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Abstract

A  spatiotemporal  experimental  route  is  reported  for  the  antisolvent  vapor  diffusion  crystal

growth of metal halide perovskitoids.  A computational analysis combining automated image

capture and diffusion modeling enables the determination of the critical concentrations required

for nucleation and crystal growth from a single experiment.  Five different solvent systems and

ten distinct organic ammonium iodide salts were investigated with lead iodide, from which nine

previously unreported compounds were discovered.   Automated image capture of the mother

liquor and antisolvent vials were used to determine changes in solution meniscus positions and

detect nucleation event location.  Matching the observations to a numerical solution of Fick’s

second  law  diffusion  model  enables  the  calculation  of  reactant,  solvent  and  antisolvent

concentrations at both the time and position of the first stable nucleation and crystal growth.  A
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machine learning model was trained on the resulting data reveals solvent- and amine-specific

crystallization tendencies.  Solvent systems that interact more weakly with dissolved lead species

promote crystallization, while those with stronger interaction can prevent crystallization through

increased solubilities.  Organic amines that interact more strongly with inorganic components

and exhibit greater rigidity are more likely to be incorporated into crystalline products.  
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Introduction

Metal halide perovskitoids, the subject of intense interest owing to their promise in solar

cell applications,  1-5 photodetection,  6-9 and lasers,10-12 can be created in different forms using a

range of synthetic techniques.  Single crystalline samples are grown using a range of solution

phase methods,13-17 with antisolvent vapor-assisted crystallization (ASVC) being used commonly

because of the high quality samples that are produced and the lack of temperature management

challenges  present  in  inverse  temperature  crystallization  methods.18-21  In  AVSC,  the  slow

diffusion of antisolvent (AS) into the perovskitoid precursor solution reduces the solubility of the

target compounds and induces precipitation. A range of experimental parameters affect an ASVC

experiment,  including the nature of the solvent and AS, organic cation structure and relative

reactant concentrations. The conditions required for nucleation and crystal growth directly affect

the properties of the resulting crystalline products.22  As such, the elucidation of these critical

reaction parameters is paramount in understanding this chemistry.  However, the critical factors

leading  to  nucleation  remain  unresolved,  despite  the  number  of  studies  investigating  ASVC

perovskitoid crystallization.

A central challenge with ASVC perovskitoid crystallization lies in the large experimental

space, owing to the interplay between reactant, solvent and antisolvent concentrations each of

which vary during the course of an experiment.  High throughput techniques have been applied

to explore these possible combinations  by setting up many possible reactions.  Kirman  et  al.

described the use of a protein dropsetter to perform antisolvent vapor diffusion experiments to

explore  ASVC  growth  of  phenethylammonium  lead  bromide  and  3-picolylammonium  lead

chloride perovskitoids.23 Although their  system could image reaction compositions over time,
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imaging the reaction system from above only allows for observing whether a given mother liquor

and antisolvent composition gives rise to crystal formation.  Similarly, Li et al. described a liquid

handling  robot  based  system for  performing  high-throughput  ASVC experiments  to  explore

mother  liquor  and antisolvent  composition  variables;  likewise,  only  the  final  composition  is

reported,24 obscuring the critical parameter required to induce crystallization.  In contrast, here

we report a unique spatiotemporal approach that replaces a parallel set of experiments in space

(i.e.,  conducted  in  separate  spatial  vials  and  with  separate  materials)  with  a  smaller  set  of

experiments conducted over  time.   Our approach enables the determination of both  time and

position of  nucleation  and  crystal  growth,  by  imaging  a  single  reaction  orthogonal  to  the

direction of diffusion propagation.  Fitting these observations to a numerical antisolvent diffusion

model provides the critical concentrations of each reactant required for crystal growth (Figure 1).

In this way, observing the progress of a single experiment in time can be used to scan over a

wide range of reactant, solvent and antisolvent concentrations.  A set of individual reactions was

conducted using PbI2, ten different organic ammonium iodide salts and five solvent systems in

order to better understand the generalized requirements for such syntheses.  The spatiotemporal

reaction  design allows for the elucidation of these critical  reaction parameters  from a single

experiment in each reagent combination.  The critical concentration parameters along with the

computed chemical descriptors of the reaction components were pooled into a rich dataset and

used for machine learning analysis in the form of an explanatory decision tree model to uncover

complex trends observed in the data.
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Figure  1.  Spatiotemporal  reaction  design,  including  (a)
reaction  block  diagram,  (b)  reaction  image  capture,  (c)
mother liquor (ML) and antisolvent (AS) meniscus positions,
and  nucleation  detection,  and  (d)  calculated  solvent  and
antisolvent concentrations as a function of time.

Experimental 

Materials. All  reagents  were  purchased from commercial  sources  and  used  without  further

purification.  Lead (II) iodide (99%), formic acid (FA, ≥95%), γ-butyrolactone (GBL, ≥99%),

dimethyl  sulfoxide  (DMSO,  (≥99.9%),  dimethylformamide  (DMF,  99.8%),  and

dichloromethane  (DCM,  ≥99.8%)  were  purchased  from  Sigma-Aldrich.   Ten  organic

ammonium iodide salts  were purchased from GreatCell  Solar:  methylammonium iodide (ma,
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99.99%),  ethylammonium  iodide  (ea,  >99.8%),  1,3-dimethylammonium  iodide  (1,3-dap,

>99.8%), acetamidinium iodide (acet, >99%), N,N-dimethylammonium iodide (dmed, >99.8%),

N,N-diethyl-1,3-diaminopropane iodide (dedap, >99.8 %), cyclohexylmethylammonium iodide

(chma,  >99.8%),  1-(2-amionethyl)pyrrolidinium  iodide  (aep,  >99.8%),  1,4-benzene

diammonium iodide (dabz, >99.8%) and phenethylammonium iodide (phenea, >99%).

Spatiotemporal  reaction  design. All  reactions  were  conducted  using  an  antisolvent  vapor

diffusion crystallization  technique.   Reagent  solutions  (180  μl),  FAH (20μl),  and antisolvent

(800 μl, DCM) were placed in separate 1 mL cylindrical glass vials.  These clear vials were

placed in an aluminum block and sealed using glass panes to prevent escape of vapors, shown in

Figure 1a.  The reactions were allowed to proceed for 24 h at room temperature.  While the

temperatures of the reactions were not actively controlled,  passive measurements were made

during  the  course  of  the  experiments.  The  average  laboratory  temperature  was  25.5  ºC. 

Temperature fluctuations during the course of each recorded experiment were observed, with an

average  standard  deviation  of  0.59  ºC.  Plots  of  representative  temperature  fluctuations  are

provided in the Supporting Information, Figure S2.  Optical images of the reaction blocks were

captured every 60 seconds for the duration of each crystallization experiment using a microscope

camera.  At the end of the reaction, the contents of the vials were scored using the four point

scale,  no  solids,  fine  powder,  small  or  large  crystallites  as  described  in  more  detail  in  the

Supporting Information, consistent with previous work.25  After reaction, the reactor block was

opened  in  air  and  the  solid  products  were  recovered  by  vacuum  filtration.   Powder  X-ray

diffraction data were collected on all solid reaction products.  Ten different organic ammonium

iodide salts, shown in Figure 2, and five solvent systems were selected for study.  These solvent
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systems included GBL, GBL:DMF, DMF, DMF:DMSO and DMSO. Reaction  outcomes  are

shown in Figure 3.  Nine new compounds (1 – 9) were observed, in addition to seven previously

reported phases (A – G), as listed in Table 1.  

Figure 2.  The ten organic amines used in this study.

Figure 3.  Reaction outcomes as a function of organic amine 
and solvent system. Alphanumeric labels refer to structures 
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reported in the text.

Targeted  bench  scale  crystal  growth  experiments  were  performed  to  generate  single

crystals  for  structural  characterization,  using  a  reactor  design  shown  in  Figure  S26.

PbI2:ammonium  iodide  stock  solutions  in  the  respective  solvent  (GBL,  GBL:DMF,  DMF,

DMF:DMSO or DMSO) were prepared at 75 °C and stirred at 450 rpm for 1 hour. Aliquots (200

μL) of mother liquor solutions were transferred to 1 mL clear shell vials to which 20 μl FAH

were added. These solutions were mixed on a heater-shaker for 20 minutes. After cooling to

room temperature,  the reaction  vials  were placed inside 20 mL scintillation  vials  containing

approximately 1.5 mL of DCM and sealed with a PTFE-lined solid-top storage cap. Reactions

were allowed to run for at least 24 h. The calculated powder diffraction patterns were compared

to the experimental diffraction data from the spatiotemporal experiments to ensure that bench

scale products were identical to the initially identified products.  Specific reaction details for the

mixtures that gave rise to compounds 1 – 9 are available in the Supporting Information.

Image processing.  A Python interface was used for the manual annotation of key parts of the

reaction  images.   Side-on  views  of  the  mother  liquor  and  antisolvent  reaction  vials  were

collected. A ruler was attached to the reaction block to calibrate image pixels to physical distance

measurements.  Users were shown evenly spaced images across each reaction’s time lapse image

set.   Meniscus  positions  for  both  the  mother  liquor  and  antisolvent  were  user-annotated.

Additionally,  the  script  was  used  to  identify  when  and  where  nucleation  first  occurred  by

showing the time lapse images to the user following a binary search pattern.  The difference

between the  meniscus  position  and the  bottom of  the test-tube determines  the height  of  the
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solution at each time. These solution height measurements were used to calculate the diffusion

rate of the anti-solvent.  The corners of each crystal were denoted manually, allowing for the

calculation of the mean crystal pixel position at the point to crystal formation.  This Python code

via GitHub, as detailed in the Supporting Information section below.  

Powder  X-ray  diffraction.   Powder  X-ray  diffraction  measurements  were  performed  on  a

Rigaku  MiniFlex  X-ray  diffractometer  using  CuKα radiation  (1.5418  Å).   Powder  X-ray

diffraction  scans  were  collected  on  all  reaction  products,  these  plots  are  provided  in  the

Supporting Information (SI-5-25).  

Single  crystal  X-ray  diffraction.   Data  was  collected  using  a  Bruker  Quest  CMOS

diffractometer with a fixed chi angle, a sealed tube fine focus X-ray tube (Mo K〈 radiation, ⎣ =

0.71073 Å), a single crystal curved graphite incident beam monochromator,  a Photon II area

detector and an Oxford Cryosystems low temperature device. A single crystal was mounted on a

Mitegen micromesh mount using a trace of Fomblin oil and cooled in situ to 150(2) K for data

collection. Frames were collected, reflections were indexed and processed, and the files scaled

and  corrected  for  absorption  using  APEX3,  SAINT  and  SADABS  or  TWINABS.  For

compounds  1,  2 and  4 –  9, the heavy atom positions were determined using SIR92. All other

non-hydrogen sites  were located  from Fourier  difference maps.  All  non-hydrogen sites  were

refined using anisotropic thermal parameters using full matrix least squares procedures on F2
o

with I > 3⌠ (I). Hydrogen atoms were placed in geometrically idealized positions. Calculations

for  compounds  1,  2 and  4 –  9  were  performed  using  Crystals  v.14.23c.   The  structure  of

compound 3 was found to be non-merohedrally twinned by a 180 ° rotation around the real a-

axis. The structure was solved by direct methods using ShelXS from only the non-overlapping
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reflections of component 1. The structure was refined using Shelxl with the hklf 5 routine with

all reflections of component 1 (including the overlapping ones), resulting in a BASF value of

0.5490(8). Additional details are given in the cif file for compound 3. Relevant crystallographic

data for compounds 1 – 9 are listed in Table 2.

Antisolvent diffusion modeling.  An antisolvent diffusion model was created to elucidate the

critical concentrations for nucleation and crystallization.  The concentration profile of the mother

liquor was calculated using a finite volume approximation of Fick’s second law to simulate one-

dimensional  liquid  diffusion.26 The  differential  equation  was  integrated  numerically  by

discretizing the experimental solution into bins, where each bin has a defined height and starting

concentration for each species.  See Figure 4a.  Diffusion from bin to bin was calculated based

on the distances from the centers of each bin. The height of each bin is directly related to the

concentration of the species occupying it. As the species diffuse into and out of each bin, the

height  of the bin changes  and subsequently  the distance for  diffusion subsequently changes.

Fixed boundaries are not used because the total  volume of the solution increases during the

course of the experiment.  The top bin has an ingress of antisolvent from the gaseous phase, and

evaporation of the antisolvent species from the solution. These two parameters vary between

experiments  and are  optimized  to  fit  the  experimental  height  as  a  function  of  time.  With  a

satisfactory fit, the model reasonably reflects the experimental data. The simulation is stopped at

the first appearance of a crystal,  allowing us to neglect any mass transport from gravitational

settling of the crystal. 
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Figure  4.  Diffusion  modelling,  including  (a)  a  diagram
indicating how the influx of antisolvent molecules affect bin
heights,  and  (b)  model  height  fits  to  observed  meniscus
height  and  (c)  computed  concentration  profile  at
crystallization in the PbI2 / aep / DMF:DMSO system.

The diffusion simulation requires the experimentally determined diffusion coefficient for

the antisolvent  through each solution.   This is  obtained using a laser  diffraction experiment,

which measures the diffusion rate for each experimental condition by observing changes in the

refractive index of the mixture;27, 28 see Supporting Information.  Note that only the diffusion of

antisolvent in each solvent was determined owing to the experimental challenges of performing

the laser refraction measurements  in the presence of solutes.  However,  at  the relatively low

(0.5M) electrolyte concentrations, the diffusion constant should not vary by more than +/-5%,29

minimizing the errors introduced through exclusion of solutes. However, these experiments rely

on the image detection of height for a diffracted beam. This method is subject to measurement
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error, and the diffusion coefficients were found to deviate by an order of magnitude between neat

solvent  systems and mixtures  of  the  same chemicals.  To account  for  this  uncertainty  in  the

model,  the  possible  error  in  laser  diffraction  measurement  was  propagated  through  the

calculation of the diffusion coefficient. This results in three values, the diffusion coefficient with

the lowest uncertainty,  and its associated upper bound and lower bound. Measured refractive

indices for each solvent system, along with calculated diffusion coefficient parameters are listed

in Table 3.

The rates of evaporation and condensation of antisolvent are free parameters. For each

experiment,  they are optimized to fit the model  height  growth to the experimental  data.  See

Figure 4b.  The best fitting evaporation and condensation rates are calculated using the Nelder-

Mead algorithm,30 with the sum square difference between the model and experimental height

growth as the objective function. These optimizations are run three times for each experiment, to

determine the optimal parameters under the expected diffusion coefficient, the lower bound, and

the upper bound. See Figure 4b. 

After determining the condensation and evaporation rates, the model is fully constrained,

allowing us to compute the solute (both inorganic and organic) and antisolvent compositions at

each  height  and  time.   Calculated  values  of  antisolvent,  solvent,  FAH,  and  solutes  (both

inorganic and organic) for which crystallization was observed are provided in the Supporting

Information  in Table  S14.  However,  as the model  assumes a constant  condensation  rate  of

antisolvent into the solution, the simulation must be stopped before the antisolvent supply runs

out. As the antisolvent build-up rate differs for every experiment and crystallization occurs at

various times, a cutoff was implemented based upon solution buildup rather than elapsed time.
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The cutoff in solution height was set to 0.72 cm. This stopped all models before the antisolvent

supply  ran  out.  After  determining  this  cutoff,  the  model  can  then  be  used  to  calculate  the

concentration profile of the solution at the time and location of crystallization. The model returns

the expected concentration of each species, as well the upper and lower bound. See Figure 4c.  A

more  detailed  description  of  the  diffusion  modeling  work  is  present  in  the  Supporting

Information, and the MATLAB R2020b source code used to perform the simulations is available

via Github, as detailed in the Supporting Information section.

Software.  ESCALATE,31 a  custom-developed  software  pipeline,  was  used  to  specify

experimental  and  stock  solution  preparation  parameters,  provide  instructions  for  human

operators,  and  to  capture  experiment  results  and  observations.  The  algorithms  for  data

visualization and analysis were written in Python 3.6 in Jupyter notebooks using the following

libraries: Numpy 1.14.6, Pandas 0.22.0, Scipy 1.0.1, Matplotlib 3.1.0 and Scikit-learn 0.19.2.  

Machine  learning.  Weka  was  used  to  generate  a J48  decision  tree,  which  is  a  Java

implementation of the C4.5 decision tree algorithm. 32-34 The algorithm is provided with the full

set  of  descriptors,  (provided  in  the  Electronic  Supporting  Information),  and  selects  the

descriptors that produce the ‘best’ split of the data using multi way, predictive model split and

Entropy criteria.35 An unpruned tree with a confidence factor of 0.25 was used and the minimum

number of samples per leaf node was set to 2. The set number of folds for reduced error pruning

was 3 and a seed value of 1 was used.  A total  of 56 features  were used to describe the ASVC

perovskitoid synthesis  reactions.  Those  features  include  44  organoammonium  descriptors,  3

solvent details and 9 descriptors derived from diffusion model. Input datasets and Weka input
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files used to perform these calculations are available  via GitHub, as detailed in the Supporting

Information section below.

Results and Discussion 

The versatility  of ASVD crystallization lies in the technique’s  ability  to  slowly alter  the

mother liquor properties until nucleation and crystallization occurs.  While the compounds that

can be synthesized using this  technique can differ from other crystal  growth routes,  such as

inverse  temperature  crystallization,  ASVD crystallization  operates  as  an  important  route  for

materials,  discovery as  seen in the new compounds reported here.  This  dynamic  process,  in

which the antisolvent slowly diffuses into the mother liquor, allows for one to scan a range of

crystallization conditions with properties between the pure solvent and (nearly) pure antisolvent.

As the antisolvent generally diffuses into the mother liquor slowly, solution properties change

gradually, promoting large high-quality single crystals.  However, if one wishes to understand

the role of any specific reactant in such a crystallization, or wishes to probe the trends across

reactant sets, observing whether or not a reaction results in crystallization is insufficient.  Instead,

the critical concentrations that allow for nucleation and crystallization of each species must be

elucidated.   Unfortunately,  the  apparent  simplicity  of  the  AVSD  technique  hides  the  true

complexity at play.

The synthetic approach described here is intentionally designed to enable the determination

of the critical reactant concentrations for each system in a single experiment.  The diffusion of

antisolvent through the mother liquor creates an antisolvent (and solvent) concentration gradient,

and increases the total volume of the solution.  As such, a wide range of reactant, solvent and

antisolvent concentrations are created as functions of both time and position.  By capturing time-
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dependent images of each reaction from the side of each vial (i.e., orthogonal to the direction of

mass transport), we are able to determine both  when and  where nucleation and crystal growth

occurs.  A numerical antisolvent diffusion model can convert the observed nucleation time and

position to the critical species concentrations.  See Figure 1.  The power of this approach lies in

the ability to determine the conditions required for crystallization in a single experiment. Parallel

experiments in each system are not required, resulting in a much more efficient process.  

A custom reactor block (Figure 1a) was used to acquire images of the reaction vials every 60

s over the course of 24 h.  Time stamped images were collected and analyzed with a custom

script  to  determine meniscus  positions,  as well  as the times and positions  of nucleation  and

crystal  growth.   Ten different  organic amines,  shown in Figure 2,  and five different  solvent

systems  were  explored.   Of  the  50  potential  experiments,  46  were  conducted,  and  4  were

impossible because of insufficient Pb2+ solubility.  Specifically, a threshold [Pb2+] value (0.25 M)

was used to eliminate reactions for which the lead cation solubilities were too low.25  The organic

ammonium iodide salts were selected to provide diversity along multiple axes, including charge,

structure (linear, branched, cyclic) and ammonium site connectivity (1º, 2º, 3º).  Five solvent

systems (GBL, GBL:DMF, DMF, DMF:DMSO and DMSO) were used with a single antisolvent

(DCM). Note that formic acid was added to each reaction vial.  

The  outcomes  of  the  46  reactions  are  summarized  in  Figure  3.   Green  and  blue  boxes

represent  reactions  that  resulted  in  metal  halide  perovskitoids,  while  no solid  products  were

observed in reactions denoted by red boxes.  The white boxes represent reactions for which the

threshold [Pb2+] could not be achieved.  These reactions were not performed.  Letter and number

designations correspond to the to specific reaction products, as listed in Table 1.  Six previously
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reported metal halide perovskitoids and one ammonium iodide salt were observed, as marked by

letter designations.  Nine previously unreported metal halide perovskitoid compounds were also

discovered (compounds 1 – 9).  

Replication  studies  between  our  new reaction  design  and  more  traditional  designs  were

performed,  with  an  85  %  replication  rate.  All  compounds  denoted  in  Figure  3  were  also

synthesized under identical conditions using the traditional reactor design shown in Figure S26. 

Using the traditional reaction design, additional phases were occasionally observed later in the

crystallization process, owing to larger amounts of antisolvent process. 

Nucleation and crystallization inherently have stochastic components.  In order to estimate

this  effect  on  crystallization  in  the  systems  reported  above,  six  identical  experiments  were

conducted using MA, PbI2 in GBL.  Variations between experiments were minimized, so that the

differences in calculated critical  concentrations  would be ascribed to the stochastic  nature of

nucleation.  Plots of calculated solvent, antisolvent, FAH, organic and inorganic concentrations

are shown in Figure S47-48.  The magnitude of the observed variations between replicates is

within the uncertainty bounds calculated by the numerical model.

Compounds 1 – 9 are constructed from similar building units.  Each compound contains Pb2+,

octahedrally coordinated by I- anions and protonated organic amines.  The Pb – I bonds in these

compounds vary in length.  Pb – Iterminal bonds range between 3.0363(6) and 3.2041(7) Å.  Pb –

Ibridging interactions  are  generally  longer,  with  distances  between  3.1220(3)  and  3.4907(6)  Å.

These [PbI6]  coordination polyhedra remain isolated in  one compound ([dedapH]2[PbI6]  (4)),

connect  into  larger  molecular  anions  that  each  contain  multiple  [PbI6]  octahedra

([dmedH2]3[Pb2I9][CO2H]  (1),  [dmedH2]3[Pb3I12]·4DMF  (2),  [aepH2]4[Pb3I12][CO2H]2·2DMSO
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(9)),  one-dimensional  chain  structures  ([dmedH2]2[Pb3I10]·2DMSO  (3),  [dabzH2]

[PbI3]2·2GBL·2DMF (5),  [dabzH2][PbI3]2·4DMF (6),  [dabzH2][PbI3]2·4DMSO (7))  and a two-

dimensional layer topology ([aepH2]2[Pb3I10]·2DMF (8)).  Polyhedral representations of the lead

halide anions are shown in Figure 5.  

Different anion connectivities are observed within the dimensionality classes.  Three distinct

molecular anions are observed in the compounds reported here.  These include [PbI6]4- isolated

octahedra, [Pb2I6/1I3/2]5- dimers and [Pb3I6/1I6/2]6- trimers.  See Figure 5.  The [PbI6] octahedra in

the [Pb2I6/1I3/2]5- dimers and [Pb3I6/1I6/2]6- trimers  are connected to one another  through shared

faces.   Two  distinct  one-dimensional  chains  are  observed,  [PbI6/2]n
2n- chains  of  face  shared

octahedra and [Pb3I2/1I4/2I6/2]n
4n- chains.  These [Pb3I2/1I4/2I6/2]n

4n- chains are essentially constructed

from edge shared [Pb2I6/1I3/2]5- dimers.  See Figure 5.  The inorganic structures in compounds 1 –

9 were analyzed using Bond Valence Sums 36, 37.  Calculated ΣSi values for the Pb2+ cations range

between 1.75 and 1.88, corresponding well with the formal charge on these metal centers.  Full

Bond Valence Sums tables for compounds  1 –  9 are available in the Supporting Information

(Table S3 - S11). 
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Figure  5.  Polyhedral  representations  of  the  inorganic
structures found in the compounds  1 –  9.  Green octahedra
and  purple  spheres  represent  [PbI6]  and  iodine  atoms,
respectively.

The inorganic lead halide anions are incorporated into extended structures that include both

protonated organic amines, and possibly formate anions and/or occluded solvent molecules.  Of

the nine compounds reported here, only one contains just lead iodide anions and the respective

organic ammonium cation, [dedapH]2[PbI6] (4).  Formate anions, introduced into the reactions as

formic  acid,  were  incorporated  into  two  compounds,  [dmedH2]3[Pb2I9][CO2H]  (1)  and

[aepH2]4[Pb3I12][CO2H]2·2DMSO  (9).   The  remaining  compounds  all  contain  DMF

([dmedH2]3[Pb3I12]·4DMF (2),  [dabzH2][PbI3]2·4DMF (6),  [aepH2]2[Pb3I10]·2DMF (8)),  DMSO

([dmedH2]2[Pb3I10]·2DMSO  (3),  [dabzH2][PbI3]2·4DMSO  (7)  or  both  two  different  solvents

([dabzH2][PbI3]2·2GBL·2DMF (5)). The protonated organic amines act as hydrogen-bond donors,

creating extensive hydrogen-bonding networks with the lead halide component and with GBL,
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DMF, DMSO and/or formate anions.  Full three-dimensional packing graphics for compounds 1

– 9 are available in the Supporting Information (Figure S27 - S35). 

Understanding the formation dynamics in the system described above requires more than just

observational  information  regarding  the  presence  or  absence  of  crystalline  products.   The

dynamic  nature  of  ASVC can  obscure  the  critical  threshold  parameters  required  to  induce

crystallization.   As  such,  a  one-dimensional  diffusion  model  was  used  to  calculate  the

concentrations of reactants, solvent and antisolvent as a function of both time and position in the

reaction  vial,  as  summarized  in  the  Methods  section  and  explained  in  greater  detail  in  the

Supporting Information.  The Laser refraction was used to determine the diffusion coefficient of

DCM in each solvent system.27,  28 The detailed experimentation set up for the laser refraction

experiment is given in the Supporting Information.  Calculated diffusion data are presented in

Table  3.   The  rates  of  antisolvent  evaporation  and  condensation  were  calculated  using

experimental  meniscus  height  data.  The rates of condensation  and evaporation vary between

reactions and are optimized for each experiment to match the experimental data.  A consistent

endpoint for the experimental modeling was also implemented based upon the addition of a fixed

amount  of  antisolvent  to  the  mother  liquor.   This  cutoff  value  must  occur  before  all  the

antisolvent  evaporates  from  its  respective  vial,  as  the  diffusion  model  assumes  a  non-zero

condensation rate of antisolvent into the mother liquor. If the modeling continues past the point

of  antisolvent  reservoir  depletion,  the  assumption  of  condensation  no  longer  holds.  The

combination  of  experimentally  determined  diffusion  rates  in  conjunction  with  modeled

evaporation and condensation rates allows for the calculation of reactant, solvent and antisolvent

concentrations as a function of time and position, which in turn enable the elucidation of the
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critical concentration of all species that are required for crystallization.  A full table of these

critical concentrations is available in the Supporting Information (Table S14).

An  interpretable  decision-tree  model  was  used  to  elucidate  the  structure–property

relationships governing crystal formation.   The set of input descriptors used in this work are

selected  to  capture  ‘amine’,  ‘solvent’,  and  ‘concentration’  dependent  properties.  Amine

descriptors  relevant  to  crystallization  processes  (e.g.,  molecular  surface area,  hydrogen bond

donor/acceptor  atom  count  in  molecule,  rotatable  bond  count  etc.)  were  computed  using

ChemAxon.38  Concentration  descriptors  were calculated  using the diffusion model.  Features

describing  reaction  conditions,  inorganic  and  acid  descriptors  were  excluded,  as  they  are

relatively constant across the reactions.  As the goal is explanatory insight using a relatively

small dataset, we use an unpruned decision tree. 39  We have previously used a similar approach

to get insight into factors governing structural adaptability of amine-templated metal oxides. 40, 41

Inspection of the decision tree shown in Figure 6 reveals the importance of two main aspects of

crystallization  in  metal  halide  perovskitoids.   First,  nodes  corresponding  to  solvent  choice

indicate its importance to reaction outcome, as shown in Figure 3.  Second, amine property nodes

are observed in the decision tree.  Specifically, charge of the organic ammonium cation, rotatable

bond count, number of C atoms and aliphatic atom count nodes indicate the importance of amine

structure on reaction outcome.
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Figure 6.  Metal  halide perovskitoid formation decision tree.   Red,  blue and green nodes represent
antisolvent,  solvent  and  ammonium  cation  descriptors,  respectively.   Each  bin  contains  a  specific
outcome value and number of reactions correctly and incorrectly assigned to that bin.

Five solvent systems are used in this study, ranging from GBL to DMF and finally to

DMSO.  The decision tree shown in Figure 6 indicates that GBL promotes the formation of a

metal halide perovskitoid while DMSO-containing reactions are much more likely to result in no

solid  product.   As  such,  GBL  is  a  good  solvent  for  crystallization  in  that  the  critical

concentrations  needed  for  nucleation  and  crystallization  can  be  achieved  through  the

incorporation of the antisolvent DCM.  This suggests weaker GBL – reactant interactions, which

contribute to lower solubilities and lower critical concentrations.  DMSO, in contrast, is a poor

crystallization solvent as the critical reactant concentrations are too high and cannot generally be

realized  during  the  experiments  described  here.   This  behavior  mirrors  critical  antisolvent

concentrations required to induce crystallization, shown in Figure 7.  Reactions from which no

metal halide perovskitoid were formed are not included in this plot.
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Figure 7.  Critical antisolvent concentration versus solvent
system.  Circle area represents critical solvent concentration
at  nucleation.   Black  horizontal  lines  represent  mean
antisolvent concentrations within a solvent system.

The chemical basis for the solvent-dependent  concentration trends are consistent with

previous  work correlating  lead  halide-solvent  coordination  strength to  properties  such as the

Mayer Bond order 42 and Guttman donor index.43  GBL interacts more weakly with the dissolved

reactants,  owing to a lower polar surface area (26.3 vs 38.8 and 36.3 for DMF and DMSO,

respectively).  DMF in mother liquor can form PbI2-based Lewis adducts through dative Pb-O

bonds, where the solvent acts as a Lewis base and Pb2+ acts as a Lewis acid.42-45 It has been

previously reported that DMF and DMSO strongly coordinate with Pb2+ in the mother liquor and

form coordination complexes, while GBL leads to formation of clusters in the solution.46 As the

relative strength of solvent – Pb2+ interactions increase from GBL to DMF and DMF:DMSO, so

do the relative reactant solubilities and critical concentrations required to induce crystallization.

The average critical antisolvent concentrations, as function of solvent system, shift from 8.39 to

11.76 M as one moves from GBL to DMF:DMSO.  

22



Amine structure (indicated by green ellipses) plays an important role in the decision tree

shown in Figure 6. Two main factors can be observed in the decision tree.  First, increasing the

strength of interaction  between the organic ammonium cations  and inorganic species (amine

charge, SASA of  δ+ atoms) promotes the formation of the target compounds.  Higher cation

charges and greater solvent accessible surface areas of atoms with partial positive charges both

indicate stronger organic – inorganic interaction strengths, which are known to be critical in the

formation  of  organic  inorganic  hybrid  materials.42  Second,  reactions  involving  more  rigid

organic cations are more likely to successfully crystallize.  These descriptors (rotatable bound

counts, number of carbon atoms, aliphatic atom count) align with the well-known relationship

between component rigidity (or floppiness) and crystallization.46, 47  More rigid components are

much  more  likely  to  crystallize  in  well-ordered  solids  while  components  with  greater

conformational freedom are the opposite.

In four of the reactions (1,3-dap in DMF and DMF:DMSO, aep in DMSO, dedap in

DMF) where crystal formation did not occur, liquid−liquid phase separation (LLPS) or oiling-

out48, 49 has been observed (shown in Figure S4a). The liquid-liquid separation results in an AS-

rich phase and an AS-deficient phase.  The organic ammonium cations preferentially segregate to

the AS-deficient phase, hindering crystallization. This effect has been reported previously in both

the  halide  perovskitoid  50 and  in  organic  pharmaceutical  literature.51 In  our  work,  initial

nucleation was observed to  occur  before liquid-liquid separation in  three reactions  (dmed in

GBL:DMF, aep in GBL:DMF and dedap in GBL), owing to the presence of weak GBL-reactant

interactions.  Images are shown in Figure S4b.

Conclusions
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A spatiotemporal  reactor  design,  coupled  with  an  antisolvent  diffusion  model,  was  used  to

understand  metal  halide  perovskitoid  crystallization  through  analysis  of  critical  species

concentrations.  The combination of these critical reaction parameters and the use of decision

trees resulted in the elucidation of both solvent system dependencies and effects associated with

amine structure.  Solvent systems that interact more weakly with dissolved lead species (GBL-

containing  systems)  promote  nucleation  and  crystallization,  while  amines  that  interact  more

strongly  with  inorganic  components  and  exhibit  greater  rigidity  are  more  likely  to  be

incorporated into crystalline products.  More generally, this work demonstrates that combining

careful  experimental  design with computational  data analysis  can increase the insight gained

from each experiment: a smaller set of experiments conducted over time can be more informative

than a much larger set of parallel experiments varied in space.

Supporting Information

CCDC 2121660-2121668 contain the supplementary crystallographic data for this paper.  These data can

be  obtained  free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via

www.ccdc.cam.ac.uk/structures. Solubility measurement procedure and data;  detailed reaction, image

analysis description, images of all reaction outcomes, time and position data for first observed

nucleation and crystal growth, LLPS images; powder diffraction data; single crystal synthesis

details, crystal packing, layer images,  and bond valence table for compounds  1 -  9; detailed

description of refractive index measurement and diffusion model calculation, calculated critical

concentration values for all reactions along with the chemical descriptors and their descriptions

are  given  in  the  Supporting  Information  file.   A  Github  repository

(https://github.com/darkreactions/rapid2)  contains  the  following  files  and  code:
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reaction  block CAD file,  image analysis  process  and Python code for:  diffusion heights  and

crystal growth, laser diffraction for diffusion coefficient measurement and analysis and diffusion

model scripts.
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Figure Captions.

Figure 1.  Spatiotemporal reaction design, including (a) reaction block diagram, (b) reaction image 
capture, (c) mother liquor (ML) and anti-solvent (AS) meniscus positions, and nucleation detection, and 
(d) calculated solvent and antisolvent concentrations as a function of time.

Figure 2.  The ten organic amines used in this study.

Figure 3.  Reaction outcomes as a function of organic amine and solvent system.

Figure 4.  Diffusion modelling, including (a) a diagram indicating how the influx of antisolvent 
molecules affect bin heights, and (b) model height fits and (c) concentration profile at crystallization in the
PbI2 / aep / DMF:DMSO system.

Figure 5.  Polyhedral representations of the inorganic structures found in the compounds 1 – 9.  Green 
octahedra and purple spheres represent [PbI6] and iodine atoms, respectively.

Figure 6.  Metal halide perovskitoid formation decision tree.  Red, blue and green nodes represent 
antisolvent, solvent and ammonium cation descriptors, respectively.  Each bin contains a specific outcome
value and number of reactions correctly and incorrectly assigned to that bin.  

Figure 7.  Critical antisolvent concentration vs solvent system plot.  Circle size represents critical solvent 
concentration at nucleation. Black horizontal lines represent mean antisolvent concentrations within a 
solvent system.
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Table 1.  Reaction products.

Compound Formula Inorganic
dimensionality

Reference

A [ma][PbI3] 3D 52

B [ma][Pb3I8]·2DMF 1D 53

C [ea][PbI3] 1D 54

D [dapH2][I]2 - 55

E [acetH][PbI3] 1D 25

F [chmaH]2[PbI4] 2D 25

G [pheneaH]2[PbI4] 2D 56

1 [dmedH2]3[Pb2I9][CO2H] 0D this work

2 [dmedH2]3[Pb3I12]·4DMF 0D this work

3 [dmedH2]2[Pb3I10]·2DMSO 1D this work

4 [dedapH]2[PbI6] 0D this work

5 [dabzH2][PbI3]2·2GBL·2DMF 1D this work

6 [dabzH2][PbI3]2·4DMF 1D this work

7 [dabzH2][PbI3]2·4DMSO 1D this work

8 [aepH2]2[Pb3I10]·2DMF 2D this work

9 [aepH2]4[Pb3I12]
[CO2H]2·2DMSO

0D this work
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Table 2.  Crystallographic data for compounds 1 – 9.

Compound [C4H14N2]3[Pb2I9]

[CO2H] (1)

[C4H14N2]3[Pb3I12]·

4C3H7NO (2)

[C4H14N2]2[Pb3I10]·

2C2H6SO (3)

[C7H20N2]2

[PbI6] (4)

[C6H10N2][PbI3]2·

2C4H6O2·2C3H7NO (5)

Formula C13H43I9N6O2Pb2 C24 H70I12N10O4Pb3 C12H40I10N4O2Pb3S2 C14H40I6N4Pb1 C20H36I6N4O6Pb2

fw 1872.06 2707.35 2227.17 1233.12 1604.36

Space-Group P1 (No. 2) P1 (No. 2) P21/n (No. 14) P21/n (No. 14) P1 (No. 2)

a (Å) 9.34390 (5) 8.9706 (4) 10.4168 (7) 11.39480 (7) 8.0944 (4)

b (Å) 9.85820 (6) 18.4476 (8) 11.7679 (6) 11.50440 (7) 10.6456 (6)

c (Å) 22.71670 (13) 19.9034 (9) 18.5962 (11) 11.92840 (7) 12.8019 (7)

α (deg) 93.1160 (2) 76.935 (2) 90.0 90.0 112.991 (2)

β (deg) 90.2040 (2) 87.338 (2) 96.848 (3) 102.0140 (2) 98.921 (2)

γ (deg) 105.1086 (19) 85.969 (2) 90.0 90.0 95.953 (2)

V (Å3) 2016.9 (2) 3199.0 (2) 2263.3 (2) 1529.45 (16) 986.72 (9)

Z 2 2 2 2 2

ρcalc (g cm-3) 3.082 2.811 3.268 3.082 2.700

λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073

T (K) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2)

μ (mm-1) 15.244 13.699 18.059 11.579 13.246 

R1 0.0425 0.0342 0.0486 0.0201 0.0289

wR2 0.0867 0.0494 0.1040 0.0404 0.0503
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Table 2 Continued.  Crystallographic data for compounds 1 – 9.

Compound [C6H10N2][PbI3]2·

4C3H7NO (6)

[C6H10N2][PbI3]2·

4C2H6SO (7)

[C6H16N2]2[Pb3I10]·

2C3H7NO (8)

[C6H16N2]4[Pb3I12]·

2CHO2·2SOC2H6 (9)

Formula C18H38I6N6O4Pb2 C14H34I6N2O4Pb2S4 C18H46I10N6O2Pb3 C30H78I12N8O6Pb3S2.00

fw 1578.36 1598.53 2269.25 2855.60

Space-Group P21/c (No. 14) P21/c (No. 14) C2/c (No. 15) P1 (No. 2)

a (Å) 9.7427 (6) 9.1442 (3) 23.77360 (15) 10.0789 (6)

b (Å) 24.7644 (16) 24.0936 (8) 9.45230 (6) 18.4456 (13)

c (Å) 7.9702 (5) 8.2387 (3) 21.04520 (12) 19.7271 (13)

α (deg) 90.0 90.0 90.0 74.235(3)

β (deg) 95.493(3) 94.6821(13) 90.3600(2) 77.155(2)

γ (deg) 90 90.0 90.0 82.993(2)

V (Å3) 1914.2 (2) 1809.07 (11) 4729.1 (5) 3433.8 (4)

Z 2 2 4 2

ρcalc (g cm-3) 2.738 2.934 3.187 2.762

λ (Å) 0.71073 0.71073 0.71073 0.71073

T (K) 150 (2) 150 (2) 150 (2) 150 (2)

μ (mm-1) 13.652 14.666 17.206 12.830

R1 0.0429 0.0232 0.0363 0.0482

wR2 0.1122 0.0440 0.0912 0.0467
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Table 3.  Calculated DCM diffusion coefficients. 

Solvent Refractive
index

Expected
Diffusion

Coefficient

(D, m2/s)

Lower Bound

Diffusion

Coefficient

(D, m2/s)

Upper Bound

Diffusion
Coefficient

(D, m2/s)

Propagated
Uncertainty Range

(Plus or Minus)

(D, m2/s)

GBL 1.4348 5.26 × 10-10 7.00 × 10-11 9.82 × 10-10 4.56 × 10-10

GBL:DMF 1.4783 1.08 × 10-10 4.00 × 10-12 2.12 × 10-10 1.04 × 10-10

DMF 1.42075 5.55 × 10-10 0.00 1.14 × 10-9 5.66 × 10-10

DMF:DMSO 1.436 2.07 × 10-10 1.32 × 10-10 2.82 × 10-10 7.50 × 10-11

DMSO 1.4305 1.24 × 10-9 9.61 × 10-10 1.52 × 10-9 2.79 × 10-10

31



References:

1. Leijtens, T.;  Eperon, G. E.;  Noel, N. K.;  Habisreutinger, S. N.;  Petrozza, A.; 
Snaith, H. J., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 
2015, 5 (20), 1500963.
2. Qiu, L.;  He, S.;  Ono, L. K.;  Liu, S.; Qi, Y., Scalable fabrication of metal halide 
perovskite solar cells and modules. ACS Energy Lett. 2019, 4 (9), 2147-2167.
3. Wang, S.;  Li, X.;  Wu, J.;  Wen, W.; Qi, Y., Fabrication of efficient metal halide 
perovskite solar cells by vacuum thermal evaporation: A progress review. Curr. 
Opin. Electrochem. 2018, 11, 130-140.
4. Niu, T.;  Xue, Q.; Yip, H.-L., Molecularly Engineered Interfaces in Metal Halide 
Perovskite Solar Cells. J. Phys. Chem. Lett. 2021, 12, 4882-4901.
5. Lim, K.-G.;  Han, T.-H.; Lee, T.-W., Engineering electrodes and metal halide 
perovskite materials for flexible/stretchable perovskite solar cells and light-emitting 
diodes. Energy Environ. Sci. 2021, 14 (4), 2009-2035.
6. Bao, C.;  Yang, J.;  Bai, S.;  Xu, W.;  Yan, Z.;  Xu, Q.;  Liu, J.;  Zhang, W.; Gao, 
F., High performance and stable all‐inorganic metal halide perovskite‐based 
photodetectors for optical communication applications. Adv. Mater. 2018, 30 (38), 
1803422.
7. Wang, H. P.;  Li, S.;  Liu, X.;  Shi, Z.;  Fang, X.; He, J. H., Low‐Dimensional 
Metal Halide Perovskite Photodetectors. Adv. Mater. 2021, 33 (7), 2003309.
8. Feng, J.;  Gong, C.;  Gao, H.;  Wen, W.;  Gong, Y.;  Jiang, X.;  Zhang, B.;  Wu, 
Y.;  Wu, Y.; Fu, H., Single-crystalline layered metal-halide perovskite nanowires for 
ultrasensitive photodetectors. Nat. Electron. 2018, 1 (7), 404-410.
9. Hao, D.;  Zou, J.; Huang, J., Recent developments in flexible photodetectors 
based on metal halide perovskite. InfoMat 2020, 2 (1), 139-169.
10. Hu, Z.;  Liu, Z.;  Zhan, Z.;  Shi, T.;  Du, J.;  Tang, X.; Leng, Y., Advances in 
metal halide perovskite lasers: synthetic strategies, morphology control, and lasing 
emission. Adv. photonics 2021, 3 (3), 034002.
11. Zhang, Q.;  Shang, Q.;  Su, R.;  Do, T. T. H.; Xiong, Q., Halide perovskite 
semiconductor lasers: materials, cavity design, and low threshold. Nano Lett. 2021,
21 (5), 1903-1914.
12. Lei, L.;  Dong, Q.;  Gundogdu, K.; So, F., Metal Halide Perovskites for Laser 
Applications. Adv. Funct. Mater. 2021, 31 (16), 2010144.
13. Ye, T.;  Fu, W.;  Wu, J.;  Yu, Z.;  Jin, X.;  Chen, H.; Li, H., Single-crystalline lead 
halide perovskite arrays for solar cells. J. Mater. Chem.A. 2016, 4 (4), 1214-1217.
14. Zhang, T.;  Yang, M.;  Benson, E. E.;  Li, Z.;  van de Lagemaat, J.;  Luther, J. 
M.;  Yan, Y.;  Zhu, K.; Zhao, Y., A facile solvothermal growth of single crystal mixed 
halide perovskite CH3NH3Pb(Br1−xClx)3. Chem. Commun. 2015, 51 (37), 7820-7823.
15. Saidaminov, M. I.;  Abdelhady, A. L.;  Murali, B.;  Alarousu, E.;  Burlakov, V. M.;
Peng, W.;  Dursun, I.;  Wang, L.;  He, Y.; Maculan, G., High-quality bulk hybrid 
perovskite single crystals within minutes by inverse temperature crystallization. 
Nat. Commun. 2015, 6 (1), 1-6.
16. Liu, Y.;  Yang, Z.;  Cui, D.;  Ren, X.;  Sun, J.;  Liu, X.;  Zhang, J.;  Wei, Q.;  Fan, 
H.;  Yu, F.;  Zhang, X.;  Zhao, C.; Liu, S., Two-Inch-Sized Perovskite CH3NH3PbX3 (X = 
Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 2015, 27 (35), 5176-
5183.

32



17. Dong, Q.;  Fang, Y.;  Shao, Y.;  Mulligan, P.;  Qiu, J.;  Cao, L.; Huang, J., Solar 
cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single 
crystals. Science 2015, 347 (6225), 967-970.
18. Shi, D.;  Adinolfi, V.;  Comin, R.;  Yuan, M.;  Alarousu, E.;  Buin, A.;  Chen, Y.;  
Hoogland, S.;  Rothenberger, A.; Katsiev, K., Low trap-state density and long carrier 
diffusion in organolead trihalide perovskite single crystals. Science 2015, 347 
(6221), 519-522.
19. Yang, Y.;  Yan, Y.;  Yang, M.;  Choi, S.;  Zhu, K.;  Luther, J. M.; Beard, M. C., 
Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single
crystal. Nat. Commun. 2015, 6 (1), 1-6.
20. Zuo, C.; Ding, L., Lead‐free Perovskite Materials (NH4)3Sb2IxBr9−x. Angew. 
Chem. 2017, 129 (23), 6628-6632.
21. Wei, H.;  Fang, Y.;  Mulligan, P.;  Chuirazzi, W.;  Fang, H.-H.;  Wang, C.;  Ecker,
B. R.;  Gao, Y.;  Loi, M. A.; Cao, L., Sensitive X-ray detectors made of 
methylammonium lead tribromide perovskite single crystals. Nat. Photonics. 2016, 
10 (5), 333-339.
22. Udayabhaskararao, T.;  Kazes, M.;  Houben, L.;  Lin, H.; Oron, D., Nucleation, 
growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 
2017, 29 (3), 1302-1308.
23. Kirman, J.;  Johnston, A.;  Kuntz, D. A.;  Askerka, M.;  Gao, Y.;  Todorović, P.;  
Ma, D.;  Privé, G. G.; Sargent, E. H., Machine-learning-accelerated perovskite 
crystallization. Matter 2020, 2 (4), 938-947.
24. Li, Z.;  Nega, P.;  Najeeb, M.;  Dun, C.;  Zeller, M.;  Urban, J.;  Saidi, W.;  
Schrier, J.;  Norquist, A.; Chan, E., Dimensional control over metal halide perovskite 
crystallization guided by active learning.  Chem. Mater. 2022, 34, 756-767.
25. Li, Z.;  Najeeb, M. A.;  Alves, L.;  Sherman, A. Z.;  Shekar, V.;  Cruz Parrilla, P.; 
Pendleton, I. M.;  Wang, W.;  Nega, P. W.; Zeller, M., Robot-accelerated perovskite 
investigation and discovery. Chem. Mater. 2020, 32 (13), 5650-5663.
26. Fick, A., Ueber Diffusion. Ann. Phys. 1855, 170 (1), 59-86.
27. Coutinho, C. A.;  Mankidy, B. D.; Gupta, V. K., A Simple Refraction Experiment 
for Probing Diffusion in Ternary Mixtures. Chem. Eng. Educ. 2010, 44 (2), 134-139.
28. Dok-Yong, J.;  Jong-Hyon, J.; Nam-Chol, K., A Measurement Method of Diffusion
Coefficient of Liquid Using Radial Laser Rays Formed By Cylindrical Refractive 
System. Submission date 29, Aug. 2017; arXiv>physics>Instrumentation and 
Detectors,  arXiv:1709.01595.
29.  Kim, J. S.; Wu, Z.; Morrow, A. R.; Yethiraj, A.; Yethiraj, A. Self-Diffusion and 
Viscosity in Electrolyte Solutions. J. Phys. Chem. B 2012, 116 (39), 12007–12013.
30. Nelder, J. A.; Mead, R., A Simplex Method for Function Minimization. The 
Computer Journal 1965, 7 (4), 308-313.
31. Pendleton, I. M.;  Cattabriga, G.;  Li, Z.;  Najeeb, M. A.;  Friedler, S. A.;  
Norquist, A. J.;  Chan, E. M.; Schrier, J., Experiment Specification, Capture and 
Laboratory Automation Technology (ESCALATE): a software pipeline for automated 
chemical experimentation and data management. MRS Commun. 2019, 9 (3), 846-
859.
32. Glor, E. C.;  Blau, S. M.;  Yeon, J.;  Zeller, M.;  Shiv Halasyamani, P.;  Schrier, J.;
Norquist, A. J., [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10]; new polar templated 
vanadium tellurite enantiomers. J. Solid State Chem. 2011, 184 (6), 1445-1450.
33. Holmes, G.;  Donkin, A.; Witten, I. H. In WEKA: a machine learning workbench,
Proceedings of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems 
Conference, 29 Nov.-2 Dec. 1994; 1994; pp 357-361.

33



34. Hssina, B.;  Merbouha, A.;  Ezzikouri, H.; Erritali, M., A comparative study of 
decision tree ID3 and C4. 5. Int. J. Adv. Comput. Sci. Appl. 2014, 4 (2), 13-19.
35. Bindhia, K.;  Vijayalakshmi, Y.;  Manimegalai, P.; Babu, S. S., Classification 
Using Decision Tree Approach towards Information Retrieval Keywords Techniques 
and a Data Mining Implementation Using WEKA Data Set. International Journal of 
Pure and Applied Mathematics 2017, 116 (22), 19-29.
36. Brown, I.; Altermatt, D., Bond-valence parameters obtained from a systematic
analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B: Struct.
Sci. 1985, 41 (4), 244-247.
37. Guo, Y.-Y.;  Yang, L.-J.; Lightfoot, P., Three new lead iodide chain compounds, 
APbI3, templated by molecular cations. Crystals 2019, 9 (12), 616.
38. ChemAxon Marvin Version 21.4.0. https://chemaxon.com/ (accessed October 
04,2021).
39. Esposito, F.;  Malerba, D.;  Semeraro, G.; Kay, J., A comparative analysis of 
methods for pruning decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19 
(5), 476-491.
40. Adler, P. D.;  Xu, R.;  Olshansky, J. H.;  Smith, M. D.;  Elbert, K. C.;  Yang, Y.;  
Ferrence, G. M.;  Zeller, M.;  Schrier, J.; Norquist, A. J., Probing structural adaptability
in templated vanadium selenites. Polyhedron 2016, 114, 184-193.
41. Raccuglia, P.;  Elbert, K. C.;  Adler, P. D.;  Falk, C.;  Wenny, M. B.;  Mollo, A.;  
Zeller, M.;  Friedler, S. A.;  Schrier, J.; Norquist, A. J., Machine-learning-assisted 
materials discovery using failed experiments. Nature 2016, 533 (7601), 73-76.
42. Stevenson, J.;  Sorenson, B.;  Subramaniam, V. H.;  Raiford, J.;  Khlyabich, P. 
P.;  Loo, Y.-L.; Clancy, P., Mayer bond order as a metric of complexation 
effectiveness in lead halide perovskite solutions. Chem. Mater. 2017, 29 (6), 2435-
2444.
43. Hamill Jr, J. C.;  Schwartz, J.; Loo, Y.-L., Influence of solvent coordination on 
hybrid organic–inorganic perovskite formation. ACS Energy Lett. 2017, 3 (1), 92-97.
44. Wharf, I.;  Gramstad, T.;  Makhija, R.; Onyszchuk, M., Synthesis and 
vibrational spectra of some lead (II) halide adducts with O-, S-, and N-donor atom 
ligands. Can. J. Chem. 1976, 54 (21), 3430-3438.
45. Cao, X.;  Zhi, L.;  Li, Y.;  Fang, F.;  Cui, X.;  Yao, Y.;  Ci, L.;  Ding, K.; Wei, J., 
Elucidating the key role of a lewis base solvent in the formation of perovskite films 
fabricated from the lewis adduct approach. ACS Appl. Mater. Interfaces 2017, 9 
(38), 32868-32875.
46. Fateev, S. A.;  Petrov, A. A.;  Khrustalev, V. N.;  Dorovatovskii, P. V.;  
Zubavichus, Y. V.;  Goodilin, E. A.; Tarasov, A. B., Solution processing of 
methylammonium lead iodide perovskite from γ-butyrolactone: crystallization 
mediated by solvation equilibrium. Chem. Mater. 2018, 30 (15), 5237-5244.
47. Wicker, J. G.; Cooper, R. I., Beyond rotatable bond counts: capturing 3D 
conformational flexibility in a single descriptor. J. Chem. Inf. Model. 2016, 56 (12), 
2347-2352.
48. Deneau, E.; Steele, G., An in-line study of oiling out and crystallization. Org. 
Process Res. Dev. 2005, 9 (6), 943-950.
49. Meng, Z.;  Huang, Y.;  Cheng, S.; Wang, J., Investigation of Oiling-Out 
Phenomenon of Small Organic Molecules in Crystallization Processes: A Review. 
ChemistrySelect 2020, 5 (26), 7855-7866.
50. Zhang, Y.;  Siegler, T. D.;  Thomas, C. J.;  Abney, M. K.;  Shah, T.;  De 
Gorostiza, A.;  Greene, R. M.; Korgel, B. A., A “tips and tricks” practical guide to the 

34



synthesis of metal halide perovskite nanocrystals. Chem. Mater. 2020, 32 (13), 
5410-5423.
51. Li, X.;  Yin, Q.;  Zhang, M.;  Hou, B.;  Bao, Y.;  Gong, J.;  Hao, H.;  Wang, Y.;  
Wang, J.; Wang, Z., Antisolvent crystallization of erythromycin ethylsuccinate in the 
presence of liquid–liquid phase separation. Ind. Eng. Chem. Res. 2016, 55 (3), 766-
776.
52. Xie, J.;  Liu, Y.;  Liu, J.;  Lei, L.;  Gao, Q.;  Li, J.; Yang, S., Study on the 
correlations between the structure and photoelectric properties of CH3NH3PbI3 
perovskite light-harvesting material. J. Power Sources 2015, 285, 349-353.
53. Umeyama, D.;  Lin, Y.; Karunadasa, H. I., Red-to-black piezochromism in a 
compressible Pb–I–SCN layered perovskite. Chem. Mater. 2016, 28 (10), 3241-3244.
54. Im, J.-H.;  Chung, J.;  Kim, S.-J.; Park, N.-G., Synthesis, structure, and 
photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer 
(CH3CH2NH3)PbI3. Nanoscale Res. Lett. 2012, 7 (1), 1-7.
55. Dou, S.-q.;  Paulus, H.; Weiss, A., Crystal structure and halogen NQR of 
diammoniumalkane halides. J. Mol. Struct. 1995, 345, 1-10.
56. Calabrese, J.;  Jones, N.;  Harlow, R.;  Herron, N.;  Thorn, D.; Wang, Y., 
Preparation and characterization of layered lead halide compounds. J. Am. Chem. 
Soc. 1991, 113 (6), 2328-2330.

35



Table of Contents Graphic

36




