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4 Department of Physics and Astronomy and Institute for Surface and Interface Science,
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Abstract: We study theoretically and experimentally the interference
of light produced by a pair of mutually correlated Schell-model sources.
The spatial distributions of the fields produced by the two sources are
inverted with respect to each other through their common center in the
source plane. When the beams are in phase, a bright spot appears in the
center of the spatial distribution of the beam intensity. When the beams
have a phase shift φ = π , a dark spot appears in the center of the spatial
distribution of the beam intensity. Experimental results that illustrate these
results are included. Both bright and dark spots diverge more slowly with
the increasing distance from the sources than the beam itself.

© 2010 Optical Society of America

OCIS codes: (030.1670) Coherent optical effects; (140.3300) Laser beam shaping; (350.5500)
Propagation.
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1. Introduction

In a recent paper [1] the interference of light produced by a pair of mutually correlated Gaussian
Schell-model sources [2,3] was investigated. The spatial distributions of the fields produced by
these sources were assumed to be symmetric with respect to a plane through their common
center, and to differ by a phase factor exp(iφ). One of the results of this investigation was that
when φ = 0 the resulting radiation is a beam with an intensity distribution that displays a narrow
bright line at its center. When the parameters characterizing the Gaussian Schell-model source
are chosen in such a way that it becomes a Collett-Wolf source [4], the resulting bright line
diverges much more slowly than the radiated beam itself. These theoretical predictions were
confirmed experimentally, and suggested that the interference of a pair of correlated Collett-
Wolf beams can be used to produce a pseudo-nondiffracting beam.

In this paper we extend the investigation in [1] in several ways. First of all we assume that
the spatial distributions of the fields produced by the two sources are inverted with respect
to each other through their common center in the source plane and differ by a phase factor
exp(iφ). Second we assume a more general expression for the cross–spectral density in the
source plane of each of the two sources producing the interfering beams than was used in [1],
namely a Schell–model source [5] instead of a Gaussian Schell–model source. On the basis of
scalar diffraction theory, we obtain an expression for the mean intensity of the field produced
by the interference of these two beams in terms of the spectral density and spectral degree of
coherence of each source. This result is illustrated by applying it to situations in which the
cross–spectral density function in the source plane has a non-Gaussian form.

It is found that the angular divergence of the bright spot in the intensity distribution of the
field produced by the interference of the fields produced by two sources with these properties
is determined by the width of the initial beams and, as a result, is considerably smaller than
that of the initial beams, which is determined by the spectral degree of coherence. Since the
divergence of the interference feature can be much smaller than that of a beam of the same
size, this result supports the suggestion that the interference of two mutually correlated beams
produced by Schell–model sources can be used to produce a pseudo-nondiffracting beam.

2. The Radiated Intensity Distribution

We denote a component of the radiated field in the source plane (x3 = 0) at frequency ω by
U(x‖,0|ω), where x‖ = (x1,x2,0) is an arbitrary point in this plane. The cross-spectral density
of this field in the source plane is then defined by [6]

W (0)(x‖,0|x′‖,0) = 〈U(x‖,0|ω)U∗(x′‖,0|ω)〉, (1)

where the angle brackets denote an average over the ensemble of realizations of the functions
{U(x‖,0|ω)}. Since everything in this paper occurs at frequency ω , we omit it in writing the
cross-spectral density. The superscript (0) in Eq. (1) and in subsequent expressions emphasizes
that the corresponding quantity refers to the source plane x3 = 0.

The class of cross-spectral density functions W (0)(x‖,0|x′‖,0) that we consider in this paper
has the Schell-model form [5]

W (0)(x‖,0|x′‖,0) = [S(0)(x‖)]
1
2 g(0)(x‖ −x′‖)[S

(0)(x′‖)]
1
2 . (2)

In this expression S(0)(x‖) = 〈|U(x‖,0|ω)|2〉 is the spectral density (intensity) of the light at a

typical point in the source plane, and g(0)(x‖ − x′‖) is the spectral degree of coherence of the
source in the source plane. It is Hermitian,

g(0)(x‖ −x‖) = g(0)(x′‖ −x‖)∗, (3)
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and has the additional properties [6]

0 ≤ |g(0)(x‖ −x′‖)| ≤ 1 (4)

and

g(0)(0) = 1. (5)

In the Fresnel approximation, the field that propagates in the x3 direction can be expressed in
terms of the field in the source plane as [7]

U(x‖,x3|ω) =
(

ω
2πicx3

)
exp
[
i
ω
c

x3

]∫
d2x′‖ exp

[
i

ω
2cx3

(x‖ −x′‖)
2
]

U(x′‖,0|ω). (6)

Let us consider a quasi-monochromatic beam in free space that is a superposition of two beams
produced by mutually correlated Schell-model sources characterized by identical cross-spectral
density functions of the form given by Eqs. (1), (2), so that

U(x‖,x3|ω) = U1(x‖,x3|ω)+U2(x‖,x3|ω)exp(iφ), (7)

where φ is a phase independent of the coordinates. The spatial distributions of the fields are
assumed to be symmetric with respect to inversion in the x1x2 plane,

U2(x1,x2,x3|ω) = U1(−x1,−x2,x3|ω). (8)

Since the spatial distributions of the fields of the two beams obey the symmetry conditions
expressed by Eq. (8) at a distance x3, they also obey the same conditions at x3 = 0, i.e. in the
source plane.

The mean intensity at a distance x3 from the source plane is given by

〈I(x‖,x3|ω)〉 = 〈|U(x‖,x3|ω)|2〉

=
(

ω
2πcx3

)2 ∫
d2x′‖

∫
d2x′′‖ exp

[
i

ω
2cx3

(x‖ −x′‖)
2
]

×exp

[
−i

ω
2cx3

(x‖ −x′′‖)
2
]
〈U(x′‖,0|ω)U∗(x′′‖ ,0|ω)〉

=
(

ω
2πcx3

)2 ∫
d2x′‖

∫
d2x′′‖ exp

[
i

ω
2cx3

(x‖ −x′‖)
2
]

×exp

[
−i

ω
2cx3

(x‖ −x′′‖)
2
]{

2W (0)(x′‖,0|x′′‖ ,0)

+〈U1(x′‖,0|ω)U∗
2 (x′′‖ ,0|ω)〉exp(−iφ)+ 〈U∗

1 (x′′‖ ,0|ω)U2(x′‖,0|ω)〉exp(iφ)
}

. (9)

In view of the spatial symmetry of the fields the ensemble averages 〈U1(x′‖,0|ω)U∗
2 (x′′‖ ,0|ω)〉

and 〈U∗
1 (x′′‖ ,0|ω)U2(x′‖,0|ω)〉 entering Eq. (9) can be written in the forms

〈U1(x′‖,0|ω)U∗
2 (x′′‖ ,0|ω)〉 = 〈U1(x′1,x

′
2,0|ω)U∗

1 (−x′′1 ,−x′′2 ,0|ω)

= W (0)(x′‖,0|−x′′‖ ,0) (10a)

and

〈U∗
1 (x′′‖ ,0|ω)U2(x′‖,0|ω)〉 = 〈U∗

2 (−x′′1 ,−x′′2 ,0|ω)U2(x′1,x
′
2,0|ω)〉

= W (0)(x′‖,0|−x′′‖ ,0). (10b)
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With these results the mean intensity of the beam, Eq. (9), becomes

〈I(x‖,x3|ω)〉 = 〈I+(x‖,x3|ω)〉+ cosφ〈I−(x‖,x3|ω)〉, (11)

where

〈I±(x‖,x3|ω)〉 = 2

(
ω

2πcx3

)2 ∫
d2x′‖

∫
d2x′′‖ exp

[
i

ω
2cx3

(x‖ −x′‖)
2
]

×exp

[
−i

ω
2cx3

(x‖ −x′′‖)
2
]

W (0)(x′‖,0|±x′′‖ ,0). (12)

We substitute into Eq. (12) the expression for W (0)(x′‖,0|x′′‖ ,0) given by Eq. (2) and obtain

〈I±(x‖,x3|ω)〉 = 2

(
ω

2πcx3

)2 ∫
d2x′‖

∫
d2x′′‖g(0)(x′‖ ∓x′′‖)

[
S(0)(x′‖)

] 1
2

×
[
S(0)(±x′′‖)

] 1
2

exp

[
i

ω
2cx3

(x′2‖ − x′′2‖ )
]

exp

[
−i

ω
cx3

(x′‖ −x′′‖) ·x‖
]
. (13)

The changes of variables x′‖ = ±x′′‖ + u‖ followed by the change ±x′′‖ to x′′‖ transform Eq.
(13) into

〈I+(x‖,x3|ω)〉 = 2

(
ω

2πcx3

)2 ∫
d2u‖g(0)(u‖)exp

[
i

ω
2cx3

u2
‖

]
exp

[
−i

ω
cx3

x‖ ·u‖

]

×
∫

d2x′′‖ exp

{
i

ω
cx3

[u‖ ·x′′‖ ]
}[

S(0)(|x′′‖ +u‖|)
] 1

2
[
S(0)(x′′‖)

] 1
2

(14a)

〈I−(x‖,x3|ω)〉 = 2

(
ω

2πcx3

)2 ∫
d2u‖g(0)(u‖)exp

[
i

ω
2cx3

u2
‖

]
exp

[
−i

ω
cx3

x‖ ·u‖

]

×
∫

d2x′′‖ exp

{
i

ω
cx3

[(u‖ −2x‖) ·x′′‖ ]
}[

S(0)(|x′′‖ +u‖|)
] 1

2
[
S(0)(x′′‖)

] 1
2
. (14b)

Equations (11) and (14), are the main results of this section.
We now turn to several applications of these results.

3. A Gaussian Spectral Density in the Source Plane

We begin by assuming that the spectral density of the radiated field in the source plane has the
Gaussian form

S(0)(x‖) = exp(−x2
‖/2σ2

s ). (15)

On carrying out the integration over x′′‖ in Eq. (14) with the spectral density given by Eq. (15)
we obtain

〈I+(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

)∫
d2u‖g(0)(u‖)exp

[
−i

ω
cx3

x‖ ·u‖

]

×exp

{
−u2

‖

[
1

8σ2
s

+
ω2σ2

s

2c2x2
3

]}
, (16a)

〈I−(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

)
exp

[
−2

ω2σ2
s

c2x2
3

x2
‖

]∫
d2u‖g(0)(u‖)exp

[
2

ω2σ2
s

c2x2
3

u‖ ·x‖
]

×exp

{
−u2

‖

[
1

8σ2
s

+
ω2σ2

s

2c2x2
3

]}
. (16b)
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Equations (16) describe the evolution of the beam as it propagates away from the source plane.
The angular divergence of the beam, however, is determined by the behavior of these integrals
in the far-field zone where x3 	 2(ω/c)σ2

s . In this far-field regime, and if we also assume that
the width of the spectral coherence function is much smaller than that of the source, Eqs. (16)
take the forms

〈I+(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

)∫
d2u‖g(0)(u‖)exp

(
−i

ω
cx3

x‖ ·u‖

)
, (17a)

〈I−(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

)
exp

{
−2

(
ωσs

cx3

)2

x2
‖

}∫
d2u‖g(0)(u‖). (17b)

Two important conclusions can be drawn from Eqs. (17). First of all, it follows from Eq. (17a)
that the angle of divergence of the primary beam, associated with 〈I+(x‖,x3|ω)〉, depends on
the spectral degree of coherence through what is essentially a Fourier transform operation.

In contrast, from Eq. (17b), we see that the interference feature associated with 〈I−(x‖,x3|ω)〉
is independent of the form of the spectral degree of coherence, and has a Gaussian shape
〈I−(x‖,x3|ω)〉 ∼ exp[−(x‖/x3)2/Δ2

i ], where Δi is the angular divergence and is given by

Δi =
1√

2(ω/c)σs
. (18)

We note, that the superposition of the initial beam and its inverted version leads to an inter-
ference feature only within a coherence area around the center of inversion. Outside this area
the beams add incoherently. Thus, it is not surprising that in the far field the divergence prop-
erties of this interference feature coincide with those of a speckle. The relative intensity of the
interference peak is determined by the phase shift φ between the initial beam and its inverted
version and can be changed from 2 (φ = 0) to 0 (φ = π) as the interference regime changes
from constructive to destructive interference.

Before proceeding, it is of interest to consider two extreme limits of the secondary source.
In the case where the radiated field is completely coherent, i.e. the spectral degree of coherence
is g(0)(u‖) = 1, the initial beam and its inverted version interfere over the entire beam area, so
that the total intensity of the beam is

〈I(x‖,x3|ω)〉 =
2(1+ cosφ)

1+
(

cx3
2ωσ2

s

)2 exp

⎧⎪⎪⎨
⎪⎪⎩
−

x2
‖

2σ2
s

[
1+
(

cx3
2ωσ2

s

)2
]
⎫⎪⎪⎬
⎪⎪⎭

. (19)

In contrast, if the field is incoherent, g(0)(u‖) is essentially a delta function and far field condi-
tions occur very rapidly. As a result, the interference feature appears on a uniform background,

〈I(x‖,x3|ω)〉 =
Ac

π

(
ωσs

cx3

)2
{

1+ cosφ exp

[
−2

(
ωσs

cx3

)2

x2
‖

]}
, (20)

where

Ac =
∫

d2u‖g(0)(u‖) (21)

is a measure of the area under the coherence function.
We now consider different forms of the spectral degree of coherence, illustrating the results

through some examples.
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4. Examples

In this section we apply the results of the preceding section to several choices for the spectral
degree of coherence g(0)(u‖). To make comparisons among the results meaningful, we will

normalize each expression for g(0)(u‖) in such a way that as u‖ → 0 it has the form

g(0)(u‖) = 1−
u2
‖

2σ2
g

+o(u2
‖). (22)

In all calculations carried out here the values of the parameters σs, σg, and the wavelength
λ are σs = 2.432 mm, σg = 179.6 μm, and λ = 632.8 nm. They correspond to the values
characterizing the Collett-Wolf source studied experimentally in Ref. [1].

4.1. Gaussian spectral degree of coherence: g(0)(u‖) = exp(−u2
‖/2σ2

g ).

For this circularly symmetric form for g(0)(u‖) we use Eqs. (11) and (16) to evaluate
〈I±(x‖,x3|ω)〉 analytically, with the result

〈I(x‖,x3|ω) =
4σ2

s

σ2
e f f (x3)

exp

(
−

x2
‖

σ2
e f f (x3)

){
1+ cosφ exp

[
−4

σ2
s

σ2
g

x2
‖

σ2
e f f (x3)

]}
, (23)

where

σ2
e f f (x3) = 2σ2

s +
c2x2

3

ω2

(
1

2σ2
s

+
2

σ2
g

)
. (24)

In Fig. 1 we present plots of the normalized intensities I(x‖,x3) = 〈I(x‖,x3|ω)〉/〈I(0,x3|ω)
of the beams that are inverted with respect to their common center at two values of the distance
from the source planes x3 = 1m (Figs. 1(a) and (b)), and x3 = 100m (Figs. 1(c) and (d)).

In the far field where x3 	 2(ω/c)σ2
s and when σs 	 σg as a Collett-Wolf source [1, 4],

Eq. (24) becomes

σe f f (x3) =
√

2
(ω/c)σg

x3 = Δbx3, (25)

so that Eq. (23) takes the form

〈I(x‖,x3|ω)〉 =
(√

2
ω
c

σsσg

x3

)2

exp

{
− (x‖/x3)2

Δ2
b

}[
1+ cosφ exp

{
− (x‖/x3)2

Δ2
i

}]
, (26)

where Δb is the angular divergences of the beam and the angular divergence of the interference
feature Δi is given by Eq. (18). Therefore, in the case considered (σs 	 σg) the bright or dark
feature diverges significantly more slowly than the beam itself. The evolution of the beams that
results from the interference of circularly symmetric beams as they propagate along the x3 axis
is shown in Fig. 2. It is seen that in both cases, when φ = 0 and φ = π , the central interference
peak or dip diverges considerably more slowly that the beams themselves.

4.2. Lorentzian spectral degree of coherence: g(0)(u‖) = 2σ2
g /(2σ2

g +u2
‖)

For this form for g(0)(u‖) we use Eqs. (11) and (16) to evaluate 〈I±(x‖,x3|ω)〉. To simplify

the calculations we use the fact that the spectral degree of coherence g(0)(u‖) → g(0)(u‖) is
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Fig. 1. The spatial distribution of the normalized intensity of the beams that are inverted
with respect to their common center with (a) and (c) φ = 0 and (b) and (d) φ = π . The
distance from the source plane is x3 = 1 m (a) and (b), and x3 = 100m (c) and (d).
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Fig. 2. Theoretical plot of the evolution along the x3 axis of the cross section x2 = 0 of
the normalized intensity of the beams that are inverted with respect to their common center
with φ = 0 (a) and φ = π (b).

circularly symmetric. In this case the angular integrations in Eqs. (16) can be carried out ana-
lytically, leaving only one-dimensional integrals to evaluate numerically. Thus, if we denote the
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azimuthal angles of the vectors x‖ and u‖ by φ and φu, respectively, we can rewrite Eq. (16a) as

〈I+(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

) ∞∫
0

du‖u‖g(0)(u‖)exp

[
−
(

ω2σ2
s

2c2x2
3

+
1

8σ2
s

)
u2
‖

]

×
π∫

−π

dφu exp

[
−i

ω
cx3

x‖u‖ cos(φ −φu)
]

= 2

(
ω2σ2

s

c2x2
3

) ∞∫
0

du‖u‖g(0)(u‖)J0

(
ω

cx3
x‖u‖

)
exp

[
−
(

ω2σ2
s

2c2x2
3

+
1

8σ2
s

)
u2
‖

]
, (27)

where J0(x) is the Bessel function of the first kind and zero order.
The evaluation of the angular integral in the expression for 〈I−(x‖,x3|ω)〉 is only a bit more

x
2

[cm]

x 1
[c

m
]
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(b)
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x 1
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]

(d)

Fig. 3. The spatial distribution of the normalized intensity of the beams that have the spec-
tral degree of coherence of the Lorentzian form and are inverted with respect to their com-
mon center with (a) and (c) φ = 0 and (b) and (d) φ = π . The distance from the source
plane is x3 = 1 m (a) and (b), and x3 = 100m (c) and (d).
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Fig. 4. The intensity (a) and the normalized intensity (b) of the beam as a function of x1 at
x2 = 0 at a distance from the source plane x3 = 500m. The spectral degree of coherence of
in the source plane has a Lorentzian form (black curve) or a Gaussian form (red curve).

subtle. Thus, the integral over u‖ in Eq. (16b) can be written as

〈I−(x‖,x3|ω)〉 =
1
π

(
ω2σ2

s

c2x2
3

)
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3
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‖

)∫ ∞
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3

+
1
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] π∫
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3
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(
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)∫ ∞
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du‖u‖g(0)(u‖)I0

(
2

(
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)2
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)

×exp

[
−
(

ω2σ2
s

2c2x2
3

+
1

8σ2
s

)
u2
‖

]
, (28)

where I0(z) is the modified Bessel function of the first kind and zero order.
The results of a numerical evaluation of 〈I±(x‖,x3|ω)〉, Eqs. (27) and (28), are shown in Fig.

3. The striking result that can be easily seen when comparing Figs. 3(a) and 3(c) is that in the
far field [Fig. 3(c)] the beam narrows down to the interference peak. This is easy to understand
on the basis of Eq. (16a). Indeed, as u‖ → ∞ the decay of the integrand is determined by the
Gaussian function exp[−u2

‖/(8σ2
s )], rather than by the asymptotic behavior of the spectral de-

gree of coherence g(0)(u‖), as is the case for the Gauss-Schell model source. Therefore, the

angle of divergence of the beam is determined by its initial width σs, Δb = c/(
√

2ωσs), rather
than by the correlation length σg. The analogous effect was pointed out in Ref. [9] for a one
dimensional partially coherent beam whose spectral degree of coherence has a Lorentzian form.

To demonstrate this more clearly, in Fig. 4 we present the cross-sections x2 = 0 of the far field
intensity distribution of the beam produced by a pair of Schell-model sources whose spectral
degree of coherence has a Lorentzian form, which produce fields inverted with respect to each
other through their common center in the source plane and are in phase. The distance from the
source plane is x3 = 500m. For comparison, in the same Figure we plot the cross-section of
the far field intensity distribution of the beam produced by the interference of the two Collett–
Wolf beams (red lines). For clarity, we present the absolute intensities in Fig. 4(a), and the
normalized intensities in Fig. 4(b). We also point out that the integrated intensities of the two
beams coincide, as they should.

This example shows that by choosing the spectral degree of coherence suitably, e.g. with a
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Lorentzian form, the beam can be narrowed to the point where it is as narrow as the interference
feature. We have not sought other functional forms for g(0)(u‖) for which this is the case, but
conjecture that they exist.

4.3. Spectral degree of coherence g(0)(u‖) = sinc(
√

3u1/σg)sinc(
√

3u2/σg)
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Fig. 5. Plots of the normalized intensity of the beams that have the spectral degree of coher-
ence of the form g(0)(u‖) = sinc(

√
3u1/σg)sinc(

√
3u2/σg), and are inverted with respect

to their common center with φ = 0 (a) and (c) and φ = π (b) and (d). The distance from the
source plane is x3 = 1 m (a) and (b), and x3 = 100m (c) and (d).

For this non-circularly symmetric form for the spectral degree of coherence g(0)(u‖) we use
Eqs. (11) and (16) to evaluate 〈I±(x‖,x3|ω)〉 numerically. The results are shown in Fig. 5.

The beam characterized by such a form of the spectral degree of coherence evolves on
propagation into a flat top beam in a square domain. The angle of divergence of this beam
is Δb =

√
3c/(ωσg).

5. A General Circularly Symmetric Spectral Density in the Source Plane

Although the Gaussian form [Eq. (15)] is perhaps the most common form of the spectral den-
sity in the source plane, it is not the only one that has been used. As an example in this section
we consider the interference of the beams produced by the sources whose spectral densities al-
though circularly symmetric are not Gaussian, namely, they are constant in the circular domain
(“flat top” beam ). The beams are inverted with respect to their common center and can acquire
an additional phase shift π .
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Fig. 6. Plots of the normalized intensity of the beams whose spectral density in the source
plane is a constant within a circular domain and their spectral degree of coherence has a
Gaussian form. The beams fields are inverted with respect to their common center with
φ = 0 (a) and (c) and φ = π (b) and (d). The distance from the source plane is x3 = 1 m (a)
and (b), and x3 = 1Km (c) and (d).

We assume that

S(0)(x‖) =
{

1, x‖ < σs

0, x‖ > σs
, (29a)

g(0)(x‖) = exp(−x2
‖/2σ2

g ). (29b)

For this form for S(0)(x‖) we use Eqs. (11) and (14) to evaluate 〈I±(x‖,x3|ω)〉 numerically. The
results of this numerical evaluation are presented in Fig. 6.

6. Experimental Details and Results

The schematic diagram of the optical system employed is shown in Fig. 7. The illumination
is provided by a HeNe laser beam (λ = 633 nm). After passing through a spatial filter, the
diverging Gaussian beam passes through a rotating ground glass. The light emerging from the
diffuser is allowed to propagate a small distance and illuminate a circular aperture, behind
which we placed a collimating lens. The light emerging from the lens constitutes a secondary
light source that can be regarded as a partially coherent source with a Gaussian spectral degree
of coherence and a uniform intensity distribution within a circular domain. The radius of the
beam is approximately 1cm and the parameter σg ≈ 1mm. The value of σg is simply the size
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of the speckle produced by the light transmitted through the rotating diffuser at the plane of the
secondary source (plane of the lens), and was estimated from the size of the illumination beam
on the diffuser and its distance to the lens.

To study the interference of the field produced by a pair of such partially coherent beams, the
original beam is sent to a modified Michelson interferometer. The modification consists of the
insertion of a spherical lens in one of the arms of the interferometer in such a way that the wave
front is reversed about the axis of the lens. For this, the mirror of that arm of the interferometer
must be placed on the focal plane of the lens. The output of the interferometer then consists of
the superposition of a pair of partially coherent beams, where the first beam is symmetric with
respect to the second about their common center.

Fig. 7. Schematic diagram of the experimental arrangement used.

When the beams are in phase, a bright spot appears in the center of the beam spot. The
experimental interference pattern showing constructive interference is shown in Fig. 8(a). When
the mirrors of the modified Michelson interferometer are arranged to induce a path difference
of λ/2, the output is a pair of Collet-Wolf beams that have a phase shift φ = π . The resulting
pattern displays a dark spot in the spatial distribution of the intensity, as in Fig. 8(b).

7. Summary and conclusion

We have shown theoretically and experimentally that the interference of the radiation produced
by a pair of mutually correlated Schell-model sources produces a beam in the far field with an
intensity distribution that displays a narrow bright or dark dot of small radius at its center, both
of which diverge much more slowly with the increasing distance from the source plane than the
beam itself. The bright dot arises when the fields produced by the two sources are inverted with
respect to each other through their common center in the source plane, and are in phase. In the
case where the inverted fields produced by the two sources are out of phase their interference
produces the dark dot.

These results support the suggestion that the interference of the beams produced by two mu-
tually correlated Schell-model sources can be used for the creation of a pseudo-nondiffracting
beam.

We have also shown that when the spectral density of each source has a Gaussian form, while
the spectral degree of coherence of each source has a Lorentzian form, the initial beams evolve
upon propagation in such a way that in the far field the angular divergence of the initial beams
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Fig. 8. Experimental gray-level images of the normalized intensity of the symmetric beams
for (a) constructive interference and (b) destructive interference. The horizontal lines in the
images show the positions where the intensity scans in the lower graphs were taken.

coincides with the angular divergence of the interference peak.
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