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Abstract

Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number

by

Alejandro J. Puga

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2016

Professor John C. LaRue, Chair

An understanding of the wide range of scales present in a turbulent flow as well as the

turbulence kinetic energy associated with those scales can provide significant insight into

the modeling of such flows. Since turbulence is a stochastic process, statistical quantities

such as mean, root mean square, correlations and spectra are used to identify and understand

the evolution of turbulent flows. Time-resolved velocity measurements presented herein are

obtained using hot-wire anemometry in a nearly homogeneous, isotropic and moderately

high Taylor Reynolds number, Rλ, flow downstream of an active grid. Velocity power spectra

presented herein show that the slope, n, of the inertial subrange, where the inertial subrange

is defined as the wavenumber range where the power spectrum scales as κ−n, varies with Rλ

as n = 1.69 − 5.86R−0.645λ . This variation in the slope of the inertial subrange is consistent

with measurements presented by Mydlarski & Warhaft (1996) in an active grid flow and

Saddoughi & Veeravalli (1994) in a turbulent boundary layer. The effectiveness of velocity

power spectrum normalizations proposed by Kolmogorov (1941), vonKarman & Howarth

(1938) and George (1992) are compared qualitatively and quantitatively. The effectiveness of

these normalizations suggests how the turbulent scales make specific portions of the velocity

spectrum self-similar. It is found that the relation between the large and small scales is also

shown by the normalized dissipation rate, which is defined as the dissipation rate normalized

xi



by the ratio of the turbulence kinetic energy to the time scale of the large scale structure,

is shown to be a constant with respect to Rλ for Rλ ≥ 450. A modified model for the one-

dimensional velocity power spectrum is proposed that is based on a model proposed by Pope

(2000), which has been demonstrated to model power spectra at high value of Rλ where the

slope of the inertial subrange is very close to −5/3. This modification takes into account the

variation in the inertial subrange slope found in the data presented herein.
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Chapter 1

Introduction to the thesis

Power spectra and velocity statistics are obtained for downstream positions that range from

x/M = 35 to 142 at mean velocities, U , of 4, 8 and 12 m/s where x is the coordinate position

in the downstream direction with origin at the active grid and M is the spacing between grid

rods. Turbulence intensities, u2
1/2
/U , vary from 6 to 20% and Taylor Reynolds numbers,

Rλ, vary from 191 to 997 where Rλ ≡ u2
1/2
λ/ν, λ is the Taylor Microscale and ν is the

kinematic viscosity. The thesis consists of this introductory chapter and three additional

chapters each of which correspond to an individual paper with a specific focus.

The primary focus of Chapter 2 is to determine the evolution of the non-dimensional dis-

sipation rate, D = lε/u3 as a function of Rλ where l is the integral length scale, ε is the

dissipation rate and u is the velocity scale where u ≡ (1
3
q)1/2 and q = u2 + v2 + w2 is the

turbulence kinetic energy. Two methods are employed to determine the integral scale. One

is based on integrating the velocity correlation, la, and the second, ls, is determined from

the peak of the energy spectrum, κE11(κ), where κ is the wavenumber and E11(κ) is the

one-dimensional power spectrum of the downstream velocity (cf. Webb (1955)). At corre-

sponding downstream positions, la and ls are found to be nearly equal with ls exhibiting
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more scatter. The normalized dissipation rate is found to approach a constant value, D∞,

of 0.76 for Rλ,uq ≥ 365, where Rλ,uq ≡ (1
3
q)1/2λ/ν. This value of D∞ is in general agreement

with values presented by Sreenivasan (1984, 1998) in other experimental flows and various

DNS studies.

Tennekes & Lumley (1972) note that Rl = (D/15)R2
λ, which implies that D can be obtained

from the determination of the slope of Rl when plotted as a function of R2
λ. This approach

leads to reduction in the scatter of the data set, but care must be taken to determine the slope

and D∞ in the range of Rλ where D is a constant. More specifically, at values of Rλ,uq ≤ 365,

the slope of Rl versus R2
λ,uq

appears to vary only slightly which makes it difficult to determine

the value of R2
λ,uq

for which D is a constant, and inclusion of data where D is not constant

may result in an incorrect value for D∞. It is found that for Rλ,uq ≥ 365 where D has

reached a constant value with respect to Rλ,uq , D∞ is found to equal 0.76 using the slope

determined from Rl versus R2
λ,uq

.

The primary foci of Chapter 3 are to determine the slope of the inertial subrange as a

function of Rλ and to assess the effectiveness of three spectral normalizations in collapsing

the spectra. The normalizations proposed by vonKarman & Howarth (1938), Kolmogorov

(1941) and George (1992) are considered and qualitative and quantitative comparisons are

presented. In this chapter, the term “inertial subrange” is generalized to refer to the portion

of the spectrum where E11(κ) κ−n but where n does not necessarily equal −5/3. In the

present study, n is found to vary from 1.40 to 1.63 for a corresponding variation of Rλ from

185 to 997. The values of n at corresponding Rλ values are in agreement with results in a

turbulent boundary layer flow (Saddoughi & Veeravalli, 1994) and the results presented by

Mydlarski & Warhaft (1996) in the flow downstream of an active grid with a range of Rλ from

183 to 473. Data obtained in a mixing layer and an atmospheric surface layer (Praskovsky

& Oncley, 1994) with a corresponding variation of Rλ from 2.0 × 103 to 12.7 × 103 are

also considered and a least squares fit of the values of n as a function of Rλ suggests that

2



n = 1.69− 5.86R−0.645λ . The uncertainty in the asymptotic value of n is ±0.036. The value

of −5/3 falls within this uncertainty range, which means these results cannot be used to

determine an accurate value for the intermittency factor, µ, which corrects Kolmogorov’s

original prediction of the slope of the inertial subrange from −5/3 to −5/3− µ/9.

The focus of Chapter 4 is the development of a spectral model that can model the inertial

subrange and high wavenumber dissipation range of E(κ) for the range of Rλ where n varies

as a function of Rλ. The model is a modification of the one presented by Pope (2000) to

take into account the changing slope of the inertial subrange. Pope’s original model for the

three dimensional spectrum follows

Ep(κ) = Cε2/3κ−5/3fl(κl)fη(κη) (1.1)

where fl(κl) =
(

κl
[(κl)2+cl]1/2

)5/3+po
and fη(κη) = exp

{
−β
{[

(κη)4 + c4η

]1/4
− cη

}}
are are

non-dimensional functions that determine the shape of the energy-containing and dissipation

range, respectively. C, cl, cη and β are constants that need to be determined based on

experimental data. The resulting modified model follows

E(κ) = Cφε
φκ−2φ(ε2/3κ−5/3)fl(κl)fη(κη) (1.2)

where Cφ = C

(
la/u2

1/2
)3φ

and φ = 1
2

(
C1R

−C2
λ − µ/9

)
. At the limit where Rλ approaches

infinity, and assuming that µ = 0, the modified spectrum model equals Pope’s original model.

The modified spectrum model is fitted to spectra obtained in the present study and it is found

that the values for C and cη approach those suggested by Pope as Rλ increases. Furthermore,

the values for β are constant with respect to Rλ and are in general agreement with Pope.

The values for cl, however do not match those presented by Pope, which is consistent with

observation that the low wavenumber, energy-containing range is dependent on the manner

3



in which the turbulence is being generated. This leads to the possibility that no one model

would be able to accurately model the spectrum values in the energy-containing range.
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Chapter 2

Normalized dissipation rate in a

moderate Taylor Reynolds number

flow

2.1 Abstract

Time-resolved velocity measurements obtained using a hot-wire in a nearly homogeneous

and isotropic flow for a range of Taylor Reynolds numbers from 191 to 660 reveal that

the ratio of dissipation to the time scale of the large scale structure, D∞ = lε/u3 where

ε is the dissipation and u ≡ (q/3)1/2, is a constant equal to 0.73 for Rλ,uq > 365, where

Rλ,uq ≡ (q/3)1/2λ/ν, which is in general agreement with Sreenivasan (1984, 1998). Integral

length scale (la) measurements obtained from the velocity correlation are in close agreement

with integral length scale (ls) measurements obtained from the peak of the energy spectrum,

κE11(κ), where κ is the wavenumber and E11(κ) is the one-dimensional power spectrum of

the downstream velocity. Tennekes & Lumley (1972) present Rl = (D∞/15)R2
λ, which can

5



be used to find D∞; however, the current study suggests that care should be taken when

using this method as it may incur an error if points used coincide with ranges where D is

Rλ dependent.

2.2 Background

One of the most fundamental concepts in turbulent flows is that the dissipation, ε, of turbu-

lent kinetic energy, represented by u2, of the large eddies of scale l must be proportional to

the time scale of those eddies, l/u, where u is the velocity scale corresponding to the large

scale structures. Based on that reasoning, an estimate for the dissipation is that

ε = Du3/l (2.1)

where D is a proportionality constant expected to be of order unity. While it is possible to

find the constant D by determining values of ε, u and l, Tennekes & Lumley (1972) present

an alternative expression where D can be determined as

Rl = (D/15)R2
λ (2.2)

where Rl is the Reynolds number based on the length scale, l, and is defined as

Rl =
ul

ν
(2.3)

where ν is the kinematic viscosity. Rλ is the Reynolds number based on the Taylor microscale,

6



λ ≡ u2/(∂u
∂x

)2 where the overbar denotes time average, and is defined as

Rλ =
uλ

ν
. (2.4)

The proportionality constant, D, has been determined experimentally for a variety of flows as

well as in DNS studies. Sreenivasan (1984, 1998) presents an estimate of D measured using

equation 2.1 for both wind tunnel experiments and a compilation of DNS studies conducted

by several groups. For the DNS studies presented with Rλ values ranging from about 25 to

250, Sreenivasan (1998) suggests that for Rλ < 150, D decreases as Rλ increases and, for

Rλ > 150, D reaches a constant value, defined as D∞. The multiple DNS studies presented

by Sreenivasan (1998) align themselves into two groups, one with D∞ = 0.4 and the other

with D∞ = 0.7. The larger D∞ value is consistent with Sreenivasan’s reported value of

D∞ = 0.73 in decaying turbulence produced by a stationary square grid with round rods.

Kaneda et al. (2003) conduct DNS experiments on homogeneous turbulence in a periodic box

and are able to determine D for 94 ≤ Rλ ≤ 1200 using equation 2.1. These results show that

for Rλ < 300, D decreases with increasing Rλ and, forRλ > 300, a value of D∞ between 0.4

and 0.5 is observed. This value is consistent with the results of Boffetta & Romano (2002)

who report a value of D∞ of about 0.4 in a jet flow. Mydlarski & Warhaft (1996), hereafter

referred to as MW96, conduct an experiment using an active grid with a mesh spacing of

5cm and a wind tunnel test section size of 40.65 × 40.65 cm and find that D∞ = 0.9 for

50 ≤ Rλ ≤ 473 using an approach based on equation 2.2. Thus, there are several approaches

that can be used to determine D∞ and, in the various studies cited, several different values

for D∞ are determined.

The first step in the determination of D is to determine the values for the characteristic

velocity and length scale as well as the dissipation rate. If the flow is isotropic, then an
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appropriate velocity scale is

u ≡ u2
1/2

(2.5)

or alternatively,

u ≡ (q/3)1/2 (2.6)

where q = u2 + v2 +w2 and u, v and w are the velocity components in the three coordinate

directions. If the flow is isotropic, the two scales are the same but if there is a departure

from isotropy, the two scales would have different values which would lead to different values

for the normalized dissipation.

The length scale of the large structures, hereafter referred to as the integral length scale, can

be determined using several different approaches. If the spatial correlation of the downstream

velocity in the downstream direction, i.e.

ρ(u(x, t)u(x+ δx, t)) =
u(x, t)u(x+ δx, t)

u(x, t)2
(2.7)

has an exponential decay with δx, then the integral length scale has been shown to correspond

to the wavenumber of the peak of the energy spectrum, κE11(κ), where κ is the wavenumber

and E11(κ) is the one-dimensional power spectrum of the downstream velocity (cf. Webb

(1955)). In this approach,

l ≡ ls = 1/κn (2.8)

where ls is the integral length scale measured using the spectrum method and κn is the

location in wavenumber of the peak of the energy spectrum.

An alternative approach to determine l is one based on the integration of the time autocorre-
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lation of the downstream velocity. For this approach, the integral length scale is determined

from the integral time scale, which is defined as

T =

∫ τ=∞

0

ρ(u(x, t)u(x, t+ τ))dτ (2.9)

where

ρ(u(x, t)u(x, t+ τ)) =
u(x, t)u(x, t+ τ)

u(x, t)2
(2.10)

and the integral length scale is defined as

l ≡ la = UT (2.11)

where la is the integral length scale measured using the autocorrelation method and U is the

mean speed.

The dissipation is determined using the variance of the temporal velocity derivative, Taylor’s

hypothesis and the assumption of local isotropy and is defined as

ε = 15ν

(
∂u

∂x

)2

=
15ν

U
2

(
∂u

∂t

)2

. (2.12)

Due to the relatively high turbulence intensities (defined as u2
1/2
/U) of as high as 11% ob-

served in the study presented herein, the validity of Taylor’s hypothesis must be investigated

to ensure proper space-time conversion or a correction must be employed if deemed necessary.

These corrections are motivated by the fact that Taylor’s hypothesis may not be accurate in

non-homogeneous flows with large turbulence intensities. Champagne (1978) demonstrates

that in an inhomogeneous flow with an intensity of 9%, Taylor’s hypothesis can be used to

9



accurately determine the spatial derivative from the time derivative and, hence assuming the

flow is locally isotropic, determine the dissipation using the relationship shown in equation

2.12.

The goals of the study presented herein are 1) to determine the value forD based on equations

2.1 and 2.2 as a function of Rλ; 2) to determine the value of Rλ where D becomes a constant,

defined as D∞; 3) to determine the effect on the value of D∞ using the two velocity scales

defined in equations 2.5 and 2.6; 4) to compare the values of Rλ where D becomes a constant

and the value of D∞ to those of previous studies. An additional goal of the present study is

to provide a comparison of the measures of la and ls as defined in equations 2.8 and 2.11.

2.3 Experimental setup

2.3.1 Flow facilities

The flow facility used for this experiment is the closed-return wind tunnel at the University

of California, Irvine. The tunnel has a rectangular test section that is 0.91 m tall, 0.61 m

wide, 6.71 m long and is preceded by a contraction section with an area reduction ratio

of 9.36. The ceiling and floor of the test section diverge to compensate for boundary layer

growth and, thereby minimizing the mean velocity variation in the downstream direction.

The high intensity, nearly homogeneous and isotropic flow is produced by means of an active,

turbulence-generating grid, which is based on the initial design of Makita & Sassa (1991) as

implemented by MW96.
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Figure 2.1: Image of turbulence-generating active grid.

2.3.2 Active grid

The active grid consists of an aluminum frame that holds 18 horizontal and 12 vertical

cylindrical rods to form a square mesh, which can be seen in figure 2.1. The rods measure

9.5 mm in diameter and are spaced 50.8 mm apart. Hereafter, the rod spacing is referred

to as M . Diamond-shaped flaps measuring 33 mm on a side are center-mounted along a

1.6 mm slit down the center of each rod. The rod ends are placed in an oil-impregnated

brass sleeve bearing that allows the rods to rotate smoothly and minimize their wear. Each

rod is attached to a high torque Anaheim Automation 17MD102S stepper motor that has a

resolution of 200 steps per revolution and is mounted inside the hollow outer frame.

Two independent Parallax ProtoBoards with a USB interface, each capable of controlling 15

motors, are used to control the rotation speed and direction of rotation. If the controller is
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Rλ = 997; Ū = 12m/s; x/M = 36

Rλ = 340; Ū = 4m/s; x/M = 36

Figure 2.2: Velocity power spectra obtained at x/M = 36. Arrows denote the relative peaks
corresponding to a frequency equal to twice the rotation rate of the active grid rods.

programmed to provide a fixed rotation rate and direction to the motors, the velocity power

spectra will have a large relative peak that is centered at twice the rotation rate. Therefore,

to minimize the effect of this peak, the mean rotation rate (MRS) is set to two revolutions

per second and the motor rotation rates are programmed to vary ±25% relative to the MRS.

The direction of rotation along with the rotation rates are programmed to change every

125 to 325 msec. It is important to note that all of the motors controlled by the same

microcontroller will be assigned a new speed and direction at the same time.

Although grid parameters are randomized, the relative peak is not completely eliminated as

can be seen in figure 2.2, which shows velocity power spectra with mean velocities of 4 and
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12 m/s at x/M = 36. The relative peak becomes more pronounced as the mean velocity

increases and at most has a magnitude of a fraction of a decade. Integration of the power

spectra to determine the relative contribution of the peak to the measured velocity variance

indicates a contribution of less than 1%. Due to the small size of the peak and relatively

small contribution to the measured velocity variance, no corresponding correction is made

to the measured values of u2. Also, in order to reduce noise, spectra are computed from the

average of 120 data sets each 1 sec in length.

2.3.3 Sensors

The time-resolved velocity is measured using a standard, one-component hot-wire sensor.

The hot-wire is fabricated from a 5.08 µm diameter Wollaston platinum wire manufactured

by Sigmund Cohn. It is soldered to two stainless steel needles that are nickel plated to provide

good electrical contact. The length of the platinum wire is nominally 1 mm, which yields

a length to diameter ratio of about 200. This ratio matches the optimal ratio suggested by

Azad (1993), which minimizes prong effects while maximizing spatial resolution. Wyngaard

(1968) proposes a correction for the velocity spectrum taken from hot wires of finite length

that, when implemented, shows the r.m.s. of velocity to be less than 1% in error with the

sensor used in this experiment. For that reason, no correction due to spatial averaging is

made. The hot-wire sensor is powered by an AA Labs System model AN-1005 constant

temperature anemometer (CTA) with an overheat ratio of 1.75, which corresponds to a wire

temperature of 249.9◦C. A pulse response test indicates that the frequency response of the

sensor is at least 30 kHz at 18 m/s. The wire temperature (Tw) is determined experimentally

to within 1◦C by varying the speed from 2 to 20 m/s and varying temperature from 20◦C

to 100◦C in a laminar calibration jet. This procedure will be discussed in detail in the

calibration procedure section. Sensors are calibrated for Tw only a few times during the

course of an experiment, however, a velocity calibration is obtained at the start and end of
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each data collection period. If the statistics of interest vary more than 1% when analyzed

using the calibration coefficients found before and after the experiment, the corresponding

data are discarded.

A reference mean velocity is obtained using a Pitot-static tube connected to an MKS Bara-

tron Model 698A11TRE differential pressure transducer. The maximum difference between

the mean velocity obtained using the Pitot-static tube and the hot-wire is less than 2%.

The mean temperature is measured using a platinum resistance thermometer (PRT) man-

ufactured by Omega Engineering. It is connected to a custom-made Wheatstone bridge

based on an Analog Devices 5B34-01 isolated linearized RTD Input Module. The PRT is

mounted 5 cm away from the hot-wire and is used to correct the hot-wire signal for mean

gas temperature variation.

2.3.4 Signal conditioning

The voltage output from the CTA is filtered using an analog, low pass, 4-pole Butterworth

filter which incorporates a Frequency Devices (744PB-4) module. The filter has an insignif-

icant amount of droop in the pass band up to 2/3 of the corner frequency, therefore, the

corner frequency is set to 1.65 times higher than the frequency at which the signal reaches the

noise level to ensure that the entire turbulent signal is not affected by the filter. Even though

the filters are set to a higher than ideal corner frequency, the increased noise allowed to pass

through increases the signal r.m.s. by less than 2% for the majority of the data collected.

The signal then goes through a custom-built, 3-stage amplifier that can both amplify and

offset the signal to ensure that the majority of the dynamic range of the analog to digital

(A/D) converter is used. The frequency response of the amplifier is flat to approximately

70 kHz. Next, the signal goes through a voltage divider that can either pass the signal

unattenuated or attenuate it by 2/3. The voltage divider is used in combination with the
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amplifier to increase the signal to noise ratio. An analog, low noise differentiator is used to

provide the time derivative of the hot-wire signal. The bandwidth of the differentiator is

approximately 18 kHz.

All signals are digitized using a 16-bit Measurement Computing Corp. 1608-HS analog to

digital converter with 8 differential analog inputs that have an operational input range of

±10 V and a maximum sampling rate of 250 kS/s per channel. The signal is transferred to

a personal computer running Windows 7 via USB where the data are recorded and analyzed

using LabV iew2012.

2.3.5 Calibration procedure

The calibration equation for the hot-wire is based on a modified form of Kings law:

E2
HW =

(
AHW +BHWU

n
)

(Tw − Tg) (2.13)

where EHW is the voltage from the anemometer, U is the mean velocity, Tw is the wire tem-

perature, Tg is the gas temperature and AHW and BHW are the calibration coefficients. As

suggested by Bruun (1995), the value for the exponent, n, is determined using the calibration

data and is not assumed to be 0.45. Based on the fact that E2
HW/(Tw−Tg) is linearly related

to U
n
, appropriate values of Tw and n are found that minimize the nonlinearity. For the

current study, Tw and n are 249.9◦C and 0.403, respectively.

The next step in the calibration is carried out in the wind tunnel and is performed both before

(pre-calibration) and after (post-calibration) a data collection period. For both the pre- and

post-calibration, the gas temperature is measured using a PRT and the mean velocity is

measured using the MKS Baratron and a Pitot-static tube. In this step, the velocity is varied
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Run# U, m/s x/M Cv = u2

v2
Cw = u2

w2
Rλ

1 4 45− 142 1.10± 0.019 1.12± 0.014 191-305
2 6 55− 142 1.05± 0.014 1.16± 0.014 274-385
3 8 65− 142 1.06± 0.018 1.18± 0.016 384-517
4 12 80− 142 1.12± 0.016 1.25± 0.013 505-660

Table 2.1: Experimental parameters

over a range from 2 to 20 m/s and the wire temperature, Tw, and the velocity exponent,

n, are assumed to remain equal to the values found in the previous step of the calibration.

Data are only presented when the application of the pre- and post-calibration lead to less

than a 1% variation in the statistical values of interest.

An Rλ range of 191 to 660 is achieved by varying mean speed, U , and downstream lo-

cation from the active grid, x/M . The mean velocities, range of downstream positions

and corresponding Taylor Reynolds number ranges are shown in table 2.1. The starting

downstream locations are chosen to correspond to the downstream position where u2/v2

and u2/w2 become nearly a constant (cf. Nguyen (2015)). The Taylor Reynolds number(
Rλu ≡ u2

1/2
λ/ν

)
range at each mean velocity and the values for u2/v2 and u2/w2 along

with their standard deviations are also shown in table 2.1. It should be noted that the

turbulent kinetic energy is computed using the following equation:

q = u2 +
1

Cv
u2 +

1

Cw
u2 (2.14)

where Cv = u2/v2 and Cw = u2/w2 and are the average values of the variance ratios over

the downstream range of interest. Since the standard deviation of the values for Cv and Cw

are small, the average values are used in determining the turbulent kinetic energy.
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2.4 Analysis procedure

2.4.1 Integral length scale based on the autocorrelation

The integral length scale can be determined by integrating the spatial autocorrelation of

the downstream velocity. However, in practice, a 1-point correlation in time is more easily

obtained and transformed to a spatial correlation as shown in equations 2.9 – 2.11. Nobach &

Tropea (2012) compare a 2-point longitudinal spatial correlation taken with an LDA system

to a 1-point time correlation. They find that the temporal correlation can be accurately

transformed into the spatial correlation for flows with turbulence intensities of up to 25%

and, hence, la can be determined accurately using equation 2.11.

One challenge in determining a unique value for the integral length scale using this method is

that the autocorrelation for a finite time sample varies in value at different time shifts, τ . For

example, figures 2.3 and 2.4 show 23 autocorrelation curves taken at 8 m/s and x/M = 35

and at 4 m/s and x/M = 60, respectively. The error bars shown on the plot represent ±2

standard deviations (ρr.m.s.) from the mean normalized autocorrelation value as a function

of time. Formally, the integral time scale is computed by integrating an autocorrelation to

an infinite time shift as shown in equation 2.9, however, in practice, the integral time scale

is determined by integrating the autocorrelation to the time corresponding to the first zero

crossing. The variation in the autocorrelations leads to a variation in the value of the time

corresponding to the first zero crossing. For the autocorrelations shown in figure 2.3, that

variation in the zero crossing time has little effect on the value of the integral time scale,

which has an uncertainty of less than 3%. However, as shown in figure 2.4, the variability in

the value of the autocorrelation can have a significant effect on the values of the time of the

first zero crossing and also on the value of the integral time scale, in this case, the variation

is 16%.
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Figure 2.3: 23 autocorrelations taken at U = 8 m/s and x/M = 35. The dot shows the
local ensemble average of the autocorrelation and the error bars represent the scatter of the
autocorrelation (2ρr.m.s.).

To minimize the effect of the variability in the values of the autocorrelation and the variability

in the value of the first zero crossing time, a modified version of equation 2.9 is employed

where

To =

∫ τo

0

ρ(u(x, t)u(x, t+ τ))dτ (2.15)

where

τo ≡ τ(ρ(τ) = 0 + δ) (2.16)

where δ is twice the average value of the r.m.s. of the fluctuation of the correlation.

For all mean speeds and downstream positions, δ = 0.03 ± 0.0053. When the modified
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Figure 2.4: 23 autocorrelations taken at U = 4 m/s and x/M = 60. The dot shows the
local ensemble average of the autocorrelation and the error bars represent the scatter of the
autocorrelation (2ρr.m.s.).

definition of the zero crossing time as shown in equation 2.16 is used, the uncertainty in

the integral length scale from the autocorrelations shown in figure 2.4 decreases from 16%

to 6%. For autocorrelations similar in structure to those shown in figure 2.3, the use of τo

as defined in equation 2.16 leads to less than a 1% change in the integral time scale when

compared to the value obtained using τo ≡ τ(ρ(τ) = 0).

As presented in section 2.3.2, the velocity power spectrum corresponding to higher mean

speeds and close in proximity to the active grid have a relative peak at a frequency equal

to twice the mean rotation rate. As noted by Tennekes & Lumley (1972), a spike of finite

width in the spectrum generates decaying oscillations of wavelength 2π/κ in the correlation
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and corresponds to the oscillations seen in the autocorrelation for longer time separations in

figure 2.3.

2.4.2 Integral length scale based on the spectral method

The integral length scale has been shown (Webb, 1955) to correspond to the peak of the

energy spectrum, κE11(κ), for exponentially decaying autocorrelations. In this study, the

autocorrelations do not have an exponential decay. Thus, there is some inherent uncertainty

in the determination of the integral length scale using this approach. Furthermore, the

relative peak in the power spectrum corresponding to the rod rotation of the active grid can

obscure the location of the peak that corresponds to the large scale structure. For example,

a sample energy spectrum measured at a mean speed of 8.01 m/s at x/M = 142.5 is shown

in figure 2.5 where the peak occurs at a wavenumber of 6.2 m−1, which corresponds to

a frequency of 7.9 Hz. However, for some combinations of means speed and downstream

locations, e.g. at 11.7 m/s and x/M = 38, as shown in figure 2.6, the peak in the energy

spectrum occurs at a wavenumber of 2.1 m−1 with a corresponding frequency of 4 Hz, which

is equal to twice the rotation rate of the grid. Thus, for this study, it is only possible to

obtain the integral length scale using the peak of the energy spectrum at certain downstream

locations.

2.5 Results

As mentioned in the background section, one of the steps to determine D is to identify

the velocity scale, u. The results presented herein use the two characteristic velocity scales

identified in equations 2.5 and 2.6 and apply them to the definition ofRλ, Rl andD (equations

2.1, 2.3 and 2.4, respectively) in order to determine the effect on the value of D as a function
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Figure 2.5: Energy spectrum (κE11(κ)) taken at 8.01 m/s at x/M = 142.5 exhibiting a clear
spectral peak used to compute the integral scale, ls.

of Rλ. If the flow is isotropic, then the two characteristic velocity scales would lead to the

same results. However, since the flow is slightly anisotropic, the use of the two velocity

scales will cause a shift in the values of Rλ, Rl and D, which can be seen in table 2.2. The

magnitude of the shift depends on the anisotropy as shown in table 2.1. In table 2.2, the

subscripts uq and uu represent the use of (q/3)1/2 and u2
1/2

as the velocity scale, respectively.

Figure 2.7 shows Duu as a function of Rλ,uu . The solid line on that figure corresponds to an

exponentially decaying least squares fit to the data. Duu is seen to initially decrease with

increasing Rλ,uu and reaches a value of Duu,∞ = 0.64 at Rλ,uu ≈ 450. The value of Rλ,uu

where Duu,∞ is reached is higher than those reported in the DNS studies from Sreenivasan
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Figure 2.6: Energy spectrum (κE11(κ)) taken at 11.7 m/s and x/M = 38 and contains a
relative peak at 4 Hz that obscures the spectral peak needed to find the integral scale, ls.

Run# CD =
Duq
Duu

CRl =
Rl,uq
Rl,uu

CRλ =
Rλ,uq
Rλ,uu

1 1.11 0.966 0.934
2 1.10 0.969 0.938
3 1.11 0.965 0.965
4 1.18 0.947 0.947

Table 2.2: Ratios of D, Rl and Rλ when uq

(
= (q/3)1/2

)
and uu

(
= u2

1/2
)

are used as the

as the characteristic velocity scale.
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Figure 2.7: Comparison of Duu vs Rλ,uu for the current study to several DNS studies. The
DNS data used in S97 ((Sreenivasan, 1998)) include Cao et al. (1999), Yeung & Zhou (1997),
Jiménez et al. (1993) and Wang et al. (1996).

(1998) and Kaneda et al. (2003) who show plateaus being reached at Rλ,uu = 100 ∼ 300

(note that since DNS can produce perfectly isotropic flows, uu = uq). Furthermore, the

Duu,∞ value found here is higher than the Duu,∞ values of 0.4 ∼ 0.5 reported by Kaneda

et al. (2003) and the lower Duu,∞ value of about 0.4 reported by Sreenivasan (1998), which

includes data from Cao et al. (1999), Wang et al. (1996) and Yeung & Zhou (1997).

One reason for the difference between the values of Duu,∞ reported by Kaneda et al. (2003)

and that of the present study may be due to the different expressions used to evaluate the

integral length scale. More specifically, the integral length scale definition used by Kaneda
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et al. (2003) is lB = (π/2u2)
∫
κ−1E(κ)dκ where E(κ) is the 3-dimensional velocity power

spectrum. The relation between la and lB remains to be determined.

Figure 2.8 shows the same data as shown in figure 2.7 but with uq as the characteristic

velocity scale. Starting at low values of Rλ,uq , Duq decreases with increasing Rλ,uq eventually

reaching a nearly constant value of Duq ,∞ = 0.73 at Rλ,uq ≈ 365. The value of Rλ,uq where

Duq ,∞ is reached is closer to those reported by Sreenivasan (1998) and Kaneda et al. (2003)

and the value of Duq ,∞ reported here is in agreement with the larger Duq ,∞ value reported

by Sreenivasan (1998), which includes DNS data from Jiménez et al. (1993) and Wang et al.

(1996). The value of Duq ,∞ reported here is also in agreement with the value (Duq ,∞ = 0.73)

reported by Sreenivasan (1998) from the grid turbulence experiment.

In both figures 2.7 and 2.8, it can be noted that a few values for Duu and Duq are notably

higher than the bulk of the data. The approach summarized by equation 2.15 is used to

determine the integral length scale for these results. However, the value of the first minimum

of their autocorrelation is greater than δ which increases the time to the first zero crossing

causing an increase in the value of the integral length scale.

An alternative approach that has been used to determine D∞ is based on the analysis

presented by Tennekes & Lumley (1972) as summarized by equation 2.2. This approach is

used by MW96 to find Duu,∞ as it minimizes the scatter in the data. Figure 2.9 shows a

plot of Rla,uu as a function of R2
λ,uu

where a linear least squares fit for Rλ,uu > 450 leads to

Duu,∞ = 0.65, which is consistent with the value of Duu,∞ found from Figure 2.7.

In contrast, MW96 report Duu,∞ = 0.9 for their active grid flow. One possible reason for

the difference between the Duu,∞ value reported by MW96 and that obtained in the currents

study is that the data used by MW96 include an Rλ,uu range of 50 to 473. If an Rλ,uu range is

used where the value of Duu has not yet reached a constant, the resulting Duu,∞ value could

be higher than the true value of Duu,∞. For example, limiting the Rλ,uu range to Rλ,uu < 300
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Figure 2.8: Comparison of Duq vs Rλ,uq for the current study to several DNS studies. The
DNS data used in S97 ((Sreenivasan, 1998)) include Cao et al. (1999), Yeung & Zhou (1997),
Jiménez et al. (1993) and Wang et al. (1996).

leads to Duu,∞ = 0.74 even though the extrapolated linear least squares curve fit shown in

figure 2.9 appears to follow the data for the entire range of Rλ,uu .

Another possible reason for the difference in value for Duu,∞ measured by MW96 and the

one measured in the present study is that MW96 use ls as the integral length scale while the

present study uses la. A comparison of Rla,uu vs R
2
λ,uu

and Rls,uu vs R
2
λ,uu

is shown in figure

2.9 for MW96 and the present study. One of the main challenges in determining the integral

scale, ls, from the peak of the energy spectrum for the present study is that most of the

spectra do not show a clearly defined peak due to the relative peak present at 4 Hz, as can

be seen in figure 2.6. For most test conditions in the current study, the integral scale found
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using the autocorrelations is not significantly affected by the relative peak at 4 Hz produced

by the grid and, therefore, more data is available using this method. As a result, the integral

length scale, la, determined from the autocorrelation is used. Although there is notably more

scatter in the measure of Rls,uu , it is clear that Rla,uu and Rls,uu are in good agreement for

the current study. In fact, a linear least curve fit of the Rls,uu data in figure 2.9 leads to

Duu,∞ = 0.64, which is consistent with theDuu,∞ value found from the autocorrelation data.

Figure 2.9 also clearly shows that for R2
λ,uu

< 2.25×105, the data from MW96 is in generally

good agreement with the current study, however for R2
λ,uu

> 2.25 × 105 the values of Rls,uu

from MW96 are generally higher than the Rls,uu and Rla,uu values obtained in the current
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study. These higher Rls,uu measurements lead to a steeper slope when a linear least curve

fit is obtained, which leads to a higher Duu,∞ value.

Figure 2.10 shows a plot of Rla,uq as a function of R2
λ,uq

. A linear least squares fit of Rla,uq

for data in the plateau region shown in figure 2.8 (i.e. Rλ,uq > 365) leads to Duq ,∞ = 0.75,

which is also consistent with the results shown in figure 2.8.
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2.6 Conclusion

Wind tunnel experiments are conducted in high intensity turbulence generated by means of

an active turbulence grid modeled after the design proposed by Makita & Sassa (1991) as

implemented by MW96. Time-resolved velocity measurements are obtained using a hot-wire

anemometer for 191 ≤ Rλ,uu ≤ 660.

It is found that for Rλ,uu < 450, the normalized dissipation rate

(
Duu = lε/u2

3/2
)

decreases

with increasing Rλ,uu and, for Rλ,uu > 450, values of Duu are found to reach a nearly constant

value, defined as Duu,∞, of 0.65. The flow studied herein is anisotropic, therefore the use

of uq = (q/3)1/2 as the characteristic velocity scale is investigated. If the velocity scale is

chosen to be uq = (q/3)1/2, Duq ,∞ = 0.73, which is in closer agreement with the values of

Duq ,∞ = 0.7 from the DNS studies and D∞ = 0.73 from the decaying turbulence experiment

presented by Sreenivasan (1984, 1998).

It is suggested by Tennekes & Lumley (1972) and MW96 that Rl = (D∞/15)R2
λ can be used

to find D∞, however it is found here that great care should be taken as this method will

incur an error if points used coincide with ranges where D is Rλ dependent. Close inspection

of a plot showing Rl vs R
2
λ, such as the one shown in figure 2.10, may not be enough to select

an appropriate Rλ range since the difference between the linear fit and the data points may

be subtle.

Finally, integral length scale (la) measurements obtained from the velocity correlation are in

close agreement with integral length scale (ls) measurements obtained from the peak of the

energy spectrum, κE11(κ), where κ is the wavenumber and E11(κ) is the one-dimensional

power spectrum of the downstream velocity as shown by Webb (1955).
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Chapter 3

Variation in the velocity power

spectrum as a function of Taylor

Reynolds number

3.1 Abstract

The velocity power spectrum provides insight into how the turbulence kinetic energy is trans-

ferred from large to small scales. Velocity power spectra presented herein are obtained from

time-resolved velocity measurements using hot-wire anemometry in a nearly homogeneous

and isotropic flow for a range of Taylor Reynolds numbers, Rλ, from 194 to 997. It is shown

that the slope, n, of the inertial subrange varies with Rλ as n = 1.69−5.86R−0.645λ and is con-

sistent with experiments obtained in other grid and boundary layer flows. The effectiveness

of velocity power spectrum normalizations proposed by Kolmogorov (1941), vonKarman &

Howarth (1938) and George (1992) are compared qualitatively and quantitatively. The nor-

malization proposed by Kolmogorov (1941) collapses the velocity power spectra better overall
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in both the inertial subrange and the dissipation range, but less so in the low wavenumber

energy-containing range. The normalization proposed by vonKarman & Howarth (1938)

leads to good collapse of the spectra in the energy-containing and inertial ranges, but not in

the dissipation range. In contrast, the normalization proposed by George (1992) collapses

the energy-containing range better than the Kolmogorov normalization, but not as well as

the Von Karman and Howarth normalization. Similarly, the George normalization collapses

the dissipation range better than the Von Karman and Howarth normalization, but not as

well as the Kolmogorov normalization. None of the normalizations analyzed in the current

study are in accord with the changing slope in the inertial subrange.

3.2 Background

Velocity power spectra provide insight into the transfer of turbulence kinetic energy from

large to small scales and for that reason alone have been the subject of many studies. Various

spectrum normalizations have been proposed and these too can provide insight into the

energy transfer process. Kolmogorov (1941) provides a model based on energy transfer at

intermediate wavenumbers, identified as the inertial subrange, where the slope of the power

spectra is predicted to follow a power law and have a slope of -5/3. Immediately following

this region, at higher wavenumbers, is where dissipation takes place.

3.2.1 Power Spectrum Normalization/Scaling

Kolmogorov (1941) suggests that power spectra obtained in turbulent flow are self-similar if

the flows are at a sufficiently high Taylor Reynolds number, Rλ, where Rλ ≡ u2
1/2
λ/ν and
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where

λ ≡ u2/(∂u/∂x)2 (3.1)

or equivalently for isotropic flows,

λ =

(
15νu2

ε

)1/2

(3.2)

where ε is the dissipation rate and ν is the kinematic viscosity. For flows that are locally

isotropic and where Taylor’s hypothesis is valid

ε = 15ν

(
∂u

∂x

)2

=
15ν

U
2

(
∂u

∂t

)2

. (3.3)

In this study, the time derivative of the fluctuating velocity is measured and equation 3.3 is

used to determine the dissipation rate.

Kolmogorov suggest that the power spectrum, particularly the inertial subrange and the

dissipation range, can be normalized using ν, ε and the Kolmogorov length scale, η, where

η ≡
(
ν3/ε

)1/4
(3.4)

which leads to a universal form expressed as

Φη(κη) =
E(κ)

(ν5ε)1/4
(3.5)
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where E(κ) is the 3-dimensional power spectrum.

George (1992) proposes a new theory of self-preservation for decaying isotropic turbulence.

His theory proposes that the Taylor Microscale, λ, is the appropriate intermediate length

scale that should collapse the spectra over the range of wavenumbers from the energy-

containing to the dissipation range. In this normalization, the 3-dimensional spectra is

found to have a universal form, Φλ(κλ), where

Φη(κλ) =
E(κ)

u2λ
(3.6)

vonKarman & Howarth (1938) (hereafter referred to as VKH) propose a third normalization

where the length scale used in the normalization is the integral length scale, l. The use of

the integral length scale leads to a universal form, Φl(κl), expressed as

Φη(κl) =
E(κ)

u2l
. (3.7)

3.2.2 The inertial subrange

At sufficiently high Reynolds number when the separation between the peaks in the energy

spectrum and the dissipation spectrum is sufficiently large, Kolmogorov hypothesizes that

an inertial subrange would be observed where energy is neither created nor dissipated but

only transferred. Kolmogorov proposes that at sufficiently high values of Taylor Reynolds

number, the inertial subrange would be described as

E(κ) = Cε2/3κ−5/3 (3.8)
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where C = 1.5 is a universal constant. It can be shown (cf. Pope (2000)) that if the inertial

subrange of the 3-dimensional spectrum is described by equation 3.8, it follows that the

1-dimensional spectrum of the downstream velocity, E11(κ), is described by

E11(κ) = C1ε
2/3κ−5/3 (3.9)

where C1 ≈ 0.5 (Sreenivasan, 1995). In this paper, the term “inertial subrange” will refer to

the range of wavenumbers where

E11(κ) ∼ κ−n (3.10)

but where n is not necessarily 5/3.

Kolmogorov (1962) proposed one modification to the exponent expressed in equation 3.9

based on the observation that at high Taylor Reynolds numbers the energy dissipation would

be intermittent. This led to the modified hypothesis for the slope of the spectra in the inertial

subrange where

E11(κ) = C1ε
2/3κ−5/3−µ/9 (3.11)

where µ is the intermittency exponent (cf. Pope (2000)). The determination of µ is not

part of the present study, however, early studies, as reported in Monin and Yaglom (1975),

suggest that µ varies from 0.1 to 0.8. The more recent study of Sreenivasan and Kailasnath

(1993) concludes that µ = 0.25± 0.05 for flows with Rλ in the range of 1500 to 2000.

The prediction that the inertial subrange should be described by equations 3.9 or 3.11 is well

documented for high Taylor Reynolds number flows. For example, Praskovsky & Oncley
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(1994), hereafter referred to as PO94, present spectra obtained in the atmospheric boundary

layer with corresponding Rλ values between 2.8× 103 and 12.7× 103 and find values for the

slope in the inertial range close to −5/3.

In contrast for 50 ≤ Rλ ≤ 473, Mydlarski & Warhaft (1996), hereafter referred to as MW96,

find that while an inertial subrange of the general form described by equation 3.10 exists, n

varies with Rλ as

n = 5/3− 5.25R
−2/3
λ (3.12)

Even though an inertial subrange is observed at Rλ as low as 200, n = 1.5 which is signifi-

cantly less than 5/3.

The goals of the study reported herein are as follows:

1. To determine how n varies with Rλ for the range 194 ≤ Rλ ≤ 997.

2. To compare the results for n obtained in the current study to corresponding results in

similar and different flows.

3. To assess the applicability of the spectral normalization models proposed by Kol-

mogorov (1941), vonKarman & Howarth (1938) and George (1992).
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3.3 Experimental Setup

3.3.1 Flow Facilities and Active Grid

This experiment is conducted in the large, closed-return wind tunnel at the University of

California, Irvine. The tunnel has a rectangular test section that is 0.91 m tall, 0.61 m wide,

6.71 m long and is preceded by a contraction section with an area reduction ratio of 9.36.

An active grid similar to the one proposed by Makita & Sassa (1991) is used to produce

high intensity, nearly homogeneous and isotropic flow. The rod rotation of the active grid

is controlled by two microcontrollers that are programmed to rotate the rods in a random

direction at a random rate of 2 ± 0.5 rev/sec. The microcontrollers randomly change the

rotation rate and direction every 250±125 msec. Details on the design and operation of the

active grid can be seen in the experimental section in Chapter 2.

Although grid parameters are randomized, a relative peak appears at twice the average

rotation rate of the rods, in this case 4 Hz. Figure 3.1 shows velocity power spectra with

mean velocities of 4 and 12 m/s at x/M = 36 where x is the coordinate position in the

downstream direction with origin at the grid and M is the mesh length or spacing between

rods. The relative peak grows larger as the mean velocity increases and, at most, has a

magnitude of a fraction of a decade. The relative peak increases the velocity variance less

than 1% and, as a result, the velocity variance is not corrected. In order to reduce noise,

spectra are computed from the average of 120 1-second time records.

3.3.2 Sensors and signal conditioning

The time-resolved velocity is measured using a standard, one-component hot-wire sensor

whose sensing element is a 5.08 µm diameter Wollaston platinum wire that is operated
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Figure 3.1: Velocity power spectra obtained at x/M = 36. Arrows denote the relative peaks
corresponding to a frequency equal to twice the rotation rate of the active grid rods, which
increase the velocity variance by less than 1%.

in constant temperature mode. The length of the platinum wire is nominally 1 mm, which

yields a length to diameter ratio of about 200. This is the optimal ratio Azad (1993) suggests

so as to minimize prong effects and maximize spatial resolution. The spatial averaging due

to the finite length of the sensing wire decreases the velocity variance by less than 1% and,

therefore, no correction is made to the velocity power spectra (cf. Wyngaard (1968)). The

sensor is calibrated before and after each data collection period to ensure the sensor is stable.

Data are discarded if the statistics of interest vary by more than 1% when analyzed using

both calibrations.

The signal from the hot-wire is filtered using an analog, low pass, 4-pole Butterworth filter
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which incorporates a Frequency Devices (744PB-4) module. The signal is amplified using a

3-stage amplifier that has a frequency response of approximately 70 Hz. The time derivative

is obtained by passing the signal through a low noise, analog differentiator with a bandwidth

of approximately 18 kHz. All signals are digitized using a 16-bit Measurement Computing

Corp. 1608-HS analog to digital converter with 8 differential analog inputs. Data reduction

and preliminary analysis is done using LabV iew2013.

3.3.3 Hot-wires in high intensity turbulent flows

A hot-wire can exhibit large measurement errors if placed in high intensity turbulence,

defined as u2
1/2
/U . For example, hot-wires cannot measure near zero or reverse flows, which

are conditions that could occur if the turbulence intensity is high enough. Bradbury (1976)

compares measurements from a traditional single hot-wire to a pulsed-wire hot-wire, which

is able to accurately measure velocity in flows with turbulence intensities of up to 50%. He

finds that the turbulence intensity has an error of about 2 and 4% using the standard hot-

wire at turbulence intensities at 20 and 30%, respectively. For results presented in this study,

the maximum turbulence intensity is 20% where the error due to high turbulence intensity

would, based on the study of Bradbury (1976), be expected to be about 2%. Therefore, no

correction to account for high intensities or velocity variance is applied.

It has been shown (Wyngaard & Clifford, 1977; Sreenivasan, 1965) that high turbulence

intensity could also cause errors in the use of Taylor’s hypothesis when approximating the

variance of the spatial derivative of downstream velocity, (∂u/∂x)2, with the variance of

the temporal derivative of the downstream velocity, (∂u/∂t)2 as is done when measuring the

Taylor Microscale, λ, and the Kolmogorov length scale, η, described in equations 3.2 and 3.4,

respectively. Heskestad (1965) shows that a “generalized Taylor’s hypothesis” can be used to

accurately transform (∂u/∂t)2 to (∂u/∂x)2. Applying the generalized Taylor’s hypothesis to
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data corresponding to the highest turbulence intensity in the current study leads to a 4.8%

and 2.4% error in the measured value of λ and η, respectively. These corrections are small

relative to the magnitude of the trends seen in the data, therefore, no correction is deemed

necessary.

3.3.4 Determination of the integral length scale

The integral length scale is determined from the integral time scale, which is defined as

T =

∫ τ=∞

0

ρ(u(x, t)u(x, t+ τ))dτ (3.13)

where

ρ(u(x, t)u(x, t+ τ)) =
u(x, t)u(x, t+ τ)

u(x, t)2
(3.14)

is the time autocorrelation of the velocity. The integral length scale is then determined from

l = UT (3.15)

where U is the mean speed. This approach can be used to accurately determine the integral

length scale for flows with turbulence intensity of up to 25% (Nobach & Tropea, 2012). The

approach used to measure integral length scale is described in detail in Chapter 2.
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U, m/s x/M Rλ

4 35− 143.5 194− 340
8 35− 143.5 365− 699
12 35− 143.5 510− 997

Table 3.1: Experimental parameters

Rλ 218 340 365 523 525 699 997
x/M 88 36 143.5 62 136 36 38

U, m/s 3.81 3.78 8.01 8.01 11.6 7.84 11.8

u2, m2/s2 0.099 0.382 0.312 1.09 0.920 2.280 5.764
ε, m2/s3 0.194 1.210 0.698 4.13 2.927 10.16 31.92
l, m 0.133 0.123 0.160 0.160 0.214 0.176 0.259
λ, mm 1.09 0.86 1.02 0.79 0.86 0.73 0.65
η, mm 0.38 0.24 0.27 0.17 0.19 0.14 0.10

Table 3.2: Flow parameters for the cases shown in the spectrum normalization section.

3.3.5 Experimental parameters

An Rλ range of 184 to 997 is achieved by varying mean speed, U , and downstream location

from the active grid, x/M . The mean velocities, downstream position ranges and corre-

sponding Taylor Reynolds number ranges are shown in table 3.1. The evolution of spectra

and their normalization is studied using a subset of the data set. The flow parameters for

data chosen for the spectral comparisons are shown in table 3.2. The two spectra taken at

Rλ = 523 and 525 can help illuminate how spectra with similar Taylor Reynolds number, but

different flow parameters, i.e. u2, ε, etc., vary and respond to the different normalizations.
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Figure 3.2: Velocity power spectrum (a) and compensated velocity power spectrum (b)
obtained at Rλ = 365. The slope of the inertial subrange, n, is chosen such that the inertial
subrange is has zero slope.

3.3.6 Analysis procedure

One of the goals of this study is to determine the slope and the wavenumber corresponding

to the beginning and end of the inertial subrange as a function of Taylor Reynolds number,

Rλ. The process used to determine the aforementioned parameters is presented next.

A velocity spectrum for Rλ = 365 is shown on figure 3.2(a). The inertial subrange can be

observed as the region in red of constant slope. It is important to note that the electronic

noise is reached at a wavenumbers well above the end of the inertial subrange and contributes

less than 2% to the measured value of u2 for all spectra presented herein.
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The determination of the slope of the inertial subrange is based on the approach used by

MW96 where the following modified form is used:

E11(κ) = C∗1ε
2/3κ−5/3(κη)5/3−n (3.16)

where n is the slope of the inertial subrange and C∗1 is a modified Kolmorov constant. The

slope is found by adjusting n until a value is reached where the slope of the compensated

spectrum in the inertial subrange is zero as shown on figure 3.2(b), which in this case leads

to a value of n = 1.55.

To ensure repeatability and consistency, a MATLAB program (see Appendix A) is used to

determine the slope and extent of the inertial subrange. An initial estimate of the beginning

and end points of the inertial subrange is supplied to the program and the slope of the inertial

subrange is determined using the method of least squares. The amount that the slope of

the least squares fit line deviates from zero (β∗) is a measure of how much the slope of the

original velocity power spectrum deviates from −5/3. The exponent on κ is then corrected

by β∗ and the slope of the new compensated velocity power spectrum (E11(κ)× κ5/3−β∗
) is

found. This iterative process is repeated until the slope correction, β∗, falls below a certain

threshold, in this case, 0.00005.

The next step is to find values for the wavenumbers at the beginning and end of the inertial

subrange. Due to the variability in the value of the power spectra, the spectra are smoothed

using a 20-point running average. The wavenumber corresponding to the beginning of the

inertial subrange is identified as the wavenumber location where the power spectral value of

the averaged spectra first crosses the fitted horizontal line. The wavenumber corresponding

to the end of the inertial subrange is identified as the wavenumber location where the power

spectral value of the averaged spectra last crosses the fitted horizontal line.
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3.4 Results

3.4.1 Evolution of the inertial subrange

While the slope of the velocity power spectrum is a constant with respect to wavenumber

in the inertial subrange, the slope is not a constant and varies as a function of Rλ. Figure

3.3 shows the slope of the inertial subrange, n, as a function of Rλ for the current study.

The solid line represents a least squares curve fit of the data for 185 ≤ Rλ ≤ 997 with the

corresponding prediction that n = 1.66 − 20R−0.889λ , which suggests that n asymptotically

approaches 1.66 ± 0.066 with increasing Rλ. Note that there appears to be a significant

decrease in the scatter of the slope of the inertial subrange with increasing Rλ. This occurs

because the width (in wavenumber) of the inertial subrange increases with increasing Rλ

leading to a more accurate measure of the slope. Although the uncertainty of the asymptotic

value that n approaches is only ±4%, the uncertainty with respect to the intermittency

exponent, µ, is too large (±0.55) to make any reliable estimate of its value.

As noted, spectra obtained close to the grid show a relative peak at 4 Hz (twice the rotation

rate of the grid rods). In order to assess whether the relative peak has an effect on the

slope of the inertial subrange, the grid is programmed to run in synchronous mode. This

mode causes all the rods to rotate at the same speed and direction, which transforms the

small relative peak to a relatively high amplitude peak. Figure 3.3 shows data taken with

the active grid programed to rotate the rods synchronously and it is clear that the larger,

more pronounced peak has not significantly affected the value of the slope. Thus, it would

appear that the presence of the relative peak at 4 Hz does not have a significant effect on the

energy transfer in the inertial subrange. Figure 3.3 also shows data from MW96 obtained in

the flow downstream of an active grid and Saddoughi & Veeravalli (1994), hereafter referred

to as SV94, which are measurements taken in a turbulent boundary layer. Similar to the

current study, their data show n increasing with increasing Rλ signifying that the changing
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Figure 3.3: The slope of the inertial subrange as a function of Taylor Reynolds number for
the current study along with data from MW96 and SV94. The solid line represents a least
squares curve fit of the data from the present study.

slope of the inertial subrange is not dependent on the type of flow.

Figure 3.4 shows n as a function of Rλ with data at higher values of Rλ obtained from PO94,

which include measurements taken in a mixing layer and an atmospheric surface layer. The

solid line corresponds to a least squares curve fit for values of n from the present study only

which has been extrapolated to Rλ = 13000. The dashed line corresponds to a least squares

curve fit for all the data included in figure 3.4 where

n = 1.69− 5.86R−0.645λ (3.17)
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Figure 3.4: The slope of the inertial subrange versus Taylor Reynolds number for the current
study, MW96, SV94 and PO94. The dashed line corresponds to a least squares curve fit for
all the data.

leading to an asymptotic value for n of 1.69± 0.036. With the added data, the uncertainty

of the asymptotic value of n decreases from ±4% to ±2.1%. However, the uncertainty of µ

(±0.3) is still too large to make any conclusive statement regarding its value.

Since the accuracy of the measurement of n is a function of the length of the inertial subrange,

the width of the inertial subrange as a function of Rλ is of interest. An inertial subrange

is difficult to observe at low values of Rλ as evidenced by velocity power spectra obtained

downstream of passive biplane grids (Alkudsi, 2012). It is likely that a minimum Rλ value

may be required to obtain an observable inertial subrange. Figure 3.5 shows the width of

the inertial subrange, w, as a function of Rλ. The solid line corresponds to a least squares
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Figure 3.5: Taylor Reynolds number versus width and height of the inertial subrange in
decades of wavenumber and energy, respectively. The solid and dashed lines corresponds to
a least squares curve fit of the width and height, respectively.

curve fit, which shows that

Rλ = 63.7e1.32w (3.18)

Equation 3.18 suggests that an Rλ value of about 64 is needed for w > 0. However, qualita-

tively it is difficult to identify an inertial subrange accurately for Rλ ≤ 190.

Figure 3.5 also shows the height of the inertial subrange, h, in decades as a function of Rλ.
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The dashed line corresponds to a least squares curve fit where

Rλ = 80.8e0.78h (3.19)

Equation 3.19 suggests that an Rλ value of about 81 is needed for h > 0, which is reasonably

close to the limiting Rλ value found for w.

It is well understood (cf. Tennekes & Lumley (1972), Libby 1996, Pope (2000)) that an

inertial subrange will only be observed for large separation of the peaks of the energy and

dissipation spectra. The separation of the peaks as a function of κη is shown in figure 3.6

and the separation is well described by a linear function of Rλ. The solid line on figure 3.6

corresponds to a linear least square fit where

κη = 0.000415Rλ + 0.00238 (3.20)

Equation 3.17 shows that Rλ > 3000 is needed for the slope of the inertial subrange to be

within 2% of its plateau value. Equation 3.20 suggests that for this to occur, the separation

between the peaks of the energy and dissipation spectra needs to be κη > 3.61.

3.4.2 Spectrum normalization

Spectra analyzed herein correspond to values of Rλ that vary from 194 to 997. A subset

of the spectra obtained in the present study is shown in figure 3.7 and flow parameters

corresponding to these spectra are shown in table 3.2. Except at the high frequency portion

of the spectra, values of F11(f) for any fixed frequency can be seen to increase with increasing

Rλ. Note that in the inertial subrange the values for F11 are nearly the same when Rλ values
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Figure 3.6: Distance between the peak of the energy spectrum and the dissipation spectrum
as a function of Taylor Reynolds number.

are the same even when the mean velocity and the velocity variance differ significantly. For

example the two power spectra corresponding to Rλ = 525 and 523 with corresponding mean

velocities of 12 and 8 m/s and values of u2 of 0.920 and 1.089m2/s2, respectively, have nearly

identical values of F11 in the inertial subrange, but differ in the dissipation range. Leading

to the observation that the values of F11(f) of the power spectra in the inertial subrange

appear to be functions of Rλ.

The seemingly organized manner in which the velocity power spectra, when plotted as a

function of frequency, vary with Rλ is not so obvious when plotted as function of wavenumber,

κ = 2πf/U , where E11(κ) = (U/2π)F11(f) as be seen in figure 3.8. Focusing on the same
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Figure 3.7: F11(f) versus f for various Taylor Reynolds numbers and mean speeds

two power spectra as before with similar values of Rλ, it is clear that the inertial subrange

region no longer matches.

3.4.3 Spectrum normalization/comparison

The effect of applying each normalizations to the power spectra are first considered qual-

itatively and then quantitatively. As discussed in the background section, the three nor-

malizations are the ones proposed by Kolmogorov (1941), vonKarman & Howarth (1938)

and George (1992). It should be noted that while it has been shown in the data presented

herein that the slope of the inertial subrange increases with increasing Rλ, none of the
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Figure 3.8: E11(κ) versus κ for various Taylor Reynolds numbers and mean speeds

normalizations account for the variation of the slope of the inertial subrange. However,

notwithstanding this observation, comparisons of the effect of the three normalizations will

provide a means to assess their applicability.

The velocity power spectra scaled by the normalization proposed by VKH are shown in

figure 3.9. Equation 3.7 shows that this normalization is based on the integral scale of

the flow, therefore it is not surprising that the energy-containing region of the spectrum

collapses rather well. Furthermore, it can be observed that the normalized spectra are in

good agreement up to about κl ≈ 50 where the normalized spectra begin to deviate. Clearly

and as expected, this normalization does not lead to a good match of the normalized spectra

in the high wavenumber dissipation range.
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Figure 3.9: Velocity power spectra for various Taylor Reynolds normalized by the VKH
normalization.

Figure 3.10 shows the velocity power spectra normalized using the scaling proposed by

George (1992), which utilizes the Taylor Microscale as the normalizing length scale. This

normalization leads to a reasonably good collapse for all normalized wavenumbers showing

significant improvement in the dissipation range when comparing to the normalization pro-

posed by VKH. The collapses in the energy containing range and the inertial subrange is not

as good as the collapse obtained using the VKH’s normalization, however.

Figure 3.11 shows the effect of the normalization proposed by Kolmogorov (1941) where the

normalization is based on the Kolmogorov length scale, η, the dissipation rate, ε, and the

kinematic viscosity, ν. Although the normalizing length scale is small compared to the scales
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Figure 3.10: Velocity power spectra for various Taylor Reynolds normalized by the George
(1992) normalization.

of other normalizations, Kolmogorov’s normalization shows an excellent collapse in both the

inertial subrange and dissipation range. The spectra do not collapse as well in the energy

containing range as they do when employing the George or VKH normalizations.

The qualitative assessment of the three normalizations suggests the normalization proposed

by George and VKH collapse the energy containing range better than the Kolmogorov nor-

malization. However the normalizations proposed by VKH and Kolmogorov lead to a rela-

tively better collapse of the spectra in the inertial subrange with Kolmogorov’s normalization

leading to the best collapse in the dissipation range.
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Figure 3.11: Velocity power spectra for various Taylor Reynolds normalized by the Kol-
mogorov (1941) normalization.

3.4.4 Quantitative analysis on the effectiveness of the normaliza-

tions

Next is considered a more quantitative based assessment of the effectiveness of the three

normalizations. As noted in section 3.2.1, since each of the normalizations use different

scales to normalize the spectra, it is expected that the different normalizations collapse the

spectra better in different wavenumber ranges. For that reason, the normalized spectra

are divided up into ranges that include the inertial subrange (I.S.) and 3 subranges in the

dissipation range (D1, D2 and D3) as shown in table 3.3. Due to the inability of VKH’s

normalization to collapse the dissipation range of the spectrum, it is not included in the

52



− I. S. D1 D2 D3

κη 0.0097− 0.035 0.062− 0.067 0.140− 0.146 0.224− 0.230
κλ 0.29− 1.06 3.83− 4.18 8.70− 9.05 13.9− 14.3
κl 4.29− 12.86 −− −− −−

Table 3.3: Normalized wavenumber ranges used to compare the normalizations proposed by
Kolmogorov (κη), George (κλ) and VKH (κl).

quantitative comparison the dissipation range. Unfortunately, the relative peak at 4 Hz,

which can be noticed in some of the power spectra, obscures the quantitative comparison of

the collapse in the energy-containing region of the spectra. For that reason, no quantitative

assessment is conducted in this region.

The normalized spectral values within each normalized wavenumber range are averaged and

the collapse is then assessed by comparing the difference of each average to that of a reference

spectrum. In this case, the reference spectrum is the spectrum obtained for Rλ = 997 and

the differences are computed as

Cξ =

E11(κ)
ξ
− E11,ref (κ)

ξref

E11,ref (κ)

ξref

(3.21)

where ξ = (εν5)1/4, ξ = u2λ or ξ = u2l for the normalizations proposed by Kolmogorov,

George and VKH, respectively.

Figure 3.12 shows the spectral comparison in the inertial subrange for all three normalizations

as a function of Rλ. By definition (cf. equation 3.21), Cξ = 0 for the inertial subrange of the

spectrum corresponding to Rλ = 997. If a normalization worked perfectly, Cξ would equal

zero for spectra at all Rλ values. Figure 3.12 shows an excellent collapse for Rλ > 350 for

both the Kolmogorov (ξ = (εν5)1/4) and VKH’s (ξ = u2l) normalizations. At Rλ < 350, the

collapse for both normalizations begins to deviate from the reference spectrum, something
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Figure 3.12: Effectiveness of normalizations in collapsing the inertial subrange (I.S.) when
applying the normalizations proposed by VKH (1938), George (1992) and Kolmogorov
(1941).

that is not obvious from the qualitative observation based on figure 3.9 and figure 3.11.

Another assessment of the normalizations is based on the observation that the high wavenum-

ber extent of the inertial subrange should also have an identical normalized value. Figure

3.13 (a), (b) and (c) show the normalized wavenumber location that represents the high

wavenumber extent of the inertial subrange as a function of Rλ for the normalizations pro-

posed by George, Kolmogorov and VKH, respectively. For the normalization proposed by

George (figure 3.13(a)), the normalized high wavenumber extent of the inertial subrange

initially increases with increasing wavenumber, but appears to reach a nearly constant value

starting at about Rλ = 550 with a peak to peak variation of about ±20%. For the nor-
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malization proposed by Kolmogorov (figure 3.13(b)), The location of the normalized high

wavenumber extent of the inertial subrange appears to reach a constant value for Rλ ≥ 350

but with a peak to peak variation of about ±14%. For the normalization proposed by VKH

(figure 3.13(c)), the normalized value of the high wavenumber extent of the inertial sub-

range does not appear to approach a constant value but rather to increase with increasing

wavenumber.

Next, the effectiveness of the normalizations proposed by George and Kolmogorov in the

dissipation subranges are determined and shown in figure 3.14(a), (b), and (c). The vari-

ation of Cξ with Rλ is much smaller for the Kolmogorov normalization in comparison to

the variation found in the George normalization. Figure 3.14(b) shows a reduction in the

variation of Cξ with Rλ for the George normalization, which coincides with the wavenumber

range in figure 3.10 where the normalized spectra appear to cross over each other.
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3.5 Conclusion

Using the definition of the inertial subrange as the wavenumber range where E11(κ) ∼ κn, it

is clear that the value of n varies with Rλ and the variation for the results obtained for the

flow downstream of an active grid in the present study is described by

n = 1.66− 20R−0.889λ . (3.22)

These results are consistent with results obtained not only in previous studies in the region
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downstream of an active grid, but also in a turbulent boundary layer as reported by SV94.

The inclusion of n values obtained from the active grid study of MW96, the turbulent

boundary layer studies of SV94 and the atmospheric boundary layer and mixing layer study

of PO94 leads to a slight modification of the computed variation of n with Rλ as

n = 1.69− 5.86R−0.645λ . (3.23)

The uncertainty of the asymptotic value of n predicted by equation 3.23 is ±0.036. That

uncertainty is too large to determine a reasonably accurate value for the intermittency factor,

µ. In addition, the original estimate of 5/3 for the value of n made by Kolmogorov falls within

this uncertainty range.

Based on equation 3.22, n is within 2% of the asymptotic value of n = 1.66 at Rλ ≥ 1440 and

based on equation 3.23, n is within 2% of the asymptotic value of n = 1.69 at Rλ ≥ 3000.

Thus, a conservative estimate for the minimum value of Rλ where the inertial subrange slope

might be expected to remain a constant thereafter is Rλ ≈ 3000.

A quantitative comparison of the effectiveness of the three normalizations suggests the nor-

malization proposed by vonKarman & Howarth (1938) does as well as the Kolmogorov (1941)

normalization in normalizing the inertial subrange where the George (1992) normalization

does not work as well. The VKH normalization does not work in the dissipation range where

the Kolmogorov normalization is best. The George normalization also does a better job in

the dissipation range of the power spectrum than the VKH normalization, but not as good as

the Kolmogorov normalization. Based on qualitative observations, the George normalization

does a better job in the energy-containing portion of the spectra than Kolmogorov normal-

ization, but not as good as the VKH normalization. Furthermore, it appears as though

Rλ ≥ 350 is sufficient to remove any dependence on Rλ in the effectiveness of collapse in the

inertial subrange for the Kolmogorov and VKH normalizations.
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Chapter 4

Modified spectrum model

4.1 Abstract

A model of the one-dimensional velocity power spectrum is presented herein that applies to

power spectra in the range of Taylor Reynolds number, Rλ, from about 200 to 2000 where the

slope of the inertial subrange is found to vary. The model is based on the model proposed by

Pope (2000) which has been demonstrated to model power spectra at high value of Rλ where

the slope of the inertial subrange is very close to −5/3. With one exception, the coefficients

in the modified model are found to be a function of Rλ and approaching the coefficients

proposed by Pope with increasing value of Rλ. That one exception is the coefficient that is

most directly related to the shape of the spectrum in the dissipation range. Based on that

observation, it would appear that even though the inertial subrange slope depends on Rλ,

that dependence does not extend to the dissipation range. It is also suggested that the low

wavenumber portion of the velocity power spectrum may not be well described by a universal

model as that portion of the spectrum may well depend on initial conditions.
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4.2 Background

The velocity power spectrum provides insight into how energy is distributed amongst the

scales present in turbulent flows as well as the manner in which energy is transferred between

those scales. The ability to accurately model the velocity power spectrum is useful for

turbulence modeling, in particular Large Eddy Simulation (LES) where the spectrum of

the sub-grid scale must be modeled in order to focus computational power to resolving

the large scales. Heretofore, most spectrum models do not take into account the changing

slope with respect to Taylor Reynolds number (cf. Pao (1965), Pope (2000)) that has been

observed in several experiments (cf. Saddoughi & Veeravalli (1994), Mydlarski & Warhaft

(1996)) including the results presented in Chapter 2. Instead, models have been developed

for spectra with high Rλ values and where the slope of the inertial subrange is a contant.

Gamard & George (2000) propose a composite model that merges a low wavenumber and

high wavenumber model together and match the varying slope of the inertial subrange as

a function of Rλ utilizing spectral data from Mydlarski & Warhaft (1996). Pope (2000)

proposes a composite model, which he compares to several power spectra obtained from a

variety of flows at various values of Taylor Reynolds number. This model, however, does

not predict the varying slope of the inertial subrange with respect to Rλ. The goal of this

paper is to extend the model proposed by Pope to account for the variation of the slope of

the inertial subrange with respect to Rλ.
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4.2.1 Spectrum model

Pope (2000) proposes a model for the three-dimensional spectrum, Ep(κ), which is described

as

Ep(κ) = Cε2/3κ−5/3fl(κl)fη(κη) (4.1)

where C = 1.5 is the universal Kolmogorov constant, ε is the dissipation rate, κ is the

wavenumber, η is the Kolmogorov length scale and l is the integral length scale, which is

taken to be related to the velocity scale u = u2
1/2

and the dissipation rate as

l = Du2
3/2
/ε (4.2)

where D is a constant of proportionality. In Pope’s analysis, D is assumed to be a constant,

however, for low values of Rλ, it has been found to vary with respect to Rλ. For example,

for the study presented herein, it is found to only become a constant for Rλ & 450. fl and

fη are are non-dimensional functions that determine the shape of the energy-containing and

dissipation range, respectively. fl is described by

fl(κl) =

(
κl

[(κl)2 + cl]1/2

)5/3+po

(4.3)

where cl is a positive constant and po = 2 such that fl → 1 for large κl and E(κ) varies

as κpo = κ2. It is has been shown (Kang et al., 2003) that the anisotropy in the flow

downstream of an active grid at high Rλ is isolated to the large scales and can be dependent

on the turbulence generator and initial conditions, which directly affects the value for cl. fη
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is described by

fη(κη) = exp

{
−β
{[

(κη)4 + c4η

]1/4
− cη

}}
(4.4)

Where β and cη are positive constants such that fη → 1 for small values of κη. Using the

turbulent boundary layer spectra of Saddoughi & Veeravalli (1994), hereafter referred to

as SV94, Pope (2000) finds that β = 5.2 and that at very high Taylor Reynolds numbers,

cl = 6.78 and cη = 0.4 are determined by the requirement that E(κ) and 2νκ2E(κ) integrate

to κ and ε respectively.

Non-dimensionalizing equation 4.1 by the normalization proposed by Kolmogorov (1941),

yields the expression

Ep(κ)

(εν5)1/4
= C(κη)−5/3fl(κl)fη(κη) (4.5)

In the inertial subrange, fl and fη are unity and, therefore, equation 4.1 suggests that the

slope of the spectrum in the inertial subrange is −5/3 as proposed by Kolmogorov (1941).

It has been shown in Chapter 3 that the slope of the inertial subrange follows

n = −5

3
− µ

9
+ C1R

C2
λ (4.6)

where C1 = 5.86, C2 = −0.645 and µ is the intermittency exponent. Thus, the model

proposed by Pope (2000) must be modified.
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4.2.2 Modified spectrum model

The following modified model equation is proposed herein for E(κ):

E(κ) = Cφε
2/3+φκ−

5
3
−µ

9
+C1R

C2
λ fl(κl)fη(κη) (4.7)

where Cφ and φ are dimensional parameters that are required so that the right hand side of

equation 4.7 has the same unit as E(κ), i.e., [m3/s2], where square brackets denote units.

To determine φ, it is useful to show equation 4.7 in the form

E(κ) =
(
Cφε

φκ−
µ
9
+C1R

C2
λ

)
ε2/3κ−5/3fl(κl)fη(κη) (4.8)

where the product of the variables inside the parenthesis must be dimensionless in order to for

the right hand side of the equation to have the same units as E(κ). The only way to eliminate

the dimensions of κ−
µ
9
+C1R

C2
λ , where κ = [1/m], is to choose φ such that εφκ−

µ
9
+C1R

C2
λ is not

a function of [m], or alternatively that

[m2/s3]φ[1/m]−
µ
9
+C1R

C2
λ = [m]0. (4.9)

This leads to

2φ+
µ

9
− C1R

C2
λ = 0 (4.10)
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or

φ =
1

2

(
C1R

−C2
λ − µ

9

)
. (4.11)

This choice of φ leads to a second issue with respect to units, specifically,

ε
1
2

(
C1R

−C2
λ −µ

9

)
κ−

µ
9
+C1R

C2
λ =

[
1

s3

] 1
2

(
C1R

−C2
λ −µ

9

)
. (4.12)

In order for the units of the right hand side of equation 4.8 to have the same units as E(κ),

Cφ must have units of [s]
3
2

(
C1R

−C2
λ −µ

9

)
. It will be shown later that

Cφ = C

(
l

u2
1/2

) 3
2

(
C1R

−C2
λ −µ

9

)
(4.13)

gives the most consistent results when comparing to Pope’s original model.

Equation 4.3 must also be modified to take into account the changing slope of the inertial

subrange leading to

fl(κl) =

(
κl

[(κl)2 + cl]1/2

)n+po
. (4.14)

Since fl is dimensionless, this change does not affect the units of the right hand side of

equation 4.7. Non-dimensionalizing equation 4.7 leads to

E(κ)

(εν5)1/4
= 15−3φ/2CD3φR3φ

λ (κη)2φ−5/3fl(κl)fη(κη) (4.15)
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where φ is defined by equation 4.11 and D = 0.76 for Rλ,uq > 365 (cf. Chapter 2) is the

normalized dissipation rate defined as

D = lε/u2
3/2

(4.16)

where l is the integral length scale found from the autocorrelation as described in Chapter

2. It is important to note that if µ = 0, as Rλ → ∞, equation 4.7 will approach equation

4.1.

In this study, the dissipation rate is determined using the variance of the temporal velocity

derivative, Taylor’s hypothesis and the assumption of local isotropy, which yields

ε = 15ν

(
∂u

∂x

)2

=
15ν

U
2

(
∂u

∂t

)2

. (4.17)

The Taylor Microscale is defined as

λ =

(
15νu2

ε

)1/2

(4.18)

and the Kolmogorov scale as

η =
(
ν3/ε

)1/2
. (4.19)
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U, m/s x/M Rλ

4 35− 143.5 194− 340
8 35− 143.5 365− 699
12 35− 143.5 510− 997

Table 4.1: Experimental parameters

Rλ x/M U, m/s u2, m2/s2 ε, m2/s3 l, m λ, mm η, mm
195 143.5 3.78 0.070 0.123 0.157 1.20 0.42
590 106 11.7 1.32 4.77 0.197 0.81 0.17
997 38 11.8 5.76 31.9 0.259 0.65 0.10

Table 4.2: Flow parameters for the cases shown in the spectrum normalization section.

4.3 Experimental parameters

The range of Rλ shown in table 4.1 is achieved by varying the test section mean speed, U ,

and downstream location from the active grid, x/M , where M is the grid mesh length. The

modified spectrum model is compared to spectra obtained in the current study with flow

parameters as shown in table 4.2. In order to reduce noise, each spectrum presented herein

is the average of 120 spectra computed from 1-second time records.

4.4 Analysis Procedure

The modified spectrum model shown in equation 4.7 is the three-dimensional velocity power

spectrum. However, the measured power spectra, which will be used in the determination of

the model coefficients are one-dimensional velocity power spectra, E11(κ). For that reason,

the first step is to determine the one-dimensional power spectrum from the three-dimensional
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spectrum where (cf. Pope (2000))

E11(κ) =

∫ ∞

κ1

E(κ)

κ

(
1− κ21

κ2

)
dκ. (4.20)

The next step in the analysis is to assume an initial value for C, cl, cη and β and use the

Generalized Reduced Gradient method to determine adjusted values for those coefficients

such that the square of the difference between the measured spectra and the model spectra

is minimized.

4.5 Results

A comparison of the modified model and measure spectra for three values of Rλ is shown

in figure 4.1. Next, the values of the model coefficients are shown as a function of Rλ and

compared to the corresponding values obtained by Pope (2000), which are found to be in

good general agreement. Finally, the model spectrum developed in the current study and

the high Rλ model of Pope will be compared to spectra with Rλ = 997 and 590 obtained in

the present study and with spectra at Rλ = 600 obtained from the turbulent boundary layer

flow of SV94.

One-dimensional spectra obtained in the current experiment for values of Rλ of 997, 590 and

207 are shown in figure 4.1. Flow parameters corresponding to these spectra are shown in

table 4.2. The dashed lines represent the one-dimensional modified model spectrum based

on the three-dimensional modified spectrum model obtained from equations 4.15 and 4.11

and converted using equation 4.21. It should not be surprising that the modified model

spectrum follows the experimentally obtained spectra closely since they are used to obtain

the coefficients for the model. However, it should be noted that the coefficients directly
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Figure 4.1: One-dimensional velocity power spectra normalized using Kolmogorov’s normal-
ization. The dashed line represents the one-dimensional modified model spectrum based
on the three-dimensional modified spectrum model defined in equations 4.15 and 4.11 and
converted using equation 4.21.

obtained from fitting the modified model to the experimental data are not used in generating

the model spectra shown in figure 4.1 or any subsequent figure. Instead, least squares curve

fits of the coefficients as a function of Rλ are used to form the modified model spectra.

The shape of the high wavenumber dissipation range of the velocity power spectrum is

primarily related to fη, which is described by equation 4.4. The coefficient that is most

directly related to the curvature of the velocity power spectrum in the transitional region

between the inertial subrange and the dissipation range is cη and, to a lesser extent, β.

Figure 4.2 shows cη as a function of Rλ where the solid line represents a least squares curve

68



100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Rλ

c η

 

 

cη =0.413−18Rλ
−0.825

Figure 4.2: cη as a function of Rλ. The solid line represents a least squares curve fit of the
data.

fit of the data. It is clear that cη increases with increasing Rλ and appears to be approaching

a constant value. The least squares curve fit described by cη = 0.413− 18R−0.825λ shows that

cη will asymptote to a value close to 0.4, which is in agreement with the value proposed by

Pope (2000). This result should not be surprising since it is shown that in the limiting case

when Rλ approaches infinity, the slope of the inertial subrange approaches a number close

to −5/3, as is discussed in Chapter 3. Therefore, the modified model described by equation

4.15 will approach the original model proposed by Pope described by equation 4.5.

Figure 4.3 shows β as a function of Rλ. Although there is some scatter in the values of β, it

appears as though β does not vary with respect to Rλ. The average value of β is 6.3 and is in
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Figure 4.3: β as a function of Rλ.

reasonable agreement with the value of 5.2 proposed by Pope (2000). The lack of variation

in β with respect to Rλ suggests that the high wavenumber portion of the dissipation range

is independent of Rλ and, thus, independent of the variation in the slope in the inertial

subrange. In contrast, cη, is a function of Rλ. At small values of Rλ, say smaller than 400,

the slope of the inertial subrange is significantly less steep than −5/3, which would require

a value for cη far smaller than 0.4 to properly transition the power spectrum from the Rλ

dependent inertial subrange to the Rλ independent dissipation range.

The spectral values of the modified spectrum model are proportional to the constant, C,

which is defined as the Kolmogorov constant, at all wavenumbers. Figure 4.4 shows the

values for C as a function of Rλ where the solid line represents a least squares curve fit of the
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Figure 4.4: The Kolmogorov constant, C, as a function of Rλ. The solid line represents a
least squares curve fit of the data.

data and is described by C = 1.43−275R−1.21λ . The values for C increase with increasing Rλ

and the curve fit suggests that this trend will plateau at C ≈ 1.43. This is in close agreement

with the experimentally accepted value of 1.5 found by Sreenivasan (1995) and used by Pope

(2000).

The shape of the low wavenumber energy-containing portion of the velocity power spectrum

is most directly related to fl, which is presented in equation 4.3 and which is primarily

dependent on the coefficient cl. Figure 4.5 shows the values of cl obtained in the current

study as a function of Rλ where they can be seen to decrease with increasing values of Rλ

for Rλ < 750. The cl values appear to reach nearly a constant of about 0.25 for Rλ > 750.
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Figure 4.5: cl as a function of Rλ.

These values for cl are significantly less than, and are not trending towards, the value of 6.78

proposed by Pope (2000). One reason for the difference between the cl values found in the

current study and the cl value proposed by Pope is that the shape of the low wavenumber

portion of the spectra obtained in the current study is more directly related to the initial

conditions, i.e., to the large scale structures produced by the turbulence generators. This is

consistent with the findings of Kang et al. (2003) that the large scales can depend on the

characteristics of the turbulence generator.

Figure 4.6 shows normalized velocity power spectra for Rλ = 590 and 997 obtained in the

present study as well as normalized velocity power spectra for Rλ = 600 and 1450 obtained by

SV94 in a turbulent boundary layer flow. The spectra for Rλ values of 600 and 590 obtained
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Figure 4.6: Normalized velocity power spectra for Rλ = 997 and 590 obtained in the current
study. The dots and circles represent normalized velocity power spectra for Rλ = 600 and
1450 obtained in SV94, respectively.

from SV94 and the present study, respectively, show large differences in the value of the

normalized power spectra for corresponding wavenumbers in the low wavenumber energy

containing range even though their Rλ values nearly match. This observation is consistent

with the suggestion that the low wavenumber portion of the power spectrum depends on the

initial conditions. Those differences are significantly smaller in the inertial subrange and the

dissipation range. Similarly, the spectra for Rλ values of 1400 and 997 obtained from SV94

and the present study, respectively, show small differences in the value of the normalized

power spectra for corresponding wavenumbers in the low wavenumber energy containing

range even though their Rλ values are significantly different. The model spectrum proposed
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Figure 4.7: Normalized velocity power spectrum for Rλ = 590. The dotted line represents the
model proposed by Pope (2000) and outlined by equation 4.5 and the dashed line represents
the modified model that is outlined by equation 4.15.

by Pope (2000) and the modified model spectrum proposed in the current study is uniquely

determined by the shape of the low wavenumber portion of the spectrum. This means that

since the low wavenumber portion of the spectrum is dependent on the manner in which

the turbulence is being generated, this model or any model that is based on experimentally

determined values of the low wavenumber portion of different types of flow should not be

expected to match. Since the anisotropy of high Rλ flows is isolated to the large scales, the

modified model presented herein is expected to model the velocity power spectrum in the

inertial subrange and the dissipation range.

Figure 4.7 show the normalized velocity power spectrum for Rλ = 997 for the present study.
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The dotted line represents the model proposed by Pope (2000) and expressed by equation 4.5

and the dashed line represents the modified model that corresponds to equation 4.15. As is

expected due to the large difference between the cl values obtained for the present study and

the cl value proposed by Pope, the low wavenumber energy-containing region of the velocity

power spectrum does not match the Pope model. Since this portion of the power spectrum is

dependent on initial conditions, the accuracy of the model proposed herein is best assessed

by comparison of the spectrum predicted by the model to the measured spectrum in the

inertial subrange and dissipation range.

Although it appears that the differences between the original spectrum model and the mod-

ified one in the inertial subrange is small, it is important to point out that the modified

model spectrum is consistent with the changing slope with respect to Rλ of inertial subrange

while the Pope model is not. Plotting the spectra using a logarithmic scale presents more

explicitly the relative high energy associated with the large scales. However, the changing

slope of the inertial subrange with respect to Rλ is not obvious. Figure 4.8 shows the com-

pensated normalized velocity power spectrum, E11(κ)/(εν5)1/4×(κη)n, where n = 1.62 is the

measured slope of the inertial subrange for Rλ = 997. The dashed line represents the original

spectrum model and the solid line represents the modified spectrum model. As expected,

the inertial subrange is flat when the velocity power spectrum is compensated by (κη)n if

n is chosen to be the slope of the inertial subrange. The slope of the inertial subrange for

Pope’s model is −5/3 and does not match the measured slope of the power spectrum. At

large wavenumbers both models agree with the measured spectra. The small differences

correspond to the difference in the value of β found in the current study as compared to the

β value proposed by Pope (2000). Since the slope of the inertial subrange decreases with

decreasing Rλ, the differences between the original model and the modified model would

increase with decreasing values of Rλ.

Figure 4.9 shows the compensated normalized velocity power spectrum, E11(κ)/(εν5)1/4 ×
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Figure 4.8: Compensated normalized velocity power spectrum, E11(κ)/(εν5)1/4×(κη)n, where
n is the measured slope of the inertial subrange for Rλ = 997. The dotted line represents the
model proposed by Pope (2000) and the dashed line represents the modified model proposed
herein.

(κη)n, where n = 1.59 is the measured slope of the inertial subrange for Rλ = 590. The

dashed line represents Pope’s model and the solid line represents the modified spectrum

model presented herein. It is clear that the two models differ in the inertial subrange and

the wavenumber range separating the inertial subrange and the dissipation range, however,

as is seen in figure 4.8, there is marginal difference in the high wavenumber dissipation range.

SV94 obtain velocity power spectra in a turbulent boundary layer that show a varying in-

ertial subrange slope with respect to Rλ and which Pope (2000) uses to determine β for

the Pope model. Figure 4.10 shows the compensated normalized velocity power spectrum,
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Figure 4.9: Compensated normalized velocity power spectrum, E11(κ)/(εν5)1/4×(κη)n, where
n is the measured slope of the inertial subrange for Rλ = 590. The dotted line represents the
model proposed by Pope (2000) and the dashed line represents the modified model proposed
herein.

E11(κ)/(εν5)1/4 × (κη)n, where n = 1.59 is the measured slope of the inertial subrange for

the SV94 spectrum obtained at Rλ = 600. The dashed line corresponds to Pope’s model and

the solid line corresponds to the modified model presented herein. In the inertial subrange,

2 × 10−3 ≤ κη ≤ 5 × 10−2, the extent and slope of the inertial subrange of the modified

model are in better agreement with the measured spectrum, but in the central region of the

inertial subrange, the spectral values predicted by Pope’s model are closer to the values of

the measured spectrum.
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Figure 4.10: Compensated normalized velocity power spectrum, E11(κ)/(εν5)1/4 × (κη)n,
where n is the measured slope of the inertial subrange for Rλ = 600 for data obtained in a
turbulent boundary layer (SV94). The dotted line represents the model proposed by Pope
(2000) and the dashed line represents the modified model proposed herein.

The difference between the measured and modified spectral values can be estimated by

σ =


 1

N

N∑

i=1

(
F11,m,i − F11,exp,i

)2



1/2/
F 11,exp,i (4.21)

where the summation takes place over the range of wavenumbers 2× 10−3 ≤ κη ≤ 5× 10−2,

F 11,exp,i is the average measured spectral values in that range, the subscript “m” means that

spectral values correspond to the values predicted by the model and the subscript “exp”

means that the spectral values correspond to the values obtained from the experimental
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Figure 4.11: Compensated normalized velocity power spectrum, E11(κ)/(εν5)1/4 × (κη)n,
where n is the measured slope of the inertial subrange for Rλ = 600 for data obtained in a
turbulent boundary layer (SV94). The dotted line represents the model proposed by Pope
(2000) and the dashed line represents the modified model proposed herein.

spectrum. The values of σ corresponding to Pope’s and the modified model are 9% and 7%,

respectively, that is they are the same. For wavenumbers higher than those of the inertial

subrange and extending into the dissipation range, the spectral values from Pope’s model

and the modified model are in closer agreement.

Figure 4.11 shows the same data as figure 4.10 except with a logarithmic scale on the y-axis

and a linear scale on the x-axis. In this figure, the differences in the two models for κη > 0.1

is accentuated. As expected due to the general agreement in the values of β proposed using

the two models, there is less difference in this portion of the spectrum between the two
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models. There appears to be a marginal improvement in the spectral values predicted by

the modified model in the range 0.15 < κη < 0.4. However, the original model proposed by

Pope shows improved spectral values for the range κη > 0.4.

4.6 Conclusion

The ability to model the evolution of the velocity power spectrum as a function of Rλ could

be useful for LES where the large scales are resolved and the sub-grid scales are modeled.

A modification is proposed for the spectrum model proposed by Pope (2000) to take into

account the variation in the slope of the inertial subrange with respect to Rλ. The modified

model is shown to approach the original model proposed by Pope with increasing Rλ and is

described by

E(κ)

(εν5)1/4
= 15−3φ/2CD3φR3φ

λ (κη)2φ−5/3fl(κl)fη(κη) (4.22)

where D is the normalized dissipation rate, φ = 1
2

(
C1R

−C2
λ − µ

9

)
is related to the vary-

ing slope of the inertial subrange with respect to Rλ, fl(κl) =
(

κl
[(κl)2+cl]1/2

)n+po
is directly

related to the shape of the power spectrum in the low wavenumber range and fη(κη) =

exp

{
−β
{[

(κη)4 + c4η

]1/4
− cη

}}
is more directly related to the shape of the power spec-

trum in the high wavenumber range. While Pope (2000) proposes that the coefficients C, cl,

cη and β are constants with respect to Rλ, the modified model shows, with the exception of

β, that they are functions of Rλ. The constants C, cl, cη and β are found by fitting the mod-

ified model spectrum to velocity power spectra obtained in the flow downstream of an active

grid. C is the universal Kolmogorov constant, which is found to approach the experimentally

accepted value of 1.5 (Sreenivasan, 1995) with increasing values of Rλ. The constant cη is

found to approach 0.413 with increasing values of Rλ, which is in close agreement with the
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value of 0.4 proposed by Pope (2000). The constant β found from the modified model is in

general agreement with the value proposed by Pope and is not a function of Rλ suggesting

that the Rλ dependence seen in the inertial subrange does not affect the high wavenumber

dissipation range of the power spectrum. The constant that is directly related to the shape

of the small wavenumber energy containing range, cl, is also found to vary with respect to

Rλ, however it approaches 0.2 rather than 6.78 as proposed by Pope. The comparison of the

velocity power spectra obtained by SV94 in a turbulent boundary layer to the velocity power

spectra obtained in the current experiment reveals that the shape of the energy containing

range may be dependent on the mechanism producing the turbulence or the initial conditions

as suggested by Kang et al. (2003).
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Appendices

A MATLAB code to find slope of inertial subrange

1 %7−10−2015

2

3 %This program w i l l f i n d the range o f the s c a l i n g r eg i on in a

compensated

4 %power spectrum ( the s c a l i n g r eg i on must be as f l a t as p o s s i b l e ) .

5

6 c l e a r a l l

7 c l o s e a l l

8 format shortG

9 s=dlmread ( ’ v e l spe c t r a 4ms−2. txt ’ , ’\ t ’ , 1 , 0 ) ;

10

11 nn=17;

12

13 [ row , c o l ]= s i z e ( s ) ;

14

15 a l i m i t s =[1 10000 0 .1 1 0 ] ;

16
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17 s l o p e g u e s s = 1 . 6 6 ;

18

19 specx = s ( : , nn ) ;

20 specxog = s ( : , nn ) ;

21 f = s ( : , 1 ) ;

22 f og = s ( : , 1 ) ;

23

24 %taking running average o f specx0

25

26 avgw=1; %number o f po in t s f o r running average

27 avgspec=ze ro s ( l ength ( specx ) ,1 ) ;

28 f o r i =1:( l ength ( specx )−avgw)

29 avgspec ( i )=mean( specx ( i : i+avgw) ) ;

30 end

31 specx=avgspec ;

32

33 %f l a t t e n i n g p lateau

34 tempspec=ze ro s ( l ength ( f ) , 1 ) ;

35 f o r i = 1 : l ength ( f ) ;

36 tempspec ( i )=specx ( i )∗ f ( i ) ˆ( s l o p eg u e s s ) ;

37 end

38

39 tempspec2=ze ro s ( l ength ( f ) , 1 ) ;

40 f o r i = 1 : l ength ( f ) ;

41 tempspec2 ( i )=specx ( i )∗ f ( i ) ˆ (1) ;

42 end

43
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44 %user input o f p lateau reg i on

45

46 f i g u r e (1 )

47 l o g l o g ( f , tempspec )

48 %a x i s ( [ 1 2000 0 .2 0 . 8 ] )

49 g r id on

50

51 [ f gues s , y ] = ginput (2 ) ;

52

53 c l o s e a l l

54

55 f s t a r t = round ( f g u e s s (1 ) ) ;

56 fend = round ( f g u e s s (2 ) ) ;

57

58 c l o s e a l l

59

60 j =1;

61 f o r i=f s t a r t : fend ;

62 p la t ( j )=tempspec ( i ) ;

63 f p l a t ( j )=f ( i ) ;

64 j=j +1;

65 end

66

67 %i n i t i a l i z i n g p lateau

68

69 F=@( z , zdata ) ( z (1 ) .∗ zdata+z (2 ) ) ;

70 z0 = [ 0 , 0 . 5 ] ;
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71 z = l s q c u r v e f i t (F , z0 , f p l a t , p l a t ) ; %z=[ s lope , y−i n t ]

72

73 d e l t a s l o p e=z (1 ) ;

74

75 whi le d e l t a s l ope >0.00005

76

77 f o r i =1: l ength ( f ) ;

78 tempspec ( i )=specx ( i )∗ f ( i ) ˆ( s l opegues s−d e l t a s l o p e ) ;

79 end

80

81 s l o p e g u e s s=s lopegues s−d e l t a s l o p e ;

82

83 j =1;

84 f o r i=f s t a r t : fend ;

85 p la t ( j )=tempspec ( i ) ;

86 f p l a t ( j )=f ( i ) ;

87 j=j +1;

88 end

89

90 F=@( z , zdata ) ( z (1 ) .∗ zdata+z (2 ) ) ;

91 z0 = [ 0 , 0 . 5 ] ;

92 z = l s q c u r v e f i t (F , z0 , f p l a t , p l a t ) ; %z=[ s lope , y−i n t ]

93

94 d e l t a s l o p e=z (1 ) ;

95 end

96

97 j =1;
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98 f o r i = 1 7 : 9 8 0 ;

99 s r ( j )=specxog ( i ) ;

100 f s r ( j )=fog ( i ) ;

101 j=j +1;

102 end

103

104 F1=@(x , xdata ) ( x (1 ) .∗ xdata .ˆ(−x (2 ) ) ) ;

105 x0 =[5 , s l o p e g u e s s ] ;

106 x = l s q c u r v e f i t (F1 , x0 , f s r , s r ) ; %z=[ s lope , y−i n t ]

107

108 % f o r i =1: l ength ( f ) ;

109 % p l a t f i t ( i )=z (1 ) ∗ f ( i )ˆ−z (2 ) ;

110 % end

111

112 f o r i = 1 : l ength ( f ) ;

113 tempspec ( i )=specxog ( i )∗ f ( i ) ˆ( s l o p e gu e s s ) ;

114 end

115

116 f i g u r e (1 )

117 l o g l o g ( f ( 1 : 3000 ) , tempspec (1 : 3000 ) )

118 %a x i s ( [ 1 2000 0 .2 0 . 8 ] )

119 g r id on

120

121 % Program below takes the compesated output from above

122

123 specx0=tempspec ;

124 specx0og=specxog ;
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125

126 a l i m i t s =[1 10000 0 .1 1 0 ] ;

127

128 %taking running average o f specx0

129

130 avgw=5; %number o f po in t s f o r running average

131 avgspec=ze ro s ( l ength ( specx0 ) ,1 ) ;

132

133 f o r i =1:( l ength ( specx0 )−avgw)

134 avgspec ( i )=mean( specx0 ( i : i+avgw) ) ;

135 end

136

137 specx0=avgspec ;

138

139 %user input o f p lateau reg i on

140

141 j =1;

142 f o r i=f s t a r t : fend ;

143 p la t ( j )=specx0 ( i ) ;

144 f p l a t ( j )=f ( i ) ;

145 j=j +1;

146 end

147

148 %i n i t i a l i z i n g p lateau

149

150 F=@( z , zdata ) ( z (1 ) .∗ zdata + z (2 ) ) ;

151 z0 = [ 0 , 0 . 5 ] ;
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152 z = l s q c u r v e f i t (F , z0 , f p l a t , p l a t ) ; %z=[ s lope , y−i n t ]

153

154

155 midplat=round ( ( fend+f s t a r t ) /2) ;

156

157 f o r i =1: l ength ( f ) ;

158 p l a t f i t ( i )=f ( midplat )∗z (1 )+z (2 ) ;

159 end

160

161 f i g u r e (2 )

162 l o g l o g ( f , specx0 )

163 a x i s ( a l i m i t s )

164 g r id on

165 hold on

166 l o g l o g ( f , p l a t f i t , ’ r ’ )

167

168 j =1;

169 k=1;

170 f o r i =1: l ength ( specx0og ) ;

171

172 i f ( ( specx0 ( i )−p l a t f i t ( j ) )>0 ) ;

173 tempplat ( j )=specx0og ( i ) ;

174 tempf ( j )=fog ( i ) ;

175 j=j +1;

176

177 end

178 end
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179

180 f s t a r t=round ( tempf (1 ) ) ;

181 i f f s t a r t ==0;

182 f s t a r t =1;

183 end

184 fend=round ( tempf ( l ength ( tempf ) ) ) ;

185

186 f i g u r e (3 )

187 l o g l o g ( f ( 1 : 3000 ) , tempspec (1 : 3000 ) )

188 hold on

189 l o g l o g ( f ( f s t a r t : fend ) , tempspec ( f s t a r t : fend ) , ’ r ’ )

190 l o g l o g ( f , p l a t f i t , ’ k ’ )

191 %a x i s ( [ 1 2000 0 .2 0 . 8 ] )

192 g r id on

193

194 c l e a r p l a t f p l a t

195

196 p la t=tempplat ;

197 f p l a t=tempf ;

198

199 f i g u r e (4 )

200 l o g l o g ( fog , specx0og )

201 hold on

202 g r id on

203 l o g l o g ( fog ( f s t a r t : fend ) , specx0og ( f s t a r t : fend ) , ’ r ’ )

204 l o g l o g ( f , p l a t f i t , ’ k ’ , ’ LineWidth ’ , 1 )

205 %a x i s ( a l i m i t s )
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