Lawrence Berkeley National Laboratory Recent Work

Title
SCATTERING OF 50.9 MeV ALPHA PARTICLES FROM Ne20 AND Ca40

Permalink

https://escholarship.org/uc/item/9dr7x4fp

Author

Springer, Arthur.
Publication Date
1965-05-06

University of California

Ernest O. Lawrence Radiation Laboratory

SCATTERING OF 50.9 MeV ALPHA PARTICELS FROM Ne ${ }^{20}$ AND Ca ${ }^{40}$

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CAITFORNIA

Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

SCATTERING OF 50.9 MeV ALPHA PARTICLES FROM Ne ${ }^{20}$ AND Ca^{40}
Arthur Springer
(Ph.D. Thesis)
May 6, 1965
SCATTERING OF 50.9 MeV ALPHA PARTICLES FROM Ne ${ }^{20}$ AND Ca ${ }^{40}$
Contents
Abstract v
I. Introduction 1
II. Experimental. Arrangement and Procedures
A. The Cyclotron and Beam Optics 2
B. Scattering Equipment 4
C. Detectors 5
D. Electronics 5
E. Targets

1. Solid Targets 7
2. Gas Targets 9
F. Operating Procedure 9
III. Data Reduction
A. Energy Level Analysis 10
B. Differential Cross Sections 17
C. Reduced Transition Probabilities 19
D. Evaluation of Reduced Transition Probabilities 23
IV ... Results and DiscussionA. Calcium-40
3. General 25
4. Octupole Vibrations 30
5. Qaudrupole Vibrations 32
6. The $6.94-\mathrm{MeV}$ state 32
B. Neon-20
7. General 34
8. Ground-State Rotational Band 34
9. Negative Parity Octupole Vibrational Bands 34
10. Possible Higher Energy Rotational Bands 37
-iv-
V. Austern and Blair Model
A. Previous Models 40
B. Austern and Blair Model 41
C. Double Excitation 49
VI. Conclusions 54
Acknowledgments 57
Appendix
A. Computer Codes
11. LYCURGUS 59
12. VARMIT 59
13. PIERRE 63
B. Tables of Differential Cross Sections 65
References 83

SCATMERING OF 50.9 MeV ALPHA PARIICLES FROM Ne^{20} AND Ca ${ }^{40}$ Arthur Springer
 Department of Chemistry and Lawrence Radiation Laboratory University of California Berkeley, California

May 6, 1965

Abstract

\therefore More than a dozen inelastic levels of both Ne^{20} and Ca^{40} were excited by inelastic scattering of 50.9 MeV alpha particles. Differential cross sections for these excitations were measured, and by analysis with the Austern and Blair model, one-step and two-step excitation processes were distinguished from each other. Spins, parities, and reduced transition probabilities were also extracted with the aid of this model. This information was then used to discuss the collective nuclear structure of Ca^{40}, which is vibrational, and Ne^{20} which has rotational bands based on both the ground state and octupole vibrations.

I. INIRODUCIION

This thesis is completely devoted to inelastic alpha scattering, a direct surface reaction which is currently receiving considerable attention. Most of the interest is due to three observations: I) That inelastic alpha scattering primarily excites collective states, states Which are best described in terms of the viprational or rotational model; 2) That from the phase and smallmangle behavior of the regular oscillations that characterize differential cross sections for alpha excitation, the angular momentum transfer in a one-step process can be measured. It is also possible to distinguish between one-step and two-step excitation processes; 3) That the reduced transition probabilities obtained from inelastic alpha scattering are directly related to the corresponding transition probabilities of gamma decay and Coulomb excitation.

This impressive list must be tempered with one obvious limitationthe information can only be obtained if the energy resolution of the experimental system/permits the observation of discrete states.

With these points in mind two nuclei were chosen for investigation; Ne^{20} and Ca^{40}. Neon-20 is the lightest nucleus known to have well-defined rotational bands ${ }^{1}$ and the combination of the facts that itis even-even and has comparatively few nucleons causes the excited states to be well separated. Although Ca^{40} has twice the number of nucleons, it also has well-separated states since it is doubly magic. Because of its spherical symmetry no rotational bands or enhanced quadrupole vibrations are expected. An enhanced octupole vibration found throughout the nuclei ${ }^{2}$ and higher vibrations have previously been seen. 3

In order to extract the information obtainable from inelastic alpha scattering mentioned earlier, a model is needed. Austern and Blair, 4,5 proposed a simple adiabatic model which has up to the present time rarely been compared with experimental data. ${ }^{6}$ This model is based on a collective picture of the nucleus. To first order in the nuclear deformation it deals with one-step processes.

Calcium-40 was analyzed first. Its one-phonon vibrational states are known to lie at about $4 \mathrm{MeV}^{7}$ and since most of the states studied in
this experiment are found below 8 MeV , contributions from double phonon excitation should be slight. In this case the model predicts that all differential cross sections involving the same angular momentum transfer should have the same shape. In the section on Ca^{40} results, comparisons of this type are made. Since as will be shown, the model works excellently for Ca^{40}, it was next used to analyze the more complicated $N \mathrm{e}^{20}$. data.

If the rotational band assignments in $\mathrm{Ne}{ }^{20}$ are correct, ${ }^{1}$ the three lowest bands are a positive parity $\mathrm{K}=0$ band based on the $0+$ ground state and two negative parity bands based on octupole vibrations with K projections of 0 and 2. According to this picture the ground-state band 2+ level and the 3 - levels of the two negative parity bands should be excited by enhanced single-step processes while the other members of these bands should be excited by non-enhanced two-step processes. This situation is analogous to Coulomb excitation of nuclei in the permanently deformed region and in Secs. TV-B. 3 and.VI the similarities of inelastic scattering of alpha particles from $\mathbb{N e}$ and multiple Coulomb excitation of U^{238}, are pointed out. ${ }^{8}$

II. EXPERTMENTAL ARRANGEMENT AND PROCEDJRES

A. The Cyclotron and Beam Optics

Although the new 88 -inch spiral-ridge cyclotron is capable of providing variable energy beams of all the light charged particles, in the present experiment only the $50-\mathrm{MeV}$ alpha particle beam was used. The beam optical system is shown in Fig. I. In the radial plane a quadrupolelens doublet created an image of the effective source half-way to the analyzing magnet which then deflected the beam 57°, producing a radial image on the analyzing slit. This slit was made by water-cooled tantalum jaws whose radial position and separation could be remotely controlled. Under normal conditions the slit was 0.06-inches wide. After the slit the beam passed through the main shielding wall of the cyclotron vault. The particles were then brought to a radial focus at the target position in

Fig. 1. Beam optics system of 88-in. cyclotron, cave 1 .
the center of the scattering chamber by a second quadrupole doublet. The beam spot on the target was approximately $1 / 8$ in. wide by $1 / 4$-in. high. In the vertical plane the beam was roughly parailel. To minimize background due to slit scattering, no other beam collimation was used with the calcium target. Special analysis of the data was performed to correct for possible beam shifts; but no shifts corresponding to more than 0.1° were noted.

B. Scattering Equipment

The beam was measured by a magnetically protected Faraday cup and an integrating electrometer. Typically the beam intensity was $0.5 \mu \mathrm{~A}$. The energy of the beam was determined by measuring the range of the particles by a system of two remotely controlled 12-position foil wheels located: directly in front of the Faraday cup. The range was converted to an equivalent energy by use of the range tables of Williamson and Boujot. 9 On the first run the energy at the center of the target was calculated to be 50.9 MeV and on subsequent runs the frequency was adjusted until the range-energy measurement was again consistent with this.

The scattering chamber consisted of a 36-in. diameter vacuum tank with a rotatable table on which the detector was placed. The table and target holder assembly could be moved by remote control. The positions of the counter and target were read on a digital volt meter. The counter assembly intercepted the beam at 6° thus limiting the useful table positions. The basic Faraday cup and scattering chamber have been described before. $10,11,12$ The entire system was evacuated by a 6 -in. water-cooled oil-diffusion pump backed by a Kinney mechánical pump.

C. Detectors

From a practical standpoint, one detector is sufficient to study inelastic scattering of alpha particles higher in energy than the highest energy He^{3} group. This corresponds to over 12 MeV of excitation in both $\mathrm{Ca}{ }^{40}$ and Ne^{20}. Particles lighter than He^{3} are not stopped in the detector and cannot lose sufficient energy to overlap the energy range of interest. Particles heavier than alphas are not seen because of low cross sections or high negative Q-values. In any case, the energy scale was accurate enough to identify particle groups by energy vibration with angle.

The counters were 0.06 -in. thick lithium-drifted silicon detectors made by a well described procedure. ${ }^{13}$ The starting material was p-type silicon into which lithium was thermally diffused. Then under a reverse bias at $125^{\circ} \mathrm{C}$ the lithium ions were drifted to form a compensated region of intrinsic resistivity. . In the counter assembly (Fig. 2) contact was made by a stainless-steel pressure contact on the lithium side and by a silver ring to the gold surface-barrier side. The bias voltages applied were 250 to 300 V , the leakage currents were 1 to $4 \mu \mathrm{~A}$ and the overall. resolutions for alpha particles scattered from gold leaf were 70 to 80 keV .

D. Electronics

The detector was connected by a short length of low-capacity cable to a charge sensitive preamplifier ${ }^{14}$ and by a $100-\mathrm{K} \Omega$ resistor to a bias supply. The preamplifier output signals traveled to the counting area through a 1258 cable terminated at the input of the main amplifier system. ${ }^{14}$ In the main amplifier the pulses were differentiated with a time constant of $0.5 \mu \mathrm{sec}$, amplified, and then shaped to a $1 \mu \mathrm{sec}$ square pulse suitable for the 4096 -channel Nuclear Data pulse-height analyzer. Energy spectra were stored in the first l024-channel group.

To avoid difficulties with pick-up of electrical noise from such sources as the cyclotron oscillator, great care was taken to maintain a one-point ground system and to avoid loops. The Installation was very successful in this respect.

Fig. 2. Counter and gas target collimation.

E. Targets

1. Solid Targets

The calcium targets were prepared by rolling natural calcium metal turnings ($97 \% \mathrm{Ca}^{40}$) in an inert atmosphere of dry argon. Application of a small amount of carbon tetrachloride before rolling the calcium generally reduced the tendency of the thin calcium foil to stick to the roller. All the steps of target preparation were performed in the inert atmosphere box and were as follows. The sealed commercial jar was opened. and several turnings, one at a time, were hammered between two tantalum sheets until pieces thin enough to fit between the rollers were produced. All pieces which showed signs of strain or tears were discarded. One of the remaining pieces was then rolled with painstaking care, increasing the roller pressure slightly with each pass. Each time the calcium foil became longer than two inches in length it was cut in two. One piece was saved and the other was rolled further. Eventually, the foil would stick to the rollers and tear. If a piece of foil large enough for a target could be saved it was mounted at this point. If not, the piece saved from the last stage was then rolled one less time than the piece that tore, and then mounted. The mounted foil was transferred to the target mechanism of the scattering chamber and then raised into a small compartment which was closed off and quickly evacuated. Thus, exposure of the foil during the twenty minutes it took to pump down the scattering chamber was avoided. Targets prepared in this way had a thickness of. 0.6 to $0.7 \mathrm{mg} / \mathrm{cm}^{2}$. Carbon and oxygen were the only appreciable impurities. and together were $\%$ by weight of the total thickness. The handicap of having the impurity peaks obscure inelastic calcium peaks at certain angles was partially compensated by the usefulness of these impurity. peaks in the angle and energy scale calibration described in Sec. III-A. The target thickness was determined by a quantitative chemical analysis of the calcium in a piece of the target one square centimeter in area and centered on the spot discolored by the beam.

Figure 3 is a picture of one of the bombarded calcium foils after exposure to the air for several hours. The region hit by the beam

ZN-4592

Fig. 3. Beam spot on partially oxidized calcium target.
remained dark and metallic while the rest of the foil reacted to form transparent calcium carbonate. This gives some indication of how little the beam drifted and how well focused it was. The dimensions of the metallic remnant was $1 / 8-i n$, by $1 / 8-i n$. This is of concern since in Sec. II-A it was pointed out that no collimators were used between the analyzing slit and the target, a distance of twenty feet.

2. Gas Target

$\mathrm{Ne}{ }^{20}$ was contained in a gas holder 3-in. in diameter at a pressure of about $10-\mathrm{cm} \mathrm{Hg}$. The windows ; of the gas cell were 0.0001 -in. thick Havar (from the Hamilton Watch Company) foil. The placement of the counter collimators for a gas target can be seen in Fig. 2. The resulting solid angle was $8.46 \times 10^{-4} \mathrm{sr}$. Pressure adjustment was accomplished by a mercury Tolpler pump and the pressure was measured by a mercury manometer. This system was especially designed for the recovery of rare gases. The neon ($98.1 \% \mathrm{Ne}^{20}$) was obtained from the Mound Research Corporation.

F. Operating Procedure

The counter and electronics were tested before each cyclotron run with both a pulse generator and known energy alpha particles from decay of Th^{228}. By suitable adjustment of the bias cut and post-amplifier gain, pulses accepted by the pulse-height analyzer were made to correspond to alpha particles between 31 and 51 MeV .

The zero position of the beam was determined before and after each experiment by measuring the elastic differential cross section at a series of points separated by 0.1° in the vicinity of 26.5° on each side of the beam direction. At this angle a 0.1° shift in angle causes a 10% change in differential cross section. By averaging the two digital volt meter readings on each side of the beam direction which gave the same cross section, the digital volt meter reading corresponding to zero degrees was determined within 0.1°. A reading of 26.5 was specifically picked for Ca^{40}. A slightly different angle was used for Ne^{20}. During
the experiment in which the target shown in Fig. 3 was bombarded, there was less than a 0.1° change in beam position. The beam energy was measured before and after the experiment by a range measurement described in Sec. I-B. As a final check on the beam energy and the accuracy of the counter angles, an energy scale was calculated from the pulse height of the known inelastic peaks at the first angle. At each subsequent angle the elastic-peak pulse height was converted to an equivalent alphaparticle energy by means of this scale and compared with the energy calculated for elastic alpha particles at that angle. The computer code used for all kinematic calculations is described in the Appendix in the section called LYCURGUS.
III. DATA REDUCTION

A. Energy Level Analysis

The energy, spectrum at each counter angle recorded by the Nuclear Data pulse-height analyzer was punched on a paper type. The information on the paper tape was transferred to magnetic tape by an IBM-1101 computer. This magnetic tape was then used as input for a computer program named DIABLO written by Mr. Don Zurlinden. This code generated two additional magnetic tapes. One was used to operate a Calcomp plotter. Figures 4 and 5 were obtained in this way. The other was used as input for a second computer program called VARMIT. The purpose of VARMIT was to determine the peak channel number and the number of counts in each peak both for fully resolved and for overlapping peaks. As a practical consideration the counting statistics and the ability to separate overlapping peaks are related. Two peaks each containing about a thousand counts can be unfolded if separated by more than one half their full-width at half maximum, even though at the minimum separation mentioned only one smooth peak with no shoulders appears in the unresolved spectrum.

The separation was accomplished by expanding each energy spectrum as a series of Gaussian curves. A chi-squared minimization was then performed where

Fig. 4. A Ca ${ }^{40}$ energy spectrum at $\theta_{\text {lab }}=18.5^{\circ}$.

MU-35063

Fig. 5. Neon-20 19° lab energy spectrum.

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{m} \frac{\left(f_{i}-c t s_{i}\right)^{2}}{c t s_{1}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}=\sum_{j=1}^{n} x_{j} e^{-2.773}\left(\frac{i-x_{n+j}}{x_{2 n+1}}\right)^{2} \tag{2}
\end{equation*}
$$

where m is the number of channels, cts is the number of counts in the ith channel, n is the number of peaks, X_{j} is the height of the jth peak, x_{n+j} is the position of the j th peak and $X_{2 n+1}$ is the common full width at half maximum of all the peaks. The minimization was performed by a general minimization code written by Davidon ${ }^{15}$ and modified by the author. The rest of the code was written by the author with the help of Mr. Joseph Good and Mr. Eric. Beals. The Fortran listing and a brief description of this code appears in the Appendix. The ($2 n+1$) parameters consisting of $X_{k}, k=1,2 \ldots, 2 n+1$ were varied independently and afterwards relationships between the parameters due to calculable peak positions of known energy levels were checked as external criteria of meaningful convergence. In no case where a hand calculation for a single resolved peak was compared with the corresponding computer calculation did the two differ by as much as 5%. A typical spectrum and computer fit is shown in Fig. 6. From preliminary experimental work it was determined that Gaussian shaped peaks were a close approximation to the true peak shape only when all sources of slit scattering had been removed. This promoted the decision to not use a defining slit between the target and analyzing slit referred to in Secs. II-A and II-E.I.

With the peak positions thus determined, an energy scale was set up in the following manner. From a relativistic kinematics program called LYCURGUS described in the Appendix, the energy of scattered alpha particles and other scattered particles is given as a function of Q-value for the reaction, beam energy and angle of the scattered particle. The Q-values for the inelastic alpha scattering are obtained directly from

MU. 35700

Fig. 6. The Ca^{40} energy spectrum shown in Fig. 4 was expanded in terms of a series of Gaussian peaks and a linear background. The portion of the fit shown here has a χ^{2} of 76 for 58° of freedom. All the peaks have the same width, so the parameters varied correspond to the positions and heights of the peaks plus one variable width. The background was approximated by a straight line whose value was 10 counts per channel at the lowest channels shown and 7 counts per channel at the highest.
reactions were found in Ashby and Catron's tables. ${ }^{17}$ The beam energy (see Sec. II-F) had previously been determined. A plot could therefore be made of energy versus channel for each known group from the energy spectra taken at each angle.

The functional form was found to be linear by the following, rather devious method. The energy scale was expanded in a series of polynomials with the channel number as an variable, starting first with a straight line and then successively adding higher terms up to 5 th order. The coefficients were determined by a standard linear least squares method: However, x^{2} did not decrease sufficiently with increased parameters to warrant using any form beyond the linear one. With the energy scale determined to first order, second-order corrections could be made by using deviations in the points corresponding to carbon and oxygen impurities to correct the angles. This was not in fact necessary since the corrections were found to be less than 0.1° of a degree.

In the case of Ca^{40} there are two regions where the energy of the levels are well known. From inelastic proton scattering ${ }^{18}$ the energies of levels up to 6 MeV in excitation are known to better than 10 keV . From $\mathrm{K}^{39}(\mathrm{p}, \gamma) \mathrm{Ca}^{40}$ the energies of levels from 9 MeV to 11 MeV are also known to better than $10 \mathrm{keV} .{ }^{19}$ Most of the levels analyzed in this thesis lie between the two known regions. If even one level in the higher region could be positively identified with one of the discrete groups excited in inelastic alpha. scattering an internal interpolation could be performed which would make systematic errors highly unlikely. Finding one such level was not easy, since the resolution of this experiment (115 keV) was greater than most energy-level separations. A distinct peak does appear at 9.87 MeV which corresponds to a strong doublet at the. same energy. Even if this identification had not been made, by use of the He^{3} groups corresponding to the Ca^{41} ground state a slightly less trustworthy interpolation could still have been made. In Fig. 7 only peaks from the energy spectra at $30^{\circ}, 35^{\circ}, 40^{\circ}$, and 45° have been plotted to increase visual clarity. The levels whose energy have been determined

Fig. 7. Energy scale for energy spectra from $\theta_{l a b}=30^{\circ}$ to $\theta_{\text {lab }}=45^{\circ}$. Only $\theta_{1 a b}=30^{\circ}, 35^{\circ}, 40^{\circ}$, and 45° are plotted. The ordinate is the calculated energy assuming incident beam energy of 50.9 MeV , and the Q values given in Table I. The abscissa is the channel of the peak. The states underlined were used to determine the line.
by this method are not underlined. To further strengthen the energy assignment, it can be seen from Fig. 7 that the carbon- and oxygen-impurity peaks fairly well cover the region between known levels. This can be fully appreciated if one tries to imagine what the plot would look like with just the 16 angles between 30° and 45° plotted. These arguments justify the 10 keV uncertainty in the energy assignments given in Table I.

For Ne^{20} a much simpler analysis was employed, since the energies of all the levels seen in this experiment were already known. A simple plot of excitation energy versus channel was made for two angles and it was observed that a smooth line was obtained in each case.

Tó conclude this section on energy scales, it must be stressed that the extreme linearity of the total counter and electronic system described in Secs. II-C and II-D greatly simplified the analysis and decreased the margin of energy uncertainty.

B. Differential Cross Sections

Differential cross sections were also calculated by the VARMIT computer code by the relationship

$$
\begin{equation*}
\left(\left.\frac{d \sigma}{d \Omega}\right|_{\text {C.M. }}=G J\left(\frac{\text { counts }}{\mu c}\right)\right. \tag{4}
\end{equation*}
$$

where

$$
J=\frac{d \cos \theta_{l a b}}{d \cos \theta_{C \cdot M}}
$$

and μc is the total charge in μ coulombs collected in the Faraday cup at the given angle.

For a solid target

$$
\begin{gather*}
G=\frac{1.602 \times 10^{-19} \text { coui. }}{6.023 \times 10^{23} \frac{\text { nuclei }}{\text { mole }} \times 10^{6} \frac{\mu \operatorname{coul}}{\text { coul }} \times 10^{27} \frac{\mathrm{mb}}{\mathrm{~cm}^{2}} \times 10^{3} \frac{\mathrm{mg}}{\mathrm{gm}}\left|\frac{\mathrm{R}^{2}}{\text { area }}\right| \text { ZAsin } \Phi} \tag{5}\\
\\
=2.66 \times 10^{-7}\left(\left.\frac{\mathrm{R}^{2}}{\text { area }} \right\rvert\, \text { ZAsin } \Phi / \mathrm{T}\right.
\end{gather*}
$$

Table I. Q-values, spins, and parities of Ca^{40} energy levels.

$\begin{gathered} -\mathrm{Q} \text { value } \\ (\mathrm{MeV}) \end{gathered}$	```QQ value other experiments (MeV)```	Ref.	$\therefore J^{\pi}$	$\begin{gathered} J^{\pi} \\ \text { other } \\ \text { experiments } \end{gathered}$	Ref.
3.73	3.730	18	$3-$	3-	$\frac{3,7,16,19,}{26}$
3.90	3.900	18	$2+$	$2+$	$3,7,16,19,$
4.48	4.483	18	5-	5-	$\begin{aligned} & 3,7,16,19, \\ & 26 \end{aligned}$
5.25	$\begin{aligned} & 5.241 \\ & 5.272 \end{aligned}$	18	?-	3- or 1-	26
5.62	$\begin{aligned} & 5.606 \\ & 5.621 \end{aligned}$	18	?-	$4+$	26
5.90	5.901	18	$3-$	1-	26
6.28	6.29	26	$3-$	$3-$	3,26
6.58	6.56	26	$3-$	3-	26
6.94	6.94	26	$\begin{gathered} 2+\text { and } \\ (3-\text { or } \div) \end{gathered}$	$\begin{gathered} 2+, 3- \\ 1- \end{gathered}$	$\begin{aligned} & 3 . \\ & 26 \end{aligned}$
7.92	7.91	26	$4+$	$4+$	3,26
8.11	8.09	26	$2+$	$2+$	26
8.38	8.37	26	$4+$	5-	3,26
8.59	--	--	$2+$	--	-
9.87	$\begin{aligned} & 9.872 \\ & 9.876 \end{aligned}$	40°			

where R is the distance from target to counter, "area" refers to the counter collimator, Z is the charge of the projectile, A is the atomic weight of the target, T is the thickness in $\mathrm{mg} / \mathrm{cm}^{2}$, and Φ is the target angle.

For a gas target
$G=2.66 \times 10^{-7} \frac{76 \mathrm{~cm} \text { of } \mathrm{Hg}}{\mathrm{atm}} \frac{82.05 \mathrm{~atm} \mathrm{cc}}{\mathrm{g}-\mathrm{mole}_{\mathrm{K}}} \times 10^{-3} \frac{\mathrm{gm}}{\mathrm{mg}} \frac{(\mathrm{T}+273)\left(\ell_{1}+l_{2}\right)^{2} \mathrm{ZA} \sin \theta}{\mathrm{PN} \mathrm{W}_{1} \mathrm{~W}_{2} \mathrm{~h}_{2}\left[1+l_{1} / \ell_{2}\right]}$

$$
\begin{equation*}
=\frac{1.66 \times 10^{-6}(1+273)\left(\ell_{1}+l_{2}\right)^{2} Z \sin \theta}{\text { PN W} W_{1} W_{2} h_{2}\left[1+\ell_{1} / l_{2}\right]} \tag{6}
\end{equation*}
$$

where T is the gas target temperature in degrees centigrade, l_{1} and ℓ_{2} are the distances from the front collimator to the gas target center and from the front collimator to the rear collimator, θ is the lab scattering angle, $Z A$ is the charge of the projectile, P is the gas pressure $(\mathrm{cm} \mathrm{Hg}), W_{1}$ and W_{2} are the widths of the front and rear slits and h_{2} is the height of the rear silit. All linear dimensions are measured in centimeters. N is the number of target-element atoms per molecule of the gas.

C. Reduced Transition Probabilities

Collective vibrations are associated with an oscillating electric multipole moment ${ }^{20}$

$$
\begin{equation*}
M\left(E_{\lambda}, \mu\right)=\frac{3}{4 \pi} Z_{0} R_{\alpha} \alpha_{\lambda \mu} \tag{7}
\end{equation*}
$$

The normalization has been chosen so that for a nucleus with constant density and sharp surface, the parameters $\alpha_{\lambda \mu}$ would define the surface by

$$
\begin{equation*}
\mathrm{R}(\Omega)=\mathrm{R}_{0}\left(1+\sum_{\lambda \mu} \alpha_{\lambda \mu} \mathrm{Y}_{\lambda}^{\mu^{*}}(\Omega)\right) \tag{8}
\end{equation*}
$$

where $\Omega \equiv(\theta, \phi)$ are the polar angles of the radius vector in a space fixed coordinate system. For small oscillations the collective Hamiltonian is approximately

$$
\begin{equation*}
H_{\operatorname{coll}}=\sum_{\lambda \mu} \frac{1}{2} B_{\lambda}\left|\dot{\alpha}_{\lambda \mu}\right|^{2}+\frac{1}{2} c_{\lambda}\left|\alpha_{\lambda \mu}\right|^{2} \tag{9}
\end{equation*}
$$

corresponding to a set of independent harmonic oscillators, with energy quanta

$$
\begin{equation*}
\hbar \omega_{\lambda}=\hbar\left(\frac{C_{\lambda}}{B_{\lambda}}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Vibrational excitations are characterized by enhanced electric transition probabilities. For one phonon excitation the transition probability is given by

$$
\begin{equation*}
B\left(E_{\lambda} ; \lambda \rightarrow 0\right)=\left(\frac{3}{4} Z_{0} R_{0}^{\lambda}\right)^{2} \frac{\hbar}{2\left(B_{\lambda} C^{\prime}\right)^{1 / 2}} \tag{11}
\end{equation*}
$$

since

$$
\begin{equation*}
\langle\lambda| \alpha_{\lambda \mu}|0\rangle^{2}=\frac{\hbar}{2\left(B_{\lambda} C_{\lambda}\right)^{1 / 2}} \tag{12}
\end{equation*}
$$

for a harmonic oscillator. The $B\left(E_{\lambda} ; \lambda \rightarrow 0\right)$ are defined according to Ref. 12.6

If on the other hand the nucleus has a permanent deformation and an associated set of rotational levels, then the nuclear surface is approximately described by

$$
\begin{equation*}
R(\omega)=R_{o}\left(1+\sum_{l} \beta_{l} Y_{l}{ }^{\circ}(\omega)\right) \tag{13}
\end{equation*}
$$

where $\omega \equiv\left(\theta, \Phi^{\prime}\right)$ and θ^{\prime} is the azimuthal angle measured from the symmetry axis, see Fig. 8. The nuclear surface as veiwed from the direc-. tion $\Omega \equiv(\Theta, \Phi)$ of the fixed-coordinate system, depends on the Eulerean angles ($\alpha \beta \gamma$) corresponding, to a rotation of this system into the direction

MU-35658

Fig. 8. Relationship between body centered and fixed coordinate systems. The last Eulerean angle γ is not shown.
of the nuclear symmetry axis. ${ }^{\dagger}$.

$$
\begin{equation*}
Y_{l}^{O}(\omega)=\sum_{\mathrm{m}} Y_{l}^{\mathrm{m}^{*}}(\Omega) D_{\mathrm{mo}}^{\ell^{*}}(\alpha \beta \gamma) \tag{14}
\end{equation*}
$$

Since in the fixed system the nuclear surface can still be represented by

$$
\begin{equation*}
R(\Omega)=R_{0}\left(1+\alpha_{\ell m} Y^{\mathrm{m}^{*}}(\Omega)\right) \tag{15}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\alpha_{\ell \mathrm{m}}=\beta_{\ell_{\mathrm{mo}}}^{D_{\mathrm{m}}^{*}}(\alpha \beta \gamma) \tag{16}
\end{equation*}
$$

Using the normalized wave functions of a symmetric top

$$
\begin{equation*}
\operatorname{IMK}=\left(\frac{2 I+1}{8 \pi^{2}}\right)^{1 / 2} D_{\mathrm{MK}}^{I}(\alpha \beta \gamma) \tag{17}
\end{equation*}
$$

the matrix element of the operator $\alpha_{\text {IM }}$ can be evaluated as follows
$\langle I M K| \alpha_{I M}|000\rangle=\int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin \beta \int_{-\pi}^{\pi} d \gamma\left|\frac{I+1}{8^{2}}\right|^{1 / 2} D_{M K}^{I}(\alpha \beta \gamma) \beta_{I} D_{M O}^{I_{M}^{*}}(\alpha \beta \gamma)\left|\frac{I}{8 \pi^{2}}\right|^{1 / 2}$

$$
\begin{equation*}
=\frac{\beta_{I}}{(2 I+1)^{I / 2}} \tag{18}
\end{equation*}
$$

In the Austern and Blair model (Sec. V-A) the physically meaningful quantities are ${ }^{\xi} I M$ and δ_{I} which are the product of the "nuclear radius" R_{0} and $\alpha_{I M}$ and β_{I} respectively. Since the radius is not

[^0]determined in this type of analysis, to compare inelastic scattering transition probabilities with other experiments the radius must be obtained separately. In the next section a method of obtaining suitable radii is discussed.

Since the inelastic cross section is proportional to the square of the matrix element of ${ }^{5}$ IM and independent of the model assumed for the collective motion, it is convenient to report the matrix element in terms of the parameter δ_{I} for vibrational as well as rotational excitation.

From Eqs. (12) and (18) the relationship between the two sets of parameters is

$$
\begin{equation*}
\frac{\hbar R_{0}^{2}}{2\left(B_{I_{I}}\right)^{I / 2}}=\frac{\delta_{I}^{2}}{2 I+1} \tag{19}
\end{equation*}
$$

The connection between the electric reduced transition probability and inelastic alpha scattering is that collective inelastic scattering is induced by the variations in the radius corresponding to shape oscillations. Specifically when the optical potential is expanded in powers of $\alpha(\Omega) \equiv \sum_{\ell m} \xi \ell^{Y} \ell^{m}(\Omega)$, it is the term $\partial V / \partial R \alpha(\Omega)$ which leads to single excitation.

D. Evaluation of Reduced Transition Probabilities

In the last section relationships were developed between vibrational model parameters and rotational model parameters. In terms of this relationship the reduced transition probability is given by

$$
\begin{equation*}
B\left(E_{\lambda} ; \lambda \rightarrow 0\right)=\left(\frac{3}{4} Z e R_{0}^{\lambda}\right)^{2} \frac{B \lambda^{2}}{2 \lambda+1} \tag{20}
\end{equation*}
$$

assuming a uniform charge distribution.
Lane and Pendelbury ${ }^{2}$ have obtained for non-uniform charge distributions.
$-24-$

$$
\begin{equation*}
\frac{B\left(E_{\lambda} ; \lambda \rightarrow 0\right)}{e^{2}}=(2 \lambda+1)\left[\frac{z\left\langle r^{2 \lambda-2}\right\rangle}{4 \pi R_{1 / 2}^{\lambda-2}}\right]^{2} \beta_{\lambda}^{2} \tag{21}
\end{equation*}
$$

and for a single particle transition

$$
\begin{equation*}
\frac{B_{s p}\left(E_{\lambda} ; \lambda \rightarrow 0\right)}{e^{2}}=\frac{\left\langle\dot{r}^{\lambda}\right\rangle^{2}}{4 \pi} \tag{22}
\end{equation*}
$$

where

$$
\left\langle\dot{r}^{2 \lambda-2}\right\rangle=\frac{\int_{0}^{\infty} r^{2 \lambda} \rho(r) d r}{\int_{0}^{\infty} r^{2} \rho(r) d r}
$$

and

$$
\rho(r)=\left(1+e \frac{r-R_{1} / 2}{.55}\right)^{-1}
$$

where $R_{l / 2}$ is the half density radius.
The quantity δ_{λ} is directly extracted from experimental cross sections by use of the Austern and Blair model (Sec. V-B).

Since neither the "nuclear radius" R_{0} or the half density radius $R_{1 / 2}$ is directly measurable they are both taken from electron scattering data of Hofstadter with R_{0} corresponding to his equivalent uniform charge radius.

IV. RESULTS AND DISCUSSION

A. Calcium-40

1. General

In the excitation of levels in Ca^{40} the states based on octupole vibrations are dominant. Most of the strength resides in the lowest 3level at 3.73 MeV which has been seen by many experiments ${ }^{16}$ and is known to be enhanced 11 times over single particle estimates. ${ }^{2}$ Several other 3- states are also enhanced and are discussed in the following section. Octupole vibrational states are found widely throughout the nuclei. ${ }^{2,24,25}$ Their excitation energy and strength are not closely related to shell structure. This is in marked contrast to quadrupole vibrations which are found at increasingly higher energies in the vicinity of closed shells and correspondingly are less enhanced. In Ca. ${ }^{40}$ the lowest $2+$ is found at 3.90 MeV and its reduced transition probability is indicative of a single particle excitation. Three other 2+ states are also seen, again without enhanced excitation. Calcium-40 is one of the few nucIei, where a one-phonon 2^{5} th pole vibrational state has been identitied. According to the prescription used in this work for calculating enhancements (Sec. III-D) the 5- level at 4.483 MeV is enhanced 24 times over single particle excitation. No higher 5- states were seen in this experiment. A one-phonon 2^{4} th pole excitation to a state at 7.9 MeV was first observed by inelastic electron scattering. This has been also seen in the present work along with another 2^{4} th pole excitation at 8.38 MeV . Both are enhanced by 2 to 4 time single-particle estimates.

Angular distributions to 13 excited states were measured. The differential cross sections are tabulated in the Appendix. The levels are the $3.73,3.90,4.48,5.25,5.62,5.90,6.28,6.58,6.94,7.92,8.11$, and 8.59 MeV states.

Angular distributions for $\ell=3,5,2$, and 4 are groupedrespectively in Figs. 9-12. The known $3.35 \mathrm{MeV} 0+$ level was possibly seen at a few angles but it was not made in sufficient strength for an angular distribution to be measured. The peaks at 5.25 and 5.62 MeV are known to be doublets. They are weakly excited and because of the poor statistics

MU. 34829

Fig. 9. Austern and Blair $\ell=3$ unnormalized angular distribution and states with similar experimental differential cross section.

MU. 34825

Fig. 10. Austern and Blair $\ell=5$ unnormalized angular distribution and the $4.483-\mathrm{MeV}$ level differential cross section.

MU. 34830

Fig. 1l. Austern and Blair $\ell=2$ unnormalized angular distribution and states with similar experimental differential cross sections.

MU. 34824

Fig. 12. Austern and Blair $\ell=4$ unnormalized angular distribution and states with similar experimental differential cross section.
and background interference they appear to oscillate only feebly. Their phase corresponds to negative parity states. Corresponding peaks were seen in a 30 MeV inelastic scattering experiment ${ }^{26}$ and were respectively reported as a negative parity and a $4+$ level. The $4+$ assignment is surprising since the gamma decay does not cascade through the $2+$ level at 3.90 MeV , but occurs directly to the ground state. ${ }^{14}$ The $6.94-\mathrm{MeV}$ peak appears to be a doublet from its angular distribution. This is discussed in the last part of this section. A level or group of levels is consistently seen at 7.5 MeV but is too weak for further analysis. The $9.87-\mathrm{MeV}$ doublet was identified only for purposes of energy scale calibration (see Sec. III-A).

Since the octupole states dominate the Ca^{40} energy spectra at most angles, 18° lab which corresponds to a minimum in the angular distributions of octupole states and a maximum for the other types of vibrational excitation seen has:been selected for Fig. 4. Two points of interest are the separation between the $3.73-$ and $3.90-\mathrm{MeV}$ states which in other scattering experiments at equally high energies have not been , resolved, and the Iow \because background up to 8 MeV excitation: This latter is due mainly to the elimination of slit scattering (see Sec. II-A).

2. Octupole Vibrations

The $3.73-\mathrm{MeV}$ level of Ca^{40} is one of the examples picked by Lane and Pendlebury (see Sec. III-D) and so a direct comparison of $B(3 \rightarrow 0) / e^{2}$ can be made. Analyzing inelastic electron scattering data they obtain a' value of $2.2 \times 10^{3} f^{6}$ for the reduced-octupole-transition probability. This is the same as the value obtained from the present experiment. The rest of the reduced-transition probabilities obtained here are found in Table II.

The next apparent octupole vibration is the $5.90-\mathrm{MeV}$ state. It is the only octupole state whose strength was found not to be enhanced. By inelastic scattering experiments at M.I.T. this level was assigned a spin and parity of 1 -. ${ }^{26}$ After careful study of their data it seems that this assignment is based on one small-angle point and may be incorrect.

Table II. Reduced-transition probabilities for de-excitation of Ca^{40} energy levels.

$\begin{aligned} & \text {-Q value } \\ & (\mathrm{MeV}) \end{aligned}$	$\cdot \mathrm{J} \pi$	$\begin{gathered} \delta_{\mathrm{J}} \\ (\text { fermis }) \end{gathered}$	β_{J}^{\dagger}	$\begin{aligned} & \frac{B(J \rightarrow 0)^{a}}{e^{2}} \\ & (\text { fermis } 2 J) \end{aligned}$	$\frac{B(J \rightarrow 0)_{s p}}{\left(\mathrm{e}^{2}\right.}$	$\left.\underset{\sim}{\mid \mu}\right\|^{2}$
3.73	$3-$	0.85	0.19	2.2×10^{3}	1.9×10^{2}	11.4
3.90	$2+$	0.34	0.075	11.	12.	0.88
4.48	5-	0.35:	0.077	2.1×10^{6}	8.7×10^{4}	. 24.
5.90	3-	0.18	0.040	10^{2}	1.9×10^{2}	0.52
6.28	3-	0.40	0.088	5.5×10^{2}	1.9×10^{2}	2.8
6.58	3-	0.31	0.069	4.2×10^{2}	1.9×10^{2}	2.2
6:94	$3+b$	$\begin{aligned} & 0.21 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.047 \\ & 0.078 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 4.9 \times 10^{2} \end{aligned}$	$\frac{12 .}{1.9 \times 10^{2}}$	0.74
7.92	$4+$	0.29	0.064	1.4×10^{4}	3.7×10^{3}	3.8
8.11	$2+$	0.24	- 0.052	9.8	12.	0.82
8.38	$4+$	0.24	0.052	9.5×10^{3}	3.7×10^{3}	2.5
8.59	$2+$	0.19	0.041	7.7	12.	0.65
Using $R_{0}=4.54 \mathrm{f}$ from electron scattering. ${ }^{25}$						
$\mathrm{a}_{\text {Reference }} 2 . \quad \therefore \quad \because \quad$						
${ }^{\mathrm{b}}$ Though less likely a l- assignment cannot be ruled out by our analysis.						

Only a 3-assignment is consistent with the Austern and Blair model; compare Figs:19 and 17.

The next octupole state (at 6.28 MeV), is enhanced by a factor of three. It has been seen by several other experimental groups and all agree that it is a 3 - level. $3,7,16,26$

The state at 6.58 MeV is enhanced a factor of 2 and agrees well with the Austern and Blair angular distribution for $\ell=3$. The M.I.T. group 26 agrees with this assignment.

There is one more state of probably octupole character, but it is a doublet and will be discussed separately.
3. Quadrupole Vibrations

Two higher energy $2+$ states are found at 8.11 MeV and 8.59 MeV . Neither is enhanced, and the assignment of the one at 8.11 MeV agrees with Ref. 26. The other has not been previously seen. It must be stressed that the spin and parity assignments of the levels above 8 MeV are only tentative for two reasons. First, these levels are experimentally more difficult to separate both from each other and background. This' causes the oscillations to be less pronounced and the distinctions between the $\ell=2$ and $\ell=4$ angular distributions to be less reliable. Secondly, at these high excitations there is less justification for ignoring double excitation. This is discussed in Sec. IV-A.I.
4. The $6.94-\mathrm{MeV}$ State

The $6.94-\mathrm{MeV}$ state is strongly excited and has been observed in numerous experiments. $3,7,26,27,28$

There is wide confusion concerning its spin and parity. It has variously been reported as a $3-, 7$ 3- and $2+$ doublet, ${ }^{3} 2+,^{28} 1-,^{26}$ and $2+$ or possibly a $2+3$ - doublet. ${ }^{27}$ Part of the confusion stems from the fact that there is also'a state at 7.1 MeV which is not resolved from the $6.94-\mathrm{MeV}$ doublet in most of these experiments.

Figure 13 compares the present experimental differential cross section for the $6.94-\mathrm{MeV}$ peak with Austern and Blair angular distributions for a $1-, 2+$ doublet in the upper curve, and a 3-, $2+$ doublet in the lower curve. The relative strength of the negative parity state to positive

MU. $348 \mathrm{B7}$

Fig. 13. The $\mathrm{Ca}^{40} 6.94-\mathrm{MeV}$ state experimental differential cross section compared with two Austern and Blair angular distributions for a doublet. The upper curve is a sum of ($0+\rightarrow$ l-) and ($0+\rightarrow 2+$) in the ratio of 5 to 2. The lower curve is a sum of ($0+\rightarrow 3-$) and ($0+\rightarrow 2+$) in the ratio of 2 to l. Except for a few small angle points the lower curve is more in phase with the experimental curve.
parity state is about 2:1 in each case. Except for a few small-angle points a 3-,2+ doublet seems more consistent with the experimental phase. This would indicate agreement with the inelastic electron scattering work. ${ }^{3}$ The $7.1-\mathrm{MeV}$ state is only weakly seen, and the differential cross section for its excitation was not obtained.

B. Neon-20

1. General

Considerable evidence for rotational band structure in Ne^{20} has been obtained through a comprehensive set of experiments by the Chalk River group. 29 The energy levels will be discussed one band at a time.

2. Ground-State Rotational Band

The $2+$ member of this band is strongly excited at 1.63 MeV . Its phase is close to that expected for single excitation; however, addition of a double excitation contribution improves the fit. The sign of the deformation can be determined in this way and is positive, corresponding to a prolate shape as expected. The $4+$ member of this band at 4.25 MeV is excited more weakly by an order of magnitude. Its phase is shiffed noticeably from that expected for single excitation with an angular momentum transfer of 4 . The best fit is obtained by a double excitation to single excitation ratio of. 2. This behavior of strongly exciting the $2+$ by a one-step process and the $4+$ by primarily a two-step process is 'analogous to multiple Coulomb excitation by successive E2's. In fact the magnitude of the double excitation contribution agrees well with the value predicted from the strength of the single excitation to the $2+$. (see Table III.: The angularedistributions are shown in Fig. 14.
3. Negative-Parity Octupole Vibrational Bands

The lowest band of this nature has $K=2$; its first member is the 2- level at 4.97 MeV . It is very weakly excited and no oscillations are observed in its differential cross section.

Table III. Ground state rotational band single and double excitation information.:

-Q value	I^{π}	$C_{1}(I)$	δ_{I}	$C_{2}(I)$	$C_{2}{ }^{\prime}(I)$
1.63 MeV	$2+$	0.75	1.72	0.30	0.23
4.25 MeV	$4+$	0.12	0.36	0.25	0.23

$C_{1}(I)$ and $C_{2}(I)$ are extracted from the experimental cross sections by the Austern and Blair model as described in the text. $\delta_{I}=C_{1}(I) \sqrt{2 I+1}$ is the deformation length. $\quad C_{2}^{\prime}(I)$ is the double excitation matrix element calculated from the strength of the $0+\rightarrow 2+$ quadrupole excitation by the relationship

$$
C_{2}(I)=\frac{1}{\sqrt{4 \pi}}\langle 2 I 00 \mid 20\rangle^{2} \delta_{2}^{2}
$$

The agreement between $C_{2}(I)$ and $C_{2}^{\prime}(I)$ is consistent with the rotational model.

Fig. 14. Ground state band $2+$ and $4+$ experimental and theoretical angular distributions in $\mathbb{N e}{ }^{20}$.

-37-

The 3- level at 5.63 MeV is the second member of the band and fit is enhanced 6 times over sịngle particle estimates. Its differential cross section indicates a single step $\ell=3$ excitation. The other members of the band are not seen. This is in qualitative agreement with the idea that the band is based on an octupole vibration, since the. 3 - is the only member of the band which can be excited by a direct octupole excitation.

The next band based on octupole vibrations has a K-projection of zero so only the odd members of the band are allowed. The l- level at 5.80 MeV is weakly exci.ted, an order of magnitude weaker than the 3- level at 7.17 MeV . The phase of its angular distribution is consistent with a two-step process analogous to Coulomb excitation by $E 3$ to the 3- level followed by an E 2 excitation down to the l- level. The 3- level at 7.17 MeV is enhancee approximately as much as the 3 - in the $K=2$ band. Again, comparing the differential cross sections for exciting this state with the Austern and Blair $\ell=3$ angular distribtuion a single-step angularmomentum transfer of three is indicated. In this case, however, there is a slight shift in phase of 1° to 2° relative to both the 3 - at 5.63 MeV and the calculated angular distribution for angular momentum transfers of three. The differential cross sections for the two 3- states and the 1are compared with the corresponding single excitation angular distributions in Fig. 15. Reduced transition probabilities for states excited by single excitation are found in Table IV.

4. Possible Higher-Energy Rotational Banas

Two additional $K=0$ bands have been suggested. The lower one consists of a $0+$ level at 6.71 MeV , a $2+$ level at 7.43 MeV , and a $4+$ level at 9.04 MeV . The differential cross section for excitation of the $0+$ level is out of phase with a direct monopole excitation and is approximately * the same strength as the second-order excitation of the ground-state rotational bend $4+$ level. The $2+$ level which under ordinary circumstances would be enhanced (especially if this band were based on a quadrupole vibration), is made slightly weaker than the $0+$ level and its phase also corresponds to double excitation.

Fig. 15. Comparison of the 1- and 3- levels of the $K=0$ and $K=2$ bands in $\mathbb{N e}^{20}$ with angular distribution expected for single excitation.

Table IV. Reduced transition probabilities for de-excitation of Ne^{20} energy levels.

$\begin{aligned} & -\mathrm{Q} \text { value } \\ & (\mathrm{MeV}) \end{aligned}$		$\begin{gathered} \delta_{J} \\ (\text { fermis }) \end{gathered}$	$\begin{gathered} \beta_{J} \\ (\text { fermis }) \end{gathered}$	$\frac{B(J \rightarrow 0) \text { Lane }}{e^{2}} \begin{aligned} & \left(\text { fermis }^{2 J}\right) \end{aligned}$	$\frac{B(J \rightarrow 0)}{\left.\sum_{\left(\text {fermis }^{2}\right)}^{e^{2}}\right)}$	$\|\mu\|^{2}$
1.63	$2+$	1.72	. 48	53.	5.9	9.0
4.25	$4+$. 36	. 10	6.3×10^{3}	1.1×10^{3}	5.6
5.63	3-	. 84	. 23	4.5×10^{2}	1.2×10^{2}	6.2
7.17	3-	. 84	. 23	4.5×10^{2}	1.2×10^{2}	6.2

Onily the $2+$ level at 7.85 MeV of the remaining band based on the $0+$ level at 7.17 MeV is excited. It is made as weakly as the $2+$ level at 7.43 MeV . However, this time it is in phase with the single excitation Austern and Blair $\ell=2$ angular distribution.

V. AUSTERN AND BLAIR MODEL

The Austern and Blair model and other adiabatic models are fully described in Ref. 5, only a brief summary will be presented here. Special emphasis will be placed on the details of the calculation and the computer code developed to obtain the information inherent in elastic scattering and then used by the same code in calculating inelastic angular distributions.

A. Previous Models.

A brief review of advantages and disadvantages of the earlier' Frounhofer model, $5,30,31,32$ may be of use in understanding the new model. In the Fraunhofer model closed forms for the inelastic angular distributions are obtained. They have the general characteristics of the observed experimental differential cross sectionsexcept that the envelope of the experimental differential cross sectionsis much steeper. In spite of the simplicity of this model the differences in small-angle behavior of the angular distributions which distinguish excitations of different angularmomentum transfer are already present. The main drawbacks in using it as a spectroscopic tool are that the reduced-transition probabilities obtained from this model depend on which maximum of the angular distribution is used in normalization, and its lack of any consideration of Coulomb effects, Which limits its use for low-energy or heavy nuclei.

Blair, Sharp, and Wilets ${ }^{33}$ next developed a smooth cut-off model for monopole and quadrupole excitation that gives the same envelope as the experimental cross sections. There are also two drawbacks to this model. It cannot be used for higher multipole excitations, and Coulomb effects are still not treated.

B. The Austern and Blair Model

These last two handicaps are removed in the Austern and Blair model. 5 More sophisticated analyses can be obtained by DWBA or coupledchannel calculations, but for spectroscopic purposes the Austern and Blair model is easily used and appears to be sufficient when collective wave functions adequately describe the nuclear state.

A description of this model must start with the extended optical. model. Let us consider an extended optical potential including some dynamic variables of the target nucleus, specifically internal dynamic variables closely related to the ordinary parameters of the elastic optical potential. This extended potential is an operator which connects the incident channel with reaction channels. The transition matrix elements involving this operator, by suitable approximations, may be related to derivatives of elastic scattering matrix elements with respect to these parameters. If h is one of the parameters in the elastic optical potential and we increase'it by α, where α is an operator acting on the nuclear coordinates, then the extended optical potential is

$$
\begin{equation*}
U(h+\alpha, \vec{r})=U(h, \vec{r})+\Delta U(h, \alpha, \vec{r}) \tag{23}
\end{equation*}
$$

and ΔU is responsible for transitions to other channels. The increment ΔU may be expanded in a Taylor series in α

$$
\Delta U=\alpha \frac{\partial U}{\partial h}+\frac{1}{2!} \alpha^{2} \frac{\partial U}{2 h^{2}}+\ldots
$$

In this thesis h is defined as a suitable nuclear radius and $\alpha(\Omega)$ is the displacement corresponding to shape oscillations of the nuclear surface in the direction of the radius vector $\Omega=(\theta, \psi)$ in the space fixed system. Expanded in multipoles

$$
\begin{equation*}
\boldsymbol{\alpha}=\sum_{L, M}{ }^{\xi_{L, M}} M_{L}^{M^{*}}(\Omega) \tag{24}
\end{equation*}
$$

The operators $\xi_{L, M}$ are spin-independent. The adiabatic transition amplitude
T_{ba} for inelastic scattering frominitial nuclear. state |a> to final nuclear state $\langle b|$ is to first order in α

$$
\begin{equation*}
\left.T_{b a}=\langle b| x^{(-)}\left(\vec{k}_{b}, \vec{r}_{1}\right)\left|\alpha \frac{\partial U}{\partial h}\right| x^{(+)}\left(\vec{k}_{a}, \overrightarrow{r_{2}}\right)\right\rangle|a\rangle \tag{25}
\end{equation*}
$$

The distorted wave $X^{(+)}$is the exact solution for the scattering with potential U_{o} and the boundary condition that at large radii the solution approaches a plane wave plus an outgoing spherical wave. $x^{(-)}$is the time reversed solution related to $\chi^{(+)}$by the equation

$$
x^{(-) *}(\vec{k}, \vec{r})=x^{(+)}(-\vec{k}, \vec{r})
$$

These distorted waves may be then expanded in spherical harnonics

$$
\begin{gather*}
x^{+}\left(\overrightarrow{k_{a}}, \vec{r}\right)=\frac{(4 \pi)^{1 / 2}}{k_{a} r} \sum_{\ell=0}^{\infty} i^{\ell}(2 \ell+1)^{1 / 2} e^{i \sigma \ell_{\ell}} f_{\ell}\left(k_{a} r\right) Y_{\ell}^{0}(\Omega) \tag{26}\\
x^{(-)}\left(\overrightarrow{k_{b}}, \vec{r}\right)=\frac{4 \pi}{k_{b} r} \sum_{\ell^{\prime}=0}^{\infty} \sum_{m^{\prime}=-\ell^{\prime}}^{\infty} i^{-\ell^{\prime}} e^{i \sigma \ell} f_{\ell}\left(k_{b}, r\right) Y_{\ell}^{m^{\prime}}(\theta, 0) Y_{\ell^{\prime}}{ }^{\prime *}(\Omega) \tag{27}\\
\text { The Coulomb phase shifts } \sigma_{\ell} \text { are given by } \\
\sigma_{\ell}=\operatorname{arg\Gamma }(\ell+1+i \eta) \tag{28}
\end{gather*}
$$

where, η is the Coulomb parameter

$$
\eta=\frac{Z^{\prime} Z^{\prime} e^{2}}{\hbar v}
$$

and v is the velocity of the incident particle.
Equations (26) and (27) assume their particularly simple form due to the choice of coordinate system shown in Fig. 16

MU-35657

Fig. 16. Coordinate system chosen for the numerical calculation.

The z-axis or axis of quantization is taken in the \vec{k}_{a} direction and the x-axis is taken in the scattering or \vec{k}_{a}, \vec{k}_{b} plane. The angle between \vec{k}_{a} and \vec{k}_{b} is θ, the scattering angle in the center of mass system.

The regular radial functions are normalized so that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \mathrm{f}_{\ell}=\frac{i}{2}\left(\mathrm{H}_{\ell}^{*}-\eta_{\ell}^{\mathrm{H}}\right) . \tag{29}
\end{equation*}
$$

This can also be considered the definition of η_{ℓ}. By substitution of Eqs. (1) and (4) into Eq. (2) and by performing the angular integration, Eq. (3) results. Since k_{a} equals k_{b} in the adiabatic approximation the subscripts have been dropped.

$$
\begin{align*}
& \left.T_{M_{I} ; 00}=\frac{4 \pi}{k^{2}}(2 I+1)^{1 / 2} \cdot \sum_{\ell \ell} i^{\ell-\ell^{\prime}}\left(2 \ell^{\prime}+1\right)^{1 / 2} e^{i\left(\sigma_{\ell}+\sigma_{\ell}\right.}{ }^{\prime}\right) \tag{30}\\
& \times\left\langle\ell^{\prime} I, 0 \dot{0} \mid \ell, 0\right\rangle\left\langle\ell^{\prime} I,-M_{I}, M_{I} \mid \ell, 0\right\rangle \mathrm{Y}_{\ell}{ }^{-\mathrm{M}_{\mathrm{I}}}(\theta, 0) \\
& \times C_{I}(I) \int_{0}^{\infty} f_{\ell}(k r) \frac{\partial U}{\partial h} f_{\ell}(k r) d r .
\end{align*}
$$

This equations has been specialized for a final state having angular momentum I and z-projection M_{I} and an initial state of zero angular momentum. For this case the matrix element of α^{n} can be written as

$$
\begin{equation*}
\left\langle b\left(I, M_{I}\right)\right| \alpha^{n}|a(00)\rangle=C_{n}(I) Y_{I}^{M_{I}}{ }^{*}(\Omega) \tag{31}
\end{equation*}
$$

When $\quad l \cdot l=\ell$ the following relationship ${ }^{40}$ is an identity

$$
\int_{0}^{\infty} \mathrm{f}_{\ell} \frac{\partial U}{\partial \mathrm{~h}} \mathrm{f}_{\ell} d r=\frac{\mathrm{iE}}{2 \mathrm{k}} \frac{\partial \eta_{\ell}}{\partial h}
$$

Austern and Blair introduce the approximation: when $l^{\prime} \neq \ell$,

$$
\begin{equation*}
\int_{0}^{\infty} f_{\ell}, \frac{\partial U}{\partial h} f \ell d r \cong \int_{0}^{\infty} f_{\ell} \frac{\partial U}{\partial h} f_{\bar{l}} d r=\frac{i E}{\partial k} \frac{\partial \eta \bar{\ell}}{\partial h} \tag{32}
\end{equation*}
$$

where $\bar{l}=\frac{\ell+l^{\prime}}{2}$.
Introducing: this approximation in Eq. (3) the scattering amplitude ${ }^{\mathrm{f}_{\mathrm{IM}} \mathrm{I}} ; 00$ is given by

$$
f_{I M_{I} ; 00}=-\frac{k^{2}}{4 \pi E} T_{I M_{I}} ; 00
$$

Substituting from Eq. (30):

$$
\begin{align*}
& \mathrm{f}_{\mathrm{IM}_{I} ; 00}=\frac{-i}{2 \mathrm{k}}(2 I+I)^{I / 2} C_{1}(I) \sum_{\ell \ell^{\prime}} i^{\ell-\ell^{\prime}}\left(2 \ell^{\prime}+1\right)^{I / 2} e^{i\left(\sigma_{\ell^{\prime}}+\sigma_{\ell^{\prime}}\right)} \\
& \quad \times\left\langle\ell^{\prime} I, 00 \mid \ell 0\right\rangle\left\langle\ell^{\prime} I,-M_{I} M_{I} \mid \ell 0\right\rangle Y_{\ell^{\prime}} \mathrm{M}_{I}(\theta, 0) \frac{\partial \eta_{\bar{l}}}{\partial \mathrm{~h}} \tag{33}
\end{align*}
$$

Explicit numerical calculation of the η_{ℓ} can largely be dispensed with when considering the elastic scattering of strongly-absorbed particles. The parameterization

$$
\begin{gather*}
\eta_{\ell}=\frac{\epsilon}{\epsilon}+B \frac{\partial \epsilon}{\partial l}+1\left(A \Delta \frac{\partial \epsilon}{\partial l}+D \Delta \frac{\partial^{2} \epsilon}{\partial \ell^{2}}\right) \\
\ddots \epsilon=\left(1+e^{(L-l) / \Delta}\right)-1 \tag{34}
\end{gather*}
$$

is adequate for good fits to the elastic scattering data. The parameters are determined by a search program described in the Appendix. Fits to the Ca^{40} and Ne^{20} elastic angular distributions are shown in Figs. 17 and 18.

Two further assumptions are needed to relate the parameterized η_{ℓ} to the form derived for the scattering amplitude in Eq. (33). Both are

Fig. 17. Parametrized phase shift fit to Ca^{40} elastic differential cross section with the parameters; $L=16.7 ; \Delta=1.15$; $A=0.66 ; B=1.51 ; D=-1.92$. The parameters are described in the text.

Fig. 18. Parametrized phase shift fit to Ne^{20} elastic differential cross section with the parameters; $L=15.9 ; \Delta=1.61 ;$ $A=1.07 ; B=1.05 ; D=-1.22$. The parameters are described in the text.
best for strong absorption. First, we assume that η_{ℓ} is a function only of the difference $\left(\ell-\ell_{0}\right)$, where ℓ_{0} is the critical angular momentum, and b_{0} contains all the dependence on h. The quantity l_{o} can be defined somewhat arbitrarily by requiring that $\left|\eta_{l_{0}}\right|_{\text {should equal } I / 2 .}$ Associated with this ℓ_{0} is a "cutoff" radius R_{0} " throügh the relationship

$$
\begin{equation*}
E=\frac{Z Z \cdot e^{2}}{R_{0}}+\frac{\hbar^{2} \ell_{0}\left(\ell_{0}+1\right)}{2 \mu R_{0}^{2}} \tag{35}
\end{equation*}
$$

The second assumption is that R_{o} has the following simple relationship to the optical potential radius parameter h

$$
\frac{d R_{0}}{d h}=1
$$

In this case

$$
\begin{equation*}
\frac{\partial \eta_{\bar{l}}}{\partial h}=\left[\frac{\partial \eta_{\ell}\left(\bar{l}-\ell_{0}\right)}{\partial l_{0}}\right]\left[\frac{\partial l_{0}}{\partial R_{0}}\right] \tag{36}
\end{equation*}
$$

and since at reasonably high energies

$$
\begin{gather*}
\frac{\partial \ell_{o}}{\partial R_{0}} \cong k \\
\frac{\partial \eta_{\bar{l}}}{\partial h_{1}} \cong+k \frac{\partial \eta_{\bar{l}}}{\partial \ell_{0}} \tag{37}
\end{gather*}
$$

In the Austern and Blair paper the derivative of η_{ℓ} is actually taken with respect to \bar{l} : which simply reverses the sign of the derivative. It follows that

$$
\begin{align*}
& f_{I M ; 00}=+\frac{i}{2}(2 I+1)^{I / 2_{C_{1}}}(I) \sum_{\ell \ell^{\prime}} i^{\ell-\ell^{\prime}}\left(2 \ell^{\prime}+1\right)^{1 / 2} e^{i\left(\sigma_{\ell^{+}}+\ell_{\ell}\right)} \\
& \left\langle\ell^{\prime} I, 00 \mid \ell 0\right\rangle\left\langle\ell^{\prime} I-M_{I} M_{I} \mid \ell 0\right\rangle Y_{\ell^{\prime}}^{-M_{I}}(\theta, 0)\left[\frac{\partial \eta_{\ell}}{\partial \bar{l}}\right] \tag{38}
\end{align*}
$$

In Fig. 19 angular distributions for angular momentum transfers of zero through five are shown with the first regular oscillation.

C. Double Excitation

For some levels in Ne^{20}, for example the $4+$ level at 4.248 MeV which is a member of a rotational: band built on the $0+$ ground state, it would not be expected that a model which is first order in the nuclear deformation would even approximately describe the transition amplitude. It is experimentally'observed that'the differential cross section for excitation of the $4+$ level is out of phase with the calculated single phonon 2^{4} th pole angular distribution. Austern and Blair have also extended their model to higher orders in the nuclear deformation. ${ }^{5}$ only second order will be considered here. A summary of the new approximations introduced by them is now given.

The exact expression for the double-excitation transition amplitude in the extended optical model is

$$
\begin{aligned}
& T_{b a}(2)=\left\langle b\left(\xi_{1}\right)\right|\left\langlex ^ { (-) } (\vec { k } _ { b } , \vec { r } _ { 1 }) \left\{\frac{1}{2} \frac{\partial^{2} U\left(r_{1}\right)}{\vec{h}^{2}} a^{2}\left(\bar{r}_{1} ; \xi_{1}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \delta\left(\xi_{1}-\xi_{2}\right)\right.\right. \\
& \left.\left.+\frac{\partial U\left(r_{1}\right)}{\partial \vec{h}} \alpha\left(r_{1}, \xi_{1}\right) G_{1}\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \xi_{1}, \xi_{2}\right) \frac{\partial U\left(r_{1}\right)}{\partial \vec{h}} \alpha\left(r_{2}, \xi_{2}\right)\right\}\left|x_{\left(\overrightarrow{k_{a}}, \overrightarrow{r_{1}}\right)}^{(+)}\right\rangle a\left(\xi_{2}\right)\right\rangle .
\end{aligned}
$$

Here G_{1} is the exact Green's function for the problem with only the spherical potential $U\left(\vec{r}_{1}, R_{0}\right)$. G_{1} satisfies the differential equation

MU. 34827

Fig. 19. Austern and Blair model angular distributions calculated with parameters determined from the Ca^{40} elastic differential cross section in Fig. 3. Transitions $0+\rightarrow 0+$ through 5-are plotted with the first maximum of the regular oscillations indicated on each curve. From a spectroscopic standpoint this differentiates the different angular momentum transfers.

$$
\begin{equation*}
\left[E-K_{1}-U\left(\overrightarrow{r_{1}} ; R_{0}\right)-H\left(\xi_{1}\right) \quad G_{0}=\delta\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right) \delta\left(\xi_{1}-\xi_{2}\right)\right. \tag{40}
\end{equation*}
$$

where K is the kinetic energy and $H(\xi)$ is the nuclear collective Hamiltonian.

The first approximation is to due the adiabatic Green's function in which $H(\xi)$ is absent.

The second approximation is to assume that $\alpha(\vec{r})$ commutes with this Green's function.

From this Austern and Blair arrive at the relationship

$$
\begin{equation*}
\mathrm{T}_{I, M_{I}}^{(2)} ; 00=\frac{1}{2} \frac{C_{2}(I)}{C_{I}(I)} \frac{\partial}{\partial h} T_{I, M_{I}}^{(1)} ; 00 \tag{41}
\end{equation*}
$$

Following the further simplifications of Sec. V-C, the equation for double excitation corresponding to Eq. (33) has $C_{I}(I) \partial \eta_{l} / \partial l$ replaced by $-C_{2}(I) k / 2 \quad \partial \eta_{\ell} / \partial l$.

Thus the double excitation can be affected in two ways: 1)' Through the second-order term $\partial^{2} U / \partial h^{2}$ in the expansion of the nuclear deformation. This is a direct two-phonon (D2P) transition. 2) Through the first-order term $\partial U / \partial h$ acting twice. This corresponds to a multiple two-phonon (M2P) transition in which the alpha particle first excites the one-phonon $2+$ level and subsequently excites a second quadrupole phonon. The ratio of D2P to M2P excitation is determined by the strength of the quadrupole phonon. If the two-phonon level is contaminated by an admixture with a single 2^{4} th-pole phonon, then direct one-phonon excitation (D1P) is possible. The ratio of $C_{2}(I) / C_{1}(I)$ determines the ratio of amplitudes (M2P + D2P)/D1P.

In the coupled-channel calculations of Buck ${ }^{34}$ the D2P and M2P excitations were also considered. However, the experimental angular distribution for excitation of the $4+$ two-phonon level of Ni^{58} could not be matched without arbitrarily increasing the amplitude of the D2P excitation by a factor of 1.5 to allow for the possibility of some direct
excitation through a single-phonon admixture in the wave function. (DIP excitation).

The angular distributions calculated for (M2P + D2P) excitation alone have nearly, the correct phase but their slope actually rises with angle in comparison to experimental data (see Fig. 20). At this point Professor Blair in a private communication suggested coherently mixing one- and two-phonon excitation, varying the $R_{c}=C_{2}(I) / C_{1}(I)$ to obtain the closest agreement with experiment. The results are not wholly satisfactory, however, since it is not possible to obtain the best phase and the best slope with the same value of R_{c}. In fact the experimentel slope in the range of 10 to $40^{\circ} \mathrm{C} . \mathrm{M}$. is halfway between the pure single phonon excitation and the single-double phonon mixture which gives the best phase as shown in Fig. 14. However, it should be emphasized that while quantitative agreement does not seem possible, the results of this model do qualitatively agree with experiment. In the nickel region the differential cross section for excitation of the first $4+$ level has been studied as a function of energy. 35 It was found that at low energie's (33 MeV) the angular distribution corresponded to single-phonon excitation and there was a gradual change of phase until at high energies (100 MeV) double excitation appeared to completely dominate. This variation with energy follows naturally from the Austern and Blair form. The radial integral is replaced by

$$
\frac{i E}{2} C_{1}(I) \frac{\partial \eta_{\ell}}{\partial \ell}-\frac{k}{2} C_{2}(I) \frac{\partial^{2} \eta_{\ell}}{\partial \ell^{2}}
$$

where the double phonon term has an extra factor of k, so its importance will increase with increasing energy:

Fig. 20. Neon-20 pure double excitation.
VI. CONCLUSIONS

At the present time inelastic alpha scattering remains most useful in investigating those nuclei which have relatively well separated energy levels. An energy gap after the ground state is especially helpful since elastic scattering is so dominant that low-lying levels are often obscured by the tail of the elastic peak. It is this region where Coulomb excitation has provided the most information. On the other hand, in the lightest nuclei the pronounced regular oscillations of the scattering cross sections characteristic of surface reactions are no longer observed. For these reasons the even-even nuclei between mass number 20 and 40 would seem to offer especially rewarding targets for simple analysis of alpha-particle scattering. Neon-20 and calcium-40 bracket this region both in mass and in properties. Neon-20 appears to show a highly developed set of positive and negative rotational bands reminiscent of U^{238}. Calcium-40 is a doubly-closed magic nucleus and quite resistant to quadrupole deformations. A softness to enhanced octupole vibrations is, however, observed and to a lesser degree 2^{4} - and 2^{5}-pole vibrations. The doubly-closed shells besides providing an energy gap of over 3 MeV also seem to be responsible for the success of single-phonon mode of the Austern-Blair model for all levels investigated.

Our investigation of Ne^{20} is consistent with the rotation picture of Ne^{20}, and the similarities of Coulomb excitation on U^{238} and inelastic scattering on Ne^{20} are pointed out in Fig. 21.

Our investigation of $\mathrm{Ca}^{40^{\circ}}$ is consistent with the vibrational model. The quadrupole vibrations are weakened and raised in energy as would be expected in a doubly-magic nucleus, however, the octupole and higher multipole vibrations are at their normal strength and excitation energy.

The Austern and Blair model proved to be most useful for Ca ${ }^{40}$ where quantitative agreement was found and reduced transition probabilities were obtained that agree well with other measurements. All experimental differential cross sections corresponding to the same angular

Fig. 21. Comparison of excitation of Ne^{20} by inelastic alpha scattering and U^{238} by Coulomb excitation.
momentum transfer have approximately the same shape as required by the model and can be seen in Figs. 9-12. Therefore, from a spectroscopic standpoint it does not appear that the more complicated calculations are worthwhile when the single-phonon model is applicable.

For the states in $N e^{20}$. which are reached by single-step processes quantitative agreement also was found and reduced-transition probabilitiès were obtained. For those states in Ne^{20} which are reached by two-step processes.only qualitative agreement was found. However, just the information that a process is primarily single or double excitation can be quite useful in testing the applicability of nuclear models e..g., the rotational model in this case.

ACKINOWLEDGMENTS

I am indebted to all those associated with the 88-in. cyclotron whose pleasant and interesting conversations made my stay at Berkeley more enjoyable
and specifically
Dr. Bernard G. Harvey, my research advisor, for suggesting this experiment and for always being there when really needed;

Professor J. S. Blair for his frequent letters and discussions;
Mr. Pierre Darriulat for his help in my understanding the analysis of the experimental data;

Mr. Chi Chang Lu, Mr. Nolan F. Mangelson, and Professor Ernest J.-M. Rivet for their aid in the actual experiments;
Dr. John R. Meriwether for his supervision of the improvements in the scattering chamber and related equipment which greatly increased the accuracy and ease of making many measurements;
Dr. Andre Bussiere de Nercy, Dr. Homer E. Conzett, Dr. Richard H. Pehl, and Dr. H. G. Pugh for their insight into many of the problems which ' troubled me;
Mr. Frederick S. Goulding and Mr. Donald A. Landis for the electronic system and counters which made these experiments possible;
Professor Joseph Cerny III, Dr. Norman K. Glendenning, Dr. Daniel J. Horen, Dr. W. Barclay Jones, and Dr. Rudolpho J. Slobodrian for their enlightening discussions;
Mr. Gilbert Butler, Mr. Donald G. Fleming, Mr. Creve C. Maples, Miss Mary Reed, and Mr. Edward Shield for conversations about those topics graduate students always discuss;
Mr. Claude E. Ellsworth and Mr. Jack H. Elliott for information and aid on such varied topics as targets and detectors;
Mrs. Jolley Breckenridge, Miss. Jeannette Mahoney, Mrs. Ruth-Mary Larimer for that special feminine touch that added some cheer to a few otherwise dark days;

The 88-in. cyclotron crew in general and specifically Mr. Gary DeHaven whose company during the owl shifts was greatly appreciated and Mr. Eugene

Russell who (during the day), always'seemed able to keep the beam Gary had found that morning;
And finally to those, some of whom never saw the 88-in. cyclotron or Berkeley; my dear family and friends, to mention only a few: Judy
Hamermesh, Sherie and Mike Stein, and Barbara and Zev Steiger whose moral support made the long way to this degree less frightening. This work was performed under the auspices of the A. U. Atomic Energy Commission.

APPENDIX
 A. Computer Codes

1. LYCURGUS

The relativistic kinematics program mentioned in Sec. III-A is based on the formalism of a standard text. ${ }^{36}$ It generates tables of the following, two-body kinematic data; energy of scattered particle and recoil, center-of-mass angle of the scattered particle, and lab angle of the recoil, and the jacobian $d \cos \theta / d \cos \theta^{\prime}$.

2. VARMIT

Many problems of analysis in experimental physics can be reduced to finding the minimum in a function of many linear or non-linear variables.

Extracting parameters from a model by comparison with data (Sec. $\mathrm{V}-\mathrm{B}$), unfolding of not fully resolved peaks in a spectrum (Sec. III-A), and generation of calibration curves (Sec. III-A) are examples which have occurred in this thesis. The problem is so important and so general that to devise the best numerical method for these cases was worth the expenditure of a considerable amount of time. For the construction of calibration curves (which is a linear least squares problem) any number of standard computer codes were acceptable. ${ }^{\dagger}$ For the other two problems no fully acceptable or easy solution was found.

In the general non-linear many-variable case there are several conditions for acceptability of a solution. The most important requirement is that the mathematical minimum should correspond to the physically meaningful values. For unfolding a spectrum, this means that the shape of the experimental peaks must closely correspond to the mathematical form chosen for a single peak. The requirements for a phase-shift analysis are more complicated and are discussed in the next section.

Secondly, one must be able to distinguish the "best" minimum from the several possible local minima; it will simply be the one with the lowest value of the function having physically reasonable parameters. r
${ }^{\dagger}$ A code called MLR and written by Van Hoff was used.

This is the least satisfying aspect of the general problem, for no method of determining all possible local minima was found and the practical compromise was to investigate all the minima within a small region. For unfolding Gaussian peaks this was seldom a concern. Usually it was ..relatively easy to start with a good enough guess so that the local minimum was the "best" minimum.

Next a method of finding a local minimum is needed. A computer code named VARMIT based closely on Davidson's method ${ }^{15}$ was developed for this purpose with the assistance of Mr. Eric Beals. With proper scaling this method rarely fails to converge rapidly. Similar codes have previously been found superior to several other methods by other investigators. 37,38

The last aspect of the problem to be discussed is the criteria for convergence and the related problem of error limits on determination of the parameters.

Since VARMIT does not necessarily take monotonically decreasing steps in finding a minimum, convergence criteria based on step size may possibly cause false indications of convergence. This is especially significant since intermediate values of the parameters along the minimization path can be further from the final values of the parameters than the initial guess.

The criterion which was found to be most satisfactory was to look for inconsistencies caused by machine rounding errors. For a well scaled problem these inconsistencies tend to occur only in the neighborhood of the minimum. The final check on the minimum is to choose a few new starting points obtained by moving from the minimum a distance in each parameter corresponding to the standard deviation in that parameter, and after a new search to compare the new and old values of the minimum. In al. fairness it must be added that no criterion works in all cases and experience with the properties of a particular type of problem is invaluable.

For the problem of analyzing spectra with Gaussian-shaped peaks a function subroutine with many options has been coded. One has the choice

$$
-61,62--5
$$

of letting the height, posịtion, and width of each Gaussian vary or restricting these parameters by any set of linear constants. Often the same width has been used for each peak either as a fixed or variable parameter. Background can easily be subtracted. Often satisfactory results can only be obtained after this is done. Figure 6 shows a fit to part of the spectrum in Fig. 4. From ten to seven counts of background were subtracted and one variable width for all peaks was used. The accuracy with which relative cross sections can be extracted by this method is limited by the presence of small peaks arising from maxima in the angular distributions of elastic scattering from trace impurities and even from collectively-excited states in carbon and oxygen which are usually present in substantial amounts.

A listing of VARMIT and subroutines for the spectrum resolving case follow.

3. PIERRE

PIERRE is the name of a program which determines parameterized reflection coefficients η_{ℓ} from a least squares fit of elastic scattering data and then calculates inelastic angular distributions by means of the Austern and Blair model (Sec. V-A,B). The least squares fit is done by Davidson's ${ }^{15}$ method and is described in the section on VARMIT.

Finding the "best" local minimum in this case is far harder than the preceding case of resolving a spectrum into Gaussian peaks. A parameterization suggested by Blair ${ }^{39}$ is physically easy to understand and is suggested by η_{ℓ} generated from optical-model parameters:

$$
\eta_{\ell}=\epsilon+i A \Delta \frac{\mathrm{~d} \epsilon}{\mathrm{~d} \ell}
$$

where

$$
\epsilon=\left(1+e^{(I-\ell) / \Delta}\right)-1
$$

The parameter L corresponds to the critical angular momentum semiclassically related to the nuclear radius. As L increases, the period of oscillation of the angular distribution decreases. The parameter Δ corresponds to a diffuseness in the nuclear surface and as Δ increases, the rate of decrease of the cross section with angle increases. The final parameter A gives the strength of the imaginary part of η_{ℓ} which interferes with the Coulomb phase shift, so by varying A the depth of the minima changes. The parameters are reasonably uncorrelated and a least squares fit is straight forward. Unfortunately, three parameters does not give enough freedom and the fits are poor. To improve the fits a new 5-parameter form for η_{ℓ} was chosen

$$
\eta_{l}=\epsilon+B \frac{d \epsilon}{d l}+i\left(A \frac{d \epsilon}{d l}+D \frac{d^{2} \epsilon}{d l^{2}}\right) .
$$

As expected, this form gives much better fits; however, the properties of the parameters are now correlated and the original meaning of L, \triangle, and A is lost. Now depending on the quality of the data and other factors, several iocal minima can be found within the physical constraint $\left|\eta_{\ell}\right|^{2} \leq 1$.

One finds small comfort in the fact that with the optical model the situation is much worse since each local minimum in η_{ℓ} can correspond to a set of local minima in the opticalmodel parameters. No satisfactory solution beyond the suggestions of the last section have been found.

Assuming a best set of $\eta_{\ell}{ }^{\prime}$ s has finally been determined, PIERRE now calculates the inelastic angular distributions. Some care has been taken in making the computer code fast. All quantities used often have been stored in tables and symmetry considerations have been used to reduce the calculations.

For the case of double excitation, single and double excitation are coherently mixed and the ratio is varied to reproduce the observed phase of the oscillations of the experimental differential cross section.
$\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}$
Beam energy $=50.9 \cdot \mathrm{MeV}$
Elastic

${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\theta} \mathrm{C} . \mathrm{M}$.	$\frac{\partial \sigma}{\partial \bar{\Omega}}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
8.3	33,100.	. 002	26.4	122.	. 003	44.8	7.04	. 008
9.4	17,300.	. 002	26.9:	109.	. 003	45.4	7.39	. 008
10.5	8,050.	. 002	27.5	81.0	. 003	45.9	8.31	. 008
11.0	4,330.	. 003	28.0	73.4	. 004	46.4	7.96	. 008
11.6	3,120.	. 003	28.6	39.4	. 005	47.0	8.40	. 007
12.1	1,820.	. 005	29.1	32.8	. 007	47.5	7.47	. 008
12.7	1,590.	. 006	29.6	14.9	. 008	48.0	7.15	. 008
13.2	1,280.	. 006	30.2	8.4	. 013	48.6	5.65	. 009
13.8	1,260.	. 006	30.7	1.5	. 019	49.1	5.41	. 009
14.3	1,330.	. 006	31.3	0.6	. 015	50.2	3.47	. 010
14.9	1,340.	. 006	31.8	4.0	. 015	51.2	1.89	. 015
15.4	1,380.	. 006	32.4	6.5	. 009	52.3	1.01	. 018
16.0	$\therefore 1,390$.	. 006	32.9	15.1	. 008	53.4	. 85	. 019
16.5	1,340,	. 006	33.5	20.1	. 006	54.5	1.16	. 016
17.1	1,080.	. 004	34.0	28.0	. 006	55.0	1.40	. 015
17.6	875.	. 003	34.5	28.0	. 005	55.5	1.59	. 014
18.2	939.	. 003	35.1	35.9	. 005	56.1	1.69	. 014
18.7	1.457.	. 003	35.6	37.4	. 005	56.6	1.96	. 013
19.3	368.	. 004	36.2	36.4	. 005	57.1	1.89	. 013
19.8	158.	. 004	36.7	30.4	. .005	57.6	2.14	. 012
20.9	3880	.007	37.3	30.6	. 006	58.7	1.97	. 013
2a.0	$\therefore 34.4$. 008	37.8	23.2	. 007	59.8	1.73	. 013
22.5	39.9	. 006	38.3	21.2	. 007	60.8	2.26	. 016
23.1	80.0	. 003	39.4	12.3	. $009{ }^{\text { }}$	61.9	1.09	. 017
23.6	91.0	. 004	40.5	5.8	. 011			
24.2	125.	. 003	41.6	2.8	. 015			
24.7	142.	. 003	42.7	2.8	. 013	.		
25.3	142.	. 003	43.7	4.73	. 010			
25.8	154.	. 003	44.3	5.64	. 009			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{1}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$.

$$
Q_{1}=-3.73 .
$$

$\theta_{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
10.5.	27.0	. 019			
11.6	36.2	. 017	42.8	1.22	. 019
. 12.7	35.4	. 012	43.9	1.71	. 017
13.8	32.9	. 012	45.0	2.38	. 015
14.9	34.9 .	. 012	47.1	2.84	. 012
16.0	29.4	. 013	-48.2	2.38	. 014
17.1	20.2	. 016	49.3	1.94	. 015
17.7	14.6	. 024	50.4	1.54	. 017
18.2	11.0	. 022	51.4	1.20	. 019
18.8	6.02	. 020	52.5	. 98	. 022
19.3	4.87	. 024	53.6	. 90	. 018
19.9	3.36	. 020	54.6	. 99	. 017
21.0	5.19	. 018	55.7	1.11	. 017
22.1	9.15	. 015	56.8	1.24	. 016
23.2	12.6	. 012	57.8	1.24	. 016
24.3	15.0	. 010	58.9	1.25	. 016
25.4	$14: 7$. 010	60.0	1.16	. 016
26.5	12.0	. 009	61.0	1.02	. 017
27.6	8.80	. 010	62.1	. 87	. 019
28.7	5.27	.012			
29.8	3.47	. 016	\cdots		
30.8	2.31	. 020			
31.9	2.76	. 018			
33.0	3.67	. 015			
34.1	4.72	. 013			
. 35.2	5.42	. 013			
37.4	4.40	. 014			,
38.5	3.07	. 017			
39.6	1.93	. 021			
40.6	1.32	. 022			
41.7	1.04	. 024			

$\therefore \mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}$
Beam energy $=50.9 \mathrm{MeV}$

$$
Q=-3.90
$$

$\theta_{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
10.5	9.20	. 033	45.0	0.35	. 037
11.7	9.11	. 034	49.3	0.19	. 050
12.7	6.43	. 029	50.4	0.21	. 0477
13.8	5.46	. 040	51.4	0.20	. 048
17.7	2.24	. 062	. 52.5	0.24	. 044
18.2	1.84	. 054	53.6	0.20	. 038
18.8	3.20	. 030	54.7	0.19	. 041
19.3	3.00	. 030	55.7	0.15	. 045
19.9	3.80	. 026	56.8	0.18	. 051
21.0	3.66	. 022 .	57.8	0.09	. 058
22.7	2.72	. 028	58.9	0.09	. 058
23.2	1.70	. 032	60.0	0.07	. 068
24.3	0.90	. 040	61.0	0.08	. 061
25.4	0.57	. 050	62.1	0.08	. 063
26.5	0.53	. 045			
27.6	0.73	. 034			
28.7	1.04	. 030			
30.8	1.19	. 027			
31.9	1.06	. 028			
33.0	0.79	. 032	\cdots		
34.1	0.52	. 042	-		.
35.2	0.31	. 053			
36.3	0.32	. 053			
38.5	0.40	. 047			
39.6	0.42	. 045			
40.7	0.53	. 033			
41.7	0.61	. 031			
42.8	0.55	. 028			
43.9	. 40	. 035			

$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
10.5	4.68	. 047	41.8	0.33	. 043
11.6	2.93	. 060	42.8	0.34	. 037
12.7	2.57	. 045	43.9	0.40	. 036
13.8	2.67	. 028	45.0	0.46	. 033
14.9	3.53	. 039	46.1	0.41	. 036
16.0	3.82	. 037	47.2	0.35	. 036
17.1	4.48	. 034	48.2	0.28	. 041
17.7	5.61	. 039	49.3	0.25	. 044
18.2	4.43	. 035	52.5	0.15	. 058
18.8	5.42	. 023	53.6	0.13	. 048
19.3	4.73	. 024	54.7	0.16	. 045
19.9	4.98	. 020	55.8	0.16	. 044
21.0	4.49	. 019	56.8	0.17	. 042
22.1	3.66	. 024	57.9	0.16	. 044
23.2	2.83	. 025	58.9	0.16	. 045
24.3	1.96	0.27	60.0	. 14	. 048
25.4	1.27	. 034	61.0	. 12	. 051
26.5.	0.77	. 038	62.1	. 10	. 056
27.6	0.54	. 040			
28.7	0.59	. 040			
29.8	0.66	. 037			
30.9	0.90	. 033			
32.0	1.06	. 029			
33.1	1.11	. 029			
34.1	1.13	. 027	,		- ..
35.2	0.94	. 031			
36.3	0.75	. 034			
37.4	0.56	. 040			
38.5	0.40	. 047			,
39.6	0.40	. 047			

$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional. statistical error
11.6	1.25	. 091	47.2	. 11	. 064
12.7	0.99	. 072	48.3	. 08	. 073
13.8	0.96	. 080	49.4	. 12	. 064
16.0	0.71	. 085	50.4	. 09	. 070
17.1	0.74	. 087	51.5	. 07	. 081
18.2	0.52	. 100	52.6	. 06	. 083
19.4	0.34	. 088	53.7	. 07	. 067
19.9	0.44	. 070	54.7	. 08	. 041
21.0	0.49	. 060	57.9	. 07	. 070
22.1	0.43	. 070	59.0	. 05	. 073
23.2	0.46	. 060	60.0	. 05	. 078
24.3	0.42	. 058	61.1	. 05	. 076
25.4	0.34	. 066	62.2	. 04	. 090
26.5	0.31	. 058			
. 27.6	0.24	. 060			
28.6	0.24	. .068			
29.8	0.18	. 070			
30.9	0.20	. 066			
32.0	0.20	. 067			
33.1	0.21	. 068			
34.2	0.21	. 067	\cdots		
35.3	0.18	. 070			.
36.4	0.15	. 075			
37.4	0.14	. 080			
38.5	0.09	. 098			
39.6	0.09	. 100			
40.7	0.10	0.77			
41.8	. 10	. 075			
46.1	. 11	. 070	;		

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$
$Q=-5.62$

${ }^{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
11.6	1.18	. 094	49.4	0.06	. 088
12.7	0.74	. 083	50.5	0.06	. 088
16.1	. 0.51	. 100	51.5	0.07	. 083
15.0	. 0.58	. 095	52.6	0.04	. 100
17.2	0.40	. 112	53.7	0.05	. 087
18.3	0.48	. 104	54.7	0.04	. 091
19.4	0.50	. 072	55.8	0.04	. 091
22.1	0.43	. 070	60.1	0.03	. 105
23.2	0.38	. 065	61.1	0.03	. 106
24.3	0.28	. 070	62.2	0.02	. 130
25.4	0.25	. 076			
26.5	0.19	. 072			.
27.6	0.20	. 067			
. 28.7	0.18	. 066			
29.8	0.21	. 065			
30.9	0.18	. 071			
32.0	0.19	. 070			
33.1	0.19	. 068			
34.2	0.19	. 070			
35.3	0.16	.074			
36.4	0.14	. 080	\cdots		
37.5	0.13	. 080			
38.6	0.11	. 088			
39.6	0.11	. 091			
40.7	0.09	. 079	\because		¢ .
41.8	0.09	. 083	\because		
42.9	0.09	. 070		-	
44.0	0.11	. 069			
47.2	0.08	. 072			
48.3	0.06	. 085			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$

$$
Q=-5.90
$$

${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\delta \Omega}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
12.7	0.94	. 074	49.4	. 11	. 066
15.0	0.99	. 072	50.5	. 12	. 061
16.1	0.89	. 076	51.5	0.08	. 072
17.2	0.75	. 089	52.6	0.11	. 064
18.3	0.51	. 100	53.7	0.09	. 057
18.8	0.35	. 091	54.8	0.09	. 057
19.4	0.23	. 108	55.8	0.10	. 054
19.9	0.20	. 055	56.9	0.10	. 056
24.3	0.52	. 053	58.0	0.09	. 058
25.4	0.58	. 050	61.2	0.07	$\therefore .070$
26.5	0.47	. 048	62.2	0.04	. 085
. 27.6	0.30	. 054			
28.7	0.23	. 060			
29.8	0.15	. 078			
30.9	0.13	. 083			
32.0	0.16	. 075			
33.2	0.20	. 068			
34.2	0.20	. 071			
35.3	0.24	. 061			
36.4	0.18	. 070			
37.5	0.19	. 070	\cdots		
38.6	0.14	. 080			
39.7	0.13	. 088			
40.7	0.07	. 091	.		
41.8	0.10	. 078			
42.9	0.11	. 064			
44.0	0.13	. 064			-
45.1	0.17	. 054			
48.3	0.15	. 056			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{1}\right) \mathrm{Ca}^{40}
$$

Beam energy = 50.9 MeV

$$
Q=-6.28
$$

$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.4	8.26	. 040	44.0	0.42	. 034
12.7	7.76	. 026	45.1	0.47	. 032
13.9	6.57	. 028	46.2	0.51	. 031
15.0	6.48	. 029	47.3	0.53	. 030
16.1	5.14	. 032	50.5	0.36	. 045
17.2	3.54	. 039	51.6	0.29	. 039
17.7	3.02	. 054	52.6	0.27	. 040
18.3	2.19	. 049	53.7	0.28	. 032
18.8	1.70	. 041	54.8	0.27	. 033
19.4	1.52	. 042	55.9	0.28	. 033
19.9	1.62	. 035	56.9	0.28	. 033
21.0	1.91	. 030	58.0	0.29	. 032
-22.1	2.40	. 030	59.1	0.28	. 033
23.2	2.93	. 024	60.1	0.28	. 033
24.3	3.30	. 021	61.2	0.29	. 033
26.5	2.50	. 022			-
27.6	1.57	. 024			
28.7	0.94	. 030			
29.8	0.71	. 035			
30.9	0.67	. 036			
32.0	0.77	. 034	-'		
33.1	0.97	. 030			
34.2	1.15	. 028			
35.3	1.17	. 028			
36.4	1.07	- . 029			
37.5	0.90	. 031			
38.6	0.63	. 040	\cdots.		.
39.7	0.50	. 043			.
40.8	0.37	. 040		-	
41.8	0.33	. 044			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$
$Q=-6.58$

${ }^{\theta}$ C.M.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.4	4.87	. 051	41.9	0.20	. 056
10.5	5.94	. 042	42.9	0.22	. 048
12.7	5.21	. 031	44.0	0.23	. 047
13.9	4.81	. 032	45.1	0.26	. 044
15.0	4.93	. 032	46.2	0.28	. 044
16.1	4.73	. 033	47.3	0.30	. 039
17.2	2.67	. 045	48.4	0.26	. 043
17.7	1.97	. 066	51.6	0.16	. 053
18.3.	1.65	. 056	52.7	0.15	. 055
18.8	1.20	. 049	53.7	0.15	. 046
19.4	1.00	. 052	54.8	0.16	. 043
19.9	0.99	. 052	55.9	0.15	. 044
21.0	1.17	. 039	56.9	0.16	. 045
22.1	1.61	. 036	58.0	0.15	. 045
23.2	1.83	. 031	59.1	0.16	. 045
24.3	1.92	. 027	60.1	. 13	. 048
25.4	1.72	. 029	61.2	. 12	. 051
28.7	0.65	. 031	62.3	. 11	. 053
29.8	0.52	. 041			
30.9	0.46	. 044			
32.0	0.51	. 041	\cdots		
33.1	0.63	. 037			
34.2	0.64	. 038			
35.3	0.65	. 037	,		
36.4	0.61	. 038			
37.5	0.61	. 043			
38.6	0.35	. 050			
39.7	0.26	. 058			
40.8	0.20	. 054			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{1}\right) \mathrm{Ca}^{40}
$$

Bean energy $=50.9 \mathrm{MeV}$ $\dot{Q}=-6 \cdot 9 \dot{4}$

${ }^{\theta} \mathrm{C.M}$.	$\frac{\partial \sigma}{\partial s} .$	Fractional statistical error	${ }^{\theta}$ C.M.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.4	9.75	. 036	43.0	0.95	. 022
10.5	6.19	. 041	44.0	1.00	. 023
12.8	4.95	. 033	45.1	1.09	. 022
13.9	4.98	. 032	46.2	1.00	. 022
15.0	5.22	. 032	47.3	0.96	. 022
16.1	5.43	. 031	48.4	0.88	. 022
17.2	4.68	. 044	49.5	0.85	. 023
17.7	4.38	. 033	. 50.5	0.87	. 023.
18.3	3.57	. 038	52.7	0.80	. 023
18.8	2.80	. 032	53.8	0.82	. 019
22.1	3.11	. 026	54.8	0.84	. 019
23.3	3.59	. 022	55.9	0.82	. 019
24.4	3.80	. 020	57.0	0.80	. 020
25.5	3.43	. 021	58.0	0.74	. 021
- 26.6	2.84	. 019	59.1.	0.67	. 021
27.7	2.43	. 019	60.2	0.60	. 022
28.8	2.01	. 020	61.2	0.54	. 024
29.9	1.86	. 022	62.3	0.48	. 025
31.0	1.61	. 024			
32.1	1.64	. 023			
33.1	1.65	. 023			
34.2	1.67	. 022			
35.3	1.52	. 023			
36.4	1.39	. 025			
37.5	1.11	. 027			,
38.6	0.94	. 031			
39.7	0.86	. 032			
40.8	0.83	. 027			.
41.9	0.86	. 027			\%\%:

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$
$Q=-7.92$

${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.4	6.30	. 046	44.1	0.28	. 041
10.6	5.06	. 045	45.2	0.24	. 045
13.9	2.81	. 045	46.3	0.22	. 049
15.0	2.72	. 045	47.3	0.24	. 044
16.1	2.55	. 045	48.4	0.25	. 045
17.2	2.88	.045	49.5	0.26	. 045
17.8	3.30	. 051	50.6	0.26	. 041
18.3	2.44	. 046	51.7	0.28	. 040
18.9	2.71	. 033	52.7	0.24	. .043
19.4	2.66	. 031	53.8	-0.24	. 035
20.0	2.68	. 030	57.0	0.17	. 042
21.1	2.32	. 027	58.1	0.14	. 046
22.2	1.94	. 033	59.2	0.12	. 050
23.3	1.49	. 033	60.2	0.13	. 048
24.4	1.00	. 038	61.3	0.12	. 050
25.5	0.82	. 041	62.3	0.12	. 050
26.6	0.95	. 029			
27.7	1.07	. 030			
28.8	1.20	. 029			
29.9	1.13	. 028			
31.0	1.46	. 024	.-		
33.2	0.61.	. 037	.		
34.3	0.51	. 047			
36.5	0.29	. 055			
38.7	0.38	. 048			
39.7	0.43	. 045			
40.8	0.40	. 038			
42.9	0.37	. 040			
43.0	0.35	. 036			

$$
\begin{gathered}
\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ca}^{40} \\
\text { Beam energy }=50.9 \mathrm{MeV} \\
Q=-8.11
\end{gathered}
$$

${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \sqrt{l}}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.4	5.27	. 049	44.1	0.25	. 0445
10.6	3.24	. 058	45.2	0.19	. 051
11.7	3.34	. 055	46.3	0.20	. 050
13.9	1.28	. 060	47.4	0.18	. 050
16.1	1.20	. 067	48.4	0.20	. 048
17.2	1.07	. 070	49.5	0.19	. 050
17.8	1.54	.075	50.6	0.21	. 048
18.3	1.25	. 065	51.7	0.21	. 047
18.8	1.42	. 045	52.8	0.19	. 049
19.4	1.34	. 045	53.8	0.18	. 041
20.0	1.40	. 040	54.9	0.19	. 040
21.1	1.27	. 037	58.1	0.14	. 048
22.2	1.12	. 044	59.2	0.13	. 049
23.3	0.90	. 044	60.2	0.11	. 051
24.4	0.87	. 041	61.3	0.12	. 050
25.5	0.79	. 040	62.4	0.21	. 052
26.6	0.63	. 033			
27.7	0.66	. 038			.
28.8	0.67	. 037.			
29.9	0.68	. 036			
31.0	0.67	. 037	\cdots	.	
35.4	0.34	. 050	- .		
36.5	0.38	. 044			
37.6	0.38	. .049			. .
38.7	0.36	. 050			
39.8	0.35	. 050			
40.8	0.37	. 040			
41.9	0.32	. 043			
43.0	0.28	. 041			

$$
\mathrm{Ca}^{40}\left(\alpha, \alpha^{1}\right) \mathrm{Ca}^{40}
$$

Beam energy $=50.9 \mathrm{MeV}$ $Q=-8.38$

$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta^{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractionai statistical error
9.4	4.41	. 054	41.9	0.26	. 048
10.6	2.40	. 066	43.0	0.24	. 043
11.7	2.58	. 063	44.1	0.18	. 052
13.9	1.92	. 060	45.2	-0.16	. 058
15.0	1.97	. 061	46.3	0.14	. 059
16.1	1.79.	. 053	47.4	0.14	. 058
17.2	1.85	. 052	48.5	0.12	. 062
17.8	2.01	. 065	49.5	0.12	. 059
18.3	1.60	. 057	50.6	0.12	. 061
18.9	1.51	. 043	51.7	0.11	. 065
19.4	1.36	. 045	52.8	0.12	. 062
20.0	1.20	. 045	53.8	0.09	. 057
21.1	0.89	. 044	54.9	0.09	. 057
22.2	. 0.69	. 053	56.0	0.10	. 054
23.3	0.53	. 058	59.2	0.07	. 068
24.4	0.51	. 053	60.3	0.06	. 071
25.5	0.69	. 045	61.3	0.08	. 063
26.6	0.79	. 038	62.4	0.07	. 068.
27.7	0.80	. 033			
28.8	0.81	. 034			
29.9	0.71	. 035			
31.0	0.58	. 043			
32.1	0.49	. 043			
33.2	0.45	. 044			
34.3	0.43	. 045		\%	
36.5	0.25	. 058			
37.6	0.31	. 052			
39.8	0.32	. 044			
40.9	0.28	. 045			

$$
\begin{gathered}
\mathrm{Ca}^{40}\left(\alpha, \alpha \cdot \mathrm{Ca}^{40}\right. \\
\text { Beam energy }=50.9 \mathrm{MeV} \\
Q=-8.59
\end{gathered}
$$

${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\delta \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
9.5	4.45	. 054	47.4	0.12	. 063
10.6	2.62	. 066	48.5	0.10	. 069
11.7	2.01	. 072	49.5	0.11	. 067
17.8	0.78	. 105	50.6	0.11	. 064
18.3	0.79	. 082	51.7	0.11	. 065
18.9	0.82	. 058	52.8	0.11	. 066
19.4	0.80	. 057	53.9	0.11	. 058
- 20.0	0.88	.050	54.9	0.10	. 058
21.1	0.72	. 049	56.0	0.09	. 058
22.2	0.76	. 053	57.1	0.08	. 059
23.3	0.55	. 058	62.4	0.04	. 085
24.4	0.41	. 058			
25.5	0.35	. 066			
26.6	0.33	. 058		.	
27.7	0.47	. 043			
28.8	0.42	. 042			
29.9	0.50	. 041			
31.0	0.38	. 052			
32.1	0.31	. 055			.
33.2	0.26	. 057			
34.3	0.22	. 064	\ldots		
35.4	0.18	. 070			
36.5	0.18	. 070			
38.7	0.30	. 054			
40.9	0.21	. 052			
43.0	0.19	. 058			
44.1	0.17	. 058			
45.2	0.15	. 058			
46.3	0.12	. 066			

$$
\mathrm{Ne}^{20}\left(\alpha, \alpha^{t}\right) \mathrm{Ne}{ }^{20}
$$

Beam energy $=50.9 \mathrm{MeV}$

${ }^{\text {C.M. }}$	Elastic		$Q=-1.63$			$Q=-4.25$		
	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\text {C. }}$ c.M.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
10.9	2290.	. 001	12.1	97.5	. 01	12.1	4.18	. 02
12.0	792.0	. 002	13.3	85.9	. 01	13.3	4.28	. 02
13.2	220.0	. 002	14.5	63.6	. 009	14.5	4.35	. 02
14.4	46.6	. 004	15.7	39.2 .	. 008	15.7	4.78	. 02
15.6	96.8	. 005	16.9	17.8	. 01	17.0	5.27	. 02
16.8	203.	. 004	18.1	6.04	. 01	18.2	5.42	. 02
18.0	272.	. 003	19.3	3.52	. 02	19.4	4.83	. 02
19.2	269.	. 003	20.5	9.89	. 02	20.6	4.62	. 02
20.4	235.	. 003	21.7	17.9	. 01	21.8	3.97	. 03
21.6	163.	. 003	22.9	25.6	. 009	23.0	2.61	. 03
22.8	89.9	. 005	24.0	29.3	. 009	24.2	1.80	. 04
24.0	33.4	. 01	25.2	28.0	. 01	25.4	1.15	. 05
25.2	7.72	- 02	26.4	22.5	. 01	26.6	0.87	. 05
26.3	. 2.60	. 03	27.6	15.2	. 01	27.8	0.85	. 06
27.5	12.3	. 02	28.8	8.74	. 02	29.0	1.05	. 06
28.7	25.7	. 01	30.0	4.42	. 02	30.2	2.17	. 05
29.9	36.1	. 008	31.2	2.86	. 02	31.4	1.26	. 05
31.1	40.3	. 007	32.4	3.83	. 03	32.6	1.20	. 05
32.3	37.7	. 008	33.6	6.13	. 02	33.7	1.06	. 05
33.5	31.0	. 01	34.7	8.73	. 02	34.9	0.78	. 06
34.6	22.1	. 01	35.9	10.9	. 02	36.1	0.64	. 07
35.8	15.0	. 01	37.1	11.5	. 01	37.3	0.48	. 07
37.0	9.34	. 01	38.3	10.7	. 02	38.5	0.39	. 06
38.2	6.15	. . 02	39.5	9.43	. 02	39.7	0.47	. 06
39.3	5.73	. 02	40.6	7.43	. 02	40.8	0.59	. 06
40.5	6.61	. . 02	42.8	5.62	. 02	42.0	0.75	. 06
41.7	8.01	. 02	43.0	4.30	. 02			
42.8	9.57	. 01						

$\mathrm{Ne}^{20}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ne}^{20}$
Beam energy $=50.9 \mathrm{MeV}$

$Q=-4.97$			$Q=-5.63$			$Q=-5.80$		
$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
17.0	0.55	. 10	13.4	14.7	. 02	15.8	1.91	. 03
18.2	0.46	. 10	14.6	15.4	. 02	17.0	1.85	. 03
19.4	0.39	. 10	15.8	14.8	. 01	18.2	1.39	. 04
20.6	0.40	. 09	17.0	14.3	. 01	19.4	1.45	. 04
21.8	0.44	. 09	18.2	12.5	. 02	20.6	1.17	. 05
23.0	0.43	. 09	19.4	9.09	. 02	21.9	0.98	. 05
24.2	0.3 .1	. 09	20.6	7.62	. 02	23.1	1.06	. 05
25.4	0.35	. 09	21.8	5.56	. 02	24.3	1.20	. 05
26.6	0.32	. 09	23.1	3.98	. 03	25.5	1.36	. 05
27.8	0.32	. 09	24.3	2.81	. 03	26.7	1.01	. 05
29.0	0.28	. 10	25.5	2.44	. 03	27.9	1.17	. 07
30.2	0.28	. 10	26.7	2.92	. 03	29.1	0.64	. 08
31.4	0.26	. 10	27.9	3.17	. 03	30.3	0.35	. 09
32.6	0.25	. 10	29.1	3.72	. 03	31.5	0.29	. 12
33.8	0.23	. 13	30.3	4.03.	. 03	33.8	0.27	. 10
35.0	0.17	. 14	31.5	3.84	. 03	35.1	0.35	. 09
36.2	0.18	. 14	32.7	3.05	. 03	36.2	0.61	. 09
37.4	0.18	. 14	33.9	2.84	. 03	37.4	0.78	. 08
38.5	0.15	. 15	35.0	1.86	. 03	38.6	0.75	. 08
39.7	0.13	. 15	36.2	1.46	. 04	39.8	0.81	. 08
40.9	0.09	. 15	37.4	0.88	. 04	41.0	0.79	. 07
42.1	0.08	. 15	38.6	0.86	. 04	42.2	0.79	. 08
43.3	0.06	. 15	39.7	0.79	. 04	43.3	0.70	. 05
			41.0	0.86	. 04			
			42.2	0.96	. 04			
			43.3	1.14	. 04			

$$
\mathrm{Ne}^{20}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ne}^{20}
$$

Beam energ'y $=50.9 \mathrm{MeV}$

$Q=-6.72$			$Q=-7.17$			$Q=-7.43$		
$\theta_{\text {CiM }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\theta} \text { C.M. }$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	${ }^{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	FractionaI statistical error
17.1	0.92	. 06	11.0	14.3	. 02	17.1	1.02	. 04
18.3	0.77	. 06	14.6	14.1	. 02	18.3	1.14	. 04
19.5	0.46	. 06	15.9	12.4	. 02	19.5	1.08	. 04
20.7	0.73	. 06	17.1	10.5	. 02	20.7	1.10	. 04
21.9	0.80	. 06	18.3	8.31	. 02	- 21.9	0.94	. 04
23.1	0.93	. 07	19.5	5.28	. 02	23.2	0.78	. 04
24.3	1.08	. 07	20.7	3.79	. 02	24.4	0.54	. 04
25.5	0.84	. 07	21.9	2.67	. 03	25.6	0.55	. 04
26.7	0.61	. 07	23.1	2.08	. 03	26.8	0.47	. 03
27.9	0.51	. 07	24.4	2.04	. 03	28.0	0.52	. 03
29.1	0.53	. 07	25.6	2.34	. 03	29.2	0.61	. 04
30.3	0.47	. 07	26.8	2.46	. 03	30.4	0.65	:04
31.5	0.62	. 07	28.0	2.38	. 03	31.6	$0: 73$. 05
32.7	0.68	. 07	29.2	2.34	. 03	32.8	0.60	. 07
33.9	0.72	. 07	30.4	1.98	. 03	34.0	0.52	. 07
35.1	0.69	. 07	31.6	1.47	. 04	35.2	0.43	. 08
36.3	0.64	. 07	32.8	1.10	. 04	36.4	0.44 .	. 08
37.5	0.51	. 07	34.0	0.77	. 05	37.6	0.31	. 08
38.7	0.31	. 07	. 35.2	0.57	. 05	38.8	0.27	. 08
39.9	0.21	. 07	36.4	0.49	. 05	40.0	0.29	. 08
41.1	0.21	. 07	37.6	0.41	. 05	41.2	0.25	. 08
42.3	0.17	. 07	38.7	0.45	. 05	42.3	0.30	. 08
43.4	0.25	. 06	40.0	0.52	. 05	43.5	0.28	. 08
			41.1	0.56	. 05			
			42.3	0.66	. 0.5	.		
			43.5	0.64	. 05			-

$$
\mathrm{Ne}^{20}\left(\alpha, \alpha^{\prime}\right) \mathrm{Ne}^{20}
$$

Beam energy $=50.9 \mathrm{MeV}$

Q $\mathrm{Q}=-7.86$		$Q=-8.71$				$Q=-9.11$		
$\theta_{\mathrm{C} . \mathrm{M}} .$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\text {C.M. }}$.	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error	$\theta_{\mathrm{C.M}}$	$\frac{\partial \sigma}{\partial \Omega}$	Fractional statistical error
14.7	2.85	. 04	17.1	2.18	. 03	15.9	3.3	. 03
15.9	1.82	. 04	18.4	2.35	. 03	17.2	3.01	. 03
17.1	1.18	. 05	19.6	2.24	. 03	18.4	2.75	. 03
18.3	0.93	. 05	20.8	2.36	. 04	19.6	2.60	. 03
19.5	0.66	. 05	22.0	2.24	. 04	20.8	2.72	. 03
20.8	0.73	. 06	23.2	1.89	. 04	22.0	2.66	. 03
22.0	0.77	. 06	24.5	1.51	. 04	23.3	2.47	. 04
23.2	0.81	. 06	25.7	1.26	. 04	24.5	2.04	. 04
24.4	0.76	. 06	26.9	1.19	. 04	25.7	1.93	. 05
25.6	0.81	. 06	28.1	1.14	. 04	26.9	2. 58	. 05
26.8	0.73	. 06	29.3	1.30	. 04	28.1	2.37	. 05
28.0	0.67	. 08	30.5	1.36	. 04	29.3	1.18	:05
29.2	0.51	. 09	31.7	. 1.42	. 04	30.5	1.03	. 06
30.4	0.41	. 10	32.9	1.40	. 04	31.7	0.92	. 06
31.6	0.23	. 11	34.1	1.49	. 05	32.9	0.79	. 06
34.0	0.24	.11	35.3	1.29	. 05	34.1	0.84	. 06
35.2	0.20	. 12	36.5	1.31	. 05	35.3	0.77	. 06
36.4	0.25	. 10	37.7	1.15	. 05	36.5	0.92	. 06
37.6	0.28	. 09	38.9	0.97	. 05	37.7	0.84	. 06
38.8	0.25	. 09	40.1	0.89	. 05	38.9	0.89	. 06
40.0	0.30	. 08	41.3	0.84	. 05	40.1	0.81	. 06
41.2	0.36	. 08	42.5	0.88	. 05	41.3	0.71.	. 06
42.4	0.31	. 07	43.7	0.78	. 05	42.5	0.61	. 07
43.6	0.31	. 07				43.7	0.54	. 07

```
$ID 465001,V ,10, SPRINGER
$IBJOB
$IBFTC FCN LIST,REF
    SUBROUTINE FCN(N,G,F,X,MI)
C
C SEE SPRINGER 5631 OR 5088
C 9-21-64 CAL-COMP OF DATA,ELASTIC, O+, AND I=1,IMAX
C MAXIMUM VALUES OF INDICES ITMAX=85, LMAX=50, IMAX=8
C
    COMMON/CCPOOL/XMIN,XMAX,YMIN,YMAX,CCXMIN,CCXMAX,CCYMIN, CCYMAX
    DIMENSION G(5),X(5),1D(5)
    DIMENSION SLL( 85),SXL( 85),SNL( 85), IML(5),CHARS(11),
    IFINA( 85) ,FOA( 85),FA( 85),FO( 85), ETAA(100),FCC( 85),FON( 85),
    2GSIG( 85),DSIGEX( 85),PD(5),WEIGHT( 85),YLM(51, 85),PS(100).
    3YLO(52, 85),Y(6),XX(6),SIG(51),GE(100) ,SIGIN( 85, 8), T(99),
    4SIGEX( 85),C(5),SIGEL( 85),E(100),SIGR( 85),TH( 85),S(5),MW (5),
    5AW(5),FNS(50),WW( 85),WW1( 85),SQ(100),CE(50),FNN( 85),ETTA(100)
        LOGICAL LOGIC,FLAGE
            REAL K,MA,MX,MB,MEV
        INTEGER PRINT
        COMPLEX FINA,FOA,FOO,FCC,FON,FNN,IML,IMO,PS,CLOG,CABS
        COMPLEX FIN,ZERO ,E,GE,IM,CEXP,FC,FN ,EO,FNS,CE,FNSY,ZD,SQK,CSQ
        IF(MI.NE.1) GO TO 36
        CCXMIN=0.
        CCXMAX=2000./1024.
        CCYMAX=1000./1024.
        CCYMIN=O.
        XMIN=0.
        XMAX=100.
        YMIN=0.
        YMAX=4.
        DATA RADIAN,MEV,HC,IBGN/.01745329,931.478,197.323,0/
        DATA (CHARS(I),I=1,11)/3H0.0,3H1O.,3H2O.,3H30.,3H4O.,3H50.,3H6O.,
    13H70.,3H8O.,3H90.,4H100.1
        DATA(IML(I),I=1,5)/(1, 0.),(0.,1.),(-1.,0.),(0.,-1,),(1.,0.)/
        DATA IM,PI,ZERO / (0..1.1,3.14159265 , (0.,0.) /
        DATA(T(1),I=1,99),(5(1),I=1,5),1
    X
                            MW(1), I=1,5),(AW(I),I=1,5)/1HH, 2HHE
    1,2HLI,2HBE,1HB,1HC,1HN,1HO,1HF,2HNE,2HNA,2HMG,2HAL,2HSI,1HP,1HS,2H
    2CL, 2HAR, 1HK, 2HCA,2HSC, 2HTI, 1HV,2HCR, 2HMN, 2HFE, 2HCO, 2HNI, 2HCU, 2HZN,
    32HGA,2HGE,2HAS,2HSE, 2HBR,2HKR,2HRB, 2HSR,1HY, 2HZR,2HNB, 2HMO, 2HTC,2H
    4RU,2HRH,2HPD, 2HAG, 2HCD,2HIN, 2HSN, 2HSB, 2HTE, 1HI, 2HXE, 2HCS, 2HBA,2HLA
    5,2HCE, 2HPR,2HND, 2HPM, 2HSM, 2HEU, 2HGD, 2HTB, 2HDY, 2HHO, 2HER, 2HTM, 2HYB ,
    62HLU,2HHF, 2HTA, 1HW,2HRE, 2HOS, 2HIR, 2HPT, 2HAU, 2HHG, 2HTL, 2HPB, 2HBI, 2H
    7PO, 2HAT, 2HRN, 2HFR, 2HRA, 2HAC, 2HTH, 2HPA, 1HU, 2HNP, 2HPU, 2HAM, 2HCM, 2HBK
    8,2HCF,2HES,1HP,1HD,3HHE3,3HHE4,1HT,1,1,2,2,1,1.007825,2.014102,3.0
    91603,4.002604,3.016049/
        N=5
        READ(2,21) NZX,NA,NB,PRINT,ITMAX,LMIN,LMAX,IMAX,MM, MX,EA,ELL,DE
        1LTA,A,B,D
    21 FORMATII3,311,13,412,3X,5F10.5/7F10.5)
        IF(-1.NE.MM) GO TO 606
        DO 51 IT=1,ITMAX
        READ(2,131) SIGEX(IT),THIIT)
    131 FORMAT(30X,2F10.5)
    DSIGEX(IT)=.1*SIGEX(IT)
```

51 CONTINUE
606 CONTINUE
IF(MM.EQ.7) READ(2,31) AIT,BIT
IF((MM.EQ.7).OR.(-1.EQ.MM)) GO TO 302
READ (2,31) (SIGEX(IT), DSIGEX(IT), TH(IT), IT=1,ITMAX) READ (2,31)DTHETA
302 CONTINUE
31 FORMAT(6F10.5)
$X(1)=E L L$
$X(2)=$ DELTA
$X(3)=A$
$X(4)=B$
$X(5)=0$
GSIG(1) $=\{$ SIGEX(1)-SIGEX(2))/(TH(1 1-TH(2))
ITMAXI=ITMAX-1
DO 32 IT $=2,1$ IMAX1
32 GSIG(IT) $=(S I G E X(I T+1)-S I G E X(I T-1)) /(T H(I T+1)-T H(I T-1))$
GSIG(ITMAX)=(SIGEX(ITMAXI-SIGEX(ITMAXI))/(THIITMAX)-TH(ITMAXI))
L2MAX $=2$ * LMAX
$Z A=M W(N A)$
$Z=N Z X$
$M A=A W(N A)$
$M B=A W(N B)$
NUMX $=M X+0.5$
$N U M Y=M A+M X-M B+.5$
$N Z Y=N Z X+M W(N A)-M W(N B)$
$U M X=M X$
$M X=M X * M E V$
$M A=M A * M E V$
$M B=M B * M E V$
SQPI = SQRT (PI)
$C(1)=.5 / S Q P I$
$C(2)=\operatorname{SQRT}(3) * C.(1)$
$C(3)=\operatorname{SQRT}(1.5) * C(1)$
$C(4)=\operatorname{SQRT}(7.5) * C(1)$
$C(5)=\operatorname{SQRT}(1.25) * C(1)$
DO 29 ISQ $=1,100$
UISQ=1SQ
SQ(ISQ)=SQRT(UISQ)
29 CONTINUE
DO 11 IT=1, ITMAX
IF(MM.NE.7) GO TO 303
$U I T=1 T$
THIIT)=AIT*UIT+BIT
303 CONTINUE
$W=C O S(T H(I T) * R A D I A N)$
WWIIT)=W
WWI(IT)=SQRT(1.-W\#W)
11 CONTINUE
ETO=SQRT(MA /2./EA)/137.037*ZA*Z
$K=S Q R T(2 . * M A * E A) * M X /(M A+M X) / H C$
WRITE(3,22) T(NZX), NUMX,S(NA),S(NB),T(NZY), NUMY,UMX,EA,ETO,K
22 FORMAT ($1 H 1 / / / 51 X, A 2,13,1 H /, A 3,1 H, A 3,1 H), A 2, I 3 / / 22 X, 11 H T A R G E T$ MASS
1F10.5, $3 \mathrm{X}, 11$ HBEAM ENERGY, F10.5, $3 \mathrm{X}, 3 \mathrm{HETA}, \mathrm{F} 10.5,5 \mathrm{X}, 1 \mathrm{HK}, \mathrm{F} 10.5 / / 1$
WRITE(3,23) ITMAX,LMIN,LMAX,IMAX,X
23 FORMATI 1 X,5HITMAX, $14,7 X, 4$ HLMIN, $14,9 X, 4$ HLMAX, $14,8 \mathrm{X}, 4$ HIMAX, $14,6 \mathrm{X}$,

```
    11HL,F 7.3.3X,5HDELTA, F 7.3,5X,1HA,F 7.3,5X,1HB,F7.3,5X,1HD,F7.3
    2/1)
    SIG(1)=ATAN(ETO)
    DO12 L=1,LMAX
    UL=L
    L2L=2*L+1
    SIG(L+L)=SIG(L)+ATAN(ETO/(UL+1.))
    CE(L)= CEXP{ IM*SIG(LI)
    FNS(L)=SQ (L2L )*CE(L)*CE(L)
12 CONTINUE
    DC 13 IT=1,ITMAX
    W=WW(IT)
    WI=WW1(IT)
    YLO(1,IT)=W*C(2)
    YLO(2,IT)=(3.*W*W-1.)*C(5)
    FCC(IT)=-ETO*CEXP(-IM*ALOG((1.-W)/2.)*ETO)/(K*(1.-W))
    DO 13 L=1,LMAX
    UL=L
    L2L=2*L+3
    YLO(L+2,IT)=(W*SQ(L2L)*SQ(L2L+2)*YLO(L+1,IT)- (UL+1.)*SQ (L2L+2)/
    1SQ(L2L-2)*YLO(L,IT))/(UL+2.)
13 CONTINUE
    IF(MM.EQ.2) READ(2,31)(E(L2),L2=2,L2MAX,2)
36 CONTINUE
    ELL=X(1)
    DELTA=X(2)
    A=X(3)
    B=X(4)
    D=X(5)
    F=0.
    DC 33 J=1,5
    G(J)=0.
33 CONTINUE
    EX=EXP(ELL/DELTA)
    EXE=EXP(-.5/DELTA)
    EXD=EXE*EXE
    EXS=EX
    FLAGE=.FALSE.
    DO 2 L=1,LMAX
    L2=2*L
    EX=EX:EXD
    UL=L
    CURE=(ELL-UL)/DELTA
    IF(ICURE.GT.88.).OR.FLAGE)GO TO 54
    EX=EXP(CURE)
    FLAGE=. TRUE.
54 CONTINUE
    ETA=1./(1.+EX)
    ET=ETA*(1.-ETA)
    ETT=ET *(1.-2.*ETA)
    ETTT=ET*(1.-6.*ET)
    E(L2)=CMPLX((ETA+B*ET),(A*ET+D*ETT))
    GE(L2)=CMPLXI(ET+B*ETT),(A*ETT+D*ETTT))/DELTA
    ETAA(L2)=ET
    ETTA(L2)=ETT
2 CONTINUE
```

```
    DO 1 IT=1,ITMAX
    W=WW(IT)
    DO 15 J=1,5
    ZD(J)=2ERO
15 CONTINUE
    FN=CMPLX(C(1),0.)
    DO }7\textrm{L}=1,LMA
    UL=L
    L2=2*L
    FNSY=FNS(L)*YLO(L,IT)
    FN=FN+FNSY*(1.-E(L2))
    ZD(1)=ZD(1)+FNSY*GE(L2)
    ZD(2)=ZD(2)+FNSY*GE(L2)*(UL-ELL)/DELTA
    ZD(4)=ZD(4)-FNSY*EIAA(L2)
    ZD(5)=ZD(5)-FNSY*ETTA(L2)*IM
    7 CONTINUE
    ZD(3)=ZD(4)*IM
    SQK=IM*SQPI/K
    FN=FN#SQK
    FC=FCC(IT)
    CSQ=SQK#CONJG{FN+FC)
    FIT =REAL((FN+FC)*CCNJG(FN+FC))*10.
    WEIGHT(IT)=1./(DSIGEX(IT)**2+(GSIG(IT)*DTHETA)**2)
    F=F+WEIGHT(IT)*(FIT-SIGEX(IT))**2
    DO 34 J=1,5
    PD(J)= REALICSQ*2D(J))*20.
    G(J)=G(J)+(FIT-SIGEX(IT))*PD(J)*2.*WEIGHT(IT)
34 CONTINUE
    SIGEL(IT)=FIT
    SIGR(IT)=REAL(FC*CONJG(FC))*10.
    1 CONTINUE
    IF(MI.NE.1) GO TO 445
    SCALEF=F
    WRITE(3,446) F
446 FORMATIBH SCALEF=F10.21
445 CONTINUE
    IF(ML.EQ.3) GO TO 444
    F=F/SCALEF
    DO 434 J=1,5
434 G(J)=G(J)/SCALEF
444 CONTINUE
    IF(MM.GT.O) Ml=3
    IF(MI.NE.3)GO IO 35
    WRITE(3,447) F
447 FORMAT(3H F=F10.3)
    EX=EXS/EXE
    WRITE(3,25)
25 FORMAT(1X,1HL,14X,
    X GHETA(L),11X,1OHDERIVITIVE,13X,7HNUCLEAR,13X,8HRELAT
    1IVE,14X,9HSPHERICAL
    X /34X,9HOF ETA(L),12X,1OH PHASE ,11X,7HCOULOMB/55X,9H SHIFT
    2,11X,11HPHASE SHIFT,12X,8HHARMONIC//)
    DO 8 L=1,LMAX
    L2=2*L
    PS(L2)=CLOG(EIL2))/.0174533/2./1M
24 FORMAT (1X,I2,3X,2F10.5,1HI,2F10.5,1H1,2F10.5,1HI,3
```

```
    1X,F10.5,13X,F10.51
            WRITE(3,24) L,E(L2),GE(L2),PSIL2),SIG(L)
    EX=EX*EXD
    ETA=1./(1.+EX)
    ET=ETA*(1.-ETA)
    ETT=ET *(1.-2.*ETA)
    ETTT=ET*(1.-6.*ET)
    E{L2-1)=CMPLX((ETA+B*ET),(A*ET+D*ETT))
    GE(L2-1)=CMPLX((ET+B*ETT),(A*ETT*D*ETTT))/DELTA
    8 \text { CONTINUE}
    eta,k,YLO,SIgma l,fN, have beEN evaluated. good place to debug by
    WRITING
    DD 17 IT=1, ITMAX
    SXL(IT)=ALOGIO(SIGEX(IT))
    SLL(IT)=ALOGIO(SIGEL(IT))
    FOO =ZERO
    DO 18 L=LMIN,LMAX
    L2=2*L
    FOO =FOO +FNS(L)*GE(L2)*YLOIL,IT)
18 CONTINUE
    FO(IT) REAL(FOO *CONJG(FOO ))*2.5
    SNL(IT)=ALOG1O(FO(IT))
17 CONTINUE
    IF(IBGN.EQ.O) CALL CCBGN
    IF{IBGN.EQ.O) GO TO 300
    CALL CCPLOT(0.,0.,1)
    CALL CCNEXT
300 CONTINUE
    IBGN=1
    WRITE (99,52)
52 FORMATI 6IH$ PUT ORIGIN ON INTERSECTION OF VERTICAL LINE AND BOTIO
    IM LINE)
        WRITE(99,53)
53 FORMAT (1H=1
    WRITE(98,44)T(NZX),NUMX,S(NA),S(NB),T(NZY),NUMY, EA,ETO,K
4 4 \text { FORMAT( 51X,A2,I3,1H(,A3,1H,,A3,1H),A2,I3/ 22X,7HELASTIC}
    1 13X,11HBEAM ENERGY,F10.5,3X,3HETA,F10.5,5X,1HK,F10.5)
    WRITE(98,23)ITMAX.LMIN,LMAX,IMAX,X
    CALL CCLTR(0.,1020./1024.,0,2)
    DO 46 I X=1,11
    UIX=IX
    UUI = 200./1024.*(UIX-1.)
    CALL CCLTR(UUI,-20./1024.,0,2,CHARS(IX),6)
4 6 ~ C O N T I N U E ~
    CALL CCPLOT(TH,SLL,ITMAX,4HJOIN)
    CALL CCPLOT(TH,SXL,ITMAX,GHNOJOIN,1,I)
    I=0
    CALL CCPLOT(0.,0.,1)
    CALL CCNEXT
    WRITE (99,53)
    WRITE(98,43)T(NZX),NUMX,S(NA),S(NB),T(NZY),NUMY, I,EA,ETO,K
    WRITE(98,23)ITMAX,LMIN,LMAX,IMAX,X
    CALL CCLTR(0.,1020.11024.,0,2)
    00 48 IX=1,11
    U1X=IX
```

```
    UUI=200./1024.*(UIX-1.)
    CALL CCLTR(UUI,-20./1024.,0,2,CHARS(IX),6)
    48 CONTINUE
    WRITE (99,52)
    CALL CCPLOT(TH,SNL,ITMAX,1,1)
    LMIN2=2*LMIN
    LMAX2=2*LMAX
    DO 601 L=LMIN2,LMAX2
    AEL=REAL{CABS(E{L))}
    IF(AEL.GT..5) GO TO 603
    6 0 1 ~ C O N T I N U E ~
    6 0 3 ~ 1 L = L
    AIL=REAL(CABS(E(IL-1)))
    RR=(.5-AIL)/(AEL-AIL)
    UILI= IL-1
    ER=(UIL1+RR)/2.
    WRITE (3,602) ER
    602 FORMAT(4H ER=F20.5)
    R=(ETO+SQRTIETO*ETO+ER *(ER +1.)))/K
    WRITE(3,47) R
    47 FORMAT(/51X,2HR=,F10.5/)
    DO 9 I=1,IMAX
    UI=1
    U2I=2.*UI+1.
    DO 37 IT=1,ITMAX
    W=WW(IT)
    WI=WW1(IT)
    YLM(1,IT)=-C(3)*W1
    YLM(2,IT)=-C(4)*W*W1
    FA(IT)=0.
    37 CONTINUE
        DO 10 M=1,I
        UM=M
        M2=M+1
        M2M=2*M+2
        DO 3 IT=1,ITMAX
        W=WW(IT)
        W1=WW1\IT)
        FOA(IT)=2ERO
        FINA(IT)=ZERO
        DO 3 L=M2,LMAX
        UL=L
        L2L=2*L+1
        LMP =L+M+.l
            LMM=L-M+1
            YLM(L+1,IT)=W*SQ(L2L)*SQ(L2L+2)/(SQ(LMP)*SQ(LMM))*YLM(L,IT)
            1-SQ(LMP-1)*SQ(LMM-1)*SQ(L2L+2)/(SQ(LMP)*SQ(LMM)* SQ(L2L-2 ))*YLM(
            2L-1,IT)
        3 CONTINUE
C
C YLM,FN,FC HAVE BEEN EVALUATE GOOD PLACE TO DEBUG BY WRITING
            DO 6 L=LMIN,LMAX
            LLMIN=L-I
            LLMIN=MAXO(LLMIN,LMIN)
            LLMIN=LLMIN-MOD(LLMIN+L+1;2)
```

```
    LLMAX=L+1
    LLMAX=MINO(LLMAX,LMAX)
    UL=L
    L2L=2*L+1
    DC 40 IT=1,ITMAX
    FON(1T)=2ERO
    FNN(IT)=2ERO
40 CONTINUE
    DO 5 LL=LLMIN,LLMAX,2
    LLL=LL+L
    ULL=LL
    XX(1)=UL
    XX(2)=UI
    XX(3)=ULL
    XX(4)=0.
    x(5)=0.
    x ( (6) =0.
    CSH2=CLEB (XX)
    Y(1)=UL
    y (2)=U1
    Y (3)=ULL
    Y(4)=-UM
    Y(5)=UM
    Y(6)=0.
    CSH1=CLEB (Y)
    MO=MCD(LL,4)+1
    IMO=IML (MO)
    DO 5 IT=1,ITMAX
    FNN(IT)=FNN(IT) +CE(LL)*CSHI*CSH2*GE(LLL)*IMO
    IF(M.NE.I) GO TO 19
    FON(IT)=FON(IT)+CE(LL)*CSH2*CSH2*GE(LLL)*IMO
19 CONTINUE
    5 \text { CONTINUE}
    MD=5-MOD(L,4)
    IMO=IML (MO)
    DO 41 IT=1,ITMAX
    FINA(IT)=FINA(IT)+FNN(IT)*CE(L)*YLM(L,IT)*SQ(L2L)*IMO
    IF(M.NE.I) GO TO 49
    FOA(IT)=FOA(IT)+FON(IT)*CE(L)*YLO(L,IT)*SQ(L2L)*IMO
49 CONTINUE
41 CONTINUE
    6 CDNTINUE
        DO 10 IT T=1, ITMAX
        Wl=WW1(IT)
        FA(IT)=FA(IT)+2.*REAL(FINAIIT)*CCNJG(FINA(ITI))
        YLM(M+2,IT I=-W1*SQ(M2M+3)/SQ(M2M )*YLM(M+1,IT,
        YLM(M+1,IT I=-W1*SQ(M2M+1)/SQUM2M )*YLM(M,IT )
10 CONTINUE
    DO 4 IT=1,ITMAX
    FA(IT)=FA(IT)+REAL(FOAIIT)*CONJG(FOA(IT)))
    SIGIN(IT,I)=FA(IT)*2.5*U2I
    SNL(IT)=ALOGIO(SIGIN(IT,I))
    4 \text { CONTINUE}
C THE DIFFERENTIAL CROSS SECTION SIGCAL
C HAS BEEN EVALUATED. GOCD PLACE TO DEBUG BY WRITING
```

C

C
CALL CCPLOT(0.,0.,1)
CALL CCNEXT
WRITE(99.53)
WRITE(98,43)T(NZX), NUMX,S(NA),S(NB),T(NZY), NUMY, I,EA,ETO,K
43 FORMAT $51 X, A 2,13,1 H(, A 3,1 H, A 3,1 H), A 2,13 / 22 X, 10 H F I N A L$ SPIN 115, 8X,11HBEAM ENERGY,F10.5,3X,3HETA,F10.5,5X,1HK,F10.51
WRITE (98,23)ITMAX, LMIN,LMAX,IMAX,X
CALL CCLTR(0.,1020.11024.,0.2)
DO 45 I $X=1,11$
UIX=IX
UUI $=200.11024 . *$ (UIX-1.)
CALL CCLTR (UUI, $-20.11024 ., 0,2$, CHARS (IX),6)
45 CONTINUE
WRITE (99,52)
CALL CCPLOT(TH,SNL,ITMAX,1,1)
9 CONTINUE
WRITE 3,30)
30 FORMAT 124 HITHETA RUTHERFORD ELASTIC DATA $I=0 \quad 1$
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
28 DO 16 IT $=1$, ITMAX
WRITE(3,26) TH(IT),SIGR(IT),SIGEL(IT), SIGEX(IT),
1
FOIIT), (SIGINIIT,I),I=1,IMAX
2)

26 FORMAT(1X,F6.2,2F10.2,F8.2.9F10.2)
16 CONTINUE
35 CONTINUE RETURN.
END

```
                    *** 'END-OF-FILE' CARD ***
```

```
$IBFTC MAIN LIST,REF
    DIMENSION H( 5, 5),X( 5),G( 5),S(5),XP( 5),GP( 5), T( 5),GB(5)
    DIMENSION V(3),C(5,5)
    COMMON F , FP , FB , FO , XP
    COMMON T:G:G:GS:GP:GS:GS
    COMMON GB , GSB , GSS , GTP , GTT , H
    COMMON DELTA, N , M , L Ml , MS
    COMMON IT :
    COMMON Z , Q A , A EL V V V
    COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
    I D=40
    1000 DO 99 I=1,3
    99.V(I)=0.0
        MS=0
        CALL READIN
    120 L=1
    121 CALL READY
    122 L=L
    123 GO TO (139,159,133,126),1
    124 L=2
    125 GO TO 121
    126 CALL AIM
    128 GO TO (129,132,133,139),L
    127 L=L
    129 CALL FIRE
    130 L=L
    131 GO TO 1135,132,126,1391,L
    132 L=1
    133 CALL DRESS
        GO TO (124,139),L
    135 L=3
        GO TO 133
    159 L=4
        GO TO 133
    139 CALL RITEOT(2)
        CALL STUFF
        L=L
        GO TO (120,142),L
    142 CONTINUE
        Ml=3
        CALL FCN(N,G,F,X,M1)
        GO TO 1000
        END
```

```
$IBFTC READY LIST.REF
    SUBROUTINE READY
    DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), I( 5),GB( 5)
    DIMENSION V(3),C( 5, 5)
    COMMON F , FP , FB , FO , XP
    COMMON T, S G G GS,GP:GSP
    COMMON GB , GSB , GSS ,GTP ,GTT , H
    COMMON DELTA, N , M , L M M , M , MS
```



```
    COMMON /ERR/IERR,IPOS
    COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
    L=L
    G0 T0 (200,201),L
    200 IT=1
    HIGH=2.0
    IERR=0
    DOUBLE=1.0
    201 CALL MATMPY(N,N,H,G,S)
    DO 203 I=1,N
    203 S(I)=-S(I)
    M=1
    207 CALL MATMPY(M,N,S,G,GS)
    IF (GS -LE. O.O) GO TO 208
    CALL ERROR(1)
    GO TO 201
    208 EL=AMINI(1.0,-HIGH*F/GS)
    SL=-GS
    210 DO 211 I=1,N
    211 XP(I)=X(I)+EL*S(I)
    M1=2
    CALL FCN(N,GP,FP,XP,MI)
    CALL OVERFL(KOOOFX)
    IF (KOOOFX.NE. 1) GO TO 215
    L=2
    CALL ERROR(5)
    IERR=IERR+1
    IF (L .EQ. 1) RETURN
    HIGH=HIGH/2.0
    EL=EL/2.0
    GO TO 210
    215 C.ALL MATMPY (M,N,S,GP,GSP
    IERR=0
            IF ((GSP .LT. 0.0) .AND. (FP .LT. F)| GO TO 218
C GOES TO AIM
            L=4
            I SHOT=0
            RETURN
    218 FB=FP
        DO 234 I=1,N
        GB(I)=GP(I)
    234 T(I)=XP(I)
            IF (EL .GE. 1.0) GO TO 223
C GOES TO DRESS 3 WHICH DOESN: MODIFY H
            HIGH=2.0*HIGH
    L=3
```

I SHOT=1
RETURN
223 DELTA = (DOUBLE+1.0) $=$ DELTA
TO=DOUBLE/SL
DOUBLE=DOUBLE+2.0
$\mathrm{L}=2$
I SHOT=2
RETURN
END

```
$IBFTC AIM LIST,REF
        SUBROUTINE AIM
        DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5)
        DIMENSION V(3),C( 5, 5)
        COMMON F , FP , FB , FC , XP
        COMMON T:G:G:GS:GS:GS
        COMMON GB , GSB , GSS , GTP , GTT , H
        COMMON DELTA, N , M , L ML MS
```



```
        COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
        M=M
        L=0
        I PERP=0
        GO TO (301,313),M
    301 Z=GS+GSP+3.0*(F-FP)/EL
        TO=GS/2
        TI=GSP/Z
        Q=ABS(Z*SQRT(1.0-TO*TI))
        A=(GSP+Q-Z)/(GSP-GS+Q+Q)
        IF ((A .GT. O.O) .AND. (A .LT. 1.D)) GO TO 305
        L=4
        RETURN
    305 TO=(EL*(GSP+Z+Q+Q)*A*A)/3.0
        FO=FP-TO
        CALL MATMPY(N,N,H,GP,T)
        CALL MATMPY(M,N,T,S,SP)
        CALL MATMPY(M,N,S,S,SS)
        TP1=SP/SS
        DO 308 I=1,N
    308 T(I)=-T(I)+TPI*S(I)
        M=1
        CALL MATMPY(M,N,T,GP,GTP)
        TP1=F+GTP/2.0
        IF(ITO-GTP/2.0 .LE. 0.0) .AND. (TP1 .GE. 0.0)) GO TO 318
    312 CALL OVERFL(KOOOFX)
        IF (KOOOFX .EQ. 1) CALL ERROR(15)
    313 TP1=1.0-A
        DO 314 I=1,N
    314 T(I)=A*X(I)+TPI*XP(I)
        L=1
C...GGES-TG-FIRE
    RETURN
    318 DO 319 I=1,N
    319T(I)=T(I)+XP(I)
    M1=2
321 CALL FCN (N,GB,FB,T,M1)
    CALL OVERFL(KOOOFX)
    IF (KOOOFX .NE. 1) GO TD 322
    CALL ERROR(20)
    GO TO }31
    322 IF (FB .GE. FO) GO TO }31
    IPERP=1
    DO 325 I=1,N
    S(I)=T(I)-X(I)
    G(I)=GB(I)-G(I)
    325 CONTINUE
```

```
            CALL MATMPY(M,N,S,GB,GTT)
            GSS=GTI-EL*GS
            IF (GSS .LE. O.0) GO TO }33
            SL=-GIP+EL*EL*SL
            EL=1.0
C GOES TO DRESS 1
            L=2
            RETURN
        335 L=3
C GOES TO DRESS 3 H IS NOT MODIFIED
            RETURN
            END
```

```
$IBFTC FIRE LIST,REF
            SUBROUTINE FIRE
            DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5)
            DIMENSION V(3),C(5,5)
            COMMON F , FP , FB , FO , XP
            COMMON T:G:G:GS:GS:GP
            COMMON GB , GSB , GSS , GTP , GTT , H
            COMMON DELTA, N : M , L ML MS
            COMMON IT ;
            COMMON /WRITEIISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
            COMMON /AAAAAA/LOOPF
        1 ML=2
            CALL FCNIN,GB,FB,T,M1)
            CALL OVERFL(KOOOFX)
            IF {KOOOFX.NE. 1) GO TO 403
            CALL ERROR(25)
            M=2
C GOES TO AIM 2
            L=3
            RETURN
    4 0 3 ~ M = 1
            CALL MATMPY(M,N,S,GB,GSB)
            TP1=AMIN1(F,FP)
            ABAR=1.0-A
            IF (TP1.LT. FBI GO TO 418
            LOOPF=0
            IMOVE=0
    406 TP1=A/ABAR
            TP2=ABAR/A
            TO=GSB*(TP1-TP2)
    413 GSS=TO+Q+Q
            IF {GSS .LE. O.O} GO TO 410
            DO 415 I=1,N
    415G(I)=(GB(I)-G(I))*TP1+(GP(I)-GB(I))*TP2
                L=2
C GOES TO DRESS 1
            RETURN
        410 L}=
C GOES TO DRESS 3 H IS NOT MODIFIEO
            RETURN
418 -...CONTINU
            L=4
            RETURN
            END
```

```
$IBFTC DRESS LIST,REF
        SLBROUTINE DRESS
        DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5
        DIMENSION V(3),C(5,5)
        COMMON F , FP , FB , FO , X , XP
        COMMON T , S , G GS , GP , GSP
        COMMON GB , GSB , GSS , GTP , GIT , H
        COMMON DELTA, N , M , L Ml , MS
```



```
        COMMON Z , Q , A EL , , V , C
        COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
        L=L
        I DRESS=1
        GO TO (500,525,529,510),1
C CALCULATE LENGTH OF THE 2ND dERIVATIVE IN THE direction of the Step
    500 CALL MATMPY(N,N,H,G,X)
        M=1
        CALL MATMPY(M,N,X,G,TO)
    505 DC 507 I=1,N
        DO 507 J=1,N
    507 H(I,J)=H(I,J)-X(I)*X(J)/TO
        DELTA=DELTA*(EL*GSS/TO)
        TO=EL/GSS
    510 DO 512 I=1,N
    DO 512 J=1,N
    512 H(I,J)=H(I,J)+TO*S(I)*S(J)
    529 CALL OVERFL(KOOOFX)
        IF (KOOOFX .EQ. 1) CALL ERROR(35)
    519 F=FB
        DO 522 I=1,N
        G(I)=GB(I)
    522 X(I)=T(I)
        L=1
C SAME VALUE FOR F CHECK
            IF (V(3) .NE. F) GO TO 523
            L=2
            RETURN
C GOES TO STUFF
    564 CALL RITEOT(1)
            IT=1T+1
C GOES TO READY FOR A NEW ITERATICN
            RETURN
    523 V(3)=V(2)
            V(2)=V(1)
            V(1)=F
            ILOOP=0
        525 GO TO 564
            END
```

```
$IBFTC STUFF
    SUBROUTINE STUFF
    DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), (( 5),GB( 5)
    DIMENSION V(3),C15,5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline COMMON & F & , & FP & , & FB & - & FO & - & X & , & XP \\
\hline COMMON & T & - & S & , & G & - & GS & - & GP & , & GSP \\
\hline COMMON & GB & , & GSB & , & GSS & , & GTP & - & GTT & - & H \\
\hline COMMON & DEL & & N & , & M & , & 1 & , & M1 & * & MS \\
\hline COMMON & IT & . & E & ' & K & , & P & , & 10 & , & SL \\
\hline COMMON & 2 & , & 0 & , & A & - & EL & , & \(v\) & * & C \\
\hline
\end{tabular}
    L=2
    IF (MS .GE. K) RETURN
    MS=MS+1
    WRITE (3,5) MS
    5 FORMAT (19H-RANDOM STEP NUMBER,I4)
    M=(MS+1)/2
    DO 7120 I=1,N
    M=MOD(1,M)+MOD(MS,2)
    T(1)=2*MOD(M,2)-1
    T(1)=2*MOD (T(I),2)-1
7120 CONTINUE
    CALL MATMPY (N,N,H,T,S)
    M=1
    CALL MATMPY (M,N,S,T,TO)
    EL=0.1*P/SQRT(TO)
7130 DO 7140 I=1,N
    X(I)=X(I)+EL*S(I)
7140 CONTINUE
    Ml=2
    CALL FCN (N,G,F,X,MI)
    L=1
    IT=0
    CALL RITEOT(1)
    RETURN
    END
```

```
BFTC READIN LIST,REF
    SUBROUTINE READIN
    DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5). T( 5),GB( 5)
    DIMENSION V(3),C(5,5)
    COMMON F , FP , FB , FO , XP
    COMMON T , S , G GS , GP , GSP
    COMMON GB,G:GB,GSS,GTP GTT, H
```



```
    COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,ICRESS,IWRITE,IFIN
    COMMCN /PUNCH/IPUNCH,ICLOCK
    COMMON /IDENTY/IDENT
    COMMON /READ/IREAD
    READ (2,1) IREAD,IWRITE,K,ISIZE,ISTEP,IPUNCH,ICK,IOENT,ICLOCK
    1 FORMAT (1615)
    E=10.0**(ISIZE-3)+1.E-8
    P=10.0**ISTEP
    M1=1
    CALL FCN (N,G,F,X,M1)
    WRITE (3,20) (X(I),I=1,N)
    20 FORMAT (17HIINITIAL GUESS IS/IIX,10E13.5))
    IF (IREAD .GE. O) GO TO 50
    DO 30 I=1,N
    DO 29 J=1,N
    C(1,J)=0.0
    H(I,J)=0.0
    2 9 ~ C O N T I N U E ~
    H(I,I)=1.0
    30 CONTINUE
    DELTA=1.0
    32 FORMAT (34H WHICH IS LINEARLY CONSTRAINED BY)
    WRITE (3,32)
    NUMCON=-IREAD
    DO 40 I =1,NUMCON
    READ(2,10) (C(I,J),j=1,N)
    10 FORMAT (5E14.5)
    WRITE (3,37) (C(I,J),J=1,N)
    37 FORMAT (10E13.5)
    40 CONTINUE
    CALL CSTRAN(O)
    GO TO }15
    50 IREAD=IREAD+1
    GO TO (100,200,300 ),IREAD
    H STARTED AS IDENTITY
100 DO 110 I=1,N
    DO 108 J=1,N
    H(I,J)=0.0
108 CONTINUE
    H(I,I)=1.0
110 CONTINUE
    DELTA=1.0
    WRITE (3,120)
120 FORMAT (39HOH SET INITIALLY TO THE IDENTITY MATRIX)
150 Ml=2
    CALL FCN (N,G,F,X,MI)
```

```
        CALL OVERFL(KOOOFX)
        WRITE (3,160) F,(G(I),I=1,N)
    160 FORMAT (24HOAT THE INITIAL GUESS F=,E13.5/9H AND G [S/(10E13.5))
        IF (M1 .NE. 10) GO TO 168
        DO 165 I=1,N
        G(I)=100.0*G(I)/F
    165 CONTINUE
        F=100.0
    168 IF (ICK .EQ. 1) CALL DIFCK
        WRITE (3,170)
    170 FORMAT (1HO)
        RETURN
C READ IN DIAGONAL ELEMENTS OF H
    200 DO 210 I=1,N
        DO 209 J=1,N
        H(I,J)=0.0
    209 CONTINUE
    210 CONTINUE
        READ (2,10) (H(I,I),I=1,N)
        DELTA=1.0
        DO 230 I=1,N
        IF (H(I,I).NE. O.O) DELTA=DELTA*H(I,I)
    230 CONTINUE
        WRITE (3,240) (H(I,I),I=1,N)
    240 FORMAT (31HOTHE DIAGONAL ELEMENTS OF H ARE/(10E13.51)
        WRITE (3,250) DELTA
    250 FORMAT (24HOTHE DETERMINANT OF H IS,EE13.5)
        GO TO 150
C READ IN H AND DELTA
    300 READ (2,10) ((H(I,J),J=1,N),I=1,N)
        READ (2,10) DELTA
        WRITE (3,310) ({H(I,J),J=1,N),I=1,N)
    310 FORMAT (1HO,20X,1HH/(10E13.51)
        WRITE (3,250) DELTA
        GO TO 150
        END
```

```
$IBFTC RITEOT LIST,REF
        SUBROUTINE RITEOT(NN)
        DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5)
        DIMENSION V(3),C( 5, 5)
        COMMON F , FP , FB , FC , XP
        COMMON T, \S , G G GS , GS , GP , GSP
        COMMON GB,G,GSB ,GSS ,GTP , GTT, H
        COMMON DELTA, N , M , M , L, Ml , MS
```



```
        COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
        COMMON /PUNCH/IPUNCH.ICLOCK
        IF ((|IT .NE. 11).AND. (IT .NE. 1).AND. INN .NE. 2) .AND. IISETU
    *P .NE. 1)J .OR. \ICLOCK .NE. OI| GO TO 3
    IF IISETUP .EQ. 1) GO TO 2
    IF (II .NE. 1) GO TO 1
    CALL CLOCKIITIMEII
    GO TO 3
    1 CALL CLOCKI(TIME2)
    TIME = (TIME1-TIME2)/FLOAT(IT-1)+0.2
    I SETUP=1
    2 CALL CLOCKI(TIME3)
    IF (TIME .LT. TIME3) GO TO 3
    WRITE (3,1002)
1002 FORMAT (25H1/-ノ-/-/-ノ-ノ-/-/-/-/-/-ノ-/13H-RAN OVERIIME)
    JEND=-1
    GO TO 1003
    3 IF INN .EQ. 21 GO TO 1000
    IF (IT .EQ. ICLOCK) GO TO 900
    IF (IWRITE .EQ. O) GO TO 35
    WRITE (3,4)
    4 FORMAT 1130H - - - - - - - - - - - - - - - - - - - - - - - - - 
    * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
    * - - - ।
    JWRITE=IWRITE+1
    GO TO (35,25,15,6,5,49
                                    1.JWRITE
49 WRITE (3,51) (XP(I),I=1,N),(GP(I),I=1,N),GSP,FP,(S(I),I=1,N),EL
51 FORMAT (18HOXP,GP,GSP,FP,S,EL/(10E13.5))
    5 WRITE (3,50) ((H(I,J),J=1,N),I=1,N)
50 FORMAT (1HO,20X,1HH/(1OE13.5))
    6 IF (ISHOT .EQ. 1) WRITE (3,100)
        IF (ISHOT .EQ. 2) WRITE (3,110)
        I SHOT=0
        IF (IPERP .EQ. 1) WRITE (3,200)
        IPERP=0
        IF (IMOVE .GT. 0) WRITE (3,300)
        IF (IMOVE -LT. O) WRITE (3,310)
        IMOVE=0
        WRITE (3,500) IDRESS
    IF (ILOOP .EQ. 1) WRITE (3,400)
    WRITE (3,40) GS,DELTA
40 FORMAT (59HOTHE COMPONENT OF THE GRADIENT IN THE DIRECTION OF THE
    *STEP,E14.5/7HODELTA=,E14.51
15 WRITE (3,30) (G(I),I=1,N)
30 FORMAT (1HO,19X,1HG/(1OE13.5))
25 WRITE (3,20) F,(X(I),I=1,N)
20 FORMAT (3HOF=,E14.5/1HO,19X,1HX/(10E13.5))
```

```
            WRITE (3,10) IT,MS
    10 FORMAT I17HOITERATION NUMBER,14,16H OF STEP NUMBER,14/130HO- - - -
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , , 
    35 IF (-1 .NE. JENDI RETURN
    CALL EXIT
900 WRITE (3,1006)
1006 FORMAT (41HO TERMINATED DUE TO TOO MANY ITERATIONS,//)
1000 WRITE (3,1001) MS
1001 FORMAT (25HI/-/-/-/-/-/-/-/-/-/-/-/-/21H-FINAL VALUES OF STEP,I4)
1003 M1=4
    CALL FCN(N,G,F,X,MI)
    IF (IPUNCH .GI. 0) WRITE(14,1005) (X(I),I=1,N)
    IF (IPUNCH .EQ. 2) WRITE(14,1005) (H(I,I),I=1,N)
    IF (IPUNCH .NE. 3) GO TO 5
    WRITE(14,1005) ((HII,J),J=1,N),I=1,N)
    WRITE(14,1005) DELTA
    GO TO 5
100 FORMAT (27HOUNDERSHOT H NOT MODIFIED)
110 FORMAT (54HOUNDERSHOT H MODIFIED SO AS TO DOUBLE LENGTH OF STEP)
200 FORMAT (9HORICICHET)
300 FORMAT (IlHOMOVE RIGHT)
310 FORMAT (IOHOMOVE LEFT)
400 FORMAT (43HOFOUR CONSECUTIVE VALUES OF F WERE THE SAMEI
500 FORMAT (6HODRESS,I3)
1005 FORMAT (5E14.5)
    END
```

```
$IBFTC ERROR LIST,REF
    SUBROUTINE ERROR(KK)
    DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5)
    DIMENSION V(3),C( 5, 5),DIAG( 5)
    COMMON F , FP , FB , FO , XP
    COMMON T, S , G GS , GP , GSP
    COMMON GB, GSB, GSS , GTP , GTT , H
```



```
    COMMON Z , Q , A EL , V C
    COMMON /WRITE/ISHOT,IPERP,IMOVE,ILOOP,IDRESS,IWRITE,IFIN
    COMMON /ERR/IERR,IPOS
    COMMON /AAAAAA/LOOPF
    COMMON /IDENTY/IDENT
    COMMON /READ/IREAD
    KKK=1+KK/5
    GO TO (100,200,400,400,400,600,400,800),KKK
    100 WRITE (3,110) GS
    110 FORMAT(41HOH IS NO LONGER POSITIVE DEFINITE FOR GS=,E13.5)
    IF (IDENT .GE. 2) WRITE (3,112) ((HII,J),J=1,N),I=1,N)
    112 FORMAT (27HOH SET TO IDENTITY. H WAS =/ {1OE13.5)|
    DELTA=1.0
    DO 120 I= 1,N
    DIAG(I)=ABS(H(I,I))
    DO 118 J=1,N
    H(J,I)=0.0
118 CONTINUE
    H(I,I)=DIAG(I)
    IF ((IDENT .GE. 2).AND. (DIAG(1) .NE. 0.0)) H(I.1)=1.0
    IF (H(I,I) .NE. 0.0) DELTA=DELTA*H(I,I)
120 CONTINUE
    IF (IDENT .GE. 2) GO TO 117
    WRITE (3,116)
116 FORMAT (G7HODIAGONAL ELTS. OF H ARE SET POSITIVE AND OFF DIAGONAL
    *ELTS. ZEROED)
117 IF ( IREAD .GE. 0) RETURN
    CALL CSTRAN(1)
    RETURN
200 WRITE (3,201)
201 FORMAT (58HOREADY OVERFLOW LENGTH OF STEP IS HALVED FOR ANOTHER
    *TRY)
        IF (IERR .LT. 5) RETURN
        L=1
        IF (IMS .NE. O).AND. (IT .EQ. 1)) STOP
        RETURN
400 WRITE (3,401)
401 FORMAT (13HOAIM OVERFLOW)
    RETURN
600 WRITE (3,601)
601 FORMAT (83HOFIRE OVERFLOW TRY POINT HALFWAY BETWEEN INTERPDLATED
    * MINIMUM AND LOWER END POINT)
        IF (FP .GT. F) A=A-1.0
        IMOVE=ISIGN(1,IFIX(A))
        A=(1.0+A)/2.0
        RETURN
800 WRITE (3,801)
801 FORMAT (15HODRESS OVERFLOW)
        STOP
        SN
```

```
$IBFTC DIFCK LIST,REF
    SUBROUTINE DIFCK
    DIMENSION H( 5, 5),X( 5),G( 5),S( 5),XP( 5),GP( 5), T( 5),GB( 5)
    DIMENSION V(3),C( 5, 5)
    DIMENSION GPL(5),GM(5)
    COMMON F , FP , FB , FO , X , XP
    COMMON T:G:G:GS:GF:GP:GSP
    COMMON GB , GSB , GSS , GTP , GTT , H
    COMMON DELTA, N , M , L Ml , MS
    COMMON IT , E , K , P , , TO , SL
    COMMON Z , Q , A EL , V , C
    IFAIL=0
    Ml=2
    DO 100 I=1,N
    DO 50 [TRY=1.5
    TRY=AMAX1(AMIN1(1.0/ABS(G(I)),1.0),ABS(X(I))*1.0E-4)/(10.0**(ITRY-
    *|)
    X(I)=X(I)-TRY
    CALL FCN {N,GM,FM,X,M1}
    X(I)=X(I)+2.O*TRY
    CALL FCN (N,GPL,FPL,X,M1)
    X(I)=X(I)-TRY
    FN=(GM(I)+4.0*G(I)+GPL(I))/3.0*TRY
        IF (ABS((FPL-FM-FN)/FN).LE. 1.OE-4) GO TO }9
    GN=(FPL-FM)/(2.0.TRY)
    IF (ABS((GN-G{I))/GN) -LE. 1.OE-3) GO TO 98
    50 CONTINUE
    WRITE (3,55) I,FPL,F,FM,FN,GPL(I),G(I),GM(I),GN,TRY
    55 FORMAT (4H-THE,I4,82H-TH COMPONENT OF THE ANALYTICAL DERIVATIVE DO
    $ESN'T AGREE TO WITHIN . I OF 1 PERCENT/29HOFPL,F,FM,FN,GPL,G,G7,GN
    *ARE /10E13.5)
        IFAIL=1
    98 WRITE (3,99) I,ITRY
    99 FORMAT (16H-SUCCESS FOR THE,14,20H-TH COMPONENT ON THE,I4,4H TRY)
100 CONTINUE
    IF IIFAIL .EQ. |) CALL EXIT
    RETURN
    END
```

```
$IBFTC CSTRAN LIST,REF
    SUBROUTINE CSTRAN (ITEST)
    DIMENSION H( 5, 5),XI 5),G( 5),PERM( 5),XP( 5),GP( 5),IPERM( 5),
    1GB( 5),V(3),C( 5, 5)
    INTEGER P,PERM
    COMMON F , FP , FB , FC , X , XP
    COMMON PERM, IPERM , G , GS , GP , GSP
    COMMON GB , GSB , GSS , GTP , GTT , H
```



```
    COMMON IT :
    COMMON /READ/IREAD
    DELTA=1.0
    IF (ITEST .NE. O) GO TO 100
    NUMCON=-I READ+1
    DC }51=1,
    PERM(1)=I
    IPERM(I)=I
    5 \mp@code { C O N T I N U E }
    P=1
    DC 50 J=1,N
    PIVOT=0.0
    DO 10 I=P,N
    II=PERM(I)
    SAVE=ABS(CIII,J))
    IF (SAVE .LE. PIVOTI GO TO 10
    PIVOT=SAVE
    IBIG=II
10 CONTINUE
    IF (PIVOT .LE. 0.0) GO TO 50
    I SAVE=PERM(P)
    PERM(P)=J
    IP=IPERM(J)
    PERM(IP)= I SAVE
    IPERM(J)=P
    IPERM(I SAVE)=1P
    P=P+1
    PIVOT=C(IBIG:J)
    DO 20 JJ=J,N
    SAVE=C(IBIG,JJI/PIVOT
    C(IBIG,JJ)=C(J,JJ)
    C(J,JJ)=SAVE
20 CONTINUE
    C(J,J)=1.0
    IF (P.GE.N) GO TO 100
    J1= J+1
    DO 30 I=P,N
    II=PERM(I)
    DO 28 JJ=Jl,N
    C(II,JJ)=C(II,JJ)-C(II,J)*C(J,JJ)
    28 CONTINUE
    C(II,J)=0.0
    30 CONTINUE
    50 CONTINUE
100 IF {C(N,N) .EQ. O.0) GO TO 105
    H(N,N)=0.0
```

GO TO 110
105 DELTA $=$ DELTA*H(N,N)
110 DO $150 \mathrm{I}=2, \mathrm{~N}$
$I I=N-I+1$
IF (CIII,II).NE. O.0) GO TO 120
DELTA=DELTA*H(1I,II)
GO TO 150
$120 \mathrm{H}(\mathrm{II}, \mathrm{II})=0.0$
$11=11+1$
DO $140 \mathrm{~J}=\mathrm{I} 1, \mathrm{~N}$
DO $130 \mathrm{JJ}=11, \mathrm{~N}$
H(II,J) $=\mathrm{H}(I I, J)-C(I I, J J) * H(J J, J)$
130 CONTINUE
140 CONTINUE
150 CONTINUE
DO $200 \mathrm{I}=1, \mathrm{~N}$
DO $180 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$S A V E=0.0$
DO $170 \mathrm{JJ}=\mathrm{J}, \mathrm{N}$
SAVE $=$ SAVE+H $(I, J J) * H(J, J J)$
170 CONTINUE
H(I,J)=SAVE
180 CONTINUE
DO 190 J=1, I
$H(I, J)=H(J, I)$
190 CONTINUE
200 CONTINUE
REIURN
END
\$IBFTC MATMPY LISt,REF
SUBROUTINE MATMPY(M,N,H,G,S)
DIMENSION H(5, 5), X(5),G(5),S(5)
If $(M-1) 705,705,702$
702 DO $703 \mathrm{I}=1, \mathrm{M}$
S(I) $=0.0$
DO $703 \mathrm{~J}=1, \mathrm{~N}$
703 S(I)=H(I, J) $\#(J)+S(I)$
RETURN
705 S(1) $=0.0$
DO $706 \mathrm{I}=1, \mathrm{~N}$
706 S(1)=H(I,I)*G(I)+S(1)
RETURN
END

$\begin{gathered} \text { \$IBMAP } \\ \text { CLEB } \end{gathered}$	CLB			
	SAVE	1,2		
	AXT	6,1		
	$A X T$	0,2		
	CLA	3,4		
	ADD	$=6$		
	STA	LOOP		
LOOP	CLA	**. 1		
	STO	ARRAY, 2		
	TXI	+ $+1,2,1$		
	TIX	LOOP,1,1		
CL	TSX	E0,4		
	ISX	ARRAY		
	RETURN	CLEB		
EO	CLA	1,4		
	STA	E11		
	TRA	E620		
E3	STA	E14		
	SXD	COMMON $+7,2$		
	SXD	COMMCN+8,1		
	LXA	E327, 2		
	LXA	E423,1		
E10	CLA	E424		
E11	UFA	0.2		
	ROL	9		
	LGL	8		
E14	STO	0,1		
	TXI	E16,2,1	TCH	8014+
E16	IIX	E10,1,1	IORP	+019+8
E17	LAC	E451,2		
	CLA	0,2		
	ADD	1,2		
	ADD	2,2		
	AOD	E425		
	STO	COMMON+9		
	ANA	E426		
	TNZ	E324		
	CLA	COMMON+9		
	SUB	E427		
	TPL	E324		
	CLA	COMMON+9		
	ARS	18		
	ADD	E433		
	STA	E176		
	CLA	0,2		
	ADD	1,2		
	SUB	2,2		
	T2E	E43		
	TMI	E324		
E43	ARS	18		
	STA	E172		
	STO	E435		
	CLA	2,2		
	SUB	1,2		
	ADD	0,2		
	TZE	E53		

	SUB	2,2
	ARS	18
	STO	COMMON+9
	CLA	1,2
	SUB	2.2
	SUB	3,2
	ARS	18
	LDQ	COMMCN+9
	TSX	E315,1
	STO	E431
	Cla	0,2
	SUB	3,2
	ARS	18
	LDQ	E437
	ISX	E331, 1
	LDQ	E435
	TSX	E331.1
	STO	E432
	CLA	2,2
	ARS	17
	STA	E177
	ADD	E433
	STA	E175
	LXA	E434,1
E172	CLA	0,1
E173	FAD	0,1
E174	FAD	0,1
E175	FAD	0.1
E176	FSB	0,1
E177	FSB	0,1
	STO	E443
	CLA	0,2
	SUB	3,2
	ARS	18
	STA	E217
	STO	E436
	CLA	1,2
	SUB	4,2
	ARS	18
	STA	E221
	CLA	2,2
	SUB	5,2
	AR S	18
	STA	E223
E216	CLA	0,1
E217	FAD	0.1
E220	FAD	0,1
E221	FAD	0,1
E222	FAD	0,1
E223	FAD	0,1
	FAD	E443
	FDH	E444
	STQ	E443
	CLA	2.2
	SUB	1,2
	ADD	3,2

	ARS	18		
	SIO	E440		
	CLA	2,2		
	SUB	0,2		
	SUB	4,2		
	ARS	18		
	STO	E441		
	CLM	0		
	STO	E447		
E243	CLM	0		
	STO	E442		
	STO	E445		
	LXA	E423,2		
E247	CLA	E443,2		
	TXH	E253,2,3	IORT	H03AB\$
	ADD	E431		
	TRA	E254		
E253	SUB	E431		
E254	STA	E255		
E255	CLA	0.1		
	FAD	E445		
	STO	E445		
	TIX	E247,2,1	IORP	+01ABP
	CLA	E443		
	FSB	E445		
	TSX	E343,4,2		
	HTR	*		
	STO	COMMON+10		
	CLA	E431		
	LBT	0		
	TRA	E275		
	CLA	E447		
	FSB	COMMON+10		
	STO	E447		
	TRA	E300		
E275	CLA	E447		
	FAD	COMMON+10		
	STO	E447		
E300	CLA	E432		
	SUB	E431		
	TZE	E307		
	CLA	E431		
	ADD	E433		
	STO	E431		
	TRA	E243		
E307	LXD	COMMON +7.2		
	LXD	COMMON $+8,1$		
	LXD	COMMON+11.4		
	CLA	E447		
	TOV	E314		
E314	TRA	2,4		
E315	TQP	E317		
	TMI	E322		
E317	TLQ	E323		
	LLS	35		
	TRA	1,1		

E322E323	CLM	0		
	TRA	1,1		
E324	LXD	COMMON $+7,2$		
	LXD	COMMON $+8,1$		
	IOV	E327		
E327	PXD	0		
	TRA	2,4		
E331	STO	COMMON+18		
	CLA	COMMON+18		
	TQP	E335		
	TMI	E341		
E335	TLQ	E337		
	TRA	1.1		
E337	LLS	35		
	TRA	1,1		
E341	CLM	0		-
	TRA	1,1		
E343	STO	COMMON +2		
	SSP	0		
	LDQ	E417		
	ILQ	E406		
	LDQ	E422		
	SUB	E421		
	TM I	E361		
	LRS	27		
	STA	E355		
$\begin{aligned} & \text { E } 354 \\ & \text { E355 } \end{aligned}$	PXD	6		
	LLS	0		
	DVH	E420		
	ARS	8		
	RQL	27		
E361	ADD	E421		
	STQ	COMMON +3		
	FAD	E421		
	STO	COMMON+4		
	SXD	COMMON $+5,4$		
	LXA	E354.4		
	CLA	E410		
E370	LRS	35		
	FMP	COMMON+4		
	FAD	E417,4		
	$11 \times$	E370,4,1	IORP	+01JCY
	SUB	COMMON +3		
	STO	COMMCN +3		
	CLA	COMMON+2		
	TMI	E403		
	CLA	E416		
	FDH	COMMON+3		
	STQ	COMMON +3		
E403	CLA	COMMON+3		
	LXD	COMMON +5,4		
	TRA	2,4		
E406	CLA	COMMON+2		
	TRA	1,4		
E410	TXI	21335,6,28416	TCH	10V G
	STR	28449,6,29956	IOCT	D4WIJ

	TXI	10409,7,31059	TCH	NC KR
	STR	32319,1,32085	10CT	VE Y
	TXI	31517,7,32767	TCH	*
	inX	32744,7,511	IOSP	76
E416	TIX	0,0,768	10RP	+ ${ }^{+} 0000$
E417	TIX	13107,6,3938	IORP	+ KT'T
E420	TIX	16320,1,25316	IORP	$F=M=0$
E421	TIX	0,0,0	IORP	+00000
E422	HTR	0		
E423	HTR	6		
E424	fix	0,0,8704	IORP	B80000
E425	HTR	1024		
E426	HTR	0,7		
E427	PZE	0,0,100	IOCD	01 M000
E430	HTR	6		
E431	HTR	0		
E432	HTR	0		
E433	HTR	1		
E434	HTR	E452		
E435	HTR	0		
E436	HTR	0		
E437	HTR	0		
E440	HTR	0		
E441	HTR	0		
E442	HTR	0		
E443	HTR	0		
E444	tix	0,0,1280	IORP	+00000
E445	HTR	0		
	HTR	E435		
E447	HTR			
E450	HTR	COMMON+18		
E451	HTR	CLEB+439		
E452	P2E	0		
	P2E	0		
	TIX	4287,7,354	10RP	+5K22
	IIX	17152,5,970	IORP	+ 0.'0
	Tix	10718,6,1430	IORP	+FFSP
	TIX	6414,3,1842	IORP	+ISIM
	tix	18894,0,1957	IORP	$+\mathrm{N} 4 \mathrm{P}$
	tix	14461,6,2320	IORP	$+\mathrm{M}+\mathrm{TJ}$
	IIX	25505,2,2387	IORP	+NCF J
	TIX	8772,5,2457	IORP	+01-94
	TIX	23911.2,2531	IORP	+PLEVP
	TIX	9680,0,2840	IORP	+*H2G+
	TIX	11907,6,2879	IORP	+*S 3
	tix	22183,6,2920	IORP	+ QV+P
	tix	15607,0,2963	IORP	+ C3TX
	tix	3495,3,3006	IORP	+ HWP
	TIX	32705,5,3050	10RP	+-1
	TIX	10638,0,3340	IORP	+U'20
	tix	10108,1,3363	IORP	+ULO
	TIX	24660,5,3386	IORP	+U 10
	IIX	15709.5.3410	IORP	+VB\$V
	IIX	10777,0,3435	IORP	+V\$201
	TIX	5098,6,3459	IORP	+W3/ -
	IIX	27107,6,3484	IORP	+W)WPL

	TIX	7295,2,3510	I ORP	+WWA/
	TIX	7560,0,3536	IORP	$+x+1 w^{8}$
	TIX	24540,0,3562	1 ORP	$+x-5$)
	TIX	27566,1,3842	IORP	$+12$
	IIX	15459,4,3855	IORP	$+1 \mathrm{~L} / \mathrm{L}$
	IIX	7380,0,3869	IORP	+1 ITD
	IIX	2082,5,3882	IORP	+ (-Q-K
	TIX	31167,2,3896	IORP	+1 YGO
	TIX	28006,1,3910	I ORP	+ 6 VO
	TIX	24344.1.3924	IORP	$+\mathrm{D} 1 \mathrm{H}$
	TIX	19218,2,3938	IORP	+ KD*
	TIX	11718,4,3952	I ORP	$+\mathrm{K} \times 6$
	TIX	990.7.3966	IORP	$+\quad Y$
	TIX	18991,2,3981	IORP	$+\quad D Q$
	TIX	32191,6,3995	IORP	+ . XW
E521	TIX	7088,4,4010	IORP	$+-J$
	TIX	8535,2,4025	IORP	+ 2856
	TIX	3103,1,4040	I ORP	+ 88
	TIX	22942,0.4055	IORP	+ G50
	TIX	1918,1,4070	IORP	+ C8
	IIX	5001,2,4085	I ORP	+ VA 9
	TIX	32207,1,4354	IORP	A42 X
	TIX	7906,7,4361	IORP	A492, K
	TIX	27640,4,4369	I CRP	A4AO Y
	TIX	25648,2,4377	IORP	A4IF ${ }^{+}$
	TIX	1698,1,4385	IORP	A4 J8+K
	IIX	21113,7,4392	IORP	A4G 92
	TIX	18135,6,4400	IORP	A4 U.G
	TIX	25344,5,4408	I ORP	A4Y 0
	TIX	9767,5,4416	IORP	A50-HP
	IIX	3989,5,4424	IORP	A580 E
	IIX	7838,5,4432	IORP	A5 +R
	TIX	21128,5,4440	IORP	A5H 08
	TIX	10931,6,4448	IORP	A5-S-T
	IIX	9851,7,4456	IORP	A50 I,
	TIX	17736,0,4465	IORP	A5/4E8
	TIX	1661,2,4473	IORP	$A 5 Z+1$
	TIX	27027,3,4481	I ORP	A61 OC
	TIX	28143,5,4489	I ORP	A69 X
	TIX	4886,0,4498	I ORP	A6B1'F
	IIX	22649,2,4506	IORP	A6tEJZ
	TIX	15775,5,4514	I ORP	A6K\$W
	TIX	16903,0.4523	IORP	A6\$487
	TIX	25915,3,4531	IORP	A6T D ,
	TIX	9930,7,4539	IORP	A6. 0
	IIX	1599,3,4548	I ORP	A 74 HH
	TIX	807,7,4556	IORP	A7'Y'P
	TIX	7455,3,4565	I ORP	ATEIU
	IIX	21438,7,4573	IORP	A7
	TIX	9882,4,4582	IORP	A $70 \mathrm{~K}++$
	TIX	5457,1,4591	IORP	A7 9EA
	TIX	8074,6,4599	IORP	A7X/ 0
	TIX	25202,1,4864	I ORP	$A^{\circ} 095$
	TIX	17023,4,4868	IORP	A 14 M 9
	IIX	12229,7,4872	I ORP	$A^{\prime} 85$
	TIX	10774,2,4877	IORP	A' BGF

	IIX	12614,5.4881
	IIX	17713,0,4886
	IIX	26028,3,4890
	IIX	4752,7,4894
	IIX	19385,2,4899
	TIX	4351,6,4903
	IIX	25152.1.4908
	TIX	16216,5,4912
,	IIX	10273,1,4917
,	TIX	7295,5,4921
	IIX	7245,1,4926
	IIX	10092.5.4930
	JIX	15804,1.4935
	IIX	24350,5,4939
	IIX	2930,2,4944
	TIX	17055,6.4948
	IIX	1156,3,4953
	TIX	20740,7,4957
	TIX	10247.4.4962
	TIX	2414,1.4967
	TIX	29984,5,4971
	IIX	27394,2,4976
E620	CLA	E17
	COM	0
	STA	E434
	CLA	E450
	TRA	E3
COMMON	DUP	1,18
	PZE	0
	DUP	1,5
	PZE	0
ARRAY	PZE	0
	END	

IORP	$A^{\prime} A^{\prime} \$ 56$
IORP	$A^{\prime} F 40 /$
IORP	$A^{\prime}+F \#$
IORP	A^{\prime}
I	


```
    A=UM**2+2.O*UMX*EA +UMB**2-UMY **2
    AY=UM**2+2.0*UMX*EA +UMY**2-UMB**2
    D=A FE
    RY=PA*AY/E/DSQRT(AY**2-4.*EC**2*UMY**2)
    W= DSQRT(A**2-4.0*EC**2*UMB**2)
    R=PA*A/E/W
    LAB=DABS(R-1.).LE. I.D-7
    LABR=R.LT.1..OR.LAB
    PBC=W/2.0/EC
    C=G*(1.0-R**2)
    THETA=0.
    DO 5 L=1,M
    I S=1
    THETA=THETA+DELTA
    THETAS(L)=THETA/RADIAN
    CO=DCOS(THETA)
    SI=DSIN(THETA)
    COT=CO/SI
    P=PA*CO
    B=E**2-P**2
    AUMBB=A**2-4.*UMB**2*B
    IF(AUMBB.LT.O.) GO TO 6
    LS=L
    F=P*DSQRT (AUMBB)
3 CONTINUE
C
C
C
C
    EB=(D+F*H(IS))/2.0/B
    EBS (L,IS)=(EB-UMB)
    EY =E-EB
    EYS(L,IS)=(EY-UMY)
    CENTER OF MASS ANGLES
C
C
C
C FOR THE SPECIAL CASE IN WHICH RHO EQUALS ONE
C
    IF(LAB)
    1THETAC=DATAN(2.*G*COT/(COT**2-G**2))
    IF(LAB) GO TO 4
C
C
C FOR THE GENERAL CASE OF RHO NOT EQUAL TO ONE
C
    V=R*DSQRT(G*C+COT**2)
    THETAC=DATAN(C/(COT-V*H(IS)))
    4 CONTINUE
        IF(THETAC.1T.O.) THETAC=THETAC+PI
        THETCS(L,IS)=THETAC/RADIAN
C
c
C RELATIVISTIC JACOBIAN
```

ANGULAR MOMENTUN TRANSFERRED IN SCATTERING
ULC=DSQRT\{PBC**2+PAC**2-2**PBC*PAC*DCOS(THETAC))*RI
$L C(L)=U L C / H C$

RECOIL LAB ANGLE
THETAY=DATAN((R+DCOS (IHETAC))/COT/(RY-DCOS (THETAC)))
IF(THETAY.LT.O.) THETAY=THETAY\&PI
THETYS(L.IS)=THETAY/RADIAN
IF(IS.EQ.2.OR. LABRIGO TO 5
I $S=2$
GO ro 3
5 CONTINUE
6 CONTINUE IF(LABR)
OWRITE (3, B)T(NZX), NUMX,S(NA),S(NB), T(NZY), NUMY,
$1 \quad$ QS,EL(J),RI, MX,G, EA,R,(THETAS(L), RJ(L), T
2HETCS(L, 1),EBS(L,L),EYS(L,1),THETYS(L,1),LC(L), L=1. 0970
3LS)
IF(.NOT. LABR)
OWRITE (3, 9)T(NZX), NUMX,S(NA),S(NB), T(NZY), NUMY,
1 QS,EL(J) 1 EA, R, (THETASIL), RJ(L): T
2HETCS(L, 1), THETCS(L,2),EBSIL,1),EBS(L,2),EYS(L,1),EYS(L,2),THETYSI 1020
3L, 1), THETYS(L,2), $L=1, L S)$
7 CONTINUE
8 FORMAT $(1 H 1 / / / 51 X, A 2,13,1 H(, A 3,1 H, A 3,1 H), A 2,13 / /$
$11 X, 7 H Q$ VALUEF8. $3,15 X, 12$ HENERGY LEVELF7. $3,15 X, 6$ HRADIUSF6. 21060
2 //9X,11HTARGET MASS,F10.6,5X,5HGAMMA,F10.6. 1070
3 9X,11HBEAM ENERGY,F10.4,7X,3HRHO,F10.7//// 1080
49H PARTICLE, $13 x, 3(8 H P A R T I C L E, 2 X), 1 X, 2(6 H R E C O I L, 4 X) 1090$
5 , 7HMAXIMUM/ $3 X, 3 H L A B, 14 X, 12 \quad 1100$
6HRELATIVISTIC, $2 X, 4 H C . M_{-}, 6 X, 3(3 H L A B, 7 X), 3 H A N G \quad 1110$
7 /2X,5HANGLE,15X,8HJACCBIAN,3X,5HANGLE,5X,216HE 1120
8NERGY, 4 X$), 5$ HANGLE, $4 X, 8$ HMOMENTUM
1130

2 ENERGY LEVEL F7. $3 / / 9 X, 11$ HTARGET MASS, F10.6, 5X, 5HGAMMA,F10.6, 1170
$39 X, 11 H B E A M$ ENERGY,F10.4,7X,3HRHO,F10.7//// 1180
$49 H$ PARTICLE, $13 X, 5(8 H P A R T I C L E, 2 X), 1 X, 4(6 H R E C O I L, 4 X) / 3 X, 3 H L A B, 14 X, 12 \quad 1190$
5HRELATIVISTIC, $2 X, 2$ 1200
$6(4 H C . M, 6 X), 6(3 H L A B, 7 X) / 2 X, 5 H A N G L E, 15 X, 8 H J A C O B I A N, 3 X, 2(5 H A N G L E, 5 X) \quad 1210$
7,416HENERGY,4X
1220
B), $2(5 \mathrm{HANGLE}, 5 \mathrm{X}) / / / /(\mathrm{F} 6.1,14 \mathrm{X}, 9 \mathrm{~F} 10.4)$)

1230
10 FORMAT (I3,2I1,I2,I3,1F10.9,F10.7, 2F10.7,F10.8/(8F10.8))
GO TO 2
END

```
$IBFTC FCN LIST,REF
    SUBROUTINE FCN(N, G, F, X, MI)
    FCN10030
    DIMENSION BACK(1024),BG(20),CHBG(20)
        DIMENSION G(40),X(40),PD(40),A(5),SIGMA(40),SIGVAR(40)
        FCNl
    DIMENSION T(1024),V(1024),W(1024),S(1024),VV(1024),REMARK(11)
    DIMENSION RA(20),RC(20),FIIS(1024),EF(40),EX(40)
    IF(M1-1) 60.40,60
FCN10140
40
    REAO(2,906) NBG,(CHBG(I),BG(I),I=1,NBG)
    WRITE(3,927)NBG,(I,CHBG(I),BG(I),I=1,NBG)
    READ (2,3161)IRUN,NSTR,NFIN
    FCN10260
    READ (2,103)N,M,ICAM,MAXJ,IS,IW,DIV FCN10270
        WRITE (3,103)N,M,ICAM,MAXJ,IS,IW,DIV FCN10290
    M=NFIN-NSTR+1
    WRITE (3,150)N
    WRITE (3,151)M
        WRITE (3,161)ICAM
        IF(N-40)665,665,29204
29204 WRITE (3,1025)
665 CONTINUE
    READ (2,1024)(X(I),I=1,N)
    WRITE (3,1026)( X(I),I=1,N)
    NBG=NBG-1
    DO 165 K=1,MBG
    XU=CHBG (K+1)
    XL=CHBG(K)
    IL=XL
    IU=XU
    DO 160 I=IL.IU
    XI=I
    BACK(I)=BG(K)+(XI-XL)*(BG(K+1)-BG(K))/(XU-XL)
    160 CONTINUE
    165 CONTINUE
    IFIIRUN-NRUN) 3162,3165,3162
FCN10440
3162 READ (15,3163)NRUN,NCHANL,REMARK
    WRITE (3,3182)NRUN,NCHANL, REMARK
    READ (15,3164)(V (I),I=1,NCHANL)
    IF(IRUN-NRUN) 3162,3165,3162
FCN10450
FCN10460
FCN10480
3165 CONTINUE
    WRITE (3,1026)(V(I),I=NSTR,NFIN)
    TA=0.0
    FCN10650
    DO 26423 I=NSTR,NFIN
        TA=TA+V(I)-BACK(I)
26423 CONTINUE 
        W(I)=1.0
        IF(V (I) 1656,654,656
656 CONTINUE
        W(I)=1.0/V (I)
654 CONTINUE
    CONTI
26424 CONIINUE FFN10800
    Cl=-2.773
    TAA=TA *.93944
    NA=N/3
    TABL0150
    NA=N/3
JABLO190
    TDD=0.
```

```
            DO 12 J=1,NA
TABL0210
\(N B J=2 * N A+J\)
TABL 0220
12 TOD \(=\) TDD \(+X(J) * X(N B J)\)
\(T C=T A A / T D D\)
\(T G=5.546 * T C\)
CONTINUE
\(F=0.0\)
FCN10810
FCN10830
\(004 \quad 1=1, N\)
\(P D(I)=0.0\)
\(G(I)=0.0\)
FCN1 0840
FCN10850
4 CONTINUE
IF(M1-2) \(350,349,350\)
CONTINUE
WRITE \((3,351)\)
DO \(5103 \mathrm{~J}=1, \mathrm{~N}\)
SIGMA( \(J\) ) \(=0.0\)
349 CONTINUE
\(A C=0.0\)
DO5 I = NSTR,NFIN
WI =WII )
\(T B=0.0\)
\(T H=0.0\)
DO \(11 \mathrm{~J}=1\),NA
FCN10860
5103 SIGMA(J) \(=0.0\)
\(N A J=N A+J\)
\(N B J=2 * N A+J\)
\(T L=1.0 / X(N B J)\)
\(E F(J)=(T(I)-X(N A J)) * T L\)
\(\operatorname{EX}(J)=\operatorname{EXP}(C l * E F(J) * * 2)\)
\(T I=X(J) * E X(J)\)
\(T B=T B+T I\)
FCN1 0870
FCN1 0890
FCN10900
FCN10910
FCN10920
FCN10930
FCN11020
\(P D(N A J)=T G * T I * E F(J) * T L\)
\(\operatorname{PO}(N B J)=P D(N A J) * E F(J)\)
\(\operatorname{PD}(J)=T C *(E X(J))\)
CONTINUE
TABL 0800
IF(MI.EQ.3) CALL STDEV(PD,SIGMA,WI,N)
\(F I T=T C+T B+B A C K(I)\)
\(T D=F I T-V(I)\)
\(T E=T D * W I\)
\(F=F+T E\) ID FCN11210
DO \(7 \mathrm{~J}=\mathrm{l}, \mathrm{N}\). FCN11240
\(G(J)=G(J)+2 \cdot 0\) FTE*PD(J) \(\quad \because \quad\) FCN11250
7 CONTINUE
IF(M1-2) 15,14,15
CONTINUE
FITA=V II )-FIT
FITB \(=F\)
FITC= T(I)
WRITE 13,346 )V (I J,FIT,FITA,FITB,FITC ,WI
FITS(I )=FII
9. \(A C=F I T+A C-B A C K(I)\) CONTINUE
FCN11380
5 CONTINUE
FCN1 1390
IF(MI-2) \(683,682,684\)
683 SCALEF=F WRITE(3,1014) SCALEF
682 CONTINUE
```

```
        F=F/SCALEF
        DO 703 J=1,N
        G(J)=G(J)/SCALEF
    703 CONTINUE
            GO TO 5105
    684 CONTINUE
    1020 RSC=X(1) FCN11830
2020 TC=TC#RSC FCN11840
    TQ=0.0 FCN11850
    3020 DO 4020 J=1,NA FCN11860
    NBJ=2*NA+J
    4020 TQ=TQ+X(J)*X(NBJ)
    120 DO 520 J=1,NA FCN11880
    220 NAJ=NA+J FCN11890
        NBJ=2*NA+J
    320 RC(J)=X(NAJ)
    RA(J)=X(J)*X(NBJ)/TQ*AC
    520 X(J)=X(J)/RSC
        DO 5107 J=1,N
5107 SIGMA(J)=SQRT(SIGMA(J) / / SCALEF
        F=F/SCALEF
        CALL SDVAR(M,N,SIGVAR) FCN11950
        F=F*SCALEF
        WRITE (3,1001) FCN11960
        DO 4462 I=1,N
        WRITE (3,1002)I,X(I),SIGVAR(II,SIGMAII) FCN11980
    FCN11970
4462 CONJINUE
    1 WRITE (3,3)X(N),F,TC
        WRITE (3,8)(RC(J),RA(J),X (J),J=1,NA) FCN12010
        WRITE (3,18)TA,AC FCN12020
        CALL LYCUR(RA,RC)
        WRITE (3,3168)IRUN,NSTR,NFIN FCN12040
        WRITE (3,3169)
        DO 2830 I=NSTR,NFIN
        LFYZ=FITS(I)/DIV+.5 FCN12070
        LVYZ=V(I)/DIV+.5 FCN12080
        CALL GRAPH (LFYZ,44,0) FCN12090
        CALL GRAPH {LVYZ,16,-1) FCN12100
    2830 WRITE (3,2831)T(I)
        WRITE (3,3171)
    FCN12120
5105 CONTINUE
        RETURN
100 FORMAT(T110)
101 FORMAT(7F10.5)
102 FORMAT(5E14.5)
    103 FORMAT (6110,F5.2,13)
    150 FORMAT(36H THE NUMBER OF FITTING PARAMETERS = I6)
    151 FORMATI29H THE NUMBER OF DATA POINTS = 16/1
161 FORMATI45H FCN FORCES RETURN TO NEXT RANDOM STEP AFTERIG, FCN12330
    1 11H ITERATIONSI
    FCN12340
346 FORMAT{1H 6F20.6) FON12350
351 FORMAT(118HO Y OBSERVED Y CALCULATED YOBS - FCN12380
    I YCAL (YOBS-YCAL)/YCAL X OBSERVED WEIGHTS IFCN12390
    906 FORMAT(4X,I1,5X,14F5.0)
    927 FORMAT (2X,I1,42H BACKGROUND PTS POINT CHANNEL LEVEL /(2IX,
        *I1,5X,F5.0.5X,F5.01)
```

```
1001 FORMAT(54H0 I SII) SIGVARII) SIGMAIII IFCN1244O
1002 FORMAT(16,7E16.8)
1014 FORMAT(9H SCALEF=F20.5)
lO24 FORMAT(16F5.2) OR IW EXCEEOS 999. OR N EXCEEDS 40 SO EXIT CALLED)FCN12510
llor FORMAT(54HO M OR IW EXCEEDS 999, OR N EXCEEDS 40 SO EXIT CALLED)FCN125IO
1026 FORMATILOE13.5) F
FCN12530
1 16X,20HTHE AVERAGE WIDTH 1S,F10.2,3X,6HCHI IS,F15.8,3X,25HTFCN12540
2HE HEIGHT OF PEAK ONE 1S,F10.2) FCN12550
8 FORMAT 138X,7HCHANNEL, 13X,6HCOUNTS,14X,5HRATIO/134X,F10.3,10X,F10.FCN12560
11,10X,F10.3)) FCN12570
1 8 \text { FORMAT(// FCN12580}
1 34H THE EXPERIMENTAL TOTAL COUNTS ARE,F10.1,10X,31HTHE CALCFCN12590
2ULATED TOTAL COUNTS ARE,F1O.1) FCN12600
2831 FORMAT(1H+,F4.0) FCN12610
3168 FORMAT(1X, 1OHRUN NUMBER,I5,12HFROM CHANNEL,I5, 2HTO,I5) FCN12620
3169 FORMAT(6H1*OVF*) FCN12640
3171 FORMAT(6H1*OVN*) FCN12650
3161 FORMAT(3.15) FCN22660
3163 FORMAT(216,11A6) FCN12670
3164 FORMAT(16F8.0) FCN12680
3182 FORMAT(1X, 2I6,11AG)
END
FCN12700
```

```
$IBFTC STOEV LIST,REF
    SUBROUTINE STDEV(PD,SIGMA,WI,N)
C STDEV IS NOT CORRECT FOR ANYTHING EXCEPY LINEAR LEAST SQUARE
C SUM(BUT NOT PRODUCT,EXP,LOG) OF GAUSSIANS IS GAUSSIAN
C SEE SDVAR FOR A COMPLETELY DIFFERENT APPROACH
    DIMENSION PO(40), SIGMA(40)
    DIMENSION H(40,40),X(40),G(40),S(40),XP(40),GP(40),T(40),GB(40)
    DIMENSION VI3),C(40,40)
COMMON \(F\), \(F P\), \(F B\), \(F C\), \(X P\)
    COMMON T, S , G GS , GP , GSP
    COMMON GB , GSB , GSS , GTP , GTT , H
    COMMON DELTA, N , M , L M1 , MS
    COMMON IT :
    DO 1 1=1,N
    TA=0.
    OO 3 J=1,N
    FI=I
    FJ=J
    FIRST=1.
    IF(FIRST)73,74,73
    CONTINUE
73 CONTINUE
3 TA=TA+H(I,J)*PD(J)
    TA=TA*2.
    SIGMA(I)=SIGMA(I)+TA**2*ABS (WI)
1 CONTINUE
    FIRST=1.
    RETURN
1001 FORMATITE16.3)
    END
$IBFTC SOVAR LIST,REF
    SUBROUTINE SDVAR(M,N,SIGVAR)
C SIGVAR WOULD RESULT IN F INCREASE OF .5*F/(M-N-1)
    DIMENSION SIGVAR(40)
    DIMENSION H(40,40),X(40),G(40),S(40),XP(40),GP(40); T(40);GB(40)
    DIMENSION V(3),C(40,40)
```



```
    FREE=M-N-1
        IF(FREE)2,2,1
        FREE=0.
        GOTO }
        FREE=1./FREE
        CONTINUE
        DO 3 J=1,N
    TEMP=H(J,J)
    SIGVAR(J)=SQRT | FREE*F*TEMP )
    CONTINUE
        RETURN
    END
```

```
$IBFTC LYCUR LIST,REF
    SUBROUTINE LYCUR(AREA,CH)
    DIMENSION IAR(20)
                            LYC40040
    DIMENSION EL(20),S(5),MW(5),T(99),EBS(20),THETAS(20),ULC(20)
    1,AW(5),THETCS(20), THETYS(20),RJ(20)
    2,SO(20) ,AREA(20),CH(20),DCS(20)
    LOGICAL LAB,LABR
    REAL MX,MEV
    DOUBLE PRECISION UM,UMB,QS ,AY,PA,E,EC,G,W,R,PBC,PAC,RY,C,CO,SI,
    IB,D,F,EB,EY,COT,AB,THETAC,V,THETAY,A,DCOS,DSIN,DATAN,DSQRT,UMY,UMA
    2,AUMBB,RADIAN,P,PI,THETA
    DATA(T(I),I=1,99),(S(I),I=1,5),1
    X
                                    MW(I),I=1,5),(AW(I),I=1,5)/1HH,2HHE
    1,2HLI,2HBE, 1HB,1HC,1HN,1HO,1HF,2HNE,2HNA,2HMG,2HAL, 2HSI, 1HP, 1HS,2H
    2CL, 2HAR, 1HK,2HCA, 2HSC, 2HTI, 1HV,2HCR,2HMN, 2HFE, 2HCO, 2HNI, 2HCU, 2HZN,
    32HGA, 2HGE, 2HAS, 2HSE, 2HBR, 2HKR, 2HRB, 2HSR,1HY, 2HZR, 2HNB, 2HMO, 2HTC, 2H
    4RU,2HRH,2HPD,2HAG,2HCD,2HIN, 2HSN, 2HSB, 2HTE,1HI,2HXE,2HCS, 2HBA, 2HLA
    5,2HCE, 2HPR,2HND, 2HPM, 2HSM, 2HEU, 2HGD, 2HTB, 2HDY, 2HHO, 2HER, 2HTM, 2HYB,
    62HLU, 2HHF,2HTA,1HW,2HRE,2HOS, 2HIR,2HPT, 2HAU,2HHG, 2HTL, 2HPB, 2HBI, 2H
    7PO,2HAT,2HRN, 2HFR,2HRA,2HAC, 2HTH, 2HPA, 1HU, 2HNP, 2HPU, 2HAM, 2HCM, 2HBK
    8,2HCF,2HES,1HP,1HD,3HHE3,3HHE4,1HT,1,1,2,2,1,1.007825,2.014102,3.0
    91603,4.002604,3.016049/
    DATA MEV,RADIAN,PI/931.478,1.7453292519943D-2,3.1415926536/
    DATA HC/197.323/
    READ (2,3 )NZX,NA,NB,K,M,DELTA, UMX, Q,EA, (EL{J),J=
11,K)
    READ (2,4 )THETA,UC,GEOM
    DELTA=DELTA*RADIAN
    UMA=AW(NA)*MEV
    UMB=AW(NB)*MEV
    NUMX=UMX+0.5
    NUMY=AW(NA)+UMX-AW(NB)+.5
    NZY=NZX+MW(NA)-MW(NB)
    MX=UMX
    UMX=UMX*MEV
    BEGIN CALCULATICN
    UM=UMA +UMX
    PA=DSQRT(IEA )**2+2.*UMA*EA )
    E=UM+EA
    EC=DSQRT(2.*UMX*E+UMA**2-UMX**2)
    G=E/EC
    PAC=G*PA/E*UMX
    DO 1 L=1,K
    QS=Q-EL(L)
    UMY =UM-UMB-QS
    A=UM**2+2.0*UMX*EA +UMB**2-UMY **2
    AY=UM**2+2.0*UMX*EA -UMY**2-UMB**2
    D=A*E
    RY=PA*AY/E/DSQRT(AY**2-4.*EC**2*UMY**2)
    W= DSQRT(A**2-4-0*EC**2*UMB**2)
    R=PA*A/E/W
    LAB=DABS(R-1.).LE.1.D-7
    LABR=R.LT.1..OR.LAB
```

```
    PBC=W/2.0/EC
    C=G*(1.0-R**2)
    THETAS(L)=THETA/RADIAN
    CO=DCOS(THETA)
    SI=DSIN(THETA)
    COT=CO/SI
    P=PA*CO
    B=E**2-P**2
    AUMBB=A**2-4.*UMB**2*B
    F=P*DSQRT(AUMBB)
c
C
C
C
C
C
C
C
C
    IF(LAB)
    1THETAC=DATAN(2.*G*COT/(COT**2-G**2))
    IF(LAB) GO TO 2
    FOR THE GENERAL CASE OF RHO NOT EQUAL TO DNE
    V=R#DSQRT{G*C+COT**2)
    IHETAC=DATAN(C/(COT-V ))
    2 CONTINUE
    IF(THETAC.LT.O.) THETAC=THETAC+PI
    THETCS(L) = THETAC/RADIAN
    RELAIIVISTIC JACOBIAN
    RJ(L)=G*(I.+R*DCOSITHETAC )|*(SI/DSINITHETAC )|**3
    ANGULAR MOMENTUN TRANSFERRED IN SCATTERING
    ULC(L)=DSQRT(PBC**2+PAC**2-2.*PAC*PBC*CCOS(THETAC))/HC
1 CONTINUE
    WRITE (3, 5)T(NZX),NUMX,S(NA),S(NB),T(NZY),NUMY,
    1 QS, UMX,G, EA,R
    WRITE (3,6 ITHETA,UC,GEOM
    WRITE(3,7)
    DCS(L)=GEOM*AREA(L)*RJ(L)/UC
    IF(M.NE.O) DCS(L)=DCS(L)*SI
    WRITE (3,8 IEL(L),CH(L),DCSIL),THETCS(L)
    IAR(L)=AREA(L)+.5
    WRITE (14,9 )IAR(L),THETA,UC,CH(L),EL{L),EBS(L), THETCS(L)
```

```
    1,DCS(L),ULC(L),SD(L)
3 FORMAT (I3,211,12,I3,1F10.9,F10.7. 2F10.7,F10.8/(8F10.8))
4 \text { FORMAT(7F10.5)}
5 FORMAT(1H1///51X,A2,13,1H(,A3,1H,,A3,IH),A2,I3//
    11X,7HQ VALUEF8.3
    2
6 ~ F O R M A T ( I 1 X , 9 H L A B ~ A N G L E F I O . 3 , 2 2 X , 6 H C H A R G E F 1 0 . 3 , 1 3 X , 1 8 H G E O M E I R I C A L ~ F ~
    IACTORF10.3//)
7 FORMAT (12X,GHENERGY, 24X,7HCHANNEL, 22X,12HDIFFERENTIAL, 22X,4HC.N./I
    112X,5HLEVEL, 25X,6HNUMBER,22X,13HGROSS SECTION, 21X,5HANGLE/) LYC43500
    8 FORMAT( 8X,F10.3,20X,F10.3,20X,F10.3, 20X,F10.3), LYC43510
    9 FORMAT(1X,I6,1X,F5.1,1X,F7.1,1X,F7.2,1X,F6.3,1X,F6.3,1X,F5.1,F11.4
    *,1X,F4.3,F8.6)
52 RETURN LYC43520
    END
```

```
$IBMAP GRAF
    ENTRY GRAPH
GRAPH SAVE 1,2,4
    CLA* 3.4
    I2E #+8
    TMI ADDI
    SUB =100
    TZE ADDI
    TMI ADDI
    CLA =100
    TRA *+3
ADD1 ADD =100
    IMI *-1
    ADD =18
    LRS 35
    DVH =6 R IN AC. O INMQ.
    XCA Z IN AC. RIN MQ
    ALS 18
    STD TEST1 WORDS TO BLANK
    MPY =6
    XCA
    STA SHIFT
    AXT 1,1
    AXT 0,2
    CAL =H
TEST1 TXH *+4,1,**
    SLW 2,2
    TXI +1,2,-1
    *-3,1,1
                                    PLACE M IN PROPER POSITION FOR WRITING
*
                            PLOT AL
        CAL 2
        ALS 6
        ARS 6
        STO Z
        CLA* 5.4
        TZE ++6
        TMI *+3
        CAL =HOOOOOO
        TRA *+4
        CAL =H+00000
        TRA *+2
        CAL =H 00000
        ORS Z
        CALL .FWRD.(.UNO3.,FORMAT)
        CALL .FSLO. (Z,NW)
        TSX .FFIL..4
        RETURN GRAPH
Z BSS 20
FORMAT BCI 1,(20A6)
NW BSS 4
Y BCI 1, XXXXX

\section*{REFERENCES}
1. A. E. Litherland, J. A. Keuhner, H. E. Grove, M. A. Clark, and E. Almqvist, Phys. Rev. Letters I, 98 (1961).
2. A. M. Lane and E. D. Pendlebury, Nucl. Phys. 15, 39 (1960).
3. D. Blum, P. Barreau, and J. Bellicard, Phys. Letters 4, 109 (1963).
4. J. S. Blair, Yugoslav Summer Meeting of Physicists (1962).
5. N. Austern and J. S. Blair, to be published.
6. R. H. Bassel, G. R. Satchler, and R. M. Drisko, Proceedings of the 3rd Conference on Reactions Between Complex Nuclei, Asilomar, 1963 (University of California Press, Berkeley, 1964).
7. J. Saudinos, R. Beurtey, P. Catillon, R. Chaminade, M. Crut, H. Faraggi, A. Papineau, and J. Thirion, Compt. rend. 252, 260 (1961).
8. E. K. Hyde, I. Perlman, and G. T. Seaborg, The Nuclear Properties of the Heavy Elements, Vol. I (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964), p. 150.
9. C. Williamson and J. P. Boujot, Tables of Range and Rate of Energy Loss of Charged Particles of Energy 0.5 to 150 MeV , unnumbered, Saclay report (1962).
10. R. E. Ellis and L. Schecter, Phys. Rev. IO1, 636 (1956).
11. G. E. Fisher, Phys. Rev. 96, 704 (1954).
12. R. G. Summer-Gill, Phys. Rev. 109, 1591 (1958).
13. J. H. Elliott, Nucl. Instr. Methods 12, 60 (1961).
14. F. S. Goulding and D. A. Landis, "Lawrence Radiation Laboratory Design," in Proceedings of Conference on Instrument Techiniques in Nuclear Pulse Analysis, Monterey, 1963.
15. W. C. Davidson, Argonne National Laboratory Report ANL-5990-Rev., 1959.
16. P. M. Endt and C. van der Leun, Nucl. Phys. 34, I (1962).
17. V. J. Ashby and H. C. Cation; Tables of Nuclear Reaction Q-values, Lawrence Radiation Laboratory Report UCRI-5419, 1959.
18. C. M. Braams, Phys. Rev. 101, 1764 (1956).
19. K. P. Leenhouts and P.M. Endt, Phys. Letters 2, 69 (1963).
20. K. Alder, A. Bohr, T. Huus, B. R. Mottelson, and A. Winther, Rev. Mod. Phys. 28, 432 (1956).
21. A. Bohr and B.R. Mottelson, Mat.-fys. Medd. Dan. Vid. Selsk. 27, No. 16. (1953).
22. A. Messiah, Quantum Mechanics, Vol. 2 (North-Holland Publishing Co., Amsterdam, 1962).
23. R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
24. B. L. Cohen, Phys. Rev. 105, 1549 (1957).
25. B. L. Cohen and A. G. Rubin, Phys. Rev. 111, 1568 (1958)。
26. R. W. Bauer, A. M. Bernstein, G. Heymann, E. P. Lippincott, and N. S. Wall, \(\mathrm{Ca}^{40}\left(\alpha, \alpha^{\prime}\right):\) A Test of Particle-Hole Calculations (to be submitted to Phys. Letters).
27. K. Yogi, H. Ejiri, M. Furukawa, Y. Ishizaki, M. Koike, K. Matsuda, Y. Nakajima, I. Nonaka, Y. Saji, E. Tanaka, and G. T. Satchler, Phys. Letters 10, 186 (1964).
28. J. J. Kraushaar, W. S. Gray, and R. A. Kenefick, private communication.
29. A. E. Litherland, J. A. Kuehner, H. E. Grove, M. A. Clark, and E. Almqvist, Phys. Rev. Letters I, 98 (1961).
30. J. S. Blair, Phys. Rev. 115, 928 (1959).
31. S. I. Drozdov, Soviet Phys: JETP 1, 591 (1955).
32. E. V. Thopin, Soviet Phys. JETP 4,764 (1957).
33. J. S. Blair, D. Sharp, and L. Wilets, Phys. Rev. 125, 1625 (1962).
34. B. Buck, Phys.Rev. 127, 940 (1962).
35. J. R. Meriwether, A. Bussiere, B. G. Harvey, and D. J. Horen, Phys. Letters 11, 299 (1964).
36. A. M. Boldin, V. I. Gol'danskii, I. L. Rozenthal, Kinematics of Nuclear Reactions (Pergamon Press, London, 1961).
37. A. Leon, Lawrence Radiation Laboratory Space Laboratory Internal Working Paper No. 20, '1964.
38. R. Fletcher and M. J. D. Powell, The Computer Journal 6, 163 (1963).
39. J. S. Blair, University of Washington, private communication, 1964:
40. H. P. Leenhouts, University of Utrecht, private communication, 1963.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
```


[^0]: †The conventions for Euler angles and rotation matrices are those of
 Messiah. 22

