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Abstract

This dissertation is a combination of two bodies of work in modern statistical inference. The

first work introduces and studies a novel conditional Independence test using neural networks.

The second work is applied data analyses for the Healthy Davis Together (HDT) Program, for

wastewater testing for Covid-19 infections and an analysis of the impact of the college reopening.

We propose a neural Ising model to test conditional independence between binary random variables

X and Y given a potentially complex random variable Z such as text or images. The method uses

the score test statistic and employs a computationally efficient score-based bootstrap procedure [20]

to generate the p-value. We extend the method to the multi-class X and Y by replacing the Ising

model with a restricted Boltzmann machine. Empirical studies show that our model has high power

against H1 and reliable type-I error control on both simulated and real-world data. We derive the

asymptotic separability of the score-test statistics under the Ising model.

On the applied side, we first summarize our collaboration with the wastewater team at Healthy

Davis Together (HDT) initiative working on the wastewater monitoring project [36]. We provide

a Bayesian Ct value imputation method via the EM-MCMC algorithm wrapped in a user-friendly

API. The algorithm is able to produce Ct values matching the overall trend of the clinical data and

has a stronger correlation with the clinical data when compared with existing methods [36]. The

other data analysis project at HDT is measuring the impact of college reopening on the COVID-

19 outbreak level in their home county. The coronavirus disease 2019 (COVID-19) pandemic

has dramatically impacted the 2020-2021 academic year in universities across the country, and

conversely, college reopening has disrupted the course of the pandemic. We investigated COVID-

19 hotspot events in “college counties” which we defined as counties with at least 10% of its

population composed of undergraduate students. We found that increments in cases could not be

attributed to random chance by performing multiple hypothesis testing. Increments in confirmed

cases among college counties from mid-August to mid-September were significantly higher than

comparable non-college counties. After this period of reopening, hotspots of confirmed cases did

not differ between counties, despite the college-town designation. Class setting (i.e., In-Person,

Hybrid, Online) seemed to be associated with hotspot activity. We found no evidence to support

an association between testing efforts and hotspots.
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CHAPTER 1

Introduction

The dissertation covers three projects which cover both statistics methodology and applied data

analysis. Here we provide a brief background of each project. For detailed motivations, literature

reviews, and setup, refer to the corresponding chapter.

Chapter 2 covers the development of the novel neural Ising model / Boltzmann machine for

testing conditional independence of categorical X and Y given Z. Formally, the problem we study

is

H0 : X⊥⊥Y |Z versus H1 : X ̸⊥⊥Y |Z.

Conditional independence plays a central role in both statistical theory and applied fields such

as causal inference. It forms important theoretical concepts such as sufficiency [9]. Meanwhile,

the conditional independence relationship is a key factor in applications such as social network

analysis [13]. Another application of the conditional Independence test is building directed acyclic

graphs. Having valid conditional Independence testing methods is crucial in methods such as the

PC algorithm [39]. Shah and Peters [38] have proved the discouraging fact that for continuous

(X,Y, Z), no test will have any power if the test controls type-I error for all distributions where

X⊥⊥Y |Z. This explains why despite huge efforts, there is no one testing method which can be

applied to all circumstances. Existing methods [22] have primarily been focusing on the case when

both X and Y are continuous. Sen et al. [37] provided an example of applying powerful machine

learning classifiers to the challenging conditional independence problem. Hence, first, we would

like to develop a testing method targeting the case in which X and Y are categorical while Z is

continuous. Then, motivated by Sen et al. [37]’s idea, we would like our method to harness the

power of the state of art machine learning tools.

With these goals, we combine neural networks with the Ising model / Boltzmann machine to

represent a rich class of conditional distributions. We use the score test statistic and a score-based
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bootstrap [20] algorithm to generate the p-value. This method provides a computationally efficient

alternative to the generalized likelihood ratio test (GLRT) with the non-parametric bootstrap to

generate p-values. We show that this method outperforms previously proposed computationally

efficient methods, and is competitive to the computationally infeasible GLRT. We prove theoretical

guarantees to back up these empirical observations.

The next two projects are applied data analysis on COVID-19 data. The coronavirus disease

2019 (COVID-19) pandemic has caused a worldwide impact on everyone’s life. Healthy Davis

Together (HDT) was an initiative to mitigate the impact of COVID-19 with a joint effort from

the city of Davis and the University of California, Davis. I worked under HDT on the wastewater

project (Chapter 3) and the college reopening analysis project (Chapter 4).

The wastewater project (a collaboration with the Wastewater team [36]) aims to provide a long-

term wastewater-based solution for monitoring the COVID-19 outbreak. Wastewater monitoring

serves as a useful tool in epidemiology to complement the clinical testing for managing COVID-

19 [36]. Since wastewater monitoring does not require active participation from the public, it may

reduce the sampling bias from the clinical data [36]. The wastewater team actively monitored the

qPCR data of COVID-19 RNA using the qPCR technique. One challenge the wastewater team

faced is how to handle the qPCR nondetects in the data. Both simple imputation (use a single

value to impute all nondetects) and censoring (dropping nondetects) may also severe bias in the

analysis [36]. To remedy the bias, we applied a Bayesian Ct value imputation method via the

EM-MCMC algorithm wrapped in a user-friendly API. The algorithm is able to produce Ct values

matching the overall trend of the clinical data and has a stronger correlation with the clinical data

when compared with existing methods [36].

The final project at HDT is measuring the impact of college reopening on the COVID-19

outbreak level in their home county. Prior study [25] suggested that the opening of universities has

led to super-spreader events, with a significant rise in confirmed cases reported by the universities.

There are many factors that may influence the increase in confirmed cases, namely transmission

rates, improved asymptomatic testing rates, or case importation due to the return of students to

campus from alternative living situations during the summer. Is the return of students to campus

to blame for the significant rise in COVID-19 cases? We examine the effect of the return of students
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by matching the college counties to non-college counties that are within the same state and have a

similar percentage of seniors (an important demographic variable for COVID-19 rates). Could the

increase in cases actually be spurious, and a false alarm due to noisy case reporting? We cast this

question as a multiple hypothesis testing problem and define a notion of hotspots that controls the

false discovery rate. Third, are these hotspots associated with how the colleges reopened, such as

in-person classes or the testing availability on campus? We investigate in greater detail a selection

of colleges within the college counties and categorize them in terms of their COVID-19 mitigation

measures. Then we test for associations between the measures and hotspot status.
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CHAPTER 2

Conditional Independence Test with Neural Network

2.1. Introduction

Given a triplet of random vectors (X,Y, Z), we use X⊥⊥Y |Z to denote X being conditionally

independent of Y given Z. The central question of this paper is testing

(2.1) H0 : X⊥⊥Y |Z versus H1 : X ̸⊥⊥Y |Z.

Conditional independence is a foundational concept with various applications in the both theoretical

and applied field of statistics. From a theoretical perspective, conditional independence provides a

unified language to describe concepts and phenomena such as sufficiency and Simpson’s paradox [9].

On the other hand, conditional independence testing plays a cardinal role in causal inference as

we will demonstrate. Demands of determining causal relationships have been soaring in fields

like genetics and machine learning. Geneticists have been constructing gene regulatory networks

from gene expression data to understand the causal relationship among genes [50]. In machine

learning, researchers and practitioners are drawn to causality-driven machine learning models [15,

30] which have more consistent predictive performance over time thanks to their robustness to

spurious correlations. Directed acyclic graphs (DAG) are often fruitfully used to represent causal

structures in both applications. Unless known from prior knowledge, DAGs need to be learnt from

the data and this opens the gateway of structural learning. Some widely adopted methods in

structural learning are the constraint-based approaches such as the PC algorithm [39] which relies

on testing conditional independence to discover the skeleton of the graph. Hence, having valid

and flexible conditional independence test methods adds powerful weapons to researchers’ causal

inference quivers.

In other applications, such as social network analysis [13], instead of causal relationships,

correlation and condition independence themselves are of interest. Many existing methods tackle the
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problem with an undirected graphical model (UGM). Like DAGs, researchers often have to learn the

structure of the UGM before inferring conditional independence. One popular approach is specifying

the full joint-likelihood with l1-regularization [11]. Gaussian model or Ising / Potts model are often

used to model the joint distribution when all variables in the graph are continuous or categorical

respectively. When the Gaussian model is assumed, we may use the zero entries of the inverse

covariance matrix to characterize conditional independence among variables. However, as Neykov

et al. [27] pointed out that departure from normality may lead to erroneous conclusions as when

data is not multivariate normal, zero partial correlation is not equal to conditional Independence. In

addition, both the Gaussian and the Ising / Potts models are restrictive on the type of variables they

can model. For example, neither are suitable for count data or strictly positive continuous random

variables. Yang et. al. [48] proposed a method to model the graph with distributions from univariate

exponential family distributions. Still, with the advances in machine learning and computing power,

we start to encounter unconventional data types such as text and images. Modeling distributions

of them can be challenging as illustrated by copious language models available [31]. In addition,

if we are only interested in a single or subset of conditional independence relationships which a

graph can encode, we would like to test the specific conditional relationship directly rather than

estimating the entire graphical model. This again calls for conditional independence test methods.

In summary, conditional Independence testing has applications in various fields. We will review

the existing literature on non-graphical conditional Independence test methods in the next section.

Readers who would like more exposure to graphical models and structural learning should check

the excellent survey paper [11] on the subjects by Drton and Maathuis.

2.1.1. Related Work. We define the lowercase p(.) as the probability density function (PDF)

and the uppercase P (.) as the probability mass function (PMF). So p(X,Y |Z) is the density of the

conditional distribution of X,Y |Z, and P (X,Y |Z) is the conditional PMF.

Shah and Peters [38] prove that for continuous (X,Y, Z), no test will have any power if the test

controls type 1 error for all distributions where X⊥⊥Y |Z. Neykov et al. [27] provide a more refined

proof for the continuous case and prove the theorem for discrete X and Y . Their insight is that the

culprit of the hardness of CI testing is the continuity of Z and the complexity of the space of all

conditionally dependent distributions. At a high level, one can consider conditional independent
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distributions of X and Y given Z are dense in conditional dependent distributions with respect

to the Wasserstein distance. Because of the hardness of the CI problem, people have developed

different assumptions and methods to make CI testing possible for certain scenarios.

Some of the methods we review here can be found in Li and Fan’s survey paper [22] which

provides a more detailed review with an empirical study. The first type of test is based on the

discretization of Z. Huang [17] proposed a test statistic which is the expected value of maximal

nonlinear conditional correlation between X and Y at selected Z values within the support. The

method assumes X,Y , and Z are all continuous and generates the p-value based on the local

bootstrap method based on the empirical CDF of Z, X|Z, and Y |Z. Neykov et al.’s [27] method is

also based on the discretization of Z (and X and Y for continuous X and Y ). They targeted cases

when Z is continuous on [0, 1] and X,Y are either discrete or continuous on [0, 1]. The test first

discretizes Z, computes U-statistics on each bin, and generates the p-value with data permutation

within each bin. In essence, methods based on discretization of Z only test X⊥⊥Y | bin(Z). X being

conditionally independent of implies X⊥⊥Y | bin(Z), but not necessarily vice versa.

Kernel-based methods are primarily designed for continuous X,Y and have strong empirical

performance in empirical studies [22]. The kernel conditional independence test (KCIT) by Zhang

et al. [49] “essentially tests for zero Hilbert-Schmidt norm of partial cross-covariance operator”

[35]. Despite computing its p-value through the asymptotic distribution of test statistics, it suffers

from high computation cost because it needs to compute a matrix inverse “which scale strictly

greater than O(N2)” [22]. Zhang and Visweswaran [40] have developed a randomized conditional

independence test and the randomized conditional correlation test to approximate KCIT to solve

the scalability problem of KCIT.

Another category of tests targeting continuous X and Y are regression-based methods. Shah

and Peter [38] proposed the generalised covariance measure which measures the correlation be-

tween residuals of regressing X on Z and Y on Z. The p-value is available through the asymptotic

distribution of the test statistic. Metric-based testing methods exploit the fact that conditional

distribution of X,Y |Z factorizes under H0. The conditional distance Independence test (CDIT)

developed by Wang [45] measures the distance between PX,Y |Z and PX|Z ∗ PY |Z through the con-

ditional characteristic function. Despite providing theories of asymptotic of their test statistic,
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authors still recommend using the nearest neighbor bootstrap method to generate the p-value due

to computational difficulties. The nearest neighbor bootstrap method generates bootstrap samples

by permuting X between two samples if their Z’s are close. The test is applicable for both con-

tinuous and discrete X and Y . Runge [35] proposes a test statistic based on conditional mutual

information ∫
Z

∫
Y

∫
X
log

p(x, y|z)
p(x|z)p(y|z)

dPX,Y,Z .

The p-value can be generated by repeatedly calling the nearest neighbor bootstrap method and

computing the test statistic on Bootstrap samples. Runge specifically mentions that the test is

designed for continuous responses and the test exceeds the nominal level in simulations on binary

X and Y in their simulations. The CCIT method proposed by Sen et al. [37] also uses the nearest-

neighbour method to simulate data under H0. However, instead of using a divergence metric, they

train a classifier to distinguish if a sample is from the original data or the simulated data. If the

classifier can perform better than random guessing, one can conclude the original violates H0. Sen

et al. only consider continuous X,Y in their paper, but the algorithm can be applied to discrete

X and Y without adjustments.

Last but not least, there is the conditional randomized test (CRT) introduced by Candès et

al. [6]. The CRT is more like a testing framework in the sense that it provides a general p-value

generating mechanism allowing users to pick their own test statistic. The framework assumes that

the conditional distribution of X|Z is either known or can be learnt extremely well from prior data.

The knowledge of the distribution of X|Z allows one to generate bootstrap X∗ and (X∗, Y, Z)

has the same distribution as the original sample (X,Y, Z) under H0. Then, the p-value can be

produced with the bootstrap (X∗, Y, Z). Berrett et al. [4] propose the the conditional permutation

test – a variant of the CRT. Instead of simulating X∗ using the conditional distribution, they

permute X from the original sample and use the conditional distribution of X|Z to determine

the permutation. Katsevich and Ramdas [19] create a most powerful test statistic for the CRT

framework by exploiting the conditional validity of CRT and reducing the hypotheses to point null

versus point alternative. Specifically, they assume the true p∗(X|Z) is known and fix alternative
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distributions p̄(Z), p̄(Y |X,Z). Their original hypotheses are

(2.2) H0 : (X,Y, Z) ∼ p(Z)p∗(X|Z)p(Y |Z) versus H1 : (X,Y, Z) ∼ p̄(Z)p∗(X|Z)p̄(Y |X,Z)

for some p(Z), p(Y |Z). H0 is composite. By conditioning Y, Z, they change hypotheses to for each

i,

(2.3) H0 : Xi|Yi, Zi ∼ p∗(X|Z) versus H1 : Xi|Yi, Zi ∼ p∗(X|Z) p̄(Yi|Xi, Zi)

p̄(Yi|Zi)

for given p̄(Yi|Zi)’s. Since both H0 and H1 are points, the likelihood ratio test statistic p̄(X,Y |Z)
p̄(X|Z)

is most powerful by Neyman-Pearson Lemma. In practice, one has to learn P̄ (X,Y |Z), P̄ (X|Z)

on a training set and compute the likelihood ratio test statistic on a test set. We will refer to the

likelihood ratio test statistic as the “Ising MP test statistic” in the remaining sections of the paper.

2.1.2. Summary of Results. As we review related works, we notice that most literature

focuses on the case in which X and Y are continuous. The CDIT, CCIT, and CRT with the

likelihood ratio test statistic are three tests we are aware of that can be applied to discrete X,Y

without restrictions on the support of Z. Our method fills the gap by providing a conditional

independence test when X and Y are discrete regardless of the continuity of Z. Our method

uses the Ising model for binary X,Y and the restricted Boltzmann machine for multi-class X and

Y . In both scenarios, we incorporate neural networks into the models so that they may model

a rich class of distributions. Our method handles confounders (Z) of various forms such as text,

images, and high-dimensional inputs. To reduce the computational cost, We adapt a score-based

bootstrap method so that we only fit the model once. In our simulation study, we compare our

method with the CCIT and CRT 1 method and show that our test statistic has superior type-I

and II error control. We prove that the test statistic separates the null and alternative hypothesis

asymptotically.

2.1.3. Organization. In Section 2.2, we first introduce the neural Ising model to model the

distribution binary X and Y . Next, we discuss test statistics derived from the Ising model. Section

2.3 covers the Bootstrap procedure to generate the p-value. We review the wild bootstrap method

1We only include CRT when generating the RoC curve and omit it from further simulations because of its RoC curve.
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and the score based bootstrap method [20]. Then we discuss how to apply bootstrap methods

to our test statistics. In Section 2.4, we extend our method to multi-class X and Y through a

restricted Boltzmann machine. Section 2.5 first illustrates simulation results of test statistics and

bootstrap methods based on the Ising model. Then, it shows examples of applying the Ising model

and restricted Boltzmann to real-world data. In Section 2.6, we provide theoretical results of the

asymptotic separability of our test statistics.

2.2. Problem Settings and Methods

2.2.1. Neural Ising Model. Suppose that we observe X,Y, Z with X,Y ∈ {−1, 1} and

Z ∈ Z. We allow the set Z to be flexible. It can be a set of continuous or discrete random variables

in Rd or a set of images of text data. Let J(Z) = (JX(Z), JY (Z), JXY (Z)) be the output of a

neural net. We further assume that the neural net has l layers and J. share all layers except the

lth layer. So

(2.4) J(Z) =
(
W⊤
Xh

[l−1](Z),W⊤
Y h

[l−1](Z),W⊤
XY h

[l−1](Z)
)
.

We define h[0](Z) = Z and h[l−1](Z) is a p-dimensional vector of the output of the (l − 1)-st layer

and W.’s are matrices of compatible dimensions. (2.4) implies that JX , JY , and JXY share weights

in all layers except the final linear layers. We will model the joint distribution of X,Y |Z with a

log-likelihood of

(2.5) logP (X,Y |Z) = −JX(Z) ·X − JY (Z) · Y − JXY (Z) ·XY − ψ(J(Z)).

where

ψ(J(Z)) = log
∑
(X,Y )

exp {−JX(Z) ·X − JY (Z) · Y − JXY (Z) ·XY }

The likelihood without the underlying neural network is often known as the Ising model. Define P

be the set of all joint distributions of X,Y |Z with the aforementioned likelihood and P0 = {P | P ∈

P, JXY (Z) = 0}. We refer to models in P as full models and models in P0 as reduced models. We

test (2.1) under model (2.5):

H0 :WXY = 0 versus H1 :WXY ̸= 0.
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Note this is a weaker hypothesis than hypotheses in (2.1) because WXY = 0 implies conditional

Independence but not vice versa. So our method has inflated type-I error for some distributions in

H0, but this is expected based on Shah and Peter’s result.

We will use θ to denote WXY from now on as it is the primary parameter of interest for our

problem. We define θ0 to be the parameter under H0 and θ0 = 0 based on our null hypothesis.

2.2.2. Test Statistics and Model Fitting.

2.2.2.1. Score Test Statistic. We adopt the notation introduced in Kline and Santos’ paper

[20]. To compute the score test statistic, we first fit a reduced model P̂ by solving the following

optimization problem:

(2.6) P̂0 = argmin
P∈P̃0

Ln = argmin
P∈P̃0

− 1

n

n∑
i=1

logP (Xi, Yi|Zi) = argmin
P∈P̃0

1

n

n∑
i=1

li.

P̃0 is a subset of P0 and it contains models with J(Z) follows a fixed set of architectures. We define

P̃ similarly. Let θ̂ be the maximum likelihood estimator of θ0,

Di = (Xi, Yi, h
[l−1]
i ),Σ(θ) = E[s(D, θ)s(D, θ)⊤],Σn(θ) =

1

n

n∑
i=1

s(Di, θ)s(Di, θ)
⊤.

The test statistic has the quadratic form Gn = T⊤
n Tn for a vector-valued Tn.

Tn =
(
An(θ̂)Σn(θ̂)An(θ̂)

⊤
)− 1

2
Sn(θ̂), Sn(θ̂) = An(θ̂)

1√
n

n∑
i=1

s(Di, θ̂).

In this section, the p x 1 vector si(θ) = ∇θli which is the gradient of li with respect to θ. Σ(θ)is the

covariance matrix of {s(Di, θ)}ni=1 and Σn(θ) is the sample covariance matrix. An(θ) is the inverse

of the p x p matrix Hn(θ) =
1
n

∑n
i=1∇2

θli. Hn(θ) is also known as the observed Fisher information.

We denote the Fischer Information E[∇2
θl] as H(θ). A straightforward calculation will show that

∀i ∈ {1, . . . , n} and j, k ∈ {1, . . . , p},

∂li
∂θj

= h
[l]
j

(
2(e2(JXi

+JYi ) + 1)

e2(JXi
+JYi ) + e2(JXi

+JXYi
) + e2(JYi+JXYi

) + 1
−XiYi − 1

)

and

∂2li
∂θjθk

= −
8h

[l]
j h

[l]
k (cosh(2JXi) + cosh(2JYi))e

2(JXi
+JYi+JXYi

)(
e2(JXi

+JYi ) + e2(JXi
+JXYi

) + e2(JYi+JXYi
) + 1

)2
10



An(θ̂)Σn(θ̂)An(θ̂)
⊤ is commonly known as the sandwich estimator of the variance of s(h[l−1]

. , θ).

The appeal of the sandwich estimator is that it provides a consistent estimator of variance especially

when the model is misspecified. However, when the sample size is not large, the sandwich estimator

may be unstable and inefficient [44]. In addition, the sandwich estimator requires calculating a

sample covariance matrix and its inverse. Thus, the computation can be expensive when the

dimension of s(h[l−1]
. , θ) is high. The computation burden will become more evident when we

discuss the bootstrap method. To that end, people often make the assumption that the model is

well-specified, then H(θ) = Σ(θ). Then, instead of the sandwich estimator, the observed Fisher

information matrix Hn(θ) becomes the new variance estimator and the test statistic takes the

simpler form

(2.7) Tn =
(
An(θ̂)

)− 1
2
Sn(θ̂), Gn = T⊤

n Tn.

Despite being less robust theoretically, (2.7) appears to have valid size control and high power

against the H1.

2.2.2.2. KL Test Statistic. We shall give a heads-up that the KL test statistic is studied only

to serve as a baseline for the size and the power of a test statistic. We do not have a computa-

tional feasible way to compute the p-value with the KL test statistic. For two discrete probability

distributions P and Q on A, we define

DKL(P ∥ Q) =
∑
a∈A

P (a) log

(
P (a)

Q(a)

)

which is the Kullback–Leibler (KL) divergence between P and Q.

We split the data into a training set and a test set, then fit model (2.5) on the training set and

obtained the fitted parameters Ĵ(Z) by solving the following optimization problem

P̂ = argmax
P∈P̃

1

n

n∑
i=1

logP (Xi, Yi|Zi).
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Let P̂ (X,Y |Z) be the likelihood with parameters Ĵ(Z) and PP̂ be the I-projection of P̂ onto P̃0

with parameters J(Z). The I-projection [8] P I(X,Y |Z) = argmin
Q∈P

DKL(Q ∥ P̂ ). Under H0,

DKL(Q ∥ P̂ ) = E[Xi] · (ĴX − JX) + E[Yi] · (ĴY − JY ) + E[XY ] · ˆJXY + ψ(Ĵ(Z))− ψ(J(Z))

= tanhJX · (JX − ĴX) + tanh JY · (JY − ĴY ) + tanh JX · tanh JY · ĴXY + ψ(Ĵ(Z))− ψ(J(Z))

Simple algebra will show that under H0, E[X] = − tanh JX . To find the J(Z), we first set JXY = 0,

then solve the following first-order conditions
∂DKL(Q∥P̂ )

∂JX
= 0

∂DKL(Q∥P̂ )
∂JY

= 0.

⇒


(ĴX − JX) · (sech JX)2 + tanh JX + (sechJX)

2 · tanh JY · ĴXY − tanh(Jx) = 0

(ĴY − JY ) · (sech JY )2 + tanh JY + (sechJY )
2 · tanh JX · ĴXY − tanh(JY ) = 0

⇒


(ĴX − JX) · (sech JX)2 + (sechJX)

2 · tanh JY · ĴXY = 0

(ĴY − JY ) · (sech JY )2 + (sechJY )
2 · tanh JX · ĴXY = 0

⇒


ĴX − JX + tanh JY · ĴXY = 0

ĴY − JY + tanh JX · ĴXY = 0.

The set of equations doesn’t have an analytic solution. Therefore, we solve it numerically with the

fsolve function in the SciPy package [43]. The KL test statistic

(2.8) Tkl =
1

n

n∑
i=1

DKL

(
P I(Xi, Yi|Zi) ∥ P̂ (Xi, Yi|Zi)

)
evaluated over a test set of size n.

2.2.2.3. Hyperparameter Tuning. Tuning hyperparameters is critical in adjusting the fit of a

neural network model. Hyperparameters in our model include but are not limited to the number of

hidden layers, the number of neurons in each hidden layer, the number of training epochs, and the

learning rate. We first split the full data into the training set and validation set. Then we perform

a randomized search on possible hyperparameter combinations by tracking the log-likelihood on
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the validation set. To have a more intuitive way of measuring the fit, we recommend tracking the

predictive performance as well. The prediction rule is

(X,Y ) = argmax
(x,y)∈{1,−1}2

P̂ (X = x, Y = y|Z).

When classes are balanced, tracking the accuracy metric is sufficient. Otherwise, we also track

precision and recall to evaluate the fit. Regardless of test statistics, we tune the model architecture

using models in P because we do not know the ground truth and want our model to have the

capacity to fit the data whether H0 is true or not. Once the hyperparameter search is done, we

fit the model with selected hyperparameters on the full data set. When computing the KL test

statistic, we split the data into training, validation and test set. The training and validation sets

are used for tuning and model fitting. The test statistic Tkl is computed on the test set.

2.3. Bootstrap P-Value

2.3.1. Score Based Wild Bootstrap. The score based bootstrap method [20] is based on

the wild bootstrap method developed by Wu [47] and Liu [23]. So we shall begin the section with

a high-level overview of the wild bootstrap method. Consider the linear model

Yi = X⊤
i β0 + ϵi, i = 1, . . . , n

with Yi, β0 ∈ R and Xi ∈ Rp. Let β̂ be the least square estimator of β0 and ei = Yi −X⊤
i β̂ be the

residual. The wild bootstrap method produces B bootstrap samples

{Y b
i , X

b
i }
n,B
i=1,b=1 Y b

i = X⊤
i β̂ + ϵbi ϵbi =W b

i ∗ ei.
∀b ∈ {1, . . . , B}, {W b

i }ni=1 are independent of {Yi, Xi}ni=1 and has mean 0, variance 1. For example,

the standard normal distribution is one candidate to generate {W b
i }ni=1. On each bootstrap sample,

the method asks for refitting the linear model and computing a bootstrap least square estimate

β̂b. Let β̂∗ denote the random variable of these bootstrap least square estimates. Condition on

{Yi, Xi}ni=1, the distribution of
√
n(β̂∗−β̂) is an empirical estimate of the distribution of

√
n(β̂−β0).

One may use the former to perform inference on β0, e.g. constructing confidence intervals.

The vanilla wild bootstrap method requires the refitting of the model on each bootstrap sample.

The refitting step may take a considerable amount of time even in linear regression, let alone a

13



more computationally challenging model. This leads us to the score based bootstrap (2.9) which

produces a bootstrap distribution of estimators without refitting the model. One key observation

Kline and Santos made is that “... the residuals only influence the limiting distribution of the OLS

estimator through the score”. Indeed, we have

√
n(β̂ − β0) =

√
n

(
n∑
i=1

XiX
⊤
i

)−1( n∑
i=1

XiYi

)
− β0

=
√
n

(
n∑
i=1

XiX
⊤
i

)−1 [ n∑
i=1

Xi(X
⊤
i β0 + ϵi)−

(
n∑
i=1

XiX
⊤
i

)
β0

]

= H−1
n

1√
n

n∑
i=1

Xiϵi

where Hn = 1
nXiX

⊤
i . Note that Hn is also the Hessian of the least square loss and Xiϵi is the score

of the loss evaluated at the true parameter β0. Similarly, one can show that

√
n(β̂∗ − β̂) = H−1

n

n∑
i=1

Xiϵ
∗
i = H−1

n

n∑
i=1

XieiW
∗
i .

Therefore, in order to simulate the empirical distribution of
√
n(β̂∗ − β̂), one could simply perturb

the score evaluated at β̂ instead of refitting the linear model as prescribed in the original wild

bootstrap method.

Kline and Santos extend the idea of perturbing scores to other models and develop a score

based bootstrap method which can produce the p-value for a large class of tests. Specifically, they

require the test statistic Gn to be the quadratic form T⊤
n Tn and

Tn =
(
An(θ̂)Σn(θ̂)An(θ̂)

⊤
)− 1

2
Sn(θ̂) + op(1), Sn(θ̂) = An(θ̂)

1√
n

n∑
i=1

s(Di, θ̂).

Di is a random vector containing both dependent and independent variables. s(Di, θ̂) is the score

vector of dimension p and An(θ̂) is an r by p matrix. In the linear model example, An(θ̂) is the

inverse of the Hessian. To compute bootstrap test statistic G∗
n, one may replace Tn with T ∗

n , where

(2.9) T ∗
n = (An(θ̂)Σ

∗
n(θ̂)An(θ̂)

⊤)−
1
2S∗

n(θ̂) + op(1), S
∗
n(θ̂) = An(θ̂)

1√
n

n∑
i=1

s∗(Di, θ̂)W
∗
i .

Wi is the noise with mean 0 and variance 1. Σ∗
n(θ̂) is the sample covariance matrix of {s∗(Di, θ̂)}ni=1.
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2.3.2. Generate the P-value with the Score Based Bootstrap. We adapt the score

based wild bootstrap method to obtain the p-value for the score test statistic introduced in Section

2.2.2.1. Algorithm 1 provides a step-by-step description of the procedure. Recall in Section 2.2.2.1,

we mentioned that the sandwich estimator has a higher computation burden. The point should be

more evident after the introduction of Algorithm 1, as the sandwich variance estimator requires

re-computing the sample covariance matrix of the scores and its inverse for each bootstrap test

statistic.
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Algorithm 1 Score Test Statistic P-Value

Input: {Xi, Yi, Zi}ni=1, model architecture, variance estimator type, number of bootstrap trials

(B).

Fit a P̂ ∈ P̃0 based on model architecture.

Produce the output of the last hidden layer {h[l−1]
i }ni=1 using P̂ .

Calculate the scores {s(Di, θ̂)}ni=1 based on P̂ , where Di = (Xi, Yi, h
[l−1]
i ).

Compute Σn(θ̂) which is the sample covariance matrix of {s(Di, θ̂)}.

Calculate An = H−1
n . Hn is the Hessian based on P̂ .

Compute Sn(θ̂) = An(θ̂)
1√
n

∑n
i=1 s(Di, θ̂)).

if variance estimator type is the sandwich estimator then

Tn =
(
An(θ̂)Σn(θ̂)An(θ̂)

⊤
)− 1

2
Sn(θ̂)

else

Tn =
(
An(θ̂)

)− 1
2
Sn(θ̂)

end if

Calculate the test statistic Gn = TnT
⊤
n .

for b ∈ {1 . . . , B} do

Generate i.i.d. W b
i ’s with E[Wi] = 0, V ar(Wi) = 0 and i ∈ {1, . . . , n}.

Calculate perturbed scores {W b
i s(Di, θ̂)}ni=1.

Produce perturbed scores {sb(Di, θ̂) = wi ∗ si(θ0)ni=1}.

Compute Sbn(θ̂) = An(θ̂)
1√
n

∑n
i=1 s

b(Di, θ̂)).

if variance estimator type is the sandwich estimator then

Compute Σbn(θ̂) which is the sample covariance matrix of {sb(Di, θ̂)}ni=1.

T bn =
(
An(θ̂)Σ

b
n(θ̂)An(θ̂)

⊤
)− 1

2
Sbn(θ̂)

else

T bn =
(
An(θ̂)

)− 1
2
Sbn(θ̂)

end if

Gbn =
(
T bn
)⊤
T bn.

end for

Return: 1
B

∑B
i=1 1{Gbn > Gn}

16



Because we have not discovered a way to decompose the KL test statistic into the form described

in Section 2.3.1, we cannot apply the score based bootstrap method to the KL test statistic.

Therefore, we do not have a method to compute the bootstrap p-value within a reasonable time.

However, in principle, we could produce a p-value KL test statistic by generating bootstrap samples

under H0 with a P̃ ∈ P̃0 learnt on the data. Algorithm 2 describes how one would implement the

idea. Readers who are not interested in the thought process may safely skip to the next section.

Algorithm 2 KL Test Statistic P-Value

Input: {Xi, Yi, Zi}ni=1, model architecture, P̃ method, number of bootstrap trials (B).

Split the data into a training set and a test set.

Fit a P̂ ∈ P̃ on the training set based on model architecture.

Compute the KL test statistic Tkl described in Section 2.2.2.2 on the test set.

Produce a P̃ ∈ P̃0 based on P̃ method on the training set.

for b ∈ {1 . . . , B} do

Generate {Xb
i , Y

b
i }ni=1 using P̃ condition on {Zi}ni=1 in the training set.

Fit a P̂ b ∈ P based on model architecture and {Xb
i , Y

b
i , Z

b
i }i=1.

Compute the KL test statistic T bkl based on P̂ b on the test set.

end for

Return: 1
B

∑B
i=1 1{T bkl > Tkl}

There are a few choices of how to learn P̃ appearing in Algorithm 2. The obvious one is fitting

a model in P̃0 in addition to P̂ . To avoid refitting, one could either let P̃ be the I-projection of

P̂ onto P̃0, or let P̃ share parameter values with P̂ but set JXY = 0. Algorithm 2 is similar to

Candes et al. [6] and Berrett et al. [4]’s methods. The difference is that their methods only estimate

P (X|Z) and use permutation to simulate data under H0; whereas we estimate both P (X|Z) and

P (Y |Z).

Ultimately, we didn’t use Algorithm 2 to generate P-values, because refitting the model in each

bootstrap iteration is too computationally expensive.
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2.4. Restricted Boltzmann Machine for Categorical Responses

In this section, we discuss the extension of our method to multi-class X and Y . We focus on

the case in which X and Y are categorical but not ordinal. Define ei to be a one-hot vector of

which the ith entry is 1 and 0 otherwise. E.g, if e2 ∈ R3, ei = [0, 1, 0]⊤. Suppose X has kx classes

and Y has ky classes, then X ∈ {ei : ei ∈ Rkx} and Y ∈ {ei : ei ∈ Rky}. Define 1k ∈ Rk to be a

vector of all ones. We only consider the conditional distribution of the form

(2.10) logP (X,Y |Z) = X⊤J(Z)Y − log
∑
X,Y

exp{X⊤J(Z)Y }

and J(Z) is a kx by ky parameter matrix with each entries being a function of Z. We assume that

the function is an l-layer neural network in which all outputs shared layers except the last layer.

So ∀i ∈ {1, . . . , kx}, j ∈ {1, . . . , ky},

(2.11) Jij(Z) = Φ⊤
ijh

[l−1](Z)

where h[l−1](Z) ∈ Rp is the output of the l−1th layer and Φij = (Φij1, . . . ,Φijp) ∈ Rp is the weights.

We will explain why the restriction on network architecture exists during hypotheses formulation.

Similarly, we only consider the conditional independent distribution of the form

(2.12) logP (X,Y |Z) = X⊤γx(Z) + γy(Z)⊤Y − log
∑
X

exp{X⊤γx(Z)} − log
∑
Y

exp{γy(Z)⊤Y }.

We impose restrictions like (2.11)– namely, ∀i ∈ {1, . . . , kx}, j ∈ {1, . . . , ky},

(2.13) γxi (Z) = α⊤
i h

[l−1](Z), γyj (Z) = β⊤j h
[l−1](Z), αi, βj ∈ Rp.

Define Pb be the set of all conditional distributions satisfying (2.10) and (2.11) and Pb
0 be the set

of all conditional distributions satisfying (2.12) and (2.13). Note under model (2.12), conditional
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Figure 2.1. This is a graphical illustration of model (2.10) when ignoring the
dependency on Z. In this example, X has three classes and Y has two classes. Each
node is associated with a class and only one node in each row can equal 1 at a
time. In Pb \ Pb

0, PMF is determined by edges (Jij). Whereas, in Pb
0, all edges are

eliminated and the PMF is determined by nodes.

distributions of X|Z and Y |Z are two softmax models and

X⊤γx(Z) + γy(Z)⊤Y = X⊤γx(Z)(1ky)⊤Y +X⊤1kxγy(Z)⊤Y

= X⊤[γx(Z)(1ky)⊤ + 1kxγy(Z)⊤]Y

= X⊤J(Z)Y.(2.14)

So model (2.12) is just a special case of model (2.10) with

(2.15) J(Z) = γx(Z)(1ky)⊤ + 1kxγy(Z)⊤

for some γx(Z) ∈ Rkx and γy(Z) ∈ Rky . Without the underlying neural network for J(Z), the

model specified in Equation (2.10) is commonly known as a restricted Boltzmann machine (RBM).

Figure 2.1 illustrates RBM as an undirected graphical model.

2.4.1. Hypotheses Formulation. In this section, we will characterize conditional indepen-

dence under the RBM model, then formulate hypotheses with the characterization. We begin with

a proposition.

Proposition 1. Given Pb and Pb
0, if P (X,Y |Z) ∈ Pb and X⊥⊥Y |Z if and only if P (X,Y |Z) ∈

Pb
0.
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Proof. The backward direction is trivial. We will prove the forward direction. Since P (X,Y |Z) ∈

Pb, without the normalizing constant, logP (X,Y |Z) = X⊤J(Z)Y . If X⊥⊥Y |Z, X⊤J(Z)Y factor-

izes. Let J(Z)x and J(Z)y be two kx by ky matrices. If X⊤J(Z)Y factorizes,

X⊤J(Z)Y = X⊤J(Z)xY︸ ︷︷ ︸
a

+X⊤J(Z)yY︸ ︷︷ ︸
b

and term (a) and (b) each only depends on one random variable. Without losing generality, let’s

assume term (a) doesn’t depend on Y . If term (a) depends only on X, J(Z)xY doesn’t depend

on Y . If J(Z)xY doesn’t depend on Y , J(Z)xY = γx(Z) for some γx(Z) doesn’t depend on Y .

Similarly, if term (b) depends only on Y , X⊤J(Z)y = γy(Z) and γy(Z) is a vector that doesn’t

depend on X. If J(Z)xY = γx(Z) and X⊤J(Z)y = γy(Z), logP (X,Y |Z) has the form in (2.12).

So logP (X,Y |Z) ∈ Pb
0. □

Proposition 1 allows us to test conditional independence with the following hypotheses:

H0 : P (X,Y |Z) ∈ Pb
0 versus H1 : P (X,Y |Z) ∈ Pb \ Pb

0.

Testing P (X,Y |Z) ∈ Pb
0 is equivalent to testing if

J(Z) = γx(Z)(1ky)⊤ + 1kxγy(Z)⊤.

SoH0 is composite making applying conventional testing methods such as the score test challenging.

We would like our hypothesis to be of the form g(Φ) = 0 instead of g(Φ, Z) = 0 for some parameter

Φ.

We solve the second problem but at the cost of the power of the test. First, we need a few new

definitions. Under (2.10), (2.11), we have

J(Z) =


Φ⊤
11h

[l−1](Z) . . . Φ1kyh
[l−1](Z)

...

Φ⊤
kx1
h[l−1](Z) . . . Φ⊤

kxky
h[l−1](Z)

 .
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Let Φ = (Φ)ijki ∈ {1, . . . , kx}, j ∈ {1, . . . , ky}, k ∈ {1, . . . , p} be the parameter tensor. ∀Φijk ∈ R,

we define

r̄i.k =
1

ky

ky∑
j=1

Φijk, c̄.jk =
1

kx

kx∑
i=1

Φijk, m̄..k =
1

kxky

kx∑
i=1

ky∑
j=1

Φijk

Define the linear operator, P : Rkx×ky → Rkx×ky .∀i ∈ {1, . . . , kx}, j ∈ {1, . . . , ky}, k ∈ {1, . . . , p}

(PΦ)ijk = Φijk − r̄i.k − c̄.jk + m̄..k

Now we are ready for the following result

Theorem 1. P (X,Y |Z) ∈ Pb
0 implies that PΦ = 0.

Proof. Since P (X,Y |Z) ∈ P0,

J(Z) =


Φ⊤
11h

[l−1](Z) . . . Φ1kyh
[l−1](Z)

...

Φ⊤
kx1
h[l−1](Z) . . . Φ⊤

kxky
h[l−1](Z)


(by (2.14))

=


(α1 + β1)

⊤h[l−1](Z)⊤ . . . (α1 + βky)
⊤h[l−1](Z)

...

(αkx + β1)
⊤h[l−1](Z) . . . (αkx + βky)

⊤h[l−1](Z)


(by (2.15))

=


(α11 + β11)

⊤h
[l−1]
1 (Z) . . . (α1p + β1p)

⊤h
[l−1]
p (Z) . . . (α1p + βkyp)

⊤h
[l−1]
p (Z)

...

(αkx1 + β11)
⊤h

[l−1]
1 (Z) . . . (αkxp + β1p)

⊤h
[l−1]
p (Z) . . . (αkxp + βkyp)

⊤h
[l−1]
p (Z)


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Then ∀i ∈ {1, . . . , kx}, j ∈ {1, . . . , ky}, k ∈ {1, . . . , p},Φijk ∈ R,

(PΦ)ijk = αik + βjk −
1

ky

ky∑
j=1

(αik + βjk)−
1

kx

kx∑
i=1

(αik + βjk) +
1

kxky

kx∑
i=1

ky∑
j=1

(αik + βjk)

= − 1

ky

ky∑
j=1

βjk −
1

kx

kx∑
i=1

αik +
1

kxky

kx∑
i=1

ky∑
j=1

(αik + βjk)

= 0.

□

We formulate our hypotheses as

H0 : PΦ = 0 versus H1 : PΦ ̸= 0.

Since Theorem 1 only has one direction, it is possible that distribution in P b \ P b0 but PΦ = 0.

Therefore, our test may not have power against some distributions in H1. Nevertheless, now our

hypotheses are stated in terms of population parameters only and we can apply the score test and

other parametric tests.

2.4.2. Score Test Statistic. To compute the score test statistic, we fit a Boltzmann machine

of X,Y |Z with

Φijk = αik + βjk, ∀i, j, k.

We then flatten Φ into a vector and fill in the vector by rows. We denote the flattened parameter

vector as θ. The test statistic still has the quadratic form Gn = T⊤
n Tn for a vector valued Tn.

Tn =
(
An(θ̂)Σn(θ̂)An(θ̂)

⊤
)− 1

2
Sn(θ̂), Sn(θ̂) = An(θ̂)

1√
n

n∑
i=1

s(Di, θ̂).

However, since we have the additional P in our hypotheses, we need to modify the test statistic

to achieve a better convergence rate 2. Specifically, An(θ) = ṖHn(θ)
−1 where Ṗ is the Jacobian

matrix of PΦ with respect to Φ. Since P is a linear transformation, Ṗ = P . For the variance

estimator, we can still choose between the sandwich estimator and the Fisher information matrix

2For a formal justification, see Chapter 12.6.2 in Wooldridge [46].
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by deciding whether to assume Hn(θ) = Σn(θ̂). Combine these changes and we have

Tn =
(
ṖHn(θ̂)

−1Ṗ⊤
)− 1

2
Sn(θ̂), Sn(θ̂) = ṖHn(θ̂)

−1 1√
n

n∑
i=1

s(Di, θ̂).

Algorithm 1 can still be applied to obtain the p-value.

2.5. Empirical Results

2.5.1. Simulations. We conducted simulation studies sensitivity and specificity of various test

statistics and the size of associated tests. We generated Zi ∈ R3 from the multivariate standard

normal. Then we considered two conditional distributions of X,Y |Z.

(1) Ising Data

• X,Y |Z ∼ P , where P ∈ P0 under H0 and P ∈ P under H1.

• We let J(Z) be a 2-layer neural network with 100 hidden nodes.

(2) Mixture Data

• Under H0, P (X = 1|Z) = P (Y = 1|Z) = 1
1+exp{−||Z||2} .

• Under H1, if ||Z||2 < 1.53, X = −Y . Otherwise, X = Y .

For each data-generating mechanism, we simulated data under 4 sample sizes (100, 500, 1000,

2000). Under each sample size and hypothesis (H0 or H1) combination, we generated 1000 data

sets. In essence, the data generation setting can be represented by a triplet (e.g (Ising data, H0,

100)). Note that under mixture data H1, X but Y are conditionally dependent and marginally

independent.

There are four test statistics based on the Ising model. They are Ising KL, Ising MP, Ising

Score Sandwich, and Ising Score Fisher. Ising KL refers to test statistic (2.8). Ising Score Sandwich

and Ising Score Fisher are test statistics introduced in Section 2.2.2.1 with corresponding variance

estimators. Ising MP test statistic has the form Πni=1
P̂ (Yi|Xi,Zi)

P̂ (Yi|Zi)
which is introduced in Katsevich

and Ramdas’s paper [19]. When computing Ising KL and Ising MP test statistics, we reserve 10%

of the data as the test data. We fit a model P̂ ∈ P on the training set and compute the test

statistic on the test set. Other Ising test statistics are based on a fitted model P̂0 ∈ P0 and don’t

require a train-test split. On the Ising data, both P̂ and P̂0 have the same architecture as the data
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generating distribution P . So there is no model misspecification. On the mixture data, both P̂ and

P̂0 have a network with 2 hidden layers and 40 nodes in each layer.

We also include test statistics from three other tests for comparison. The Chi-square goodness

of fit test (Naive Chi Sq) forms a contingency table of X and Y . The test statistic is

2∑
i=1

2∑
j=1

(Oij − Eij)
2

Eij
.

where Oij is the observed cell count in the ith row and jth column of the table and Eij is is the

expected cell count in the ith row and jth column of the table. Although, the Chi-square goodness

of fit tests for the independence of X and Y rather than the conditional independence, we include

it to demonstrate the consequence of ignoring confounding factors Z. The stratified Chi-square

test is an extension of the Chi-square goodness of fit tests in the sense that it performs a goodness

of fit test on each stratum. In this study, we first run a k-means clustering algorithm with k = 2,

then compute the test statistic
2∑
c=1

2∑
i=1

2∑
k=1

(Ocij − Ecij)
2

Ecij

where Ocij is the observed cell count in the ith row and jth column of the table of cluster c. Ecij

is defined accordingly.

The final test is the CCIT method in Sen et al.’s paper [37]. Although in the original paper,

authors assume that both X and Y are continuous random variables, the method in principle can

be applied to discrete X and Y . We use the code3 provided by the author with default settings.

3Link: https://github.com/rajatsen91/CCIT
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(a)

(b)

Figure 2.2. RoC curves of different methods fitted under the Ising Data (Top) and
mixture data (bottom).

Figure 2.2 contains RoC curves of all test statistics under different settings. Under the Ising

data, unsurprisingly, all test statistics based on the exact Ising model perform well, though Ising MP

has considerably less power. Ising KL test statistic demonstrates the best capability to distinguish

H0 fromH1. As sample size increases, Ising Score Fisher and Ising Score Sandwich perform similarly

compared to Ising KL. The Chi-square goodness of fit test can’t separate H0 from H1, but it also

doesn’t pick up erroneous signals. The stratified version performs commendably well especially

when the sample size is low. The k-means clustering probably produced reasonable strata. On

the mixture data, the Chi-square goodness of fit test picks up the incorrect signal because of the

construction of (Mixture data, H1, ∗). Our simple stratification fails to account for confounders. On

the other hand, our proposed test statistics have excellent powers and advantages over competing

methods when the sample size is small.
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Figure 2.3 and 2.4 shows the distribution of P-values produced by Algorithm 1. P-values of the

Ising Score Fisher test seem to be conservative when the sample size is small. As the sample size

grows, p-values under H0 distribute more uniformly regardless of the data generating settings. In

contrast, Ising Score Sandwich rejects H0 more aggressively under both H0 and H1. The chance

of rejecting H0 is higher than the nominal level of the test under H0 on the mixture data with

given sample sizes. Since the Ising Score Fisher test is better at controlling the type 1 error and

computationally less taxing (one less matrix to invert), we recommend it over the sandwich version.

(a)

(b)

Figure 2.3. Histograms of P-values of Algorithm 1 on the Ising Data. The red
line sits at 0.05. Numbers in each subtitle indicate the sample size and the rejection
rate of H0 at 0.05 level.

26



(a)

(b)

Figure 2.4. Histograms P-values of Algorithm 1 on the Mixture Data. The red
line sits at 0.05. Numbers in each subtitle indicate the sample size and the rejection
rate of H0 at 0.05 level.

2.5.2. The Adult Data Set. For assessing the fairness of policies we typically identify pro-

tected attributes and determine if the effect of interest is dependent on the protected attributes.

However, there may be “benign factors” such that if they explain this dependence then we can still

say that the policy is fair. For example, when assessing the gender wage gap, we typically ask the

question: do women make the same amount as men for the same job? The occupation, possibly in

addition to resume, location, etc. are the benign factors in this case.

We apply Algorithm 1 with the variance estimator being the Fisher information to the Adult

Data Set [12] to assess fairness. We study the question of whether income is independent of

gender conditioning on factors such as the sector of jobs (“workclass”), degree level (“education”),

occupation, native country, age, weight of each sample (“fnlwgt” ), years of education (“education-

num”), “capital-gain”, “capital-loss” and hours-per-week. Since income and gender are binary

random variables in the data set, we fit the Ising model which is designed for binary responses.

The data set has already been split into a training set and a test set on the UCI Machine Learning
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Repository. For simplicity, we only use the training set to implement Algorithm 1. To show that our

model fits the data reasonably well, we report the predictive performance on the test set in Table 2.1.

Since complicated architectures improve neither the likelihood nor the predictive performance, we

let J(Z) be simple linear functions of confounders Z. Namely, J(Z) = (Z⊤WX , Z
⊤WY , Z

⊤WXY ).

After selecting the architecture and other hyperparameters such as learning rate, we run Algorithm

1 and get a p-value of 0. So our method concludes that there is a gender pay gap after controlling

for confounders such as age and educational background etc.

Accuracy Precision Recall F1

Sex (Female) 0.746 0.673 0.433 0.526

Income (> 50k) 0.808 0.647 0.481 0.551

Table 2.1. Predictive Performance of P̂ ∈ P. Metrics are based on minority classes
(”Female” and ”> 50k”).

2.5.3. The Cells Out of Sample Dataset. The adult data set provides a showcase for the

binary Ising model with a simple linear relationship between Z and J(Z). Now we illustrate an

application of the Boltzmann machine model with neural networks through the Cells Out of Sample

Dataset (COOS) [24]. COOS contains 132,209 images of mouse cells divided almost evenly into 7

classes. The data set has one training set and four test sets with various degrees of covariate shift.

Covariate shift [26] is defined as

P (Y |X, training) = P (Y |X, test), P (X| training) ̸= P (X| test).

In words, covariate shift means that the distribution of input data X shifts between the training

set and the test set. The test set may contain X that is not seen in the training set (out-of-

sample), therefore, the models’ predictive performance on the test set may suffer [24] because of

extrapolation when predicting labels on the test set.

Lu et al. [24] create images with covariate shift by taking images on different days and plates,

etc. These changes should not alter the definitions of the cell class/label. So the relationship
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between images and their labels shouldn’t change because of the alternation in photo-taking tech-

niques. However, in general, other types of distribution shifts may occur alongside the change of

distribution of X. The covariate shift assumption

P (Y |X, training) = P (Y |X, test)

does not necessarily hold. We would like to verify that there are no other types of distribution

shift that happens with the covariate shift in the COOS data. The ability to answer this type of

question may help researchers and practitioners to diagnose model performance drop going from

training to production in the real world.

In essence, we test whether the covariate shift assumption holds. The covariate shift assumption

can be tested with a conditional independence test. For the COOS data set, set

Z =


0, if the sample is from the training set

1, if the sample is from the test set.

Y to the image label, and X to the image. Then the hypotheses become

H0 : P (Y |X,Z) = P (Y |X) versus H1 : P (Y |X,Z) ̸= P (Y |X).

We create two experiments to test if our model can determine the existence of distribution

shifts by mixing the training data with different test sets. In the first experiment, we use test set 1

which is a random holdout from the original training set. So test set 1 doesn’t have covariate shift

and as illustrated in Lu et al.’s paper [24], models show little signs of predictive performance loss.

The best model only shows 0.4% increase in classification error compared to 1% on the training

set. In the second experiment, we use test set 3 of which “images from 2 independent plates for

each class, were reproduced on different days than the training dataset”. Many models suffer the

largest increase in classification error on the test set 3 with the smallest increase being 5.2%. Due

to memory constraints, we limit the sample size to 5000 and only use images with labels 0, 1, and

2. Data are summarized in Table 2.2.
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Training Sample Prop Image Class 0 Image Class 1 Image Class 2

Experiment 1 0.81 0.37 0.18 0.45

Experiment 2 0.56 0.4 0.31 0.29

Table 2.2. Summary of Labels in COOS Experiments. Training Sample Prop
means the proportion of samples from the training set.

We fit an RBM model with J(Z) being the neural network of the following architecture:

(1) A pre-trained VGG16 network without the top 3 layers from Tensorflow.

(2) Three fully connected layers with Exponential Linear Unit (ELU) function as activation

functions.

(3) A softmax layer.

Each fully connected layer has the output dimension half of the input dimension. The dimension of

the output of the final layer is 128. Again, to demonstrate the fit of our model, we report predictive

performance on the validation set along with p-values.

Data Set Label Accuracy Image Label Accuracy P-value

Experiment 1 0.767 0.973 0.364

Experiment 2 0.824 0.985 0.111

Table 2.3. Summary of Test Results.

In both experiments, our model has comparable performance against models in Lu et al.’s

paper [24]. More importantly, our models fail to reject H0 in both cases with a common level 0.05.

We also include the CCIT method for comparison. The CCIT method uses the J(Z) without the

softmax layer as input and the predict the (X,Y ) pair is from the original sample and a bootstrap

sample. The prediction accuracy is 0.52 and 0.45 for test set 1 and 3 respectively. So, if we use 50%

as the threshold, CCIT concludes that test set 1 does not satisfy the covariate shift assumption,

while test set 3 satisfies the assumption.
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2.6. Theories in the Linear Case

This section discusses theories of asymptotic separability of our test statistics under the Ising

model. We assume all weights except WXY are known. In other words, we assume that WX , WY ,

and all weights in the hidden layer are assumed to be known. Hence, our theories are for the case

when JXY (Z) is a linear function. Asymptotic separability means that the probability of type 1

and type 2 errors go to 0 asymptotically. We first introduce a few new notations and definitions

most of which follow the convention in [29]. Recall we used θ to denote W
[l]
XY . We assume θ and

h[l−1] ∈ Rp. In equation (2.6), we defined

Ln(θ) =
1

n

n∑
i=1

logPθ(Xi, Yi|Zi) =
1

n

n∑
i=1

li(θ).

and L(θ) = logPθ(X,Y |Z). Define

θ0 = argmin
{θ:P (X,Y |Z)∈P0}

L(θ).

So θ0 = 0, but we kept the notation θ0 to remind the reader what it is conceptually. We will make

the dependence between l and θ explicit by letting

l(θ) = l(X,Y, h[l−1],⊤θ) = l(X,Y, η),

where η = h[l−1],⊤θ. We will abuse notation and let the derivative l′(X,Y, η) be taken with respect

to η. Since we defined s(θ) = ∇θl(θ) in Section 2.2.2.1, s(θ) can also be written as l′(X,Y, η)h[l−1].

For two functions f and g which share the same domain, we write f ≾ g if f(·) ≤ C · g(·). For two

square matrices of the same shape, A1 ≺ (≼)A2, if A2−A1 is positive-(semi)definite. Following [41],

we define the sub-gaussian norm ψ2 of a random variable X as

||X||ψ2 = inf
{
t > 0 : E[eX

2/t2 ] ≤ 2
}
,

where ⟨., .⟩ is the dot product between two vectors. The definition can be extended [29] to a random

vector Z ∈ Rd via

(2.16) ||Z||ψ2 = sup{||⟨Z, θ⟩||ψ2 : ||θ||2 ≤ 1, θ ∈ Rd}.
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For a matrix A ≽ 0, we define the seminorm ||θ||A = ||A1/2θ||2 with || · ||2 being the Euclidean

norm. For a m by n matrix A = (aij), we define the operator norm of A to be maxx ̸=0
||Ax||2
||x||2 and

Hilbert-Schmidt norm of A to be
(∑

i,j a
2
ij

)1/2
. Let I denote the identity matrix with conformable

dimensions.

Now we introduced a series of assumptions from [29]. First, we assume the existence of matrices

M = E[s(θ0)s(θ0)
⊤], H = E[∇2l(θ0)].

The expectations are taken with respect to the joint distribution of (X,Y, Z). H is assumed to be

positive-definite.

Since our theories only cover the linear case, we may treat h[l−1] as the input of the linear

function. To simplify the notation we are going to use Z to represent h[l−1]–the input of the linear

function JXY . Next three assumptions about the distribution of Z from [29].

Assumption 1. The decorrelated loss gradient at θ0 is subgaussian.

||M−1/2(s(θ0)− E[s(θ0])||ψ2 ≤ K1.

Assumption 2. The calibrated design Z̃ = |l′′(X,Y, Z⊤θ0)|1/2Z satisfies

||H−1/2Z̃||ψ2 ≤ K2.

Assumption 3. The model is well-specified.

M = H.

With Assumption 3, we fix the variance estimator to be the Fisher information when considering

the score test statistic Gn under the Ising model.

Next are some probabilistic tools used in our proofs.

Theorem 2 (Theorem A.1 in [29]). Let Z ∈ Rd be an isotropic (have zero mean and unit

covariance) random vector with ||Z||ψ2 ≤ K, and let J ∈ Rd×d be positive semidefinite. Then,

P (||Z||2J − Tr(J) ≥ t) ≤ exp

(
−cmin

{
t2

K2||J ||22
,

t

K||J ||∞

})
.
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In other words, with probability at least 1− δ it holds

||Z||2J − Tr(J) ≾ K2
(
||J ||2

√
log(1/δ) + ||J ||∞ log(1/δ)

)
.

Theorem 3 (Theorem A.2 in [29]). Assume that the random vector X ∈ Rd satisfies E[Z̃Z̃⊤] =

H and ||H−1/2Z̃||ψ2 ≤ K. Let Hn = 1
n

∑n
i=1 Z̃iZ̃

⊤
i , where Z̃1, . . . , Z̃n are independent copies of

Z̃. Whenever

n ≿ K4(d+ log(1/δ)),

with probability at least 1− δ it holds

||∆||2H/2 ≤ ||∆||2Hn
≤ 2||∆||2H , ∀∆ ∈ Rd.

In other words, H/2 ≼ Hn ≼ 2H with probability at least 1− δ.

Corollary 1. Under the same conditions stated in Theorem 3,

||∆||2
H−1/2 ≤ ||∆||2

H−1
n

≤ 2||∆||2
H−1 , ∀∆ ∈ Rd.

with probability at least 1− δ.

Proof. It suffices to show that for two symmetric matrices A and B, A ≼ B ⇒ B−1 ≼ A−1.

The claim requires two results. First, A ≼ B ⇒ CAC ≼ CBC for any conformable C. Second,

I ≼ B ⇒ B is invertible and B−1 ≼ I. The first claim is straightforward to show. We prove the

second claim here. Since B is symmetric, ∃ an orthogonal matrix O and a diagonal matrix Λ such

that B = OΛO⊤. Then Λ = O⊤BO ≽ O⊤IO = I by the first result. Therefore all eigenvalues of

B are larger or equal to 1. So B is invertible. Also, B−1 = B−1/2IB−1/2 ≼ B−1/2BB−1/2 = I.

We proved the second result. Now we are ready to prove B−1 ≼ A−1. Since

A ≼ B ⇒ 0 ≼ B −A

⇒ 0 ≼ A−1/2(B −A)A−1/2

⇒ I ≼ A−1/2BA−1/2

⇒ A1/2B−1A1/2 ≼ I,
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we have

B−1 = A−1/2(A1/2B−1A1/2)A−1/2 ≼ A−1/2IA−1/2 = A−1.

□

Lemma 1 (Lemma A.4 in [29]). Let Z1, . . . , Zn be i.i.d. random vectors, then one has ||
∑n

i=1 Zi||2ψ2
≾∑n

i=1 ||Zi||2ψ2
.

Lemma 2 (Sample mean of subgaussian is subgaussian. Lemma 5.9 in [42]). Let X1, . . . , Xn be

independent mean-zero subgaussian random variables with ||Xi||ψ2 = K for all i’s. Then 1
n

∑n
i=1Xi

is subgaussian and || 1n
∑n

i=1Xi||ψ2 = C2
K√
n
for some constant C2.

2.6.1. Score Test Statistics. Now we are ready to present the result of the asymptotic

separability of the score test statistics under the assumptions we stated. In words, asymptotic

separability means as n → ∞, there exists a decision rule such that the probability of making

either the type-I or type-II error goes to 0. Asymptotic separability is formally stated in Corollary

2. To develop Corollary 2, we first prove Theorem 4 which says the score test statistic is bounded

from above with high probability under H0. Then in Theorem 5 we show that the score test statistic

is bounded from below with high probability.

Theorem 4 (Upper Bound of the Score Test Statistic under H0). Assume H0, Assumptions 1,

2, and 3 are true. Then Gn ≾ p(K2
1 log(1/δ)+1)

n with probability at least 1− 2δ, δ ∈ (0, 1), as long as

n ≿ p ·K4
2 (p+ log(1/δ)). Recall p is the dimension of θ.

Proof. The proof is a slight modification of the proof of the first part of Theorem 3.1 in [29].

Because of Assumption 2 and the bound of n, we can apply Theorem 3 to Hn and H. Therefore,

we have

P

(
1

2
H ≼ Hn ≼ 2H

)
≥ 1− δ.

Let A denote the event 1
2H

−1/2 ≼ H
−1/2
n ≼ 2H−1/2. By Corollary 1, P (A) ≥ 1− δ.

Next, we apply Assumption 1 to prove the claim. Under H0, ∇si are independent, zero mean,

and with covariance M . Hence, random vectors M−1/2si(θ0) are independent and isotropic. By

Assumption 1 and E[si(θ0] = 0 under H0, ||M−1/2si(θ0)||ψ2 ≤ K1 for all i’s. By Lemma 1
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about the subgaussian norm of the sum of i.i.d. random vectors, we have that the random vector

An =
√
n 1
n

∑n
i=1M

−1/2si(θ0) is isotropic, satisfying ||An||ψ2 ≾ K1. Moreover,

|| 1
n

n∑
i=1

si(θ0)||2H−1 =
1

n
||An||2J , with J = M1/2H−1M1/2.

By Theorem 2, Assumption 3, and the fact that ||J ||∞ ≤ ||J ||2 ≤ Tr(J) = p,

P (||An||2J ≾ p(K2
1 log(1/δ) + 1)) ≥ 1− δ ⇒ P (|| 1

n

n∑
i=1

si(θ0)||2H−1 ≾
p(K2

1 log(1/δ) + 1)

n
) ≥ 1− δ

Let B denote the event || 1n
∑n

i=1 si(θ0)||2H−1 ≾ p(K2
1 log(1/δ)+1)

n . Then

P (Gn ≾
p(K2

1 log(1/δ) + 1)

n
) = P (

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)

∥∥∥∥∥
2

H−1
n

≾
p(K2

1 log(1/δ) + 1)

n
)

≥ P (

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)

∥∥∥∥∥
2

H−1
n

≾
p(K2

1 log(1/δ) + 1)

n
∩A ∩B)

= P (A ∩B)

≥ P (A) + P (B)− 1

≥ 1− 2δ.

□

Theorem 5 (Lower Bound of the Score Test Statistic under H1). Assume H1, Assumption 1,

3 and n ≿ p ·K4
2 (p+ log(1/δ)). With probability 1− 3δ,

Gn ≥ E

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)− E[s(θ0)]

∥∥∥∥∥
2

H−1

−min{t1, t2} − t3 + ||E[s(θ0)]||2H−1 ,

where t1 = (1c log
2
δ )

1
2C2

2
K2

1
n p, t2 =

C2
2
c log 2

δ
K2

1
n p, and t3 =

(
C2
c log 2

δ
K2

1
n

)1/2
||E[s(θ0)]||H−1 for some

constant c and C2.
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Proof.

|| 1
n

n∑
i=1

si(θ0)||2H−1 =

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)− E[s(θ0)]

∥∥∥∥∥
2

H−1︸ ︷︷ ︸
a

+2 (
1

n

n∑
i=1

si(θ0)− E[s(θ0)])
⊤H−1E[s(θ0)]︸ ︷︷ ︸

b

+||E[s(θ0)]||2H−1

Let J = M1/2H−1M1/2, then a = || 1n
∑n

i=1G
−1/2 (si(θ0)− E[s(θ0)]) ||2J . By Assumption 1,

∀i ∈ {1, . . . , n},M−1/2 (si(θ0)− E[s(θ0)]) is subgaussian with parameter K1. Then by Lemma

2,
∑n

i=1
1
nM

−1/2 (si(θ0)− E[s(θ0)]) is also a subgaussian with parameter C2
K1√
n
for some constant

C2. By Hanson-Wright inequality [34], for any δ ∈ (0, 1)

P (|a− E[a]| > min{t1, t2}) > 1− δ

⇒ P (a > E[a]−min{t1, t2}) > 1− δ

where t1 = (
C4

2
c log 2

δ
K4

1
n2 ||J ||2HS)

1
2 , t2 =

C2
2
c log 2

δ
K2

1
n ||J || and c is a constant. With Assumption 3,

J = I and t1 = (1c log
2
δ )

1
2C2

2
K2

1
n p, t2 =

C2
2
c log 2

δ
K2

1
n p. Now we bound term b.

b = E[s(θ0)]
⊤H−1

(
1

n

n∑
i=1

si(θ0)− E[s(θ0)]

)

= E[s(θ0)]
⊤H−1M1/2

[
1

n

n∑
i=1

M−1/2 (si(θ0)− E[s(θ0)])

]

Let g = 1
n

∑n
i=1M

−1/2 (si(θ0)− E[s(θ0)]). Since g is a subgaussian random vector, each entry gi

in the random vector is a subgaussian random variable with ||gi||ψ2 ≤ ||g||ψ2 = C2
K1√
n
. This can be

seen by setting θ in (2.16) to be one-hot vectors. By General Hoeffding Inequality (Theorem 2.6.3

in [41]), we have

P (|b| < t3) > 1− δ

⇒ P (b > −t3) > 1− δ

where t3 =
(
C2
c log 2

δ
K2

1
n

)1/2
||E[s(θ0)]

⊤H−1M1/2||2. Apply Assumption 3,

t3 =

(
C2

c
log

2

δ

K2
1

n

)1/2

||E[s(θ0)]
⊤H−1/2||2 =

(
C2

c
log

2

δ

K2
1

n

)1/2

||E[s(θ0)]||H−1
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So with probability at least 1− 2δ,∥∥∥∥∥ 1n
n∑
i=1

si(θ0)

∥∥∥∥∥
2

H−1

> E[a]−min{t1, t2} − t3 + ||E[s(θ0)]||2H−1 .

Let A denote the event 1
2H

−1/2 ≼ H
−1/2
n ≼ 2H−1/2. Since, n ≿ p ·K4

2 (d+ log(1/δ)), by Corollary

1, P (A) ≥ 1− δ. Using similar argument in Theorem 4, we conclude that with probability at least

1− 3δ,

Gn =

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)

∥∥∥∥∥
2

Hn
−1

> E[a]−min{t1, t2} − t3 + ||E[s(θ0)]||2H−1 .

□

Corollary 2 (Asymptotic Separability). Under Assumption 1, 2, 3, there exists a sequence

tn ∈ (0,∞), such that the decision rule rejecting H0 if Gn > tn has

P (Reject H0|H0) + P (Fail to reject H1|H1) → 0,

as n→ ∞.

Proof. Let a =
p(K2

1 log(1/δ)+1)
n be the bound in Theorem 4 and

b = E

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)− E[s(θ0)]

∥∥∥∥∥
2

H−1

−min{t1, t2} − t3 + ||E[s(θ0)]||2H−1

be the bound in Theorem 5. It is suffice to find a tn such that a < tn < b for large enough n. As

n→ ∞, a, t1, t2, and t3 converges to 0. E
[∥∥ 1

n

∑n
i=1 si(θ0)− E[s(θ0)]

∥∥2
H−1

]
is non-negative as H is

assumed to be positive-definite in this section. So as n→ ∞, a→ 0 and

b− E

∥∥∥∥∥ 1n
n∑
i=1

si(θ0)− E[s(θ0)]

∥∥∥∥∥
2

H−1

→ ||E[s(θ0)]||2H−1 .

Thus,

lim
n→∞

b ≥ ||E[s(θ0)]||2H−1

Hence, ∃M > 0, tn ∈ (0, 1) such that n > M ⇒ a < tn < b. □
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Now, we have shown the asymptotic separability of the score test statistics under the Ising

model assuming linear J(Z). Although our theories are developed under strong assumptions, we

have demonstrated that our methods have valid type-I error control and power in both simulations

and two real-world applications (the adult data set and COOS data). Our future work will focus

on two areas. First, we would like to extend the separability to more general cases (e.g. non-linear

J(Z) and the RBM model). Next, we want to show that the distribution of the bootstrap test

statistic produced by the score based bootstrap procedure is close to the true distribution of the

test statistic.
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CHAPTER 3

Multiple Imputation for Detecting Covid-19 via

Wastewater-based Epidemiology

3.1. Introduction

The project is a collaboration with the Wastewater team through the Healthy Davis Together

program in Davis. For a more detailed discussion of motivation, methods, and results of the overall

wastewater monitoring program, please refer to Hannah et al.’s paper [36]. We will provide a

summary of the background of the project described in [36], then we will dive into the algorithm.

Wastewater-based epidemiology (WBE) is often used as a supplement to clinical data. Re-

searchers hope to use the signal from wastewater data as a leading indicator of a potential outbreak.

WBE doesn’t require the public to change their behaviors (e.g. require residents to participate in

COVID testing). Therefore, not only WEB is often a cheaper alternative to mass testing, but also

it reduces the sampling bias as the data is generated from the entire population instead of people

who show up for testing or treatment.

HDT ran wastewater surveillance in Davis by collecting wastewater samples from maintenance

holes across various locations. “Sample extracts were analyzed by one-step RT-qPCR for four

targets: N1 and N2 targeting regions of the nucleocapsid (N) gene of SARS-CoV-2, ϕ6 bacteriophage

(an RNA virus used as an internal quality control), and pepper mild mottle virus (PMMoV; used

for normalization of SARS-CoV-2 results)”. [36] Measuring the N1 and N2 genes alone is not

enough, because the virus concentration level can change with based on the number of people

who produce the wastewater. PMMoV is used for normalization because it is a common RNA

virus found in human feces. Figure 3.4 shows the variability of the PMMoV despite being a

common virus produced by humans all the time. Hence, normalization is required to correctly

measure the COVID-19 gene concentration level relative to the population in the study. For the
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Figure 3.1. Proportion of Nondetects Overtime

imputation task, N1 and N2 targets are what our project focused on. Roughly speaking, the RT-

qPCR procedure produces a Ct value for the sample collected at each location. The Ct value

indicates the concentration level of the gene of interest. The lower the number, the higher the

concentration is. The Ct value is truncated from above at 45 and naturally bounded below at

0. We will conclude that the target is not detected at the sample if the Ct value is at the upper

boundary.

For these non-detect samples, the wastewater team requested an imputation method to impute

qPCR values. Our task was to help the wastewater team to develop an imputation model and

provide an easy-to-use API.

3.2. Nondetects in qPCR Data

Why are nondetects problems in analyzing qPCR data? Nondetects happen on regular basis

but not at random. From Figure 3.3 we don’t see a clear trend of the detected Ct value of the

target gene at each sub-location. However, Figure 3.1 clearly shows that the occurrence nondetects

of target genes have patterns over time with a large peak in late January. This should correspond

with a decrease in infections. So nondetects contain a lot of information and improper handling

may introduce bias to the analysis. A nondetect could represent one of the several possibilities: (1)

low starting target abundance, (2) complete absence of a target from the sample, or (3) human error

/ experimental failure [36]. Existing methods typically use a single value to impute nondetects.

For possibility (1), using a high Ct value to impute may be reasonable, whereas, using 0 may be
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reasonable for possibility (2). Dropping nondetects is appropriate for possibility (3). In reality,

nondetects are mostly likely to be a mixture of these three possibilities. Therefore, the single value

imputation method may lead to bias in the analysis. A more sophisticated imputation method is

required to produce a valid analysis.

3.3. Model and Algorithm

We model the Ct value at each maintenance hole using a Bayesian model. Let Yij denote the

Ct value at location i and jth replicates. Each location has three readings captured by different

techniques [36], so j ∈ {1, 2, 3}. Then we assume

Yij
i.i.d.∼ truncated normal(θi, σ

2, 0,∞)

θi ∼ Gamma(αθ, βθ)

σ ∼ Gamma(ασ, βσ)

Our exploratory analysis provides some justification for our model. Figure 3.2 shows that the

log(N1 c/L) variable can be reasonably said to be normally distributed, with a standard deviation

of 4.13. From Figure 3.3, we can also see that there are no strong trends for the N1 c/L variable

over the location and each location seem to have different means. Hence, we model Yij with a

truncated normal and each location has its own mean θi.

Figure 3.2. Distribution of the N1 Target Gene. The unit is log gene copies per
liter (gc/L) log-scaled.
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Figure 3.3. N1 (gc/L) by location log-scaled. In this figure, we impute the mea-
surements below LOD with 0. These are represented as points at the lower bound
of the plot.
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Figure 3.4. PMMOV (gc/L) by location log-scaled. All measurements of PMMOV
are above the LOD.
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To simulate from the posterior distribution of θi|Yi, we apply the EM-MCMC algorithm (also

known as the empirical Bayes [7]) via PyStan [32].

Algorithm 3 EM-MCMC

Input: {Yij}ni,j , αθ, βθ, ασ, βσ, iteration (N), burn-in sample (B), number of MCMC samples

(T ).

for b ∈ {1 . . . , N} do

For all i’s:

Produce the posterior distribution P (θi|Yi).

Generate T MCMC θ̃i according to P (θi|Yi) and drop the first B of them.

Update αθ and βθ with the maximum likelihood estimation based on all θ̃i’s across all i’s.

end for

Return: P (θi|Yi) for all i’s.

B should large enough so that until αθ, βθ converges. Then we use the posterior distribution

to compute the posterior mean of θi for all i’s. We provide a user-friendly API so that users with

minimum Python experience can apply Algorithm 3 to real-world data with ease. As demonstrated

in Hannah et al.’s source code [36], our API allows users to run the Algorithm without having

to write in Stan modeling language which is difficult to debug. Before shipping the Algorithm

and Python Script to our collaborator, we provide an example by carrying out Algorithm 3 to the

Wastewater data collected on Jan 7th, 2021 to determine whether the method is able to produce

sensible inference results. We initialize αθ = 1, βθ =
1
35 , ασ = 3, βσ = 1 and set N = 15, B = 500,

T = 104.

We first examine the trace plots of parameters from the last iteration in Algorithm 3 through

Figure 3.5.
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Figure 3.5. Trace plots of parameters during one iteration. The Markov chains
didn’t stick in a local region.

Since the trace plots don’t show discernible patterns, Markov chains in the last iteration are

able to reach the stationary distribution quickly. Furthermore, Figure 3.6 and 3.7 show that both

hyper-parameters αθ, βθ and the posterior means of parameters are able to converge on the selected

data file. αθ, βθ converges to 80.98 and 7.91, so the estimated prior distribution of θ has mean 42.4

and standard deviation 4.71. Given the context, the estimated prior distribution is reasonable.
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Figure 3.6. The graph shows the trace αθ, βθ over 15 iterations. The horizontal
axis shows the iteration and the vertical axis shows the parameter value.

Figure 3.7. The graph shows the trace σ and θi’s over 15 iterations. The horizontal
axis shows the iteration and the vertical axis shows the parameter value.

Most posterior means of θi’s are around 40 which is close to the estimated prior mean. Those

locations with high posterior means of θi’s all have observed Ct values truncated at 45, therefore

we expect to see large posterior means. Finally, the posterior mean of σ is 4.37. So our EM-MCMC

algorithm is able to provide plausible inference results to be used for modeling and imputation

on the full data. In the next section, we will show the results of the EM-MCMC algorithm and

compare it to three other methods.
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Figure 3.8. Community-level wastewater vs clinical data in Davis, showing effects
of different methods of handling nondetects. Symbols represent individual sample
results; lines represent trends (as centered 7-day moving averages for all data shown).

3.4. Result

We include three other imputation methods for comparison: LOD0.5 (single imputation with

half the detection limit), Ctmax (single imputation with the maximum qPCR cycle) and Ctavg

(dropping all nondetects from the analysis). Figure 3.8 shows the normalized COVID-19 gene

concentration level with the clinical data. Different imputation methods produce similar overall

trends, but there are still differences. Compared to other methods, LOD0.5 produced higher virus

concentration when close to the end of the experiment period. On some dates, one method produced

much higher concentration values compared to other methods. For example, the data produced by

EM-MCMC is much higher for December 9. To provide a more quantitative assessment of these

imputation methods, we compute Spearman’s rank-order correlation between the clinical data and

data imputed. The correlation analysis has its limitations. Hannah et al. [36] state that the clinical

data may lag the trend from the wastewater data despite the low probability of a systematic lag.

Table 3.1 shows that overall values produced by the EM-MCMC algorithm have the strongest

correlation with the clinical data. So the empirical results suggest that the EM-MCMC algorithm

yields better results than more common and nondetect handling methods.
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LOD0.5 Ctmax Ctavg EM-MCMC

0.2175 0.5049 0.4337 0.5447

Table 3.1. Spearman’s Rank-Order Correlation Coefficients between Community-
Level Clinical Cases and Relative Normalized Virus Concentration produced by
Nondetect Handling Method.
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CHAPTER 4

Assessing the Impact of College Reopening on Covid-19

Outbreaks

4.1. Introduction

Studies suggest that during the period of college reopening, confirmed cases in college-towns

increased overwhelmingly [18, 25]. Figure 4.1 compares COVID-19 case and death per 100,000

individuals as reported by JHU CSSE [10] between counties with a large undergraduate population

to the overall US counts1. In Section 4.2, we describe our classification of “college counties”,

namely counties with an undergraduate population of all colleges in the county exceeds 10% of the

population. One can naively assume that this means that the effective reproduction number (RT )—

the expected number of secondary infections that a single infection will generate—was extremely

high when students returned to their universities for the fall semester. [25] estimates that one such

college experienced a maximum RT value of 10.75 (University of Washington), and extremely high

number relative to prior estimates at the national and sub-national scale [1]. These estimates were

fit using an SEIR model, that does not account for the importation of cases, as well as biases in

reporting due to testing regime.

We also observed a significant rise in cases within college counties, however a few additional

observations stand out. First, through the remainder of the fall term, the case counts decrease

and roughly track with the US average. This includes the time period through and following the

winter break of 2020-2021. Second, the death rate in these counties do not increase dramatically

in concert with the confirmed cases. While the death rates do approach the US average during

the reopening period, overall college counties had lower deaths per capita than the US on average

average.

1We access the number of daily COVID-19 cases and deaths between May 1st, 2020, and February 21st, 2021 through
the COVIDcast Epidata API [14]. The API is built and maintained by the Carnegie Mellon University Delphi research
group.
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Figure 4.1. 7-Day moving average of cases per 100,000 people (left) and 7-Day
moving average death per 100k people (right). Data reported by JHU CSSE [10].

Should we blame this increase in cases on students returning to campus and engaging in behavior

that promoted the spread of SARS-CoV-2. In fact, assuming that the increase in cases is simply

due to increased transmission among college students neglects other possible factors. First, the

college counties may not mirror the US average because of their locations and demographics. If

we were to compare the counties to similar non-college counties then we may see similar case

trajectories. We examine this problem by matching the college counties to non-college counties

that are within the same state and have similar percentage of seniors (an important demographic

variable for COVID-19 rates). Second, could the increase in cases actually be spurious, and this

observation is simply a false alarm due to noisy case reporting? We cast this question as a multiple

hypothesis test and define a notion of hotspots that controls the false discovery rate. Third, are

these hotspots associated with how the colleges reopened, such as in-person classes or the testing

availability on campus? We investigate in greater detail a selection of colleges within the college
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counties and categorize them in terms of their COVID-19 mitigation measures. Then we test for

associations between the measures and hotspot status.

4.1.1. Summary of Results. We summarize the findings of our analysis.

(1) Colleges counties experienced a higher than expected proportion of outbreaks around the

start of 2020 Fall instruction relative to their matched non-college counties.

(2) Class setting (in-person, hybrid, etc.) may affect the severity of the outbreak at college

counties (p-value: 0.0157); however, with the Bonferroni multiple testing correction we do

not achieve a 5% significance level at the corrected threshold of 0.01.

(3) Testing availability of colleges is not significantly associated with hotspot status (p-value:

0.0634), however with sufficient data this association could be clarified.

(4) After the initial outbreak, the proportion of college counties which were hotspots were not

higher than non-college counties. Colleges were not a major factor driving up the infection

level after the beginning of the Fall instruction.

4.2. Matched County Analysis

In order to control for the possible demographic and region effects on the case and death

incidences, we match college counties to similar counties based on demographics and location.

First, we must define in greater detail what constitutes a “college county”. A county is con-

sidered as a college county if at least 10% of its population are undergraduate students. We use

US Census Bureau data [5] to estimate the county population and the College Scorecard dataset

to estimate the county undergraduate population. The College Scorecard data is maintained by

the US Department of Education, and it is an institution level summary of college metrics for all

institutions that receive federal financial aid. Included in the dataset are the counties in which the

campus resides, the undergraduate student population, and the degrees conferred by the colleges

among many other variables. Our analysis only included four-year institutions and left out institu-

tions such as 2-year vocational schools. Based on our definition, 152 counties are college counties

2.

2Initially, there were 153 counties satisfying our criterion. However, we manually exclude the Salt Lake County. See
Appendix 4.6.1 for details.
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One might expect that college counties have unique demographic characteristics. In order to

control for demographic factors, we find their population density and proportion of seniors (aged

65 and above). We found that the senior population was sufficient for the matching process, and

matching based on more demographic bins did not significantly impact the matched counties.

College County Matched Non-College County
State County Pop Density 65+ % County Pop Density 65+ %

CA Yolo 217.3 13.7 Fresno 167.7 13.6
NY Albany 584.4 16.8 Onondaga 591.6 17.1
OH Athens 129.7 13.6 Union 136.6 13.9
TX Brazos 391.5 11.1 Webb 82.3 11.4
UT Cache 110.1 11.4 Tooele 10.4 11.1

Table 4.1. Examples of Matched Non-College Counties.

4.2.0.1. Matching Process. We use the Hungarian algorithm [33], to optimally assign the matched

pairs of college and non-college counties within the same state based on the Euclidean distances

between the standardized variables (senior proportion and population density). See Appendix 4.6.2

for more details. Table 4.1 contains five matching results and the algorithm behaved as expected.

The pair, Albany county (college) and Onondaga county (non-college), in New York state is an

example of similar population densities (584.365 vs. 591.642) and senior proportions (16.838% vs.

17.146%). However, it is often impossible to find a matching non-college county with a similar

population density in many states, and the algorithm will primarily match based on the senior

proportion. For example, the population density of Cache county in Utah is more than ten times

higher than Tooele County (110.137 vs. 10.41). However, they were matched because of their

similar 65 plus percentages (11.361% vs. 11.139%).

College Counties Matched Counties All US Counties

Cases 8133.2 7931.4 8001.7
Deaths 106.1 124.2 129.6

Table 4.2. Total 7-Day Average Cases & Deaths per 100k People between 1st May,
2020 and 21st Feb, 2021.

4.2.0.2. Paired Analysis. We compare college counties and non-college counties in terms of

COVID-19 reported case and death incidences. Table 4.2 shows that matched non-college counties
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Figure 4.2. Comparison of college counties to their matched counterparts and the
US total for case counts (left) and death counts (right). All results are 7 day averages
of incidences per 100K people.

had similar case and death incidence per 100k people compared with all US counties (over the

entire study period). College counties had slightly more cases but notable fewer deaths on average

compared to matched counties. In Figure 4.2 (left), we see that the 7-day average cases per 100k

people of matched non-college counties tracked closely with all US counties. COVID-19 cases of

non-college and all US counties were gradually decreasing between mid-August to October when

most US colleges began their Fall 2020 instructions. On the other hand, 7-day average cases per

100k people of college counties were similar to matched non-college counties but diverged between

mid-August and October. Over the one and a half months, college counties were experiencing

a clear spike in COVID-19 cases relative to their matched counterparts. The biggest difference

(15.665) between 7-day average cases per 100k people of college and non-college counties occurred

on 6 Sept. 2020.

In Figure 4.2 (right), the curve of death per 100k people in college counties is almost indis-

tinguishable from the matched counties between September 2020 and January 2021. [25] suggests
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that colleges were spreading the virus to their home counties and [18] indicates that the quickly

rising death in college towns was linked to colleges. But if either claim were accurate, we would

have observed that deaths per 100k, as the case per 100k, at college counties to be significantly

higher than the matched counties after the reopening of colleges. Recall that more often than not,

our matching algorithm matched non-college counties based on the percentage of senior people who

are a vulnerable group to COVID-19. Therefore, the low total death count in Table 4.2 and the

similarity of the death rate trajectories suggests that rising cases were primarily spread among

young college students instead of local communities.

4.3. Hotspot Identification

The purpose of our hotspot analysis is to test whether this increase can be attributed to noise

in the data. We focus on an increase in cases as opposed to simply a large case count because the

increase is more closely related to the effective reproduction number (RT ). To this end we define a

hotspot and compare the hotspot incidences between college counties and their matches.

4.3.1. Hotspot definition. How should we define hotspots? Simply observing an increase in

cases does not necessarily imply that a county is currently a hotspot. Our definition controls for

false alarms by casting the problem as a multiple hypothesis test, and it requires that the increase

be sufficiently large (exceeding a 10% increase between two sequential 14 day time windows). This

definition gives us added certainty that the increase in cases is not due to randomness in the

reported cases, but is a real increase in the unobserved Covid-19 incidence rate. An added bonus of

using hotspots is that the hotspot definition is reflective of the relative increase in cases as opposed

to the magnitude of the case counts, which is more reflective of RT .

Specifically, we compare the county case counts 14 days before and 14 days after a pivot date

over a grid of pivot dates. For each pivot date, county pair we postulate a null hypothesis in which

the expected counts (following a Poisson model) does not increase by greater than 10%. We then

perform the Benjamini-Hochberg (BH) procedure [2] for multiple hypothesis testing which controls

the false discovery rate (FDR) at a 5% level. The FDR is defined to be the percentage of the true

null hypotheses that are falsely rejected. The BH procedure is guaranteed to control FDR at level

α assuming that the tests are independent, although there are weaker conditions in which FDR is
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Figure 4.3. Proportion of Hotspots

Figure 4.4. Proportion of counties that are labeled hotspots for college counties,
their matched counterparts, and the US total.

controlled [3]. Finally, all of the county, date pairs that correspond to a rejected null hypothesis is

considered to be a hotspot. See appendix 4.6.3 for more details.

4.3.2. Hotspot Analysis. Comparing Fig. 4.2 (left) and Fig. 4.4, we see that our hotspots

labeling method is a reasonable automated way to label hotspots, as both figures illustrate similar

trends, and the increase in Fig. 4.4 leads ahead of similar increase in 4.2. We make two observations

from Fig 4.4. Since only college counties experienced a high proportion of hotspots around mid-

August, colleges which have much larger impact on college counties were the primary cause of the

spike of hotspots. These findings are consistent with Lu et al.’s study.

On the other hand, it is not clear if college counties were consistently super spreaders, especially

after 2-3 weeks of the Fall instruction [25] . However, if colleges were the major factor of the late

high infection level the proportion of hotspots among non-college counties should have stayed

relatively low compared to the proportion among college counties. Instead, the proportion among

non-college counties was similar to the proportion of non-college counties after mid-September. The

outbreaks in the fourth quarter were more likely to be driven by factors such as the seasonal trend

and demographics instead of colleges.
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Figure 4.5. County cases per 100k people for counties with a single university in
our study. We compare 7 day averages for counties, their matches, and the US total.

4.4. Association with College Testing Policies

We studied the association between college policies and hotspot activity of its home county.

The results in this section are based on the association between the variables of interest and

hotspot status and should not be taken as formal causal conclusions. To simplify the analysis and

identify the effect of college policies, we only examine 92 college counties in which there is a single

university (according to the College Scorecard dataset). We split counties into two categories which

are hotspot and non-hotspot groups based on the label of each county on 14 August. We chose the

date because the percentage of hotspot counties peaked on 14 August over the reopening period

(August to September).

4.4.1. Effects of College Policies on Hotspots. The college response data that we collected

contains testing-related information of 290 colleges. We obtained the information by manually

accessing and combing through institution websites. In some instances, the colleges may have

offered these resources but it was not displayed on their website. The information is summarized

into five columns: class setting (e.g. hybrid), testing conducted (if the college conducted COVID-

19 tests at all), testing availability (if the university provides COVID-19 testing), testing type

(e.g. symptomatic) and test performed (e.g. nasal swab).

Figure 4.6 illustrates the distribution of each categorical variable. For each variable, We form a

contingency table with the county group variable (hotspot and non-hotspot). Then, we conducted

56



Figure 4.6. Bar Charts of College Policy Variables

the Fisher exact test of independence on each table. When we conducted the Fisher exact test for

the Class Setting variable, we convert “In Person to Hybrid” and “In Person to Remote” to “In

Person” for two reasons. First, these two categories only have three institutions in total. Next, we

are interested in the policies around the start of Fall instruction. These three institutions initially

were probably having in-person instruction. So we changed these levels to “In Person” rather than

“Hybrid” or “Online”.

Class Setting T Conducted T Availability T Type T Performed

P-value 0.0157 0.6952 0.0634 0.2970 0.0861

Table 4.3. Summary of Fisher Exact Test of Independence. T stands for Testing
or Test.

With the level of tests being 0.05 and Bonferroni correction, none of these tests yielded sig-

nificant results as in Table 4.3 illustrates. However, the test of the Class Setting variable is on
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the borderline of being significant and the bar chart shows that hotspot counties had a higher

percentage of in-person instruction. Therefore, we further examined the relationship between cases

and class settings. Figure 4.5 shows that around the time of college reopening in Fall, There are

clear gaps between cases of counties with different class settings. So despite the non-significant

result from the hypothesis testing, class setting might still impact the severity of the outbreaks

at college counties at the beginning of Fall instruction. However, gaps between cases of counties

with different class settings were less obvious since mid-October. As we argued in Section 4.3.2,

there is little evidence that college students disproportionately contributed to outbreaks after the

beginning of the Fall instruction.

0.49 0.49

Figure 4.7. The college county populations (left) and proportion of undergraduate
degree seeking students (right) in descending order. We highlight the 6 counties with
the most hotspot days.

4.4.2. Case Studies. In this section, we will take a closer look at six college counties which

suffered the worst outbreaks from August to September and college counties without hotspots over

the same period. Specifically, we selected every four dates from 6 August to 15 September (11
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days) and checked if a county was a hotspot on each day. A county with many days as a hotspot

indicates that cases at the county were consistently increasing. Conversely, a county with few or

no days as a hotspot underwent either decreasing or stable COVID cases. We rank the outbreak

level at college counties by the number of hotspot days.

Table 4.4 shows that counties with most hotspot days don’t have obvious geographical patterns.

Similarly, Table 4.5 shows the counties with no hotspot days and there is no clear geographical

pattern. The six worst performing college counties had testing available to the students (either

nasal swab or saliva testing). In addition, Figure 4.7 shows that these counties have relatively

high population and percentages of undergraduate students. The apparent association between the

county population and hotspot number indicated that population is an important additional factor.

However, the association between the proportion of undergrads and the hotspot number supports

the conclusion that students returning to campus does contribute to hotspots.

There seem to be a number of factors contributing to the severity of outbreaks within college

counties. We have reason to believe that the class setting contributes to COVID-19 hotspots, but

it is one of several potential factors. We found no evidence that testing availability and the types of

tests performed was associated with hotspots. However, we are dramatically limited by the amount

of reliable data on hand, and with more data we may see stronger evidence of association.

State County University Hotspot # Class Setting

WY Albany U. of Wyoming 8 Hybrid
IL Champaign U. of Illinois Urbana-Champaign 7 In Person
IN Monroe Indiana U.-Bloomington 7 Hybrid
OK Payne Oklahoma State U.-Main 7 In Person
VA Montgomery Virginia Tech 7 Hybrid
WI Portage U. of Wisconsin-Stevens Point 7 Hybrid

Table 4.4. 6 Counties with Most Hotspot Days (out of 11 Days). All of them
conducted testing and testing are available to students who want to get tested.

4.5. Discussion

We are able to draw several tentative conclusions from this analysis. First, there was a sub-

stantial increase in reported COVID-19 cases among college counties relative to similar counties.

This increase happened during the college re-opening period, but after this initial period the cases
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State County University Class Setting

AL Macon County Tuskegee University Hybrid
AL Sumter County University of West Alabama In Person
AR Pope County Arkansas Tech University In Person
CA Yolo County University of California-Davis Online
CO Alamosa County Adams State University In Person
CO Gunnison County Western Colorado University Hybrid
GA Emanuel County East Georgia State College In Person
GA Lamar County Gordon State College Hybrid
IA Decatur County Graceland University-Lamoni Hybrid
KY Calloway County Murray State University Hybrid
KY Campbell County Northern Kentucky University Hybrid
LA Natchitoches Parish Northwestern State University of Louisiana Hybrid
MO Adair County Truman State University Hybrid
MS Claiborne County Alcorn State University Hybrid
MS Jefferson County Alcorn State University Hybrid
MT Beaverhead County The University of Montana-Western Hybrid
ND Traill County Mayville State University Hybrid
NE Nemaha County Peru State College Hybrid
OK Cherokee County Northeastern State University Hybrid
PA Clarion County Clarion University of Pennsylvania Online
SD Lake County Dakota State University Hybrid
TX Brewster County Sul Ross State University In Person
TX Erath County Tarleton State University Hybrid
TX Hays County Texas State University Hybrid
TX Nacogdoches County Stephen F Austin State University Hybrid
UT Iron County Southern Utah University Hybrid
VA Buena Vista city Southern Virginia University Hybrid
VA Fredericksburg city University of Mary Washington Hybrid
VA Williamsburg city William & Mary Hybrid

Table 4.5. 29 College Counties with no Hotspot Days (out of 11 Days)

in college counties decreases and tracked closely with their matched counterparts. The increase was

not due to the randomness of the case counts and we see that during the reopening the proportion

of college counties that were hotspots is nearly 4 times the number in their matched counterparts.

We also see that while there is little evidence to suggest that testing availability and test type

is associated with hotspot activity, there is some evidence to suggest the class setting (in-person,

remote, hybrid) is associated with case counts (but not significant at the 5% level with multiple

testing correction).
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The COVID-19 death rates do not significantly differ between college counties and their matched

counterparts. Because the matched counties also had similar proportions of seniors, we conclude

that there is little evidence to show that hotspots at the time of college reopening spread to the

remainder of the community. If they had, it should have increased the death rate within the college

counties as well, relative to their demographically matched counterparts.

This analysis was greatly constrained by the availability and granularity of COVID-19 data

reporting. The county level is the finest spatial granularity at which we can obtain reliable and

comparable case and death counts across states. Because the analysis was done at the county level,

we were only able to identify 152 counties that were “college counties” (out of the 3,006 counties

in the US). Of these counties only 92 could be matched to one primary university, which we can

compare to the 1,625 4-year universities in the US. Imagine if reporting on COVID-19 cases was

done at the census tract level—typically census tracts have between 1000 and 8000 people—then we

might be able to pinpoint precisely which universities saw COVID-19 outbreaks. Furthermore, just

like colleges that accept federal aid are required to report certain statistics to the US Department of

Education (as in the College Scorecard dataset), such colleges could be mandated to report public

health measures taken, such as in-person, remote, or hybrid classes in the case of an outbreak.

4.6. Appendix

4.6.1. College Counties. We didn’t include Salt Lake County, UT in the analysis, though

based on data we used, it satisfied our criterion of a college county. We exclude the Salt Lake

County because the college with most undergraduate students is Western Governors University

which only provides online education. Thus, most students may not reside in Salt Lake County. If

we exclude the Western Governors University, Salt Lake County is no longer a college county by

our definition.

4.6.2. Matching process. The matching problem can be formulated as an assignment prob-

lem was solved using the SciPy python package. Let di and ai denote the standardized (zero mean

and variance 1) population density and proportion of the senior population of county i. Then

xi = (di, ai) is the tuple of county i. Define an assignment function f : Cs → Ns where Cs and Ns

are the set of indices of college and non-college counties of state s. The assignment problem seeks
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to find the f which minimize ∑
i∈Ns

∥xi − xf(i)∥2

for each state, where ∥.∥2 is Euclidean distance.

4.6.3. Hotspot definition. Let’s introduce some notations which will be used in our defini-

tion of hotspots.

• Cti : count of COVID-19 cases of county i within 14 days after the pivot date t (exclude

the pivot date).

• Ct−1
i : count of COVID-19 cases of county i within 14 days before the pivot date t (include

the pivot date).

• Pi: population of county i.

Capital letters represent random variables and lowercase letters represent observed values. Our

model assumes that Cti ∼Poisson(λti) and C
t
i ’s are independent for all t’s and i’s.

Throughout, we assume the population is constant over time. This assumption is unlikely

to hold, especially for college counties, however an accurate estimate of the monthly population

is difficult due to the infrequency of the US census and the paucity and biased-ness of realtime

tracking information. In fact, it is well known that the problem of estimating seasonal population

is especially difficulty with few satisfactory approaches [16].

We define county i to be a hotspot at time t if cases per capita increases 10% or more compared

to time t− 1. Formally, we define the following hypothesis testing problem for the i, t pair,

H i,t
0 :

λti
Pi

λt−1
i
Pi

≤ 1.1 vs. H i,t
1 :

λti
Pi

λt−1
i
Pi

> 1.1.

The rejection of H0 will identify county i to be a hotspot at time t. Since we assume the population

of each county doesn’t vary over time, the hypothesis can be simplified to the following:

(4.1) H i,t
0 :

λti
λt−1
i

≤ 1.1 vs. H i,t
1 :

λti
λt−1
i

> 1.1.
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We will address multiple hypothesis corrections in the following section, but we first need a

p-value for each individual test. We use the conditional test (C-Test) as mentioned in Section 2

of [21] to compute the p-value. The idea behind the C-test is the following. Let pti =
λti

λti+λ
t−1
i

and

N t
i = Cti +Ct−1

i . Since Cti |N t
i ∼Binomial(N t

i , p
t
i) under H0, so we may compute the p-value for the

monotone likelihood ratio test using the CDF of the binomial distribution with success probability

of 1
1+1.1 ≈ 0.476 as the null hypothesis.

In summary, rejecting the null hypothesis in (4.1) means that there is a substantial increase in

case incidences at time t. Notably, it does not mean that the county has a high case count, and

we may have a high case count without rejecting the null hypothesis if if it consistently had high

cases per capita during time period t− 1 and t. It remains to translate this problem as a multiple

hypothesis test.

4.6.4. Multiple Hypothesis Testing and FDR Correction. We carry out the C-test for

all 3143 counties, date pairs at an equispaced (4 days) sequence of dates between 1st May, 2020,

and 21st Feb, 2021. If we do not take multiple testing into account, we are bound to reject a large

proportion of null hypotheses. Therefore, we adopt the Benjamini–Hochberg (BH) procedure [2] to

control the false discovery rate (FDR) at level α = 0.05. The FDR is defined to be the percentage

of the true null hypotheses that are falsely rejected.

Let us provide a recap of the BH procedure. The procedure assumes that all p-values are

independent. Then

(1) Let P(1) ≤ P(2), . . . , P(m) be the ordered p-values.

(2) Let Ii =
i
mα and T = max{i : Ii < P(i)}.

(3) Reject all H0’s where P(i) ≤ P(T ).

The BH procedure is guaranteed to control FDR at level α assuming that the tests are inde-

pendent, although there are weaker conditions in which FDR is controlled [3]. Our hope is that by

controlling FDR using the BH procedure, the hypothesis testing can be less conservative compared

to using the Bonferroni correction.
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