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Abstract 
 

Although the causal graphical model framework has achieved 
considerable success accounting for causal learning data, appli-
cation of that formalism to multi-cause situations assumes that 
people are insensitive to the statistical properties of the causes 
themselves. The present experiment tests this assumption by 
first instructing subjects on a causal model consisting of two 
independent and generative causes and then requesting them to 
make data likelihood judgments, that is, to estimate the proba-
bility of some data given the model. The correlation between 
the causes in the data was either positive, zero, or negative. The 
data was judged as most likely in the positive condition and 
least likely in the negative condition, a finding that obtained 
even though all other statistical properties of the data (e.g., 
causal strengths, outcome density) were controlled. These re-
sults pose a problem for current models of causal learning. 

 
Hypothesis testing occupies a central role in learning the-

ory. On this view, learners use observed data to update their 
beliefs about different possible models of the world. A criti-
cal component of this process are learners’ judgments re-
garding how probable, or improbable, it is that the observed 
data were generated by each of the hypotheses. In this paper 
we consider what factors affect learner’s judgments regard-
ing the likelihood that data was generated a particular causal 
hypothesis. 

For example, consider the situation where there are two 
potential causes (𝐶! and 𝐶!) of an effect 𝐸. Fig. 1 shows the 
four hypotheses, or graphs (𝐺), formed by crossing the 
presence/absence of 𝐶! → 𝐸 with the presence/absence of 
𝐶! → 𝐸. Evaluating the posterior probability of these graphs 
involves calculating the probability of the observations, or 
the data (𝐷), were generated by each graph, 𝑝(𝐷|𝐺!),  and 
then applying Bayes’ law. Indeed, Carroll, Cheng, and Lu 
(2013) adopted the hypothesis testing framework shown in 
Fig. 1 to account for learning data from some traditional 
associative learning paradigms involving two cues. While 
Griffiths and Tenenbaum (2005) initially developed the hy-
pothesis testing methodology to account for learning data 
from simpler situations involving just one potential cause 
(also see Lu et al., 2008; Meder et al., 2014), it has since 
been extended to multi-cause situations (e.g., three potential 
causes in Powell et al., 2016).  

Our purpose in this article is to highlight what we find to 
be an interesting property of how these models calculate the 
probability that data 𝐷 were generated by a particular causal 
graph 𝐺. To do so we will present a modified version of the 
notation presented in Carroll et al. (2013). For generative 
causes, the likelihood of the data 𝐷 under a particular pa-
rameterization of graph 𝐺 was defined as 

 
𝑝(𝐷|𝒘,𝐺) =  𝑝(𝑒|𝒄,𝒘,𝐺)!(!,𝒄)

!,𝒄

 (1) 

where c is a vector denoting the presence (𝑐! = 1) or absence 
(𝑐! = 0) of the cues and 𝑁(𝑒, 𝒄) gives the frequency counts 
for each combination of the presence/absence of the effect 
and the cues in 𝐷. By denoting the causal strength of the 
causal relations, the vector w represents the parameteriza-
tion of 𝐺. The probability of the effect was defined as 
𝑝(𝑒 = 1|𝐜,𝒘,𝐺) =  1 − (1 − 𝑤!)!!

!∈!(!)

 (2) 

where 𝐼(𝐺) is the set of indices corresponding to the causal 
links that are present in 𝐺 (i.e., 𝐼(𝐺!) = {}, 𝐼(𝐺!) = {1},
𝐼(𝐺!) = {2}, 𝐼(𝐺!) = {1,2}). Eq. 2 codifies the common 
assumption that each causal relation operates independently 
and that multiple causal influences combine according to a 
noisy-or integration rule (Cheng, 1997). Note that it is also 
common to include an additional causal strength parameter, 
𝑤!, that represents the probability that 𝐸 might be caused by 
something other than 𝐶! and 𝐶!. 

Calculating 𝑝(𝐷|𝐺!) from Eqs. 1 and 2 requires integrat-
ing over possible causal strengths (the 𝑤s), which Carroll et 
al. assumed were uniformly distributed. Finally, calculating 
the posterior probability of the graphs, 𝑝(𝐺!|𝐷), requires 
stipulating their prior probability, which were assumed to be 
equal. 

 
Although Eqs. 1-2 may appear to compute “the likelihood 

of the data given a model,” in fact there is what might be 
considered an omission—no consideration is given to 
whether the data is consistent with the base rate of the caus-
es stipulated by the models. This omission manifests itself 
in the absence of a parameter representing the base rates of 
the causes. Moreover, not only are the base rates of the 
causes not considered, neither is any correlation between 𝐶! 
and 𝐶!. Stated more generally, in all these cases the compu-
tation of 𝑝(𝐷|𝐺!) is insensitive to any assumptions that 
learners might have regarding the statistical properties of the 
causes themselves. Such models are referred to as condi-
tional Bayesian networks because they encode the distribu-
tion of a subset of variables (in our case, 𝐸) given their par-
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ents (the 𝐶s) but not the distribution of the parents them-
selves (Koller & Friedman, 2009). 

Of course, a theorist might reasonably assume that when 
evaluating causal hypotheses it is natural for learners to fo-
cus on the manner in which causes co-vary with an effect 
rather than on the statistical properties of the causes them-
selves. Here we present data suggesting that this assumption 
is false. We do this by manipulating, in a two-cue learning 
scenario like that in Fig. 1, a statistical property of the two 
causes while holding their relationship with the effect 𝐸 
constant. In particular, we show that people’s explicit judg-
ments of 𝑝(𝐷|𝐺!) vary depending on whether the correla-
tion between the two causes is positive, negative, or, zero.  

Why Cue Correlations Might Matter 
What reason might there be to think that causal learners 

expect cues to be correlated? Evidence for this view comes 
from a study of causal reasoning (rather than learning) re-
ported by Rehder (2014a). Subjects were taught artificial 
causal relations intended to be plausible. For example, the 
causal structure represented by 𝐺! in Fig. 1 was instantiated 
in the domain of economics by telling subjects that “low 
interest rates causes high retirement savings” (𝐶! → 𝐸) and 
that “small trade deficits causes high retirement savings” 
(𝐶! → 𝐸). After learning these materials subjects were pre-
sented with 3AFC trials in which they were asked to decide 
which of two economies were more likely to possess a par-
ticular variable (a third “equally likely” alternative was also 
available). For instance, Fig. 2 depicts two economies in 
which the subject is being asked to predict which is more 
likely to have 𝐶! (in the example, small trade deficits). In 
the economy on the left of Fig. 2, 𝐶! = 1 (interest rates are 
low) is given; in the economy on the right, 𝐶! = 0 (interest 
rates are high). No information about the state of 𝐸 was 
provided in either economy. Subjects were significantly 
more likely to choose the economy on the left, that is, they 
behaved as if they believed the two causes were positively 
correlated (also see Perales et al., 2004).  

 
Formally speaking, this result represents a violation of the 

independence relations entailed by 𝐺!. This is so because 
although a causal graphical model may have exogenous 
influences that are not included in the graph, those influ-
ences are constrained to be uncorrelated (ruling out, e.g., all 
unobserved common causes whose values are not con-
stant)—a fact that entails the unconditional independence of 
𝐶! and 𝐶! (Pearl, 1988; 2000; Spirtes et al., 2000). Of 
course, one might question whether people had prior beliefs 
that the causes were correlated. For instance, they may be-
lieve that low interest rates are more likely when trade defi-
cits are small than they would be otherwise, despite the in-
structions during the task. However, this interpretation is 

defeated by the counterbalancing of the senses of the varia-
bles (e.g., the role of 𝐶! was sometimes played by high in-
stead of low interest rates; the role of 𝐶! was sometimes 
played by large instead of small trade deficits) and by the 
fact that the same pattern of results obtained in multiple 
domains (meteorology and sociology in addition to econom-
ics). 

It has been established that people violate independence 
relations (a.k.a., commit “Markov violations”) with network 
topologies other than 𝐺!. Rationalizations of these errors all 
appeal to the possibility that subjects reason with knowledge 
in addition to that assumed by the experimenters (see Rott-
man & Hastie, 2013 for a review). Yet none explain the 
errors found by Rehder (2014a) with 𝐺!. For instance, Park 
& Sloman (2003) demonstrated that the Markov violations 
that arose with their common cause networks (i.e., 
𝐸! ← 𝐶 → 𝐸!)—namely, subjects incorrectly treated 𝐸! and 
𝐸! conditioned on 𝐶 as dependent—were partly due to sub-
jects’ beliefs that the two causal links could be disabled by a 
common factor (also see Burnett, 2004; Lagnado & Sloman, 
2004; Mayrhofer & Waldmann, 2015; Walsh & Sloman, 
2008). However, this account does not explain the violations 
that occur with 𝐺!. Relatedly, Rehder & Burnett (2005) ex-
plained the large variety of Markov violations they observed 
by assuming that all variables were related by an underlying 
common cause (an assumption justified on the basis of the 
fact that the variables were features of the same category; 
also see Rehder, 2014b). However, this account also fails to 
explain the results from Rehder (2014a) because it tested 
materials that were not features of categories. 

The aim of this study is to assess whether the independ-
ence violations observed in reasoning tasks generalize to a 
learning context. One explanation for the independence 
violations observed during reasoning is that they are a side 
effect of the particular causal reasoning processes subjects 
invoke to render conditional probability judgments. If this is 
the case, we would not expect those violations to generalize 
to a learning task. If, on the other hand, people’s under-
standing of the statistics implied by causal networks really 
differs from those assumed by formal models, we would 
expect independence violations to be reflected during both 
reasoning and learning. In particular, if people’s beliefs 
about the statistics of common effect models is such that 
they think that the causes are positively correlated, then a 
data sample in which the cues are positively correlated will 
be viewed as more likely to be generated by a common ef-
fect model than samples in which the cues exhibit a zero or 
negative correlation.  

Overview of Experiment 
We present an experiment that evaluates the effect of in-

tercue correlations on the evaluation of a causal hypothesis. 
Note that we adopted a novel experimental paradigm in 
which we didn’t ask subjects to evaluate the relative likeli-
hood of two hypotheses. Instead, we cut out the middle 
man, so to speak, by (a) presenting a candidate causal theory 
(one that took the form of 𝐺!), (b) presenting a set of obser-
vations, and (c) asking subjects to rate how likely it is that 
the data was generated by the theory assuming that the theo-
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ry is true. That is, we asked subject to directly evaluate 
𝑝(𝐷|𝐺!). 

Our key manipulation is to vary the degree of cue co-
variation across three levels: negative, zero, and positive. To 
generate sets of observations (hereafter, “samples”), we first 
identified a number of target parameters that we wanted the 
samples to match. Those parameters were, in order of im-
portance, the strength of the causal relationships (.50), the 
marginal probability of the effect (.50), the log odds ratio 
(𝐿𝑂𝐷) between the cues (–3, 0, 3 in the negative, zero, and 
positive conditions), the probability that 𝐸 was caused by 
something other than 𝐶! and 𝐶! (0), and the marginal proba-
bility of each of the causes (.50). Sets of observations that 
closely instantiates these target parameters are presented in 
Table 1. The first eight rows of Table 1 correspond to the 
eight states that can be formed by three binary variables 
(again, the presence of a variable is denoted by 1 and its 
absence by 0). Each of these rows presents the number of 
instances of that type of observation in each of the three 
conditions. As described in detail later, the presentation of 
these observations was simultaneous, that is, all observa-
tions were visible on the computer screen at the same time. 

Round off error induced by the finite-sized samples 
means that they didn’t perfectly match the target parameters 
and so the bottom portion of Table 1 presents the statistics 
computed from the actual samples. As can be seen, the 
𝐿𝑂𝐷s between the cues were –3.51, 0, and 3.18, the causal 
strengths are all very close to .50, the marginal probability 
of 𝐸 is always .46, and the probability that 𝐸 occurs in the 
absence of 𝐶! and 𝐶! is always 0.  

How might subjects estimate the likelihood of each of the 
three data sets given 𝐺!? We first treated 𝐺! as a conditional 
Bayesian network in which the probability of the effect con-
ditioned on the causes is computed without making any as-
sumptions about the statistical properties of the causes. We 
refer to the probability of 𝐷 given 𝐺! in this case as 
𝑝!!!!(𝐷|𝐺!) to emphasize that the network is conditioned 
on 𝐶! and 𝐶!. The parameter space of 𝐺! is thus 𝜽 = 
(𝑤!,𝑤!,𝑤!) and we sampled (10,000 times) over that space 
in the manner described in the Appendix. The averaged val-
ues of 𝑙𝑜𝑔(𝑝!!!!(𝐷|𝐺!)) for each of the three conditions are 
shown in Table 1, which shows that the sample with a nega-
tive inter-cue correlation is most likely to be generated by 
𝐺! (log likelihood of –15.70) followed by the samples with 
the zero (–16.05) and positive (–16.37) cue correlations. In 
particular, because this analysis fails to predict a preference 
for the sample with positively correlated cues, a finding that 
subjects in fact exhibit such a preference will bolster our 
claim that the cues of a common effect model are expected 
to be positively correlated.  

We also computed 𝑝(𝐷|𝐺!) treating 𝐺! as unconditional 
Bayesian network, that is, taking the base rates of 𝐶! and 𝐶! 
into account. In this case the parameter space of 𝐺! is 𝜽 = 
(𝑏!, 𝑏!,𝑤!,𝑤!,𝑤!) where 𝑏! and 𝑏! represent the base rates 
of 𝐶! and 𝐶!, respectively. Table 1 reveals that for this mod-
el, 𝑙𝑜𝑔(𝑝(𝐷|𝐺!)) is highest in the zero correlation condi-
tion. These analyses reveal that subjects should not favour 

the sample with positively correlated cues regardless of 
whether 𝐺! is treated as a conditional or unconditional net-
work.  

Whereas these analyses sampled over a uniformly distrib-
uted parameter space, subjects might think that some pa-
rameters values are more likely than others. Using beta dis-
tributions we introduced a prior in which 𝐸(𝑏!) = 𝐸(𝑏!) = 
.5, (i.e., 𝐶! and 𝐶! are each expected to occur about half the 
time), 𝐸(𝑤!) = 𝐸(𝑤!) = .9, (i.e., 𝐶! → 𝐸  and 𝐶! → 𝐸 are 
expected to be strong causal relations), and 𝐸(𝑤!) = .1 (i.e., 
causes of 𝐸 other than 𝐶! and 𝐶! are expected to be weak). 
In this prior each expectation was worth 20 “observations.” 
In fact, the introduction of this prior left the qualitative pat-
tern of 𝑝(𝐷|𝐺!) and 𝑝!!!!(𝐷|𝐺) unchanged. 

Note that the process via which the samples in Table 1 
were generated was chosen to avoid confounds that might 
complicate the interpretation of the results. One possibility 
that concerned us is that subjects might interpret the 
𝑝(𝐷|𝐺!) query as one requesting the strengths of the causal 
relations that inhered in each sample. This is why all three 
samples were constrained to have almost equal causal 
strengths. Moreover, because causal strength judgments 
themselves are known to be affected by the marginal proba-
bility of the effect (the “outcome density bias”), the samples 
were matched on that factor as well; they were also matched 
on the probability of 𝐸 occurring in the absence of 𝐶! and 
𝐶! (it was 0). Note that one factor on which the samples 
weren’t matched is the marginal probability of the causes 
(which were .46, .50, and .58 in the negative, zero, and posi-
tive correlation conditions). Because in 𝐺! the marginal 
probability of 𝐸 will, all else being equal, increase as the 
cues become negatively correlated and decrease as they be-
come positively correlated, equating 𝑝(𝐸) across conditions 
entails that 𝑝(𝐶!) is smaller in the negative condition and 
larger in the positive condition. Equating 𝑝(𝐸) was deemed 
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more important because of the documented outcome density 
bias.  

In summary, if subjects’ judgments concerning 𝑝(𝐷|𝐺!) 
reflect an expectation that cues are uncorrelated, then the 
ratings should be highest in the zero-correlation condition. 
If it ignores the statistical properties of the cues altogether, 
then ratings should be highest in the negative-correlation 
condition. Finally, if it reflects an expectation that cues will 
be positively correlated, then ratings should be highest in 
the positive-correlation condition and lowest in the nega-
tive-correlation condition. The following experiment tested 
these predictions. 

Method 
Materials. Participants were presented with causal hy-

potheses in three domains: meteorology, sociology, and 
economics. Each domain had three variables: interest rates, 
trade deficits, and retirement savings in economics; degree 
of urbanization, interest in religion, and socio-economic 
mobility in sociology; and ozone level, air pressure, and 
humidity in meteorology. Each variable could take on two 
possible values. One of these values was described as 
“Normal” and the other was either “High” (or “Large” for 
some variables) or “Low” (or “Small”) according to a ran-

domization scheme described below.  
Each hypothesis was of the form 𝐺! in Fig. 1. The de-

scription of each of the two causal relationships consisted of 
two sentences, one that stated the cause and effect and a 
second that provided information about the causal mecha-
nism. For example, “High interest rates cause high retire-
ment savings. The high interest rates result in high yields on 
government bonds, which are especially attractive for re-

tirement savings because they are such a safe investment.” 
Procedure. Participants first learned a hypothesis in each 

domain. For each hypothesis, they then judged the degree of 
fit between it and the three samples in Table 1. Participants 
thus made a total of nine judgments. 

In each domain, participants were first told that research-
ers (a “research group of economists” in the case of eco-
nomics) had proposed a “new theory” consisting of two 
paragraphs describing the two causal relationships. A dia-
gram of those causal relationships analogous to 𝐺! in Fig. 1 
was also presented. Subjects were verbally instructed in two 
ways that the causal relationships operated independently. 
Firstly, they were explicitly told in two ways that the causes 
were independent (e.g., “note that high interest rates and 
large trade deficits each bring about high retirement savings 
on its own”; “high interest rates can produce high retirement 
savings by itself, and large trade deficits can independently 
produce high retirement savings by itself as well”). Second-
ly, as described in Materials, they were provided with sepa-
rate causal mechanisms for each of the causes, providing an 
account by which each cause could independently bring 
about the effect. 

Participants were then presented with the three samples. 
Each was presented on one screen that listed the 24 observa-
tions (i.e., presentation was simultaneous). See Fig. 3 for an 
example. Each sample was described as being “chosen at 
random” and measured on the three variables that made up 
the hypothesis (interest rates, trade deficits, and retirement 
savings in the case of economics). Subjects were asked to 
judge the likelihood of observing this sample assuming that 
the theory was true. The response scale ranged from “Very 
unlikely” to “Very likely”. So that subjects did not have to 
rely on their memory of the theory, the diagram of the caus-
al relationships was re-presented at the bottom of this screen 
(see Figure 3). The next two screens presented the second 
and third sample. The presentation order of the domains 
(economies, societies, and weather systems) and the three 
samples (Negative, Zero, Positive) was randomized as de-
scribed below. 

Design and participants. There were two between-
subject factors. A Latin square determined the order of 
presentation of the three domains (meteorology, sociology, 
economics). Subjects were randomly assigned to these three 
cells subject to the constraint that an equal number appeared 
in each. The senses of the variables’ non-normal values 
were randomized such that they were either all high, all low, 
or all high in the first, second, and third domain, respective-
ly (HLH) or exhibited the reverse pattern (LHL). Within 
each domain the presentation order of the three samples was 
randomized for each subject. 21 New York University un-
dergraduates received course credit for participating.  

Results  
Initial analyses revealed no effect of domain (economics, 

sociology, meteorology) or sense (HLH, LHL), so the re-
sults presented are collapsed over these factors 

As hypothesized, there was a main effect of inter-cue cor-
relation on ratings of (𝑝(𝐷|𝐺!), F2,32 = 33.82, MSE = 53.58, 
p < .001). Ratings from 0-100 for each of these correlations 
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are displayed in Fig. 4. Additionally, participants consistent-
ly preferred positive correlation, with positively correlated 
cues having higher ratings than non-correlated cues (p < 
.001), which in turn had higher ratings than negatively cor-
related cues (p < .001).  

Discussion 
This article presents evidence that people are sensitive to 

inter-cue correlations in a way not predicted by current 
causal learning models. In particular, they expect that the 
two cues in a common effect structure will be positively 
correlated, resulting in a preference for data that manifests 
such a correlation. Because the current findings involved a 
new sort of task, they generalize the violations of the inde-
pendence constraints stipulated by causal Bayes nets that 
obtain in reasoning tasks in which subjects render condi-
tional probability judgments. Participants’ non-normative 
expectations of the statistical properties of data generated 
from causal structure poses problems for models (e.g., Car-
roll et al., 2013; Griffiths & Tenenbaum, 2005; Lu et al., 
2008; Meder et al., 2014; Powell et al., 2016) that assume 
that learners estimate 𝑝(𝐷|𝐺) in a veridical manner.  

There are important methodological differences between 
the present work and traditional causal learning studies. 
Whereas we asked participants to judge the probability that 
a particular causal structure generated some data set (i.e. 
judge 𝑝(𝐷|𝐺!)), participants are usually asked to estimate 
causal strength (e.g., Cheng, 1997, and many others) or to 
select the causal structure most consistent with the observed 
data (e.g., Lu et al. 2008). We have also conducted a 
straightforward extension of our paradigm by asking sub-
jects to instead estimate the posterior probability of the four 
hypotheses in Fig. 1—that is to estimate 𝑝(𝐺!|𝐷) for each 
𝐺! instead of 𝑝(𝐷|𝐺!). Consistent with the results above, we 
found that 𝑝(𝐺!|𝐷) was highest in the positively-correlated 
condition and lowest in the negatively-correlated one. We 
have also asked subjects to generate hypothetical data from 
𝐺! (having them, in effect, estimate 𝐺!’s joint distribution). 
In fact, that joint distribution reflected their expectation that 

the two causes were positively correlated.  
Our paradigm can reveal the non-normative expectations 

about statistical structure that people have for other network 
topologies. For instance, in a common cause structure 
(𝐸! ← 𝐶 → 𝐸!), the fact that 𝐸! and 𝐸! should be independ-
ent conditioned on their common cause 𝐶 is often violated 
(e.g. Rehder, 2014a). It would be straightforward to gener-
ate samples of data in which, conditioned on 𝐶, the correla-
tion between 𝐸! and 𝐸! is either negative, zero, or positive. 
We predict that the sample with the positive correlations 
will be treated as more consistent with 𝐸! ← 𝐶 → 𝐸!. 

Most modern models of causal learning fall under the 
umbrella of conditional Bayesian networks, which are invar-
iant over statistical properties of parent nodes (Carroll et al., 
2013; Griffiths & Tenenbaum, 2005; Lu et al., 2008; Meder 
et al., 2014; Powell et al., 2016). The current study provides 
evidence that such assumptions contrast with actual causal-
based judgments. A fully descriptive formal model of causal 
learning behaviour, then, must also be able to account for 
participant expectations of the statistical properties of cues.  
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Appendix 
Computing 𝑝!!!!(𝐷|𝐺!) when 𝐺! is interpreted as a con-

ditional network yields, 

𝑝!!!!(𝐷|𝐺!) =  𝑝!!!!(𝐷|𝜽,𝐺!)
!

!

!

!
𝑝(𝜽|𝐺!)d𝑤0d𝑤1d𝑤2

!

!
 (3) 

The computation of 𝑝!!!!(𝐷|𝜽,𝐺!) raises well know issues 
regarding how people estimate the likelihood of sequences 
of events. For example, if the likelihood of the effect 𝐸 in 
some context is .50, then presumably people will judge a 
sequence in which 𝐸 is always present as less probable than 
one in which 𝐸 is present about half the time, in the same 
way that a fair coin is viewed as unlikely to yield a long run 
of all heads or all tails as compared to a mixed sequence 
(Kahneman & Tversky, 1972; also see Maloney et al., 
2004). This concern is especially relevant in the current ex-
periments in which observations are presented simultane-
ously rather than sequentially, making non-representative 
samples easier to detect. Accordingly, here we use the bi-
nomial distribution as a first order approximation of 
𝑝!!!!(𝐷|𝜽,𝐺!). In particular,  

𝑝!!!!(𝐷|𝜽,𝐺!) =  𝐵(𝑁(𝑒 = 1, 𝒄);𝑁(𝒄), 𝑝(𝑒 = 1|𝒄))
𝒄

 (4) 

𝑝(𝑒 = 1|𝒄)  = 1 − (1 − 𝑤!)(1 − 𝑤!)!!(1 − 𝑤!)!!  (5) 

where the product ranges over the four distinct settings of  
𝐶! and 𝐶! in 𝐷.1 𝐵 is the binomial distribution which returns 

                                                             
1 Use of a binomial distribution introduces a normalizing con-

stant in the computation of the likelihood, one that cancels out 
when the relative likelihood of two hypotheses is being computed 
(such as in Griffiths & Tenenbaum’s support model). In contrast, 
in the current experiments subjects estimate absolute rather than 

the probability of 𝑁(𝑒 = 1, 𝒄) “successes” (number of times 
𝐸 is present in context 𝒄) in 𝑁(𝒄) “trials,” where the proba-
bility of a success is 𝑝(𝑒 = 1|𝒄). 

Computing 𝑝(𝐷|𝐺!) when 𝐺! is interpreted as an uncon-
ditional network yields yields  

𝑝(𝐷|𝐺!) =  𝑝(𝐷|𝜽,𝐺!)
!

!

!

!
𝑝(𝜽|𝐺!)d𝑏!d𝑏!d𝑤!d𝑤!d𝑤!

!

!

!

!

!

!
 (6) 

and 𝑝(𝐷|𝐺!) is computed using the multinomical distribu-
tion 𝑀,  

𝑝(𝐷|𝜽,𝐺!) =  𝑀(𝑁(𝑒, 𝒄);  𝑝(𝑒, 𝒄|𝜽,𝐺!)) (7) 

where 𝑁(𝑒, 𝒄) is again the vector of counts associated with 
each unique combination of 𝐶!, 𝐶! and 𝐸 and 𝑝(𝑒 =
1, 𝒄|𝜽,𝐺!)) is the vector of corresponding probabilities, 
where 

𝑝(𝑒, 𝒄|𝜽,𝐺!)) = 𝑝(𝑒|𝒄,𝜽,𝐺!)𝑝(𝒄) = 𝑝(𝑒|𝒄)𝑏!𝑏! (8) 

and 𝑝(𝑒|𝒄) is given by Eq. 5.  
 
 

                                                                                                       
relative likelihoods. Use of a binomial distribution may also be less 
appropriate in traditional learning experiments in which data is 
presented sequentially (where a non-representative sample may be 
less salient) rather than simultaneously.  
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