disequilibrium (LD) and a higher

average MAF than in real data (the average MAF in GTEx data [4], after SNPs with

MAF under 0.01 are filtered out, is about 0.15; Section 3.3.1).

(c) The gene expression levels are primarily driven by trans-regulatory effects rather than

cis-regulatory effects or covariate effects (Table 3.2), inconsistent with the common

belief that trans-regulatory effects are generally weaker than cis-regulatory effects.

In addition, the simulation study in the original PEER publication [5] is imperfect in

that the description of the data simulation and analysis is vague and inconsistent, and there

is no reproducible code. In contrast, we describe our data simulation and analysis in detail

(Sections 3.2 to 3.4) and provide the code we use to generate the results (see Availability of

data and materials).

3.2 Simulation Design 1

3.2.1 Data simulation

In Simulation Design 1, we perform 10 replicates of the same experiment, where in each

replicate, we follow the data simulation in Stegle et al. [5] as closely as possible.

In each replicate, we simulate a data set with n = 80 individuals, p = 400 genes, q = 100

SNPs in the entire genome, K1 = 3 known covariates, and K2 = 7 hidden covariates. Let

i, j, l, and k be the indices of individuals, genes, SNPs, and covariates, respectively. That

is, i = 1, · · · , n; j = 1, · · · , p; l = 1, · · · , q; and k = 1, · · · , (K1 +K2). The data simulation

consists of three steps.

In the first step, we simulate YbeforeDSE, the gene expression matrix before downstream
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effect, based on

YbeforeDSE

n×p

= S
n×q

(
I1
q×p

⊙ B1

q×p

)
+ X

n×(K1+K2)

B2

(K1+K2)×p

+ E
n×p

, (3.2.1)

where ⊙ denotes element-wise multiplication. Specifically, in the genotype component,

we have

• S: genotype matrix. Each entry is drawn independently from Binom (2, prob = 0.4).

That is, the target MAF is 0.4. In this work, all random sampling is independent

unless otherwise specified.

• I1: effect indicator matrix. Each entry is drawn from Ber (0.01).

• B1: effect size matrix. Each entry is drawn from N (0, var = 4).

In the covariate component, we have

• X: covariate matrix. Each entry is drawn from N (0, var = 0.6). The first K1 columns

are designated as the known covariates (X1 , n × K1), and the last K2 columns are

designated as the hidden covariates (X2 , n×K2).

• B2: effect size matrix. First, we draw σ2
k ∼ 0.8 (Γ (shape = 2.5, rate = 0.6))2, the

covariate-specific effect size variance. Then, we draw (B2)kj ∼ N (0, var = σ2
k).

Lastly, in the noise component, we have

• E: noise matrix. First, we draw τj ∼ Γ (shape = 3, rate = 1), the gene-specific noise

precision. Then, we draw (E)ij ∼ N (0, var = 1/τj).

In the second step, we simulate YDSE, the gene expression matrix due to the downstream

effect of genes, based on

YDSE

n×p

= YbeforeDSE

n×p

(
I3
p×p

⊙ B3

p×p

)
, (3.2.2)

where we have
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• I3: effect indicator matrix. To simulate I3, we start with a zero matrix. Then, we

randomly choose three rows corresponding to genes with at least one cis-QTL (Sec-

tion 3.2.2). For each of these three rows, we randomly assign 30 entries corresponding

to genes other than the current gene in consideration (avoiding self-loops) to be one.

• B3: effect size matrix. Each entry is drawn from N (8, var = 0.8) for “strong down-

stream effects” [5].

As we see in Section 3.2.2, the downstream effect of genes induces trans-QTL relations.

In the third and last step, we define Y , the final, observed gene expression matrix, as

Y
n×p

= YbeforeDSE

n×p

+ YDSE

n×p

. (3.2.3)

3.2.2 Definition of truth

In a simulated data set, the cis-QTL relations are encoded in the q × p binary matrix I1.

The lj-th entry being one means that SNP l and gene j form a cis-QTL pair (i.e., SNP l is

a cis-QTL for gene j).

The trans-QTL relations are encoded in J , also a q× p binary matrix. J is defined based

on I1 and I3. Specifically, SNP l and gene j form a trans-QTL pair if and only if SNP l is a

cis-QTL for gene j′ and gene j′ has downstream effect on gene j, j′ ̸= j.

The overall truth is encoded in 1
(
(I1 + J) ≥ 1

)
, again a q × p binary matrix. We use

this matrix as the truth when calculating AUPRCs. The lj-th entry being one means that

SNP l and gene j form a cis-QTL or trans-QTL pair (or both).
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Simulation Design 1 Simulation Design 2

Data simulation Follows Stegle et al. [5] Loosely based on Wang et al. [20]

# of experiments 1 176

# of replicates per experiment 10 2

# of simulated data sets 10 352

Genotype data Simulated (no LD, high MAF) Real genotype data from GTEx [4]

Cis-QTL relations present ✓ ✓

Trans-QTL relations present ✓ ✗

Source(s) of expression variation Primarily trans-regulatory effects Carefully controlled genotype effects and covariate effects

# of individuals n = 80 n = 838

# of genes p = 400 p = 1,000

# of SNPs q = 100 SNPs in the entire genome q = 1,000 local common SNPs per gene

# of known covariates K1 = 3 K1 = 2, 3, 5, or 8 depending on the experiment

# of hidden covariates K2 = 7 K2 = 3, 7, 15, or 22 depending on the experiment

Table 3.1: Summary of the main differences between Simulation Design 1 and Simulation
Design 2. Highlighted in blue are the major data simulation limitations (Section 3.1) of
Simulation Design 1, all of which we address in Simulation Design 2.

Replicate Var (YbeforeDSE) Var (YDSE) Var (Y ) Var (YbeforeDSE) /Var (Y ) Var (YDSE) /Var (Y )

1 124.34 1757.07 1889.57 6.58% 92.99%

2 140.92 1505.17 1677.64 8.40% 89.72%

3 213.56 929.96 1169.18 18.27% 79.54%

4 71.85 761.01 855.39 8.40% 88.97%

5 123.07 2434.45 2574.51 4.78% 94.56%

6 74.94 1029.29 1092.65 6.86% 94.20%

7 148.61 2490.72 2628.93 5.65% 94.74%

8 79.36 796.55 868.05 9.14% 91.76%

9 54.62 1340.10 1390.72 3.93% 96.36%

10 65.64 831.89 895.90 7.33% 92.86%

Average 7.93% 91.57%

Table 3.2: In Simulation Design 1, which follows the data simulation in Stegle et al. [5]
as closely as possible, the gene expression levels are primarily driven by trans-regulatory
effects rather than cis-regulatory effects or covariate effects. Var (YbeforeDSE) is defined as the
variance of the n × p entries of YbeforeDSE, and the other variances in the table are defined
similarly. We find that Var (YDSE) /Var (Y ) is above 90% on average.
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Figure 3.1: Comparison of all 15 methods (Table 2.1) in terms of power and adjusted R2

measures in Simulation Design 1 (the height of each bar represents the average across simu-
lated data sets) and an example scree plot. a, b PCA is more powerful than SVA, PEER,
and HCP both when we consider all QTL relations (a) and when we focus on trans-QTL
relations (b). Binary decisions are made based on p-values using the Benjamini-Hochberg
(BH) procedure and a target false discovery rate of 0.05. c, d, e PCA performs the best
in terms of concordance score. PEER with a large K (dark orange bars) performs well in
terms of adjusted R2 but less well in terms of reverse adjusted R2. f An example scree plot
that unambiguously suggests the true number of hidden covariates, seven in this case, as
the reasonable number of PCs to choose (the y-axis represents the proportion of variance
explained).
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3.3 Simulation Design 2

3.3.1 Data simulation

In Simulation Design 2, we use real genotype data from GTEx [4], focus on cis-QTL detection,

and carefully control the genotype effects and covariate effects in 176 experiments with two

replicates per experiment. This simulation design takes inspiration from and is loosely based

on Wang et al. [20].

In each experiment-replicate combination, we simulate a data set with n = 838 individu-

als, p = 1,000 genes, q = 1,000 local common SNPs per gene, K1 known covariates, and K2

hidden covariates (the values of K1 and K2 depend on the experiment; see below). Again, let

i, j, l, and k be the indices of individuals, genes, SNPs, and covariates, respectively. That

is, i = 1, · · · , n; j = 1, · · · , p; l = 1, · · · , q; and k = 1, · · · , (K1 +K2).

We begin by obtaining SArray, the n × q × p genotype array that remains constant

throughout Simulation Design 2. SArray[ , , j], an n× q matrix, is the genotype matrix for

the q local common SNPs for gene j. We obtain SArray with the following steps:

(a) Download the whole genome sequencing (WGS) phased genotype data for n = 838

individuals from GTEx V8 [4].

(b) Randomly select p = 1,000 genes from the more than 20,000 genes on Chromosomes 1

to 22.

(c) For each gene, obtain the genotype data for the q = 1,000 SNPs with MAF≥ 0.01 that

are the closest to the gene’s transcription start site (TSS); we find that these SNPs are

almost always within 1 Mb of the TSS. The average MAF of SArray, calculated as

SArray/2, the average of all entries of SArray divided by 2, is 0.1474385 ≈ 0.15.

Each experiment is characterized by four attributes:

(a) Number of effect SNPs per gene (numOfEffectSNPs): 1 or random.

(b) Number of covariates (numOfCovariates): 5, 10, 20, or 30.
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• Number of known covariates (K1): 2, 3, 5, 8, respectively.

• Number of hidden covariates (K2): 3, 7, 15, 22, respectively.

(c) Proportion of variance explained by genotype (PVEGenotype): 0.05, 0.1, 0.2, or 0.3.

(d) Proportion of variance explained by covariates (PVECovariates): minimum 0.3, maxi-

mum 1−0.05−PVEGenotype, in increments of 0.1. For example, when PVEGenotype =

0.05, PVECovariates takes seven possible values: 0.3, 0.4, 0.5, · · · , 0.9.

Therefore, we have a total of 2×4× (7 + 6 + 5 + 4) = 8×22 = 176 experiments covering

typical scenarios in QTL studies [20]. Following Wang et al. [20], we use the term “effect

SNPs” to refer to SNPs that have a nonzero cis effect on a given gene.

Given numOfEffectSNPs, numOfCovariates, PVEGenotype, and PVECovariates, we sim-

ulate each data set based on

Y
n×p

= SArray
n×q×p

⊗

(
I

q×p

⊙ B1

q×p

)
+ X

n×(K1+K2)

B2

(K1+K2)×p

+ E
n×p

, (3.3.1)

where Y is the gene expression matrix, and ⊗ is defined as

C
n×p

= A
n×q×p

⊗ B
q×p

⇔ C[ , j]
n×1

= A[ , , j]
n×q

×B[ , j]
q×1

, j = 1, · · · , p . (3.3.2)

Specifically, in the genotype component, we have

• SArray: genotype array. SArray[ , , j], an n × q matrix, is the genotype matrix for

the q local common SNPs for gene j (see above).

• I: effect indicator matrix.

– If numOfEffectSNPs = 1, then for each column, we randomly assign one entry to

be one while keeping the other entries zero.

– If numOfEffectSNPs = random, then each entry of I is drawn fromBer (1/q). This

means that for each gene, the number of effect SNPs is drawn fromBinom (q, prob = 1/q).

This binomial distribution approximates the empirical distribution of the number
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of independent cis-eQTLs per gene in GTEx data [4] well (Figure 3.2).

• B1: effect size matrix. Each entry is drawn from N (0, 1).

In the covariate component, we have

• X: covariate matrix. Each entry is drawn from N (0, 1). As in Simulation Design 1,

the first K1 columns are designated as the known covariates (X1 , n × K1), and the

last K2 columns are designated as the hidden covariates (X2 , n×K2).

• B2: effect size matrix. Each entry is drawn from N (0, 1) and scaled (see below).

Lastly, in the noise component, we have

• E: noise matrix. Each entry is drawn from N (0, 1) and scaled (see below).

Alternatively, (3.3.1) can be written as

(Y )j
n×1

= Sj

n×q

(IB1)j
q×1

+ X
n×(K1+K2)

(B2)j
(K1+K2)×1

+ (E)j
n×1

, j = 1, · · · , p , (3.3.3)

where (Y )j , (IB1)j , (B2)j , and (E)j denote the jth column of Y , I ⊙B1 , B2 , and E,

respectively, and Sj denotes SArray[ , , j].

The scaling for B2 and E is to ensure that PVEGenotype and PVECovariates are as

desired. Specifically, for gene j, if Var (Sj (IB1)j) ̸= 0, then we scale (B2)j so that

Var (X (B2)j)

Var (Sj (IB1)j)
=

PVECovariates

PVEGenotype
(3.3.4)

and separately scale (E)j so that

Var ((E)j)

Var (Sj (IB1)j)
=

1− PVEGenotype− PVECovariates

PVEGenotype
. (3.3.5)

If Var (Sj (IB1)j) = 0 (which is the case when (IB1)j is a zero vector, i.e., when gene j

has zero effect SNPs), then we only scale (E)j so that
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Var ((E)j)

Var (X (B2)j)
=

1− PVECovariates

PVECovariates
. (3.3.6)

3.3.2 Definition of truth

In a simulated data set, I is a q × p binary matrix. The lj-th entry being one means that

the lth local common SNP for gene j is an effect SNP for gene j. However, due to LD, the

expression level of a gene may be strongly associated with SNPs other than its effect SNPs.

Therefore, we define Icor, also a q × p binary matrix, based on SArray and I and use it

as the truth when calculating AUPRCs. The lj-th entry of Icor is defined as one if and only

if the lth local common SNP for gene j is highly correlated with any of gene j’s effect SNPs

(correlation ≥ 0.9 in absolute value).
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and plot them in the blue bars. The green bars represent the probability mass function of
Binom (1000, prob = 1/1000) (with the tail probabilities combined together).

35



0.00

0.00
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
direct

re
si

d

PCA_*_screeK
a

0.00

0.00
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
trueK

B
E

SVA_*

0.01

0.03
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
noCov

w
ith

C
ov

PEER_*_trueK_factors
b

0.01

0.01
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
noCov

w
ith

C
ov

PEER_*_trueK_residuals

0.00

0.000.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
noCov

w
ith

C
ov

PEER_*_largeK_factors

0.00

0.00
0.6

0.7

0.8

0.9

0.6 0.7 0.8 0.9
noCov

w
ith

C
ov

PEER_*_largeK_residuals

0.00

0.15
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
factors

re
si

du
al

s

PEER_noCov_trueK_*
c

0.45

0.02
0.6

0.7

0.8

0.9

0.6 0.7 0.8 0.9 1.0
factors

re
si

du
al

s

PEER_noCov_largeK_*

0.00

0.10
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
factors

re
si

du
al

s

PEER_withCov_trueK_*

0.51

0.00
0.6

0.7

0.8

0.9

0.6 0.7 0.8 0.9 1.0
factors

re
si

du
al

s

PEER_withCov_largeK_*

0.01

0.51
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
PCA

S
V

A

d

0.00

0.11
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
PCA

P
E

E
R

,t
ru

e
K

,f
ac

to
rs

0.00

0.88
0.6

0.7

0.8

0.9

0.6 0.7 0.8 0.9 1.0
PCAP

E
E

R
,l

ar
ge

K
,r

es
id

ua
ls

0.00

0.29
0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
PCA

H
C

P

Figure 3.3: This figure shows how we select a few representative methods from the 15
methods for detailed comparison in Simulation Design 2 (a, b, c) and a dataset-by-dataset
comparison of the selected representative methods (d). The x-axis and y-axis both represent
AUPRCs of different methods. Each scatter plot contains 352 points, each of which corre-
sponds to a simulated data set in Simulation Design 2. The number on the upper-left corner
of each scatter plot represents the proportion of points that satisfy y > 1.02 x, and the
number on the lower-right corner represents the proportion of points that satisfy x > 1.02 y,
where x and y denote the coordinates of each point. a The two PCA methods perform almost
identically, so for simplicity, we select PCA direct screeK. The two SVA methods perform al-
most identically as well, so we select SVA BE. b Whether the known covariates are inputted
when PEER is run has little effect on the AUPRC. c When we use the true K, the factor
approach outperforms the residual approach, but when we use a large K, the residual ap-
proach outperforms the factor approach. Therefore, we select PEER withCov trueK factors
and PEER withCov largeK residuals as the representative PEER methods. d Among the se-
lected representative methods, PCA outperforms SVA, PEER, and HCP in terms of AUPRC
in 11% to 88% of the simulated data sets and underperforms them in close to 0% of the sim-
ulated data sets.
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Figure 3.4: Detailed adjusted R2, reverse adjusted R2, and concordance score comparison of
the selected representative methods (Table 2.1) in Simulation Design 2. Each point represents
the average across simulated data sets. PCA performs the best in all three regards. PEER
with a large K (dark orange line) performs well in terms of adjusted R2 but falls short in
terms of reverse adjusted R2.

3.4 Compared methods

We compare the runtime and performance of 15 methods based on simulation studies, in-

cluding Ideal, Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Table 2.1). The

details of Simulation Design 1 and Simulation Design 2 are described in Sections 3.2 and

3.3, respectively. Recall that in each simulated data set, Y denotes the gene expression

matrix (n × p , sample by gene), X1 denotes the known covariate matrix (n × K1 , sample

by covariate), and X2 denotes the hidden covariate matrix (n ×K2 , sample by covariate).

The genotype information is stored in S in Simulation Design 1 and SArray in Simulation
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Design 2. In this work, we use K to denote the number of inferred covariates, which are

called PCs, SVs, PEER factors, and HCPs in PCA, SVA, PEER, and HCP, respectively.

Given a simulated data set, each of the 15 methods consists of two steps: hidden variable

inference step (not applicable for Ideal and Unadjusted) and QTL step. In the hidden

variable inference step, we run PCA, SVA, PEER, or HCP to obtain the inferred covariates

(and the expression residuals in the case of PEER; Figure 2.1). In the QTL step, given a

gene-SNP pair, we run a linear regression with the gene expression vector (or the residual

vector from PEER) as the response and the genotype vector and covariates as predictors,

where the choice of the response and covariates depends on the method (Table 2.1); thus we

obtain the p-value for the null hypothesis that the coefficient corresponding to the genotype

vector is zero given the covariates. In Simulation Design 1, we investigate the association

between each gene’s expression level and each SNP in the entire genome for a simultaneous

detection of cis-QTL and trans-QTL relations. In Simulation Design 2, we investigate the

association between each gene’s expression level and each of the gene’s local common SNPs

for a cis-QTL analysis.

For Ideal, we assume that X2 is known. Therefore, we use X1 and X2 as covariates in

the QTL step. For Unadjusted, we use X1 as the covariates.

We devise two ways to use PCA to account for the hidden covariates. For PCA direct screeK,

we run PCA on Y directly. For PCA resid screeK, we first residualize Y against X1 and then

run PCA on the residual matrix. In this work, PCA is run with centering and scaling unless

otherwise specified; given A, an n × p1 matrix, and B, an n × p2 matrix, both observation

by feature, to residualize A against B means to take each column of A, regress it against

B, and replace the original column of A with the residuals from the linear regression. For

both methods, since the scree plots always suggest the true “number of hidden covariates”

(K1 + K2 for PCA direct screeK, K2 for PCA resid screeK) as the reasonable number of

PCs to choose within plus or minus one (usually exactly; Figure 3.1), we set the number

of PCs to be the true “number of hidden covariates”. For PCA direct screeK, we filter out
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the known covariates that are captured well by the top PCs (unadjusted R2 ≥ 0.9) and use

the remaining known covariates along with the top PCs as covariates in the QTL step. For

PCA resid screeK, no filtering is needed.

Here we describe the two hidden variable inference methods for SVA: SVA trueK and

SVA BE. Since the SVA package [44] requires the user to input at least one variable of

interest (Figure 2.1) and using too many variables of interest causes the package to fail,

when running SVA, we input the top PC of the genotype matrix (S in Simulation Design 1,

collapsed version of SArray in Simulation Design 2) as the variable of interest. We also input

X1 as the known covariates because the package documentation indicates that the known

covariates should be provided if available. The SVA package allows the user to specify K.

Alternatively, it can automatically choose K using a slightly modified version of the Buja

and Eyuboglu (BE) algorithm [15, 55]. Therefore, in SVA trueK, we set K = K2, and in

SVA BE, we let the package choose K automatically. In both cases, we use X1 and the

surrogate variables (SVs) as covariates in the QTL step.

There are several different ways to use PEER [1] but no consensus in the literature on

which one is the best. In the hidden variable inference step, PEER can be run with or without

the known covariates when there are known covariates available (Stegle et al. [1] do not give

an explicit recommendation as to which approach should be used, and both approaches are

used in practice [2–4, 32]), and K has to be specified by the user (Stegle et al. [1, 5] claim

that the performance of PEER does not deteriorate as K increases). In the QTL step, one

can include the PEER factors as covariates (we call this the “factor approach”) or use the

expression residuals outputted by PEER as the response (and not use any known or inferred

covariates; we call this the “residual approach”). For completeness, we compare 23 = 8 ways

of using PEER (the default priors are always used): PEER is run with or without the known

covariates; PEER is run using the true “number of hidden covariates” (K1+K2 when PEER

is run without the known covariates, K2 when PEER is run with the known covariates) or

using a large K (K=50); and either the factor approach or the residual approach is used in
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the QTL step.

The HCP package requires the user to specify K and three tuning parameters: λ1, λ2,

and λ3 (Section 3.5.2). The package documentation suggests choosing K and the tuning

parameters via a grid search. However, no specific recommendations are given regarding

the choice of the score function. In practice, users of HCP often choose K and the tuning

parameters by maximizing the number of discoveries [38, 39]. For our simulation studies,

such an approach would be computationally prohibitive. Therefore, for simplicity, we set

K = K2 and λ1 = λ2 = λ3 = 1; the latter is because we do not want to give more weight to

the penalty terms than the main term in the objective function (Section 3.5.2).

Reference

GTEx

data

ver-

sion

QTL analysis Data transformation

Known

covari-

ates

inputted

# of PEER factors

Factor or

residual

approach

(A) (B) (C) (D) (E) (F) (G)

GTEx Consortium [3] V6p eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

GTEx Consortium [4] V8

eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

sQTL (cis and trans) INT within sample No 15 Factor

Li et al. [2] V7 3′aQTL (cis) No transformation Yes Follows GTEx [3] Factor

Table 3.3: Summary of QTL analyses performed by GTEx [3, 4] and Li et al. [2]. “INT” in
(D) stands for “inverse normal transform” [18]. (E), (F), and (G) summarize how PEER is
used (Section 3.4) in each study. GTEx [3, 4] chooses the number of PEER factors for its
eQTL analyses (including cis and trans) by maximizing the number of discovered cis-eGenes
for each pre-defined sample size bin. The number of PEER factors selected is 15 for n < 150,
30 for n ∈ [150, 250), and 35 for n ≥ 250 for GTEx V6p eQTL analyses [3] and 15 for n < 150,
30 for n ∈ [150, 250), 45 for n ∈ [250, 350), and 60 for n ≥ 350 for GTEx V8 eQTL analyses
[4], where n denotes the sample size. Li et al. [2] use the numbers of PEER factors chosen
by GTEx [3].
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Figure 3.5: In the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3],
PEER factors fail to capture important variance components of the molecular phenotype
data when the data transformation method is “No transformation” or “INT within sample”
(a; the numbers of PCs are chosen via BE (Algorithm 3)). On the other hand, PEER factors
span roughly the same linear subspace as the top PCs when the data transformation method
is “Center and scale” or “INT within feature”, but the top PCs can almost always capture
the PEER factors better than the PEER factors can capture the top PCs (b; the numbers
of PCs are equal to the numbers of PEER factors). Given m PEER factors and n PCs from
the same post-transformation molecular phenotype matrix (m ≥ n in a, m = n in b), we
calculate m adjusted R2’s by regressing each PEER factor against the PCs and plot the
average in blue. Similarly, we calculate n adjusted R2’s by regressing each PC against the
PEER factors and plot the average in orange.

Algorithm 1: Reordering of PEER factors based on PCs (Figure 2.5).

Inputs:
• K PEER factors.
• K PCs.

Output: K PEER factors (reordered).

1 for k ← 1 to K do
2 Select the PEER factor that is the most highly correlated with the kth PC from

the PEER factors that have not been selected yet.
3 end
4 return the PEER factors in the order that they were selected in.
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Figure 3.6: In GTEx eQTL data [4], PEER is at least three orders of magnitude slower
than PCA (a), and replacing the PEER factors with PCs in GTEx’s FastQTL pipeline
[4, 17] does not change the cis-eQTL results much (b, c, d). The x-axis shows 10 randomly
selected tissue types with increasing sample sizes. a For a given gene expression matrix,
running PEER without the known covariates (GTEx’s approach) takes up to about 1,900
minutes (equivalent to about 32 hours; Whole Blood), while running PCA (with centering
and scaling; our approach) takes no more than a minute. For comparison, we also run
PEER with the known covariates using the numbers of PEER factors selected by GTEx.
This approach takes even longer (up to about 4,600 minutes, equivalent to about 77 hours;
Esophagus - Mucosa). b The p-values produced by GTEx’s approach and our approach are
highly correlated (correlations between the negative common logarithms are shown). c, d
The overlap of the identified eGenes and eQTL pairs between the two approaches is generally
around 90% (see Figure 3.7 for more detail).
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Figure 3.7: Following the analysis in Figure 3.6, we find that the eGenes uniquely identified by
PCs or PEER factors have marginal p-values compared to those identified by both methods.
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Figure 3.8: Joint analysis of results from Simulation Design 1, Simulation Design 2, and
GTEx eQTL data [4]. The x-axes of a, c, and e show the concordance between PEER
factors and top PCs (defined analogously as the concordance score; Section 2.2.1). The
x-axes of b, d, and f show the percentage of QTL discoveries shared between PEER and
PCA (in b and d, for each method, binary decisions are made based on p-values using
the Benjamini-Hochberg (BH) procedure and a target false discovery rate of 0.05). In a
through d, the y-axes show (AUPRCPEER − AUPRCPCA) /AUPRCPCA, the blue lines are
the simple linear regression lines, and the Pearson correlation coefficients are shown on the
bottom right. a and b each contains 10 data points, corresponding to the 10 simulated data
sets in Simulation Design 1. c and d each contains 352 data points, corresponding to the
352 simulated data sets in Simulation Design 2. The methods compared in a through d
are PCA direct screeK and PEER noCov trueK factors. e presents similar information as
Figure 2.5; the total count is 49, which is the number of tissue types with GTEx eQTL
analyses. f is based on Figure 3.6(d); the total count is 10, which is the number of tissue
types randomly selected for analysis in Figure 3.6. We find that the percentage of QTL
discoveries shared is a good predictor of the relative performance of PEER versus PCA and
is a better predictor than concordance. This plot is also evidence that Simulation Design 2 is
more realistic than Simulation Design 1 because the ranges that concordance and percentage
of QTL discoveries shared fall in in e and f agree better with those in c and d than those in
a and b.
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3.5 Theory of PCA and HCP

3.5.1 Principal component analysis (PCA)

Principal component analysis (PCA) [6, 7] is a well-established dimension reduction method

with many applications. Here we aim to provide a brief summary of its algorithm, derivation,

and interpretation.

Let X denote the n × p observed data matrix that is observation by feature, e.g., a

molecular phenotype matrix. We use X instead of Y here to be consistent with standard

PCA notations. We assume that the columns of X have been centered and scaled. That is,

X satisfies

1

n

n∑
i=1

xij = 0 , j = 1, · · · , p (3.5.1)

and

1

n− 1

n∑
i=1

x2
ij = 1 , j = 1, · · · , p , (3.5.2)

where xij denotes the ij-th entry of X.

The PCA algorithm consists of two steps. In the first step, we calculate the sample

covariance matrix Σ̂ and perform eigendecomposition on it:

Σ̂ =
1

n
X⊤X definition of sample covariance matrix (3.5.3)

:= QΛQ⊤ , eigendecomposition (3.5.4)

where
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Q
p×p

=


| |

q1 · · · qp

| |

 (3.5.5)

is an orthogonal matrix whose columns are eigenvectors of Σ̂, and

Λ
p×p

=


λ1

. . .

λp

 , λ1 ≥ · · · ≥ λp ≥ 0 , (3.5.6)

is a diagonal matrix whose diagonal entries are the corresponding eigenvalues of Σ̂. We

know that Σ̂ is orthogonally diagonalizable because it is a symmetric matrix (recall the

spectral theorem for real matrices [58]: a real matrix is orthogonally diagonalizable if and only

if it is symmetric). The eigenvalues are all non-negative because Σ̂ is positive semidefinite.

In the second step, we calculate Z as

Z = XQ , (3.5.7)

where the columns of Z are called the principal components (PCs) or scores, and Q is

called the loading matrix or rotation matrix. It is worth noting that some authors may refer

to q1, · · · , qp as the PCs. This use of terminology is confusing and should be avoided [8].

The above two steps conclude the PCA algorithm. In practice, however, singular value

decomposition (SVD) of the data matrix is often used as a more computationally efficient

way of finding the loading matrix and the PCs [6].

The most common derivation of PCA is based on maximum variance [9]. First, we define
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α∗
1, · · · , α∗

p ∈ Rp sequentially as

α∗
1 = argmax

α1∈Rp

Var (Xα1) subject to ∥α1∥2 = 1 , (3.5.8)

α∗
2 = argmax

α2∈Rp

Var (Xα2) subject to ∥α2∥2 = 1 , α⊤
2 α

∗
1 = 0 , (3.5.9)

...

α∗
p = argmax

αp∈Rp

Var (Xαp) subject to ∥αp∥2 = 1 , α⊤
p α

∗
j = 0 ∀ j < p . (3.5.10)

Then, we define the PCs ofX asXα∗
1, · · · , Xα∗

p. That is, the PCs are defined sequentially

as the linear combinations of the columns of X with maximum variances, subject to certain

constraints. It can then be shown that α∗
1, · · · , α∗

p are given by q1, · · · , qp respectively, where

q1, · · · , qp are eigenvectors of Σ̂ as defined in (3.5.5).

A complementary property of PCA, which is closely related to the original discussion of

Pearson [10], is the minimum reconstruction error property. Given K < p, we define QK as

the matrix that contains the first K columns of Q. That is,

QK

p×K

:=


| |

q1 · · · qK

| |

 . (3.5.11)

The minimum reconstruction error property of PCA states that QK is a global minimizer

of the loss function

J
(
Q̃K

)
:=
∣∣∣∣∣∣∣∣∣X −XQ̃KQ̃

⊤
K

∣∣∣∣∣∣∣∣∣2
F

(3.5.12)

=
n∑

i=1

∥∥∥x⊤
i − x⊤

i Q̃KQ̃
⊤
K

∥∥∥2
2
=

n∑
i=1

∥∥∥xi − Q̃KQ̃
⊤
Kxi

∥∥∥2
2
, (3.5.13)

where Q̃K denotes an arbitrary p × K matrix whose columns are orthonormal, |||·|||F
denotes the Frobenius norm of a matrix, and x⊤

i denotes the ith row of X. Since Q̃KQ̃
⊤
Kxi
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represents the (orthogonal) projection of xi onto the subspace spanned by the columns of Q̃K ,

(3.5.13) measures the total squared ℓ2 error when approximating each xi with its projection

onto the subspace spanned by the columns of Q̃K .

A central idea of PCA is the proportion of variance explained by each PC. To establish

this concept, we claim that

p∑
j=1

Var (Xj) =

p∑
j=1

Var (Zj) , (3.5.14)

Var (Zj) = λj , j = 1, · · · , p , (3.5.15)

and

Cov (Zj , Zj′) = 0 , j, j′ = 1, · · · , p , j ̸= j′ , (3.5.16)

where Xj denotes the jth column of X (the jth original variable) and Zj denotes the jth

column of Z (the jth PC). (3.5.16) means that the PCs are uncorrelated with each other.

We prove (3.5.15) and (3.5.16) by calculating Σ̂Z , the sample covariance matrix of Z (we

know that the columns of Z are centered by (3.5.1) and (3.5.7)):

Σ̂Z =
1

n
Z⊤Z definition of sample covariance matrix (3.5.17)

=
1

n
(XQ)⊤XQ plugging in (3.5.7) (3.5.18)

= Q⊤
(
1

n
X⊤X

)
Q (3.5.19)

= Q⊤ (QΛQ⊤)Q plugging in (3.5.4) (3.5.20)

= Λ . (3.5.21)
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(3.5.14) can be proven by the following:

p∑
j=1

Var (Xj) = Tr
(
Σ̂
)

definition of trace and Σ̂ (3.5.22)

= Tr
(
QΛQ⊤) plugging in (3.5.4) (3.5.23)

= Tr
(
ΛQ⊤Q

)
cyclic property of trace (3.5.24)

= Tr (Λ) (3.5.25)

=

p∑
j=1

Var (Zj) . by (3.5.15) (3.5.26)

Because of (3.5.14) and (3.5.15), we may define the proportion of variance in the original

data explained by the jth PC as

λj∑p
j′=1Var (Xj′)

=
λj∑p

j′=1Var (Zj′)
=

λj∑p
j′=1 λj′

, (3.5.27)

which provides a basis for deciding the number of PCs to keep (e.g., Algorithms S2 and

S3).

3.5.2 Hidden covariates with prior (HCP) and its connection to PCA

Hidden covariates with prior (HCP) [16] is a popular hidden variable inference method for

QTL mapping defined by minimizing a loss function. Neither Mostafavi et al. [16] nor the

HCP package documents the HCP method well. For example, the squares in the loss function

(3.5.28) are missing in both Mostafavi et al. [16] and the package documentation, but one can

deduce that the squares are there by inspecting the coordinate descent steps in the source

code of the R package. Here we aim to provide a better, more accurate documentation of

the HCP method and point out its connection to PCA.

Given Y , the molecular phenotype matrix (n × p, sample by feature), X1, the known

covariate matrix (n×K1, sample by covariate), K, the number of inferred covariates (HCPs),
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and λ1, λ2, λ3 > 0, the tuning parameters, HCP looks for

argmin
X2, W1, W2


∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ Y
n×p

− X2

n×K

W2

K×p

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

F

+ λ1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣X2

n×K

− X1

n×K1

W1

K1×K

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

F

+ λ2|||W1|||2F + λ3|||W2|||2F

 ,

(3.5.28)

where |||·|||F denotes the Frobenius norm of a matrix, X2 is the hidden covariate ma-

trix, and W1 and W2 are weight matrices of the appropriate dimensions. The name of the

method, “hidden covariates with prior”, comes from the second term in (3.5.28), where the

method informs the hidden covariates with the known covariates. The optimization is done

through coordinate descent with one deterministic initialization (see source code of the HCP

R package [16]). The columns of the obtained X2 are reported as the HCPs.

From (3.5.28), we see that the HCP method is closely related to PCA. The first term in

(3.5.28) is very similar to (3.5.12), the only difference being that the rows of W2 in (3.5.28)

are not required to be orthonormal and X2 is not required to be equal to YW⊤
2 .

Algorithm 2: The elbow method for choosing K in PCA (based on distance to
diagonal line).

Input: X, n× p observed data matrix, observation by feature.
Output: K, the number of PCs selected.

1 Define d = min (n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained by each PC, t1, · · · , td. //

∑d
j=1 tj = 1.

4 Consider (1, t1), · · · , (d, td) ∈ R2. // d points in R2.

5 Select K by choosing the point that is the farthest from the diagonal line, i.e., the
line that passes through the first point, (1, t1), and the last point, (d, td).
Specifically, the distance from (x0, y0) to the line that passes through (x1, y1) and
(x2, y2) is given by
| (x2 − x1)(y1 − y0)− (x1 − x0)(y2 − y1) | /((x2 − x1)

2 + (y2 − y1)
2)1/2.

6 return K.
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Algorithm 3: The Buja and Eyuboglu (BE) algorithm [55] for choosing K in PCA.

Inputs:
• X, n× p observed data matrix, observation by feature.
• B, number of permutations (default is 20).
• α, significance level (default is 0.05).

Output: K, the number of PCs selected.

1 Define d = min (n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained (PVE) by each PC, t1, · · · , td.

//
∑d

j=1 tj = 1. Observed test statistics.

4 for b← 1 to B do
5 Obtain X(b) by permuting each column of X. // Permute the observations in

each feature.

6 Run PCA on X(b) with centering and scaling.

7 Obtain the PVE of each PC, t
(b)
1 , · · · , t(b)d . //

∑d
j=1 t

(b)
j = 1.

8 end
9 The p-value for the jth PC is calculated as

pj =
(∑B

b=1 1{t
(b)
j ≥ tj}+ 1

)
/ (B + 1) , j = 1, · · · , d . // pj is calculated as,

roughly speaking, the proportion of permutations where the PVE of the jth PC is

greater than or equal to the PVE of the jth original PC (the added ones in the

numerator and denominator are mainly for avoiding p-values that are exactly

zero). The greater this proportion is, the larger the p-value is, and the less

significant the PC is.

10 for j ← 2 to d do
11 If pj ≤ pj−1, then set pj = pj−1. // Enforce monotone increase of the p-values.

12 end
13 Set K to be the maximum j such that pj ≤ α.
14 return K.
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CHAPTER 4

ClipperQTL: ultrafast and powerful eGene

identification method

4.1 Results

4.1.1 Real data results

We compare the performance and run time of different variants of FastQTL, eigenMT, Tree-

QTL, and ClipperQTL (Table 4.1) on the most recent GTEx expression data [4]. The 49

tissues with sample sizes above 70 are considered [4]. For each gene, we consider single

nucleotide polymorphisms (SNPs) within one megabase (Mb) of the transcription start site

(TSS) of the gene [4]; we use 0.01 as the threshold for the minor allele frequency (MAF) of a

SNP and 10 as the threshold for the number of samples with at least one copy of the minor

allele (MA samples) [17]. We include eight known covariates and a number of top expression

PCs (principal components) as inferred covariates [19]. The eight known covariates are the

top five genotype PCs, WGS sequencing platform (HiSeq 2000 or HiSeq X), WGS library

construction protocol (PCR-based or PCR-free), and donor sex [4]. The number of expres-

sion PCs is chosen via the Buja and Eyuboglu (BE) algorithm [19, 55] for each tissue. We use

the BE algorithm because we find that in our simulated data (Section 5.2), the BE algorithm

can recover the true number of covariates well. The target FDR for eGene identification is

set at 0.05. We do not include Matrix eQTL [29] in our real data comparison because both

our simulation study (Section 4.1.2) and Huang et al. [59] show that Matrix eQTL cannot

control the FDR in the eGene identification problem.
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The results from our real data analysis are summarized in Figures 4.1, 4.2, and 5.2.

We find that the four variants of FastQTL produce almost identical results as one another.

Specifically, the numbers of eGenes identified by the four methods are almost identical (Fig-

ure 4.1), and the identified eGenes highly overlap (Figure 5.2). This means the adaptive

permutation scheme and the beta approximation of FastQTL (Section 5.1.2) are not crit-

ical to the performance of FastQTL; the simplest variant, FastQTL 1K prop, is sufficient.

Further, we find that eigenMT and TreeQTL methods identify fewer eGenes than FastQTL

(Figure 4.1). In contrast, ClipperQTL methods produce almost identical results as FastQTL

in tissues with the appropriate sample sizes (Section 4.2.2; Figures 4.1 and 5.2).

In terms of run time comparison (Figure 4.2), we find that eigenMT has almost no com-

putational advantage over FastQTL, and TreeQTL has no computational advantage over the

standard variant of ClipperQTL (which is slower than the Clipper variant of ClipperQTL).

Both the standard variant and the Clipper variant of ClipperQTL are orders of magnitude

faster than FastQTL. In particular, the standard variant of ClipperQTL is about five times

faster than FastQTL 1K prop—the simplest FastQTL method—even though the algorithms

are equivalent (Section 4.2.2); we attribute this to differences in software implementation.

Compared to the default FastQTL method, the standard variant and the Clipper variant of

ClipperQTL are about 50 times and 500 times faster, respectively.

4.1.2 Simulation results

In our simulation study, we roughly follow the data simulation in the second, more realistic

simulation design of Zhou et al. [19], which roughly follows the data simulation in Wang

et al. [20]. We simulate three data sets in total. Each data set is simulated according to

Algorithm 9 with sample size n = 838, number of genes p = 1000, number of covariates

K̃ = 20, proportion of variance explained by genotype in eGenes PVEGenotype = 0.02, and

proportion of variance explained by covariates PVECovariates = 0.5. All covariates are

assumed to be known covariates.
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The results from our simulation study are summarized in Figure 4.3. We confirm the

finding in Huang et al. [59] that Matrix eQTL cannot control the FDR in the eGene identi-

fication problem. All other methods can approximately control the FDR. Further, FastQTL

and ClipperQTL methods have higher power than eigenMT and TreeQTL methods, consis-

tent with our real data results (Section 4.1.1).

4.2 Methods

4.2.1 Problem

Here we describe the eGene identification problem and introduce the notations for this work.

The input data are as follows. Let Y denote the n × p fully processed gene expression

matrix with n samples and p genes. For gene j , j = 1, · · · , p , the relevant genotype data

is stored in Sj , the n× qj genotype matrix, where each column of Sj corresponds to a local

common SNP for gene j (conceptually speaking; in reality, all genotype data may be stored

in one file). Let X denote the n×K covariate matrix with K covariates. Using our analysis

of GTEx’s Colon - Transverse expression data [4] (Section 4.1.1) as an example, we have

n = 368, p = 25,379, qj typically under 15,000, andK = 37, including eight known covariates

and 29 inferred covariates (the number of inferred covariates is chosen via the BE algorithm

[19, 55]; Section 4.1.1).

The assumption is that for j = 1, · · · , p , Y [ , j] , the jth column of Y , is a realization of

the following random vector:

1
n×1

β0j

1×1

+ Sj

n×qj

β1j

qj×1

+ X̃
n×K̃

β2j

K̃×1

+ ϵj
n×1

, (4.2.1)

where 1 denotes the n× 1 matrix of ones, Sj is defined as above, X̃ is the true covariate

matrix (which X tries to capture), all entries of β0j , β1j , and β2j are fixed but unknown
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parameters, and ϵj is the random noise. In particular, it is assumed that at most a small

number of entries of β1j are nonzero [20]. If all entries of β1j are zero, then gene j is not an

eGene. On the other hand, if at least one entry of β1j is nonzero, then gene j is an eGene.

The goal is to identify which of the p genes are eGenes given Y , {Sj}pj=1 , and X.

4.2.2 ClipperQTL

We propose two main variants of ClipperQTL: the standard variant and the Clipper variant.

The standard variant is equivalent to FastQTL with the direct permutation scheme and

proportions (Algorithm 5) and is suitable for a wide range of sample sizes. The Clipper

variant uses the contrastive strategy developed in Clipper [51] (Algorithm 4) and is only

recommended for data sets with large sample sizes (> 450). The development of ClipperQTL

is discussed in Section 5.3. A key technical difference between the standard variant and the

Clipper variant is that in the standard variant, gene expression is permuted first and then

residualized, whereas in the Clipper variant, gene expression is residualized first and then

permuted.

The main input parameter of ClipperQTL under both variants is B, the number of

permutations. For the standard variant, B is set at 1000 by default. For the Clipper variant,

we recommend setting B between 20 and 100 (Figures 5.3 and 5.4).
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Algorithm 4: The Clipper variant of ClipperQTL

Inputs:
• Y , {Sj}pj=1 , and X (gene expression, genotype, and covariate data, respectively;
Section 4.2.1).
• B > 1, the number of permutations (default is 20).

1 for j ← 1 to p do
2 Regress Y [ , j] against X and denote the residuals as (Y [ , j])resid , an n× 1

matrix.
3 Regress each column of Sj against X and save the residuals in (Sj)resid , an n× qj

matrix.
4 Calculate Rj := abs

(
cor
(
(Y [ , j])resid , (Sj)resid

))
, a 1× qj matrix, where abs

and cor denote the absolute value function and the correlation function in R,
respectively. That is, the lth entry of Rj , l = 1, · · · , qj , is the absolute value of
the correlation between (Y [ , j])resid and the lth column of (Sj)resid .

5 Define rj := max (Rj) , the maximum of all values in Rj . This is equivalent to
|rj(1)| in Algorithm 5.

6 for b← 1 to B do

7 Permute (Y [ , j])resid to obtain (Y [ , j])bresid .

8 Calculate Rb
j := abs

(
cor
(
(Y [ , j])bresid , (Sj)resid

))
, a 1× qj matrix.

9 Define rbj := max
(
Rb

j

)
.

10 end

11 end
12 Run Clipper [51] to call eGenes using {rj}pj=1 as measurements under the

experimental condition and
{
r1j
}p
j=1

, · · · ,
{
rBj
}p
j=1

as measurements under the

background condition (Section 1.2); use enrichment analysis, GZ procedure,
maximum contrast score, and h = 1 (Section 5.3).
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4.3 Tables and figures

Method category Method Note Method name for speed comparison

(A) (B) (C) (D)

1 Matrix eQTL Matrix eQTL

2

FastQTL

FastQTL 1K-10K prop
FastQTL 1K-10K

3 FastQTL 1K-10K beta Default FastQTL method

4 FastQTL 1K prop
FastQTL 1K

5 FastQTL 1K beta

6 eigenMT eigenMT eigenMT

7
TreeQTL

TreeQTL BY Default TreeQTL method
TreeQTL

8 TreeQTL Storey

9

ClipperQTL

ClipperQTL standard 1K ClipperQTL standard 1K

10 ClipperQTL Clipper 20 ClipperQTL Clipper 20

11 ClipperQTL Clipper 50 ClipperQTL Clipper 50

Table 4.1: Summary of the 11 eGene identification methods we compare. Details of these
methods can be found in Sections 4.2.2 and 5.1.

57



0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

Fa
st

Q
T

L
_1

K
−

10
K

_p
ro

pa

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

Fa
st

Q
T

L
_1

K
_p

ro
p

b

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

Fa
st

Q
T

L
_1

K
_b

et
a

c

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

ei
ge

nM
T

d

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

Tr
ee

Q
T

L
_B

Y
e

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

Tr
ee

Q
T

L
_S

to
re

y

f

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

C
lip

pe
rQ

T
L

_s
ta

nd
ar

d_
1Kg

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

C
lip

pe
rQ

T
L

_C
lip

pe
r_

20h

0

5,000

10,000

15,000

20,000

0
5,

00
0

10
,0

00

15
,0

00

20
,0

00

FastQTL_1K−10K_beta

C
lip

pe
rQ

T
L

_C
lip

pe
r_

50i

Sample size >= 465   FALSE TRUE

Figure 4.1: Number of eGenes comparison based on GTEx expression data [4] (Table 4.1; see
Section 4.1.1 for the analysis details). Each dot corresponds to a tissue. The x-axis and y-axis
both represent numbers of eGenes identified by different methods. Diagonal lines through the
origin are shown to help with visualization. a-c The four variants of FastQTL identify almost
the same numbers of eGenes as one another. d-f eigenMT and TreeQTL methods identify
fewer eGenes than FastQTL. g-i ClipperQTL methods identify almost the same numbers of
eGenes as FastQTL in tissues with the appropriate sample sizes (Section 4.2.2). We use 465
as the sample size cutoff because the next largest sample size is 396. See Figure 5.2 for an
analysis of the overlap between identified eGenes.
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Figure 4.2: Run time comparison based on GTEx expression data [4] (Table 4.1; see Sec-
tion 4.1.1 for the analysis details). Each dot corresponds to a tissue. FastQTL 1K-10K takes
under 500 CPU hours. FastQTL 1K takes under 50 CPU hours. ClipperQTL standard 1K
takes under 10 CPU hours. ClipperQTL Clipper 20 takes under 1 CPU hour. Run times of
ClipperQTL Clipper 20 and ClipperQTL Clipper 50 are only shown for tissues with sample
sizes ≥ 465 (Figure 4.1).
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Figure 4.3: Power and FDR comparison of all 11 methods based on our simulation study
(Table 4.1; Section 4.1.2). The target FDR is set at 0.05 (grey shaded area in b). The height
of each bar represents the average across simulated data sets. Error bars indicate standard
errors. In a, a horizontal line at the height of the bar for FastQTL 1K-10K beta is shown
to help with visualization. All methods except Matrix eQTL can approximately control the
FDR. FastQTL and ClipperQTL methods have higher power than eigenMT and TreeQTL
methods.

4.4 Availability of data and materials

The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.

The code used to generate the results in this work is available at https://doi.org/10.5281/

zenodo.8259929. In addition, this work makes use of the following data and software:

• GTEx V8 public data [4], including fully processed gene expression matrices and known

covariates, are downloaded from https://gtexportal.org/home/datasets.

• GTEx V8 protected data [4], specifically, the whole genome sequencing (WGS) phased

genotype data, are downloaded from the AnVIL repository with an approved dbGaP

application (see https://gtexportal.org/home/protectedDataAccess).

• FastQTL (https://github.com/francois-a/fastqtl, accessed October 29, 2020).

• Matrix eQTL R package Version 2.3 (https://cran.r-project.org/web/packages/
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MatrixEQTL, accessed March 6, 2023).

• eigenMT (https://github.com/joed3/eigenMT, accessed March 6, 2023).

• TreeQTL R package Version 2.0 (https://bioinformatics.org/treeqtl, accessed

March 6, 2023).
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CHAPTER 5

Supplementary materials for ClipperQTL: ultrafast

and powerful eGene identification method

5.1 Existing eGene identification methods

In this section, we review the existing eGene identification methods and describe the variants

that we compare in this work (Table 2.1).

Recall the notations from Section 4.2.1. Let Y denote the n× p fully processed gene ex-

pression matrix with n samples and p genes. For gene j , j = 1, · · · , p , the relevant genotype

data is stored in Sj , the n× qj genotype matrix, where each column of Sj corresponds to a

local common SNP for gene j . Let X denote the n×K covariate matrix with K covariates.

5.1.1 Matrix eQTL

Conceptually speaking, Matrix eQTL [29] works as follows: for j = 1, · · · , p , l = 1, · · · , qj ,

run the linear regression represented by the following R lm() formula:

Y [ , j] ∼ Sj[ , l] + X (5.1.1)

and obtain the p-value for the null hypothesis that the coefficient corresponding to Sj[ , l]

is zero given the covariates; denote this p-value as pjl . Therefore, a total of
∑p

j=1 qj p-values

are obtained, one for each gene-SNP pair. Matrix eQTL then uses the Benjamini-Hochberg

(BH) procedure [60] on these p-values to call significant gene-SNP pairs [29]. To call eGenes
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using Matrix eQTL in this work, we call as eGenes all genes that appear at least once in the

significant gene-SNP pairs.

In reality, Matrix eQTL uses the following equivalent approach to obtain the p-values,

which is more computationally efficient due to the overlap of local common SNPs across

genes. For j = 1, · · · , p , l = 1, · · · , qj , first, regress the gene expression against the covari-

ates:

Y [ , j] ∼ X. (5.1.2)

Second, regress the genotype against the covariates:

Sj[ , l] ∼ X. (5.1.3)

Then, calculate the Pearson correlation between the expression residuals from (5.1.2)

and the genotype residuals from (5.1.3) and denote it as rjl . This is the partial correlation

between Y [ , j] and Sj[ , l] conditional on X.

Lastly, convert the partial correlation to a test statistic using

tjl = rjl

√
n− 2−K

1− r2jl
(5.1.4)

and convert the test statistic to a p-value using

pjl = 2× P (T ≥ |tjl|) , T ∼ tn−2−K , (5.1.5)

where P denotes probability, |tjl| denotes the absolute value of tjl , and T is a random

variable following the t-distribution with n− 2−K degrees of freedom.

Notably, the larger |rjl| (the absolute value of rjl), the smaller pjl , and vice versa. Both
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FastQTL (the variants using proportions; Section 5.1.2) and ClipperQTL (the standard

variant; Section 4.2.2) make use of this fact.

5.1.2 FastQTL

There are four main ways to use FastQTL [17], depending on (1) whether the direct or the

adaptive permutation scheme is used and (2) whether proportions or beta approximation

is used. The direct permutation scheme with either proportions or beta approximation is

summarized in Algorithm 5. The adaptive permutation scheme is identical except the number

of permutations is chosen adaptively between Bmin and Bmax (two input parameters) for each

gene rather than directly inputted (see Ongen et al. [17] for details).

The default way of using FastQTL is to use the adaptive permutation scheme (Bmin =

1000 and Bmax = 10,000) with beta approximation [4, 17]. In total, we compare four ways

of using FastQTL in this work including the default approach: FastQTL 1K-10K prop,

FastQTL 1K-10K beta (the default), FastQTL 1K prop, and FastQTL 1K beta (see Ta-

ble 2.1). That is, the number of permutations is either fixed at 1000 or chosen adaptively

between 1000 and 10,000 for each gene, and either proportions or beta approximation is

used.

In addition to identifying eGenes, FastQTL can also output significant gene-SNP pairs.

We summarize the algorithm for this in Algorithm 6.
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Algorithm 5: The direct permutation scheme of FastQTL

Inputs:
• Y , {Sj}pj=1 , and X (gene expression, genotype, and covariate data, respectively;
Section 4.2.1).
• B, the number of permutations.

1 for j ← 1 to p do
2 Obtain rj1 , · · · , rjqj , the partial correlation between Y [ , j] and

Sj[ , 1] , · · · , Sj[ , qj] (respectively) conditional on X (Section 5.1.1).
3 Denote the one with the largest absolute value as rj(1) .
4 for b← 1 to B do
5 Permute Y [ , j] (leave Sj unchanged).
6 Obtain rbj1, · · · , rbjqj , the partial correlation between Y [ , j] after permutation

and Sj[ , 1] , · · · , Sj[ , qj] (respectively) conditional on X.
7 Denote the one with the largest absolute value as rbj(1) .

8 end
9 if using proportions then

10 p̃j , the gene-level p-value for gene j , is defined as

p̃j :=
(∑B

b=1 1
{
|rbj(1)| ≥ |rj(1)|

}
+ 1
)
/ (B + 1) . // Roughly the proportion

of permutations with more extreme outcomes. The addition of one in the

numerator and the denominator helps avoid p-values that are exactly zero.

11 else if using beta approximation then
12 Find true df ∈ (0,∞) , which is to replace n− 2−K when converting rj(1)

and {rbj(1)}Bb=1 to p-values using (5.1.4) and (5.1.5). // See the source code

of FastQTL for how true df is defined. In a nutshell, true df minimizes

the absolute difference between 1 and the method of moments estimate for

the first shape parameter of the beta distribution from the p-values.

13 Convert rj(1) and {rbj(1)}Bb=1 to p-values using (5.1.4) and (5.1.5) with

n− 2−K replaced by true df . Denote these p-values as pj(1) and {pbj(1)}Bb=1 .

14 Fit a beta distribution to {pbj(1)}Bb=1 using maximum likelihood estimation.
Denote the cumulative distribution function of the fitted beta distribution
as Fj .

15 p̃j , the gene-level p-value for gene j , is defined as p̃j := Fj

(
pj(1)

)
.

16 end

17 end
18 Use Storey’s q-value [52] on {p̃j}pj=1 to call eGenes.
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Algorithm 6: Identification of significant gene-SNP pairs in FastQTL

Input:
• Intermediate and final results from Algorithm 5 using either the direct or the
adaptive permutation scheme and beta approximation (rather than proportions).

1 Define pt (following the notation of the GTEx Consortium [4]) as the average of the
gene-level p-value of the most significant non-eGene and the gene-level p-value of
the least significant eGene (see the source code of FastQTL). That is, pt is defined
as the average of two of p̃1 , · · · , p̃p .

2 for j ← 1 to p do
3 if gene j is identified as an eGene then
4 Define thresholdj := F−1

j (pt) , where F−1
j denotes the inverse function of Fj .

5 Convert rj1 , · · · , rjqj (Line 2 of Algorithm 5) to p-values using (5.1.4) and
(5.1.5) (without replacing n− 2−K with true df ).

6 If the p-value corresponding to a SNP is less than or equal to thresholdj ,
then gene j and this SNP are together identified as a significant gene-SNP
pair.

7 end

8 end

0.00

0.05

0.10

0.15

200 400 600
Sample size

p t

Figure 5.1: Scatter plot of pt (Algorithm 6) from FastQTL 1K-10K beta versus sample size
in GTEx expression data [4] (see Section 4.1.1 for the analysis details). This scatter plot
contains 49 dots, each corresponding to a tissue. We see that pt increases roughly linearly
with sample size.
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5.1.3 eigenMT

We summarize eigenMT [47] in Algorithm 7. After obtaining the gene-level p-values, eigenMT

does not specify what method to use to control the false discovery rate when calling eGenes.

Therefore, in this work, we use Storey’s q-value [52] following FastQTL (Section 5.1.2). In

addition to producing the gene-level p-values, eigenMT also outputs the most significantly

associated SNP for each gene.

5.1.4 TreeQTL

TreeQTL [48] uses Simes’ rule [50] to calculate a gene-level p-value for each gene (Algo-

rithm 8). After obtaining the gene-level p-values, TreeQTL allows the user to use Bonferroni

correction, BH [60], or Benjamini-Yekutieli (BY) [62] to call eGenes (the default is BY).

We compare two variants of TreeQTL in this work: TreeQTL BY (the default) and

TreeQTL Storey (see Table 2.1). In TreeQTL Storey, we use Storey’s q-value [52] on the

gene-level p-values to call eGenes, following FastQTL (Section 5.1.2). We do not include

variants of TreeQTL using Bonferroni correction or BH in our comparison because Bonferroni

correction aims to control the family-wise error rate rather than the false discovery rate, and

BH is more stringent than Storey’s q-value (we show that even TreeQTL Storey has lower

power than FastQTL; Figures 4.1 and 4.3).

5.2 Data simulation

In our simulation study, we roughly follow the data simulation in the second, more realistic

simulation design of Zhou et al. [19], which roughly follows the data simulation in Wang

et al. [20]. We simulate three data sets in total. Each data set is simulated according to

Algorithm 9 with the following attributes:

• Sample size, n = 838.
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Algorithm 7: eigenMT

Inputs:
• Results from Matrix eQTL, i.e., pjl , j = 1, · · · , p , l = 1, · · · , qj (Section 5.1.1).
• {Sj}pj=1 , genotype data (Section 4.2.1).
• W , window size for partitioning genotype data (default is 200).
• C, threshold for the cumulative proportion of variance explained (default is 0.99).

1 for j ← 1 to p do
2 Consider pj1 , · · · , pjqj . Denote the smallest one as pj(1) .
3 Initialize qeffj , the effective number of local common SNPs for gene j , at 0. The

goal is to calculate qeffj from Sj .

4 Break Sj vertically into ⌈ qj
W
⌉ chunks, each chunk an n×W matrix except the

last chunk, which may have fewer columns.
5 for i← 1 to ⌈ qj

W
⌉ do

6 Denote the number of columns in the ith chunk of Sj as Wji (if i < ⌈ qjW ⌉,
then Wji = W ).

7 if Wji = 1 then
8 qeffj ← qeffj + 1.

9 else
10 Obtain the Ledoit-Wolf estimate [61] of the covariance matrix of the ith

chunk of Sj using sklearn.covariance.LedoitWolf() in Python.
11 Convert the estimated covariance matrix to a correlation matrix.
12 Obtain the eigenvalues of the correlation matrix, λ1 ≥ · · · ≥ λWji

, using
scipy.linalg.eigvalsh() in Python.

13 Set all negative eigenvalues (if any) to 0. // See the source code of

eigenMT.

14 qeffj ← qeffj + argminK

(∑K
k=1 λk

Wji
≥ C

)
. That is, increment qeffj by the

minimum number of top eigenvalues required to pass the threshold for
the cumulative proportion of variance explained. // See the source

code of eigenMT.

15 end

16 end

17 p̃j , the gene-level p-value for gene j , is defined as p̃j := min
(
pj(1) × qeffj , 1

)
.

18 end
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Algorithm 8: TreeQTL

Input:
• Results from Matrix eQTL, i.e., pjl , j = 1, · · · , p , l = 1, · · · , qj (Section 5.1.1).

1 for j ← 1 to p do
2 Consider pj1 , · · · , pjqj . Denote the order statistics as pj(1) , · · · , pj(qj) , with pj(1)

being the smallest and pj(qj) being the largest.
3 p̃j , the gene-level p-value for gene j , is defined as p̃j := minl=1,··· , qj pj(l)

qj
l
,

following Simes’ rule [50].
4 end
5 Use Bonferroni correction, BH [60], or BY [62] on {p̃j}pj=1 to call eGenes (the default

is BY).

• Number of genes, p = 1000.

• Number of covariates, K̃ = 20.

• Proportion of variance explained by genotype in eGenes, PVEGenotype = 0.02.

• Proportion of variance explained by covariates, PVECovariates = 0.5.

# of effect SNPs Probability

0 0.35483532

1 0.34962617

2 0.18326554

3 0.07072812

4 0.02498728

5 0.01655758

Table 5.1: In our data simulation (Algorithm 9), the number of effect SNPs [19, 20] for each
gene is sampled based on this probability table (the second column sums to one). This table
is summarized from GTEx’s independent cis-eQTL analysis [4] (see Figure S2 of Zhou et al.
[19]). A gene is an eGene if and only if its number of effect SNPs is greater than zero.

5.3 Development of ClipperQTL

Here we describe the development of ClipperQTL.

Clipper [51] has four main technical parameters:

• Analysis: enrichment vs. differential analysis.
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Algorithm 9: Simulation of one data set

1 Randomly select p genes from GTEx’s Brain - Cortex expression data [4], avoiding genes from the
X chromosome [19, 20].

2 The goal is to simulate Y , the n× p gene expression matrix.

3 Simulate X̃, the n× K̃ true covariate matrix, by drawing each entry independently from N (0, 1).
In this work, all random sampling is independent unless otherwise specified.

4 for j ← 1 to p do
5 Obtain Sj , the n× qj genotype matrix for gene j , by subsetting GTEx V8 genotype data [4].

Each column of Sj corresponds to a local common SNP for gene j . “Local” means the SNP is
on the same chromosome as the gene and is located within one megabase (Mb) of the
transcription start site (TSS) of the gene. “Common” means the minor allele frequency
(MAF) of the SNP is at least 0.01 and the number of samples with at least one copy of the
minor allele (MA samples) is at least 10.

6 Sample q̃j , the number of effect SNPs [19, 20] for gene j , based on Table 5.1.
7 if q̃j = 0 then
8 Generate Y [ , j] based on

Y [ , j] = X̃
n×K̃

β2j

K̃×1

+ ej
n×1

, (5.2.1)

where each entry of β2j is drawn from N (0, 1), and each entry of ej is drawn from N (0, 1)
and scaled. The scaling is to ensure that PVECovariates is as desired. Specifically, we
scale ej so that

Var (ej)

Var
(
X̃β2j

) =
1− PVECovariates

PVECovariates
. (5.2.2)

9 else
10 Randomly select q̃j columns of Sj and designate them as the effect SNPs of gene j .
11 Generate Y [ , j] based on

Y [ , j] = Sj

n×qj

β1j

qj×1

+ X̃
n×K̃

β2j

K̃×1

+ ej
n×1

, (5.2.3)

where entries of β1j that don’t correspond to the effect SNPs of gene j are set to 0, and
entries of β1j that correspond to the effect SNPs of gene j are each drawn from N (0, 1).
Further, each entry of β2j is drawn from N (0, 1) and scaled, and each entry of ej is drawn
from N (0, 1) and scaled. The scaling is to ensure that PVEGenotype and PVECovariates

are as desired. Specifically, we scale β2j so that

Var
(
X̃β2j

)
Var (Sjβ1j)

=
PVECovariates

PVEGenotype
(5.2.4)

and separately scale ej so that

Var (ej)

Var (Sjβ1j)
=

1− PVEGenotype− PVECovariates

PVEGenotype
. (5.2.5)

12 end

13 end
14 A gene is an eGene if and only if its number of effect SNPs is greater than zero.
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• Procedure: Barber-Candès (BC) vs. Gimenez-Zou (GZ) procedure.

• Contrast score: maximum vs. difference (i.e., minus) contrast score.

• h (only applicable under the GZ procedure, not the BC procedure).

In addition, in ClipperQTL, we can control B, the number of permutations (ClipperQTL

terminology), i.e., the number replicates under the background condition (Clipper terminol-

ogy).

In ClipperQTL, we use enrichment analysis rather than differential analysis because in

identifying eGenes, the alternative hypothesis is that the expectation of the maximum abso-

lute correlation from the original expression data is greater than (rather than merely different

from) the expectation of the maximum absolute correlation from permuted expression data.

In ClipperQTL, the number of replicates under the experimental condition is fixed at

one because we only have one set of the original, unpermuted expression data. Therefore,

if B = 1, then we only need to consider the BC procedure (in enrichment analysis, if the

number of replicates under the experimental condition and the number of replicates under

the background condition are both one, then the GZ procedure with either maximum or

difference contrast score reduces to the BC procedure with difference contrast score); if

B > 1, then we only need to consider the GZ procedure (in enrichment analysis, the BC

procedure is only applicable when the number of replicates under the experimental condition

and the number of replicates under the background condition are equal [51]). In other words,

B determines the procedure we need to consider.

Therefore, we explore different combinations of B, contrast score, and h (only applicable

under the GZ procedure). We find that for data sets with small sample sizes (< 450), no

combination works well consistently, but for data sets with large sample sizes (> 450), B

between 20 and 100, maximum contrast score, and h = 1 works well (B = 1 and maximum

contrast score works almost as well; details not shown). Therefore, the Clipper variant of

ClipperQTL is only recommended for data sets with large sample sizes (> 450; Section 4.2.2).

It always uses enrichment analysis, GZ procedure, maximum contrast score, and h = 1
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(Algorithm 4), and the user is recommended to set B between 20 and 100 (Section 4.2.2).
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Figure 5.2: Overlap between eGenes identified by various methods and eGenes identified by
FastQTL 1K-10K beta—the default FastQTL method—in GTEx expression data [4] (Ta-
ble 2.1; see Section 4.1.1 for the analysis details). Each dot corresponds to a tissue. Given
two sets, A and B, the overlap is defined as |A ∩ B|/min(|A|, |B|), where | · | denotes the
cardinality of a set. That is, the overlap between two sets is defined as the size of the in-
tersection divided by the size of the smaller set. b, c, g The overlap is slightly lower when
the sample size is smaller. This can be explained by the fact that power is generally lower
when the sample size is smaller [4]. h, i Only tissues with sample sizes ≥ 465 are shown
(Figure 4.1).
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Figure 5.3: Number of eGenes comparison between ClipperQTL Clipper with different B’s
and the default FastQTL method based on GTEx expression data [4] (the analysis details
are as described in Section 4.1.1). Each dot corresponds to a tissue. The x-axis and y-axis
both represent numbers of eGenes identified by different methods. Diagonal lines through
the origin are shown to help with visualization. ClipperQTL Clipper with B between 20 and
100 works well for tissues with large sample sizes (Section 4.2.2). We use 465 as the sample
size cutoff because the next largest sample size is 396.
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Figure 5.4: Comparison of ClipperQTL Clipper with different B’s. Each box plot contains
13 data points, corresponding to the 13 tissues in GTEx expression data [4] with sample sizes
≥ 465 (the analysis details are as described in Section 4.1.1). As B increases from 20 to 100,
the stability of ClipperQTL Clipper (a) and the discovery overlap with the default FastQTL
method (b) both increase slightly. See Figure 5.2 for our definition of overlap. Stability is
a measure of how much the result of a method depends on the random seed; the higher the
stability, the less the result varies with respect to the random seed. Specifically, to calculate
the stability of a method (e.g., ClipperQTL Clipper 20), we run the method 10 times with
10 different seeds. We divide the 10 runs into 5 pairs. For each pair, we calculate the overlap
between the two sets of identified eGenes. The stability of the method is calculated as the
average of the 5 overlaps.
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CHAPTER 6

Conclusions

6.1 Hidden variable inference problem

Hidden variable inference is widely practiced as an important step in QTL mapping for im-

proving the power of QTL identification. Popular hidden variable inference methods include

SVA, PEER, and HCP. In this work, we show that PCA not only underlies the statistical

methodology behind the popular methods (Section 2.1.4) but is also orders of magnitude

faster, better-performing, and much easier to interpret and use (Figure 2.1; relatedly, Malik

and Michoel [63] have pointed out issues with the optimization algorithm used in PANAMA

[64]—a variant of PEER, and the computational efficiency of PCA has been reported in

other settings, including genomic selection [65]). Our conclusions are consistent with those

from Cuomo et al. [66], who conclude that PCA is superior to alternative hidden variable

inference methods for improving the power of single-cell eQTL analysis.

On the simulation front, we compare the runtime and performance of PCA, SVA, PEER,

and HCP via two simulation studies (Section 2.1.1). In the first simulation study, we follow

the data simulation in Stegle et al. [5], the original PEER publication, while addressing

its data analysis and overall design limitations. In the second simulation study, we further

address the data simulation limitations of Stegle et al. [5] by simulating the data in a more

realistic and comprehensive way. Both simulation studies unanimously show that PCA

is faster and better-performing. Further, they show that running PEER with the known

covariates has no advantage over running PEER without the known covariates—in fact,
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running PEER with the known covariates makes PEER significantly slower (Figure 3.6)—and

that contrary to claims in Stegle et al. [1, 5], the performance of PEER does deteriorate as

the number of PEER factors increases (Section 2.1.1). One caveat of our simulation studies,

though, is that the genotype and covariates all have linear effects on the gene expression

levels (consistent with Stegle et al. [5] and Wang et al. [20]). But since PCA, SVA, PEER,

and HCP are all linear methods or assume linearity [15], and so does linear regression, we do

not believe our conclusions would change qualitatively if we simulated the data in a nonlinear

fashion.

On the real data front, we examine the most recent GTEx eQTL and sQTL data [4]

and the 3′aQTL data prepared by Li et al. [2] from GTEx RNA-seq reads [3]. While the

exact data analysis pipelines are different (Table 3.3), these studies all choose PEER as

their hidden variable inference method (due to lack of data availability, we do not examine

more real data sets). Our analysis shows that PEER, the most popular hidden variable

inference method for QTL mapping currently, produces nearly identical results as PCA at

best (Section 2.1.3), is at least three orders of magnitude slower than PCA (Figure 3.6),

and can be full of pitfalls. Specifically, we show that in certain cases, PEER factors can be

highly correlated with each other and thus fail to capture important variance components

of the molecular phenotype data, leading to potential loss of power in QTL identification

(Section 2.1.2). Further, we show from the perspective of PCA that choosing the number

of PEER factors by maximizing the number of discoveries (a common approach used by

practitioners) may yield inappropriate choices of K, leading to model overfit and potential

loss of power and precision (Section 2.1.5).

Between the two PCA approaches, PCA direct (running PCA on the fully processed

molecular phenotype matrix directly and filtering out the known covariates that are captured

well by the top PCs afterwards) and PCA resid (running PCA after regressing out the effects

of the known covariates from the molecular phenotype matrix) (Table 2.1; Section 3.4), we

recommend PCA direct because the two approaches perform similarly in our simulation
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studies and PCA direct is simpler. In addition, PCA direct can better hedge against the

possibility that the known covariates are not actually important confounders because in

PCA direct, the known covariates do not affect the calculation of the PCs. We also advise

the users to make sure to center and scale their data when running PCA unless they are

experts and have a good reason not to.

In addition to the benefits discussed so far, using PCA rather than SVA, PEER, or HCP

has another conceptual benefit. While SVA, PEER, and HCP are hidden variable inference

(i.e., factor discovery) methods, PCA can be interpreted and used as both a dimension

reduction and a factor discovery method. Therefore, PCs of the molecular phenotype data

need not be considered inferred covariates; instead, they can be considered a dimension-

reduced version of the molecular phenotype data—by including them as covariates, we are

controlling for the effect of the overall gene expression profile on the expression level of

any individual gene (taking expression phenotypes as an example). With this perspective,

including phenotype PCs as covariates is analogous to including genotype PCs as covariates

(which is commonly done to correct for population stratification [3, 4]). This perspective

solves the conundrum that inferred covariates such as PEER factors are often difficult to

interpret using known technical and biological variables [67].

To help researchers use PCA in their QTL analysis, we provide an R package PCAForQTL,

which implements highly interpretable methods for choosing the number of PCs (Algo-

rithms S2 and S3), a graphing function, and more, along with a detailed tutorial. Both

resources are freely available at https://github.com/heatherjzhou/PCAForQTL [56]. We

believe that using PCA rather than SVA, PEER, or HCP will substantially improve and

simplify hidden variable inference in QTL mapping as well as increase the transparency and

reproducibility of QTL research.
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6.2 eGene identification problem

We have shown that ClipperQTL achieves a 500-fold or 50-fold increase in computational

efficiency compared to FastQTL (depending on the variant used) without sacrificing power

or precision. In contrast, other alternatives to FastQTL such as eigenMT and TreeQTL have

lower power than FastQTL.

We propose two main variants of ClipperQTL: the standard variant and the Clipper

variant. The standard variant is equivalent to FastQTL with the direct permutation scheme

and proportions (Algorithm 5) and is suitable for a wide range of sample sizes. The Clipper

variant uses the contrastive strategy developed in Clipper [51] (Algorithm 4) and is only

recommended for data sets with large sample sizes (> 450).

Regarding which variant of ClipperQTL should be used when the sample size is large

enough (> 450), we believe that if computational efficiency is a priority, then the Clipper

variant should be used. However, if the study also contains smaller data sets, then the

researcher may choose to use the standard variant on all data sets for consistency.

A possible extension of ClipperQTL lies in trans-eGene identification. Compared to cis-

eGenes, trans-eGenes are currently identified in very small numbers [4], possibly due to the

lack of power of existing approaches. Since the Clipper variant of ClipperQTL only needs

20 permutations for optimal performance and using only one permutation works almost as

well (Section 5.3), there may be potential for ClipperQTL to be adapted for trans-eGene

identification.

The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.

Our work demonstrates the potential of the contrastive strategy developed in Clipper and

provides a simpler and more efficient way of identifying cis-eGenes.
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