UC Berkeley
SEMM Reports Series

Title
A Computational Procedure for Interaction of High-Speed Vehicles on Flexible Structures
without Assuming Known Vehicle Nominal Motion

Permalink
https://escholarship.org/uc/item/9ds5h2ch

Authors
Vu-Quoc, Loc
Olsson, Mats

Publication Date
1988

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9ds5h2ch
https://escholarship.org
http://www.cdlib.org/




REPORT NO.
UCB/SEMM-88/04

STRUCTURAL El\iGINEERING
MECHANICS AND MATERIALS

A COMPUTATIONAL PROCEDURE FOR INTERACTION OF
HIGH-SPEED VEHICLES ON FLEXIBLE STRUCTURES
WITHOUT ASSUMING KNOWN VEHICLE

NOMINAL MOTION

BY

LOC VU-QUOC and MATS OLSSON

(Submitted to Computer Methods in Applied Mechanics and Engineering.)

JANUARY 1988

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



A Computational Procedure for Interaction of High-Speed
Vehicles on Flexible Structures without Assuming Known
Vehicle Nominal Motion

By
L. Vu-Quoct and M. Olssont

Abstract

An efficient and reliable computational procedure is proposed for the analysis of
interaction between high-speed vehicles and flexible structures. In contrast to traditional
approaches, vehicle nominal motion is considered here as unknown of the problem. The
equations encountered, for vehicle motion (after elimination of algebraic constraints) and
for structural motion, are in general a set of nonlinear, coupled differential equations. In
spatially-discrete form, these equations do not have the form of explicit ODEs.
Predictor/corrector algorithms, which combine Runge-Kutta methods and linear mul-
tistep methods with an unconditionally stable algorithm for structural dynamics, are
proposed to solve the partitioned DAE’s of the interaction problem. The proposed algo-
‘rithms carry special features pertaining to our formulation of vehicle/structure interac-
tion, and yield results which satisly the essential system energy balance. The present
approach effectively resolves the Timoshenko paradox in moving load problems. Several
illustrative examples are presented.
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A Computational Procedure for Interaction of High-Speed
Vehicles on Flexible Structures without Assuming Known
Vehicle Nominal Motion

By
L. Vu-Quoc and M. Olsson

1. Introduction

Magnetically levitated (Maglev) vehicles will become a viable mode of high-speed
transportation that bridge the gap between conventional wheel-on-rail vehicles and air-

planes, for medium distances of less than a thousand kilometers. The operational speed

“of a Maglev is designed to reach the range of 400 to 500km /h for the system to be com-

petitive vﬁth other means of transportation in door-to-door travelling time. The noise
level at this speed is comparable to that of a wheel-on-rail vehicle at 200km /. Maglev
systems clearly possess solid advantages with respect to the environment — energy
efficient, pollution free, low noise, ecologically unobstructing due to elevation of guide-
ways — over traditional modes of transportafion. Advances in superconductor research
in the future will further make these systems even more efficient and attractive.
Research and development on high-speed Magley have reached close to the stage of large
scale implementation; recent reports on the status of development of Maglev systems in
several countries can be found in Alscher et al [1983], and Eastham & Hayes [1987].
Low-speed Maglev, on the other hand, has already been put into public service, espe-
cially for short-distance transportation — less than a few kilometers (see Dalgleish &

Riches [1986])).

Current state-of-the-art guideway structures for Maglev systems are designed to be
stiff so that deflection falls within a very small margin of tolerance — typically about
6mm for a span of 25m. As a result, the cost of guideway structure constitutes the
major part (more than 70%) of the total cost of a system (Lawton [1985], Zicha [1986}).

It is therefore desirable to employ more flexible guideways to reduce the total cost. This
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flexibility induces, however, a complex interaction between the vehicle and its support-

ing guideway. In the future, progress in suspension control technology will render the

use of more flexible guideways possible.

In modelling vehicle/structufe interaction, one traditionally prescribes the vehicle
nominal motion a-priori, thus, ignoring totally the influence of structural flexibility on
the nominal motion. In Vu-Quoc & Olsson [1987,1988a], we have formulated equations
of motion of a basic building-block model for analysis of complete vehicle/structure
interaction, where vehicle nominal motion is part of fhe unknowns. This model is appli-

cable to both wheel-on-rail vehicles and Maglev vehicles, in particular, electromagnetic

systems with tight gap control (Figure 1.1). These systems have decentrally-controlled

magnet units ("magnetic wheels") with constant air gap, independently of speed, in the
order of 10 to 15mm (Eastham & Hayes [1987]). Note that the wheel model applies
equally to electrodynamic Maglev vehicles which move on wheel up to a maximum lift-
off speed of 80km /h (Alscher et al {1983]). Two versions of the formulation are given: a
fully nonlinear version admitting finite deformation in the (beam) structure, and a mildly
nonlinear version deduced from additional physically-relevant assumptions on small
structural deformation. Complexity in the resulting equations arises as vehicle nominal
motion is considered as unknown motion, and from the existence of convective terms,
which become prominent at high §peed regimes. Using an approach with prescribed
nominal motion, Blejwas, Feng & Ayre [1979] have shown that it is essential to include
these convective terms in the numerical formulation to obtain good corroboration of the
results with experimental measures. Special numerical integration algorithms must be
developed to integrate the differential equations of the mildly nonlinear version, and con-

stitute the focus of the present paper.

In our formulation, the system of equations for vehicle/structure interaction is par-
titioned in two components: the vehicle motion and the structural motion. Galerkin

spatial-discretization of these differential equations does not lead to a semi-discrete
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system in the form of explicit ordinary differential equations (ODE’s), but to a more gen-
eral class of differential-algebraic equations (DAE’s). These equations therefore do not
fall into the category of partitioned ODE’s, in the sense employed in Hairer [1981], often
encountered in coupled-field problems such as fluid/structure or soil/structure interac-
tion problems. Discussions on algorithms for solving coupled-field problems in engineer-

ing literature can be found for example in Park & Felippa [1983] and in Wood [1987].

Here, to solve the system of partitioned DAE’s of vehicle/structure interaction, we
propose predictor/corrector algorithms that share, however, a common property with

algorithms for partitioned ODE’s: The central idea is to employ different sub-algorithms

within the same global algorithm; each of these sub-algorithms is most effective for a

different component of the partitioned system.

The differential equations describing the vehicle component are often subjected to
algebraic constraints — even for vehicles moving on a rigid structure, i.e., without the
complex influence of structure flexibility. These DAE’s are usually stiff for vehicle sys-
tems. Integration algorithms for DAE’s have been proposed by several authors (e.g.,
Petzold [1982]). Flihrer [1986] noted, however, that when dealing with vehicle system
dynamics, existing algorithms for DAE’s often encounter serious problems. ‘Conse-
quently, transformation of DAE’s into ODE’s of first order form by eliminating the alge-
braic constraints is still de rigueur in vehicle dynamics, since this method remains the
most reliable solution procedure. Fithrer & Wallrapp [1984] discussed methods for elimi-
nation of linear constraints, and Nikravesh [1984] for nonlinear constraints. The result-
ing ODE’s constitute one part of the partitioned DAE’s of the overall vehicle/structure
system considered for the proposed algorithms in the present paper. It should be
clarified that the transformed equations are considered as ODE’s only with respect to the
vehicle degrees of freedom. Moreover, stiff ODE’s can be efficiently solved using existing
specialized softwares, which are mostly based on linear multistep methods (Gupta,

Sacks-Davis & Tischer [1985]).
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The equations for the structure component are, on the other hand, solved here by
efficient step-by-step implicit algorithms for second order ODE’s — with respect to the
structural degrees of freedom — arising in struét_ural dynamics. These second order equa-
tions are not transformed into first order form as often done in vehicle dynamics pro-
gram (see discussion in Kortim [1986], Wallrapp [1986]). Note that the stiffness of these
ODE’s increases as one refines the spatial discretization of the partial differential equa-
tions (PDE’s) for structural motion.f The implicit character of structural dynamics algo-
rithms makes them effective tools fqr stiff systems in structural dynamics. Accuracy in

structural motion are retained by not truncating these equations into a reduced-order

model (projection onto an eigen-subspace). While the sub-algorithms for the vehicle com-

ponent are highly accurate, but conditionally stable, the robustness of our proposed glo-
bal algorithms is founded upon the unconditional stability of sub-algorithms for the

structure component.

It should be emphasized that the equations for the two components (vehicle and
sfructure) together still belong to the class of DAE’s; the transformation of DAE’s to
ODE’s mentioned earlier involves strictly the vehicle degrees of freedom. The proposed
algorithms possess si)ecial features pertaining to our formulation of vehicle/structure
interaction problem, and do not require evaluation of a Jacobian matrix as common in
algorithms for DAE’s. Good accuracy is maintained in both vehicle motion as well as in
structural motion. In addition, our algorithms yield results that satisfy the essential bal-
ance of system energy. This energy balance is an important feature that not only
testifies to the viability of the proposed algorithms, but also helps to effectively explain
the Timoshenko paradox in moving load problems: Consider a constant vertical force
traversing a simply supported beam. Basically, without a physically-complete model,
one cannot explain the origin of the energy that keeps the beam in a vibratory state

after the traversing of the force, since the net work done by the force is zero (cf.

1 We refer to Dekker & Verwer [1984] for discussions on stiffness of ODE'’s.
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Maunder [1960]).

Even though we  illustrate the proposed algorithms using the basic model of
vehicle/structure interaction, it should be emphasized that these algorithms are applica-
ble to more general vehicle (with several multibody components) and structure models.
Further, they can be easily incorporated in existing vehicle dynamics programs, as well

as in structural dynamics programs.

Several numerical examples are presented to show that effects of complete
vehicle/structure interaction can be evaluated using the present methodology. Sound-

ness of the proposed algorithms is demonstrated in part by monitoring the offset of

_discrete energy balance of the system, introduced by error in the numerical results. We

study the loss in velocity of a vehicle after traversing one or several spans of a continu-

. ous beam, as a result of energy transfer from the vehicle to the beam structure. Finally,

we consider the braking of a vehicle, and its effects on vehicle motion and on structural

- response, as modeled within the present framework.

2. Equations of motion for the basic problem: Summary

To model the complete vehicle/structure interaction, we consider the basic problem
of a rigid wheel, or an electromagnetic magnet with tight gap control, moving over a
flexible beam. In the present work, all motions are restricted to be in a plane. We shall
briefly describe the model parameters, state the basic assumptions employed in our for-
mulation, and summarize the equations of motion obtained — the reader is referred to

Vu-Quoc & Olsson [1987,1988a] for details of the derivation.

2.1. The basic model and assumptions. Figure 2.1 depicts the basic
(wheel/beam) model together with its kinematic pararﬁeters. The wheel has radius R,
mass M, rotatory inertia I,. By letting I, =0, one obtains a model of an electromagnetic
magnet moving with constant air gap on a flexible beam as a special case of the basic

model. The material (undeformed) configuration of the beam is represented by the
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orthonormal basis vectors {E;, E,}, lying along the axes of a cartesian coordinate system
labeled (X', X?). The undeformed centroidal line of the beam, of length L, is assumed to
coincide with the coordinate axis X!. The coordfnate of a material point on the cen-
troidal line is denoted by S € [0,L]. We choose § = X'. Let Y(t) = Y*(¢)E, denote the
position of the wheel center of mass in the beam material configuration, and ¢ € [0,00)

the time parameter.t We call Y(¢) the nominal motion of the wheel.

The basis vectors {e;, e;} define the spatial (deformed) configuration of the beam,
and are chosen such that e; =E;, for ¢ = 1,2, for convenience. Let u(S,t) = u*S,t)es

designate the displacement of a material point S on the centroidal line. The position of

the wheel center of mass in the beam spatial configuration is denoted by y(t) = y(t)eq.

Let 6 denote the revolution of the wheel. The wheel is subjected to an applied force
F(t) = F°(t)es, and a torque T about its center of mass. The contact force F, = FZle,

acting on the beam is given by
F.=F -My, (2.1)

where a superposed " " designates total time differentiation. We consider the following

assumptions.

(A1) The wheel is in permanent contact with, and rolling without slipping on, the
supporting beam.f Electromagnetic Maglev magnet ("magnetic wheel") moves with a
constant air gap. The nominal motion and the actual motion of the wheel (magnet) are
given by

Y(t)= Y(t)E; + RE,, (2.2a)
y(t) = Yt) + ¢%u(YH(t),t), u,s(YY(2),¢)), fora= 1,2, (2.2b)

with

t When the summation sign 2 is absent, summation convention is implied on repeated indices, which take
values in {1,2}.

1 Note that in the case of rigid slip, the velocity of the contact point on the wheel is about one thousandth of
the velocity of the wheel center of mass; see Kalker {1979].
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g'(u, u,5) == @' —Rsinx(u,s), ¢%u, u,g) = u? —R[1 —cosx(u,5)] , | (2.2¢)
d x(us) = tan™" ws (2.2d)
an u,g) = tan™!j—2—1|. .
X S 1+ ul,gv

where R is a constant, and the subscript ",5" denotes partial differentiation with respect

to S.

(A2) The beam deforms with small strains and small rotations. The first spatial
derivative of structural displacements is therefore small compared with unity:

u®s|<<1, for a = 1,2. In particular, x ~ u2.
) ) S

(A3) The Euler-Bernoulli hypothesis for beam deformation is assumed, leading to

- the strain energy expression

V()= 1 [ {EA[u's]2 + El[u®g)21dS (2:3)
2oz

_ where EA is the axial stiffness and EI the bending stiffness.

(A4) In the inertia operator of the equations for structural motion, only terms
linear in the structural displacement «® are retained; all nonlinear terms in »® there are

neglected.

(AB) Structural deformation has negligible effects on the revolution of the wheel

such that the actual revolution is approximated by the nominal revolution:

YUoae(YLt) 1 .o i !
o(Yht)x —, ——2L o — 1)~ — 1)~ —. .
.. e a6 a9 .
In addition, we neglect the terms with factors and ——— in the structural equa-
duf duP g

tions of motion.

2.2. Equations of motion. From the above assumptions, a set of mildly non-
linear differential equations describing the complete vehicle/structure interaction for the

basic model is derived. These equations are naturally partitioned into two components.
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The vehicle motion component. The dynamics of nominal motion Y! is

governed by

e YLV + e LT+ oYL 4 e (Y1) = 0, (2.5a)

where
1 1 D, 2 1 2,2 1 T
CO(Y ,t) = —F [1 —Ru ,ss(Y ,t)] —F*u ;S(Y ,t) —'E
+ M[[l "'Eu2;SS(Yl)t)][ul’tt(ylrt) —Euz’ﬁt(?l7t)] + u27S(Y17t)u2)tt(let)] ’ (25b)

cy(Yt) == 2M[[1 —Ru?,55(Y%,0)|[ul, 5 (Y,t) — Ru?,5(Y%,8)] + uz,S(Yl,t)u2,5t(Y1,t)], (2.5¢)

' cz(Yl,t) = M[[l —E’uz,ss(Yl,t)][Ul,ss(yl,t) —Eﬂz,sss(yl,t)] + ’u2,s(Yl,t)u2,sg(Yl,t)] ; (25d)

— I,
es(Y1,t) = M[l —Ru?s(Y1,t)]? + 7 (2.5¢)

Remark 2.1. To obtain physical insight into the above equation, consider for
example the case where F!= T = R = I, = 0, and ignore all influence from the axial
displacement u' of the structure. The remaining nonlinear terms in u2 contribute to the
interaction between the transverse displacement 2% and the nominal motion Y!, which in

condensed form can be written as
MY = w25(Yht) [ F2 —Ma?(Yh,t)] =2, 5(Y,¢) FXt) (2.6)

by total time differentiation of u* together with assumption (A2), and by virtue of (2.1).
We have emphasized in Vu-Quoc & Olsson [1988a] the importance of the inertia force
Mu? for van adequate representation of vehicle motion at high speed. An essential feature
in the present formulation is that we do not systematic:ﬂly neglect all nonlinear terms,

but retain those which are physically relevant. O

The structural motion component. The weak form of the PDE’ for structural
motion in the basic model, satisfying assumptions (A1-A3), are given by (see Vu-Quoc &

Olsson [1987,1988a] for more details)
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P\/Inl(Yl,t)[ul,t,(Yl,t) ~Rs(Yh0))+ [ A, t)utu(S,)dS
o2

+ 2aMP (v [t 5(70) ~Ruts(v,0) |+ umi(r,e) [Prut.s(xt,e) —Bu,s5(¥4,0)
+ (PPutss(YLe) = Ru?,sss(V0)] | - RIF = MP o1, 002, 5(Y1,0)

+ [Oj;]E'Anl,s(S,t)ul,g(S,t)dS] = [771(Yi,t) [F1 —M?l]] , (2.7a)

and

[—EMﬂz,s(Y‘,t) (ot (V0) ~ Rt (Y1,0)) + MAA(T )% (Y1) +

.

Apn2(S,t)u2,tt(S,t)dS}

[0, L]

+ 20 LR (08) [uh,0(7,0) = Bl s (Y40 )+ (0, 0002,V 0)]

+ Pli;l{_ﬁnza.‘?(yl,t) [ulhg(yl:t) "Eu2)SS(Y1:t)] + nz(Yl’t)u2:S(Y1:t)}
+ M(I}I)g{—ﬁﬂz,s(yl,t)[ul,ss(yl:t)—ﬁug;sss(yl:t)]+ ﬂz(Yl,t)“2,ss(Y1,t)}

+ EanQ:S(Yl’t)uz)S(Yl’t) + f EI732;SS(S’t)uQ’SS(S)t)dS}
[o,L]

= P}?nz,s(Yl,t)[Fl —MYY + nQ(YI,t)F"’] , (2.7b)

for all admissible variations (n'n%), where A, denotes the mass per unit length of the
beam. The terms in each of the équa,tions in (2.7) are grouped in square brackets
according to their nature (mass, velocity-convective, stiffness, and applied forces).
"Velocity-convective” terms are part of the convective terms generated by taking total
time derivatives — as already encountered in (2.6) — and are related to the velocity of
structural deformation. A similar definition applies here to the "stiffness-convective"
terms. The stiffness operators in (2.7a-b) contain, in addition to the usual terms for
beam stiffness, stiffness-convective terms with (¥')? and ¥* as their factors, and terms of
geometric nature with factor R [F! —MY"] in (2.7a) and factor RF? in (2.7b). Equations

(2.5) and (2.7a-b) form a system of mildly nonlinear, coupled differential equations,
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driven by initial conditions {Y*0), ¥(0), u($,0), u,(5,0)} and the forces {F!, F? T}
applied on the wheel. We have now come to the central theme of the present paper, i.e.,

the computational procedure for solving these equations.

3. Galerkin spatial discretization: Partitioned DAE’s

Spatial discretization of equations (2.5) and (2.7a-b) is discussed first. Two
predictor/corrector algorithms, with a distinguished feature pertaining to our formula-
tion, are then proposed to solve in time the resulting semi-discrete equations of motion,

which are not explicit ODE’s, but DAE’s. We also introduce an expression for the

discrete energy balance to later monitor the performance of the proposed algorithms.

For each o € {1,2}, let {Pf(S); I= 1,..,.N; i = 1,.,N*}, be a set of independent
functions in S and satisfying the essential boundary conditions for v® We consider the

following discretization

N N¢

= Y L PHSIE), v(S.t) ~ ZZP AS)d(t) . (3.1)

I=1i=1 N I=1i=1

The functions Pff(S) may be eigenfunctions in the case of a simple structure with simple
boundary conditiqns, or finite element interpolatory functions in the case of more com-
plex structures. Introducing the discretization (3.1) into (2.5) and (2.7) we obtain a
spatially-discrete system of equations of motion. Let » := N'+ N% then the total
number of structural degrees of freedom (dof’s) of the discrete system is v:= Nn.t
Denoting Z := {Y?, I}I}T and A = (d, 4, 3), where d is the column-matrix with com-
ponents di(t), the equation for the vehicle component (2.5) in our basic model could be

recast into first order form

—-1 v ?1 i yiarya (3.2)
m[co(. )+ (Y)Y 4+ e(Yhe) (Y

t For a finite element discretization, n may be thought of as the number of dof’s per node, and N the number
of nodal points.
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where the coefficients ¢;(Y?,¢) are computed according to (25) and using the approxima-
tion (3.1). For general vehicle models, Z = (Z', Z2) contains all coordinates of the phase
space of the vehicle motion component, with coordinates in the configuration space gath-
ered in Z', and the corresponding velocities in Z2. For the present basic model, 7! = !
and Z%2= Y!. It should be kept in mind, however, that the equation Z = ®(Z,A,t) in
(3.2), is intended to represent the general vehicle model — see Vu-Quoc & Olsson [1988Db]

for an example — in the computational procedure discussed shortly. We retain, on the

other hand, the second order form of the equations for the structural motion component,

M(z)d + V(2)d + 8(2, 2)d=R(Z, Z, 1), (3.3)

- where M(Z) € R™” is the mass matrix, V(Z) € R™" the velocity-convective matrix,

S(Z,Z.) € R"" the stiffness matrix, and R(Z,é,t) € R" ! the applied force matrix.

Equations (3.2) and (3.3) are nonlinear, coupled differential equations, and do not
have the form of explicit ODE’s. Basically, these equations form a system of DAE’s of
the form G(w, w, t) = 0, with w := (Z,d, d). Treatment of DAE’s often requires the
evaluation of the Jacobian G /8w, which is aﬁ unnecessarily complex task in the present
study. In the next section, we will introduce algorithms that completely avoid evalua-

tion of this Jacobian, and make use of the natural physical partition of the system.

Remark 3.1. In the case where finite element discretization is chosen, care should
be taken in choosing interpolatory polynomials of sufficiently high order to ensure that
spatial derivatives of «® in (2.5) and (2.7) exist and are all represented. They should also
be continuous across element boundaries — except when dictated by actual boundary
conditions (see Examples 6.3 and 6.4). In the above equations of motion, spatial deriva-
tives are required up to second order for »! and third order for «2. Enforced continuity
of these higher derivatives makes the semi-discrete system (3.2) and (3.3) well-posed, and
contributes to the good behavior in numerical results. Following traditional use in
finite-element analysis of (Euler-Bernoulli) beam structures, several authors (e.g.,

Venancio-Filho [1978], Wallrapp [1986]) employ cubic Hermitian polynomials to



L. Vu-Quoc and M. Olsson 13

interpolafe the transverse displacement u? leading to discontinuities in 2% and in
u? 5ss across element boundaries. Moreover, if linear interpolatory functions are used to
approximate the axial displacement u!, then terms in ul,g are artificially eliminated
from the system. We note here that these discontinuities will not disappear by having
more elements in the mesh, but appear on the otv‘,herrhand at a higher cadence. When
passing over a discontinuity, often an algorithm with low order accuracy is used, ﬁnless
the time step falls exactly on the discontinuity. An example of dropping in order of

accuracy in the computed results due to discontinuity can be found for example in

Deuflhard [1985]. O

The structure of the matrices in (3.3) could easily be written in explicit form upon

rewriting (3.1) into the following form

(s, N ul(8,

=1

QH(S) oM

where  P(S) := OXN Q(5) € R2X® | (3.4b)
Qr(S) = {P(S), ..., Pya(S)} € RN, (3.4c)
a(t) = {nh, ..., nhu 08, ... 02T € R™XL (3.4d)
dit) := {df, ..., d}a, df, ..., d2.3T € R, (3.4¢)

with O*%7 being the zero matrix in R*<4. The displacement dof’s of the beam structure

can be ordered in d as follows

d(t) = {dy(¢)T] - - - [dn(t)T}T € R™!. (3.5)

Further, we define the following matrices,

QH(S) —RQZs(9)

PIS)= omn qps)

€ R¥X" | (3.6a)

A(2) = [PH{Y)'PLs(Y') € R™", AJ(Z):= [PH(Y")]TP}.ss(Y?) € R™", (3.6D)
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ONXNT (! ~FY)[Q},s(Y)]TQ3,s(YY)

3 7\ .— B
A, 2)i= R | gt pqa (yTQi (v

€ R"™*" . (3.6¢)

The mass matrix M(Z) can be decomposed as the sum of a constant part denoted

by M’ and a time-varying part denoted by M*(Z). Let My(Z) € R"**, for I,J € {1,...,N},

be the submatrix of M that couples the dof’s in d; to those in dj; similarly for Mg and
Mi{(Z). Then,

My(Z) = Mfj + Mj(Z2) € R™** . (3.7a)

We obtain from (2.7), (3.4), and (3.6a),

Mi= [ A[PS)TP3(S)dS € R™", MY(Z) = M[P{(Y")"P}(Y') € R™" . (3.7b)
(0, L]

It should be noted here that the mass matrix is symmetric, i.e., My = Mj. However,
such is not the case for the velocity-convective matrix V and the stiffness matrix S as
will be seen shortly. From (2.7) and using the definitions in (3.6), an expression for V(Z)

can be readily obtained as
Vil(Z) = 2MY'A}(Z) € R™<* | (3.8)

Analogous to the mass matrix M(Z), the stiffness matrix S(Z,Z.) is split up into a con-

stant part S° and a time-varying part S‘(Z,é) whose expressions are given by

Su(Z, Z) = 8%+ Sk(Z, Z) e R™" (3.92)
sy | |PALQESEIRLSS) ON>N: 15« Rox (5.0b)
= eR*™" .

e ONN! EI[QP?,s5(5)7Q}.ss(S)

SZ, Z) == MY'AL(Z) + M(T)PAR(Z) + A¥(Z, Z) e R™<" . (3.9¢)

The first two terms in (3.9c) are convective terms, whereas the last term, A§(Z, 2),
expresses the geometric effect induced by the constraints (2.2). Finally, the applied force

column-matrix corresponding to the degrees of freedom in dy is

R(Z, Z, t)= {PII(Y‘)]T{F ;,iw }e R"X1 (3.10)
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Remark 3.2. The global matrices acquire a particular structure when Galerkin
finite-element discretization is used: The time-varying matrices M!(Z), V(Z2), and SY(Z,2)
contain zero coefficients except in a small submatrix located on their diagonal. For a
discretization of the type (3.4), this submatrix is of dimension 2nX 2n for an element
with two nodal points. Note that we are concerned here with the basic model with one
wheel (magnet); in a general vehicle model, there isv a submatrix of the above type for
each wheel (magnet). As the wheel moves (say, in the direction of increasing node
numbers), the time-varying submatrices charge down along the diagonal of the global
matrices.§ The reason for this particular structure of the time-varying matrices is the
local character of finite element basis functions (functions with compact support). Simi-
lar observation could be made regarding the applied force R(Z,Z.,t). However, if the
functions Pf{(S), are eigenfunctions of a vibrating beam, then all of the above matrices

are full — but possibly of smaller order. O

4. Predictor/corrector temporal discretization

We are now ready to introduce discretization in time to solve the partitioned DAE’s
with vehicl{e component (3.2) and structure component (3.3). In the general setting
where a complex vehicle model (multibody system) is involved, the number of equations
in Z = ®(Z,A,t) for the vehicle component, i.e., the dimension of the phase space of for
vehicle motion, could be of the same order as the number of equations for the structure
component. It is noted that our numerical treatment in this section, even though
applied to the basic model in examples of Section 6, extends to the above general set-

ting.

§ In a particular case of the present formulation, where only a point mass is considered (I, = 0) with
prescribed nominal motion, and where A§(Z) =0, the element matrices corresponding to the loaded element
are referred to as "structure/vehicle element” in Olsson [1985,1986].
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In many simulation programs for vehicle dynamics, a reduced-order model for the
structure is obtained by projecting (3.3) onto a subspace of eigenvectors (see, e.g.,
Wallrapp [1986] in relation to the program MEDYNA),t and implies a frequency cut-off
in the structural response. This reduced-order model is then transformed into first order
ODE’s;f the cost of transforming a large system in (3.3) into first order form and of sub-
sequent numerical solution being prohibitively expensive. Choice of the subspace of
eigenvectors must be Iﬁade carefully tb represent all relevant effects in the motion, which
are often difficult to guess in advance. The reason of this caution rests on the fact that
the choice of an eigen-subspace that contains the maximum information on the motion

depends intimately on the applied forces, i.e., a systematic selection of low frequency

modes may lead to a misrepresentation of the motion. Further, recall that the projected

matrices lose their bandedness, and are thus fully populated. In this paper, we propose
two predictor/corrector methods for integrating (3.2) and (3.3) which retain the

efficiency of structural dynamics algorithms for solving the unreduced system (3.3).

In what follows, the subscript £+ ¢; will.be used to designate the discrete approxi-
mate of a quantity at time #,. = i+ ¢;h, where ¢; € [0, 1], and & denotes the current
time step size. Thus, for a function f(t), we write Fovg, = f(tkﬂ',). The approximate to
the structural displacement defined in (3.5) is written as ditg, & d(tp4). Similarly,
structural velocity and acceleration at time te+¢, are denoted by Vige, & El(t,,ﬂ',) and

Bppg, N :i’(t,,_,_s.',), respectively. Hence, Ay, = (dk+y Vi Bk4g) Further, we define the

matrix d* whose coefficients are all the dof’s corresponding to u®
d%:= {dfi, ..., djal - |df1, ..., d%}T € ROVIXT (4.1a)

and thus

Vi, = d(ty ), aiyg = d%(ty) - (4.1b)

t These eigenvectors correspond to the eigenvalue problem S°x = AM°’x.
{ Vehicle nominal motion is prescribed a-priori in this work.
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L 3

The notation [v§]k+g‘- P~ dff(t,,.,_g,.) and [aﬁ-’]k“i ~ :1'1‘,3‘(t,,+§'.) will also be used. In addition,

we introduce the following expressions

¢ih? y
K(Zks,) = M(Zp+¢) + §ih(% —NV(Zk+s) + W S(Zi+e,) |[ER =¥, (4.2a)
f(Zkvcptirs) = R(Zergothne) —V(Ziao)lve + k(27 —%)ak]
g,?kz 1 vX1

—8(Zk+g) [ + sihavi + B o a; |€ R™", (4.2b)

Vieg = Vi + Gh [(7 —%)ak + (% “'")')3k+g'~] € R¥X!, (4.3a)

dipo = dy + Gh i 1 1 R¥X! (4.3b)

kg, = dp + § vk+T —'2794:'!' _é:;a—ak-i-s“e ) .

where v Is an algorithm constant, and where the shorthand notations S(Z) ES(Z,Z‘) and

R(Z,t)=R(Z ,Z. ,t) have been used to alleviate notation.

4.1. Single-step method. The following algorithm is a single-step
predictor/corrector that combines explicit methods of the Runge-Kutta family with an

efficient algorithm in structural dynamics for solving (3.2) and (3.3).

Algorithm 1: (single-step predictor/corrector)

Data: o Algo. const.: v, p, {¢;; t1=1,...,p},
{aij; i= 2)“’)?} j= 1)“';("._ 1)}) {b“ i= 17---,?},
e Current time step size h,
e Solution at time &: Z,, di, vi, a;.

Predictor:
1) Dy= h®(Z, Ak, &)
For each (i € {2,...,p}), do {

N 1
2) ZIH'-{,-: Zk -+ Za,-ij.

=1
3) Solve for Q,H_g, such that K(Zi4¢) arrs = H(Zpsq, tirg)

where K and f are computed as in (4.2).
4) Displacement: Compute dy.. using ékﬂi as in (4.3b).

5) Auxial velocity: Set [1311,-],;“‘ = [vll,-}k if Z' nsupp P # Q&
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for1=1,.,Nand j = 1,.,N.t
Transverse velocity: Compute GEH,, using Q,?H‘, as in (4.3a).

6) Auxial acceleration: Set [‘;Ilf]l;-l-g‘. =0if Z' Nnsupp P %

forI=1,.,Nandj=1,.,N.
7) Di= h®¥(Ziyg, Bpus, bt )

}

Corrector:

4
8) Zk+1= Zk + Eb;D;.

i=1
9) Solve for a;,; such that K(Zis1) akg1 = f(Zisy, tiy1)
where K and f are computed as in (4.2).
10) Compute vy, and d;, using a,,, as in (4.3).
O
Remark 4.1. Assuming that the structural displacement d(t) is known exactly for
- all ¢ € 0,4 o0) then with dy = d(#), V &, Steps 1,2,7 and 8 in Algorithm 1 constitute the

explicit p-stage Runge-Kutta method, with coeflicients $i» a; and b;, and solving for

Z(t). For instance, the 4-stage classical Runge-Kutta method (4th-order accurate) has
coefficients {gi} = {0’ ';_’ %) 1}) a;; = 0 except {021, @39, a43} = {%’ %‘: 1}1 and {bl} = {%7

11
373"

%}.j: Higher order Runge-Kutta methods such as those proposed by Dormand &
Prince [1978] could also be used.§ Consider the partition ® =(®!, ®°) and D; = (D}, D?)
in the same manner as in Z =(2', 9. Then when @' =7% as in the present basic

model, one can dispense with the coefficients D{, and rearrange the computation more

efficiently as follows. Let

b = i"’b; R b—, = é b; a;; . (4.4a)

i=1 i=7+1
In Step 1, compute D} = hd%(Z;, A, #).

In Step 7, for ¢ = 2,...,p, compute D? = h<b2(2k+f‘,, Ak“rf.” tits)-

+ The support of a function f is denoted by suppf.
} A convention often valid for almost all Runge-Kutta schemes is: ¢; = }5 a,; (see Dekker & Verwer [1984]).

=1
§ See for example Butcher [1987] for detailed discussions on explicit Runge-Kutta methods.
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In Step 8, Zy+1 = (Zi4+1, Z21) is then computed by

o op=l_ v
Zk1+1 = Z,,l + hb*Zkz + ‘hzb;D;Z s Zk2+1 = Zk2 + ib;D,-z . (44b)
i=1 i=1
This procedure is equivalent to the Nystrdm method in terms of efficiency. Recall that
the Nystrom method (see, e.g., Fine [1987]) deals directly with the second order equa-
tions Z! = <I>2(Z1,21,A,t), and is most efficient only when ®? is not function of Z.l, which

is not true in our case. O

Remark 4.2. If the nominal motion Y'(t) (or Z(t)) is known a-priori, then with

Zk+1=Z(t41), V k, Steps 9 and 10 in Algorithm 1 express balance of momentum at

time #.,, and correspond to the implicit "¢,-method" proposed by Hoff [1986]. We note

that to derive (4.2a-b) from the balance of momentum (3.3) at time t+g, the following

relations are used

vk+$,' = Vi + g'h [(27 _%}a’k + (% _q)alﬂ-f{] € R™! ’ (45&)

212
$h 1
dk+g,~ = d; + Ghyve + "'—‘[[ -7

2 292

o + 217 a,,ﬂi] € R¥X! (4.5b)

These relations are slightly different from (4.3a-b), and effectively introduce numerical
dissipation in the high frequencies (for v < 1). This algorithm is unconditionally stable
for v € [05, 1], and is (locally) second order accurate. However, in order to have no
overshooting, small algorithmic damping, and small relative period error, it is recom-
mended to use v € [0.95, 1] (Hoff & Pahl [1987]). For 4 = 1, the method reduces to the
trapezoidal rule with well understood properties (see, e.g., Hughes [1983]). We note that
either displacement or velocity, instead of acceleration as presented in Steps 3 and 9,
could be equivalently chosen as primary unknown. The "6,-method" is close to the tra-
pezoidal rule in the low frequency range, and offers numerical dissipation in the high fre-
quency range. The main motivation iﬁ using this type of method to obtain the men-
tioned "low-pass filtering” effect is because spatial discretization of related PDE’s often

yields worse accuracy for high frequency response than for low frequency response.
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Recall on the other hand that the trapezoidal rule is free of numerical dissipation in the

whole frequency range, and is thus able to reflect with fidelity properties of the spatial

discretization. O

The "¢-method" (implicit, unconditionally stable) is employed here to predict
structural response for the intermediate steps of the Ruhge-Kutta scheme (explicit, con-
ditionally stable) with a special treatment for axial motion: In the computation of D;, for
i=2,..,p, if Z' N supp P{; # Q¥i.e., the support of Pf; contains at least one wheel or mag-

net) then the axial velocity v at time tes, is Teset to its value at time ¢ (see Step 5),

while the axial acceleration af; at time tite IS Teset to zero (see Step 6), and this for

I=1,.,N and j = 1,..,N'. Recall that in a general vehicle model, Z! is the set of nomi-

nal positions of the vehicle wheels or magnets. Instead of Steps 5 and 6, we could have
retained the axial acceleration as computed in Step 3, and evaluate the axial velocity
according to (4.3a). The above treatment is, however, found to effectively maintain sta-
bility of the numerical algorithm by preventing high oscillations with unbounded growth
of energy, as will be demonstrated in numerical examples below. Explanation of the
mechanism triggering this growth in energy is deferred until later in the examples sec-

tion.

Remark 4.3. In Steps 4 and 5, in the computation of the displacement cAl,,H'_ and
transverse velocity \Ar,?ﬂ’_, we only need to compute those coefficients that correspond to

the functions P{f whose supports COIlt,.?.in at least one wheel or magnet in a general vehi-
cle model ie., Z' NsuppPg = ¢ O

We mention in passing that for systems with constant coefficients, the "8;-method"
shares similar properties with the "o-method” proposed by Hilber, Hughes & Taylor
[1977]. The former possesses some advantages over the latter, but more importantly,
lends itself nicely to nonlinear systems with time-varying coefficients. Other type of
single-step structural dynamics algorithms, such as the "beta-m" method by Katona &

Zienkiewicz [1985], could also be employed. However, explicit integration methods, even
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with high order of accuracy, are not recommended for this problem because of their
severe restriction on the time step size (conditional stability). An unconditionally stable
"explicit" algorithm was proposed by Trujillo [1972],$ but suffers poor accuracy
(Belytschko [1983]). Further, a foremost advantage of explicit methods over implicit
methods rests on the constancy of the mass matrix (or better yet, a diagonal mass
matrix). This advantage is quickly nullified if the mass matrix is non-diagonal, and has
time-dependent coefficients such as in the present stqdy. A recent state-of-the-art review
by Wood [1987] provides an extensive survey into numerical integrators employed in
structural dynamics. A word of caution is here warranted: Since most of these algo-

rithms are analyzed for a scalar differential equation (except the algorithm by Gellert

[1978]) with constant coefficients, their properties should not be freely extended to sys-

tems with time-varying coefficients and with non-diagonalizable "damping" matrix (here,
the velocity-convective term}) as that encountered in the present study. Gear [1978] had
in fact -warned about the danger of employing such algorithms for non-diagonalizable

systems. In our problem, we found that the trapezoidal rule was definitely adequate.

4.2. Linear multistep method. In Algorithm 1, each iteration ¢ in the predictor
stage requires solving a system of linear equations to predict the structural motion. This
process, often referred to as function evaluation, is particularly an expensive step in our
problem. In addition, as mentioned in the introduction, differential equations for the
vehicle component are often stiff. Implicit Runge-Kutta methods can offer A-stability,
which is desirable to treat stiff ODE’s, together with high accuracy. However, solution
of the resulting nonlinear algebraic equations often make these methods prohibitively
expensive (Gupta, Sacks-Davis & Tischer [1985]). On the other hand, linear multistep
methods require less function evaluations than single-step (explicit) Runge-Kutta

methods, and therefore will prove to be advantageous in decreasing computational effort

t This method is based on application of operator splitting to the trapezoidal rule, which is an unconditionally
stable implicit method, to avoid solving a system of linear equations.
§ This matrix does not represent any real damping effects in the system.
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in the present study.f Further, these methods can also handle effectively stiff ODE’s.
We consider therefore in Algorithm 2 a combination of linear multistep methods and the

"9,-method.” Let

dl'+1Z
v dtl'+1 ’

o)l = o)z, A,, ), where &l .= and @9 — o . (4.6)

Algorithm 2: (linear multistep predictor/corrector)

Data: e Algo. const.: v, ¢, m, {0y, Bi; i=1,..,q9}, {X;, #¢; 1=0,...,(¢g—1)},
e Current time step size h,
e Solution at time #: {Z,, ®/%, ..., &1}, i, v&, ax.

Predictor (P):
1) Compute {®;_y, ..., ®p_ 41} from {20, ..., @}
2) 29, = i[aJ'Zk—j+1 + hB;®h_jv1] .

J=1
3) Solve for aw.l such that K(Zk(g}l) aé?gl = f(Zk(EQl, tk+1) ,
where K and f are computed as in (4.2).
4) Displacement: Compute df%, using a{%, as in (4.3b).

. . 0 .
5) Axzial velocity: Set [vfj ]k+1 = [”Ila‘]k if 7' N supp P = &,

forI= 1,.,N and j = 1,...,N.

©)

. . © .
Transverse velocity. Compute BQ],‘_H using [aQ]lH-l as in (4.3a).

0
6) Azial acceleration: Set [allf}iix =0if Z' Nsupp Pf; # Q&

forI=1,.,Nand j = 1,..,N.
Corrector (EC)™:
For each (i € {1,..,m}), do {
7) Evaluate &, = ®(ZE7), ALY, ter ).
. ¢=1
8) Z81 = Y NZiej + huj®ujpd] -

i=0
9) Solve for a,{‘ll such that K(Z,,(.’Ql) aﬂl = f(Zk(le, the1)
where K and f are computed as in (4.2).
10) Compute vf), and df?}, using af, as in (4.3).
b | |

11) FEvaluation (E): @y, = @(Z,,(;”}, A,ﬁf,"_)l, bey1)-

it In general, when solving ODE'’s, one should also account for the overhead cost. Then linear multistep
methods do not necessarily come out as winners over Runge-Kutta methods (Gupta [1980]).
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Remark 4.4. In the above, Step 2 contains the g¢-step Adams-Bashford method
and Crane-Klopfenstein method, whereas Step 5 may be specialized to the (g—1)-step
Adams-Moulton method, with m being the number of simple iterations in the corrector

stage (see, e.g., Lambert [1973]). For ¢ = 4, the 4-step Adams-Bashford method has

coefficients
Q) =’ 1 y Qg = Q3= Q4= 0 5 and {24,6,} = {55, —59, 37, -9} y

while the Crané—KIopfenstein method has coefficients

2.002247

ap= 1.547652 | B,
@y = —1.867503 | B, = —2.031690

ag = 2.017204 | B; = 1.818609

oy = —0.697353 By = —0.714320
and the 3-step Adams-Moulton method has coefficients

)\0——— 1, >\1= )\2= >\3= 0, and {24;&,} = {9, 19,—5, 1} .0

Remark 4.5. In step 1, with the step size k given, the value of
{®4—1, . ., Bpyyy} from {&9, .., @[4I} (and vice versa) is easily obtained by interpo-
lation of a polynomial of degree ¢ (see, e.g., Gear [1971, p.149]). This procedure (due to

Nordsieck) allows a convenient change of time step size. O

Algorithm 2 is a general predictor/corrector in P(EC)™E mode. For m = 1 and
¢ = 4, the Crane-Klopfenstein predictor combined with the 3-step Adams-Moulton
corrector is of 4th-order, and has a region of absolute stability comparable to that of the
classical (4th-order) Runge-Kutta method. This region of absolute stability is more than
twice larger than that of the Adams-Bashford-Moulton method in both P(EC)? mode
and in PECE mode (Lambert [1973, p.148]). Even though the two Algorithms 1 and 2
(when using the above coefficients) have similar properties regarding accuracy and stabil-

ity, the computational effort in Algorithm 2 with PECE mode is twice less: It requires
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only two solutions for structural motion, instead of four as in Algorithm 1. Therefore,
Algorithm 2 is definitely more efficient than Algorithm 1, except that it is not self-
starting. We will use the latter to create starting points for the former. Note that

Remark 4.3 also applies for Steps 4 and 5 of Algorithm 2.

Even though more efficient starters based on methods proposed by Gear [1980]
could be developed, but considering that the overall saving is not significant, in the
present WOI'k,‘ all results are reported with Algorithm 1 as starter for Algorithm 2. An
alternative to this starting procedure would be to use low-order methods with small step

size at the beginning. The robustness of the proposed predictor/corrector algorithms

rests in part on the choice of unconditionally stable sub-algorithms for the structural

motion component; recall that sub-algorithms for the vehicle motion component are only
conditionally stable. Methods other than linear multistep ones, such as extrapolation
methods, could be explored as alternatives (Gupta, Sacks-Davis & Tischer [1985]).
Deuflhard [1985] provides an extensive review of extrapolation methods. Finally, we
note that the proposed algorithms are extendible to the case with fully nonlinear beam
theory (see Vu-Quoc [1986] and Vu-Quoc & Simo [1988] for a related algorithm to solve

an ODE/PDE system arising in satellite dynamics).

5. Discrete energy balance

The balance of system energy at time ¢ can be written as follows
t
K, + ¥, —-f[ F )y )+ T(n(7) dr= K, + ¥, , (5.1)
0
where K; and ¥, are the current kinetic energy and potential energy, the integral term is
the work done by external forces, K, the initial kinetic energy, and ¥, the initial poten-

tial energy. For small structural deformations, we consider the following approximation

to the kinetic energy and potential eriergy

K, =~ %M{[ff‘ + ul(Yht) —Ru?s(YL,t))? + [';2(Yl’t)]2}+ ";‘]'”




L. Vu-Quoc and M. Olsson 25

¥, ~ ;- dT S d, (5.2b)

where 4® is to be interpreted in terms of fotal time derivative. It is important to note

that, despite the approximation ih the velocitjf already employed in (5.2a), to obtain
(2.5) and (2.7), further reductions should be made ﬁo the Euler-Lagrange equations
derived from using this approximated kinetic energy. Nevertheless, for small deforma-
tions, this is a good approximation for an energy balance check in the numerical results.
The use of (5.1) and (5.2) together provide a useful guideline in the design of numerical
integration methods. We will show By numerical exaniples that the proposed algorithms

maintain well energy balance to within very small error tolerance. Recall that in linear

- structural dynamics, the trapezoidal rule preserves exactly system energy (e.g., Hughes

[1983]). In addition to providing an indication to the soundness of integration algo-

rithms, energy balance is used to explain the Timoshenko paradox mentioned in the

introduction.

6. Numerical examples

In this section, numerical results for our basic model of vehicle/structure interac-
tion are presented for a wide range of vehicle speeds. These examples demonstrate the
reliability and efficiency of the proposed integration algorithms, as well as the adequacy
of the present formulation for vehicles moving at high speed on flexible structures.
Emphasis is focused on results which are not achievable using formulations based on the

traditional assumption of known vehicle nominal motion.
Finite element basis functions are used here in the discretization (3.4) such that for
a partition 0 =S5, <...< Sy = L, the dof’s associated with node I € {1,...,N} are the dis-

placement components and their spatial derivatives (see (3.4e)):

(S t)

dif =~ - 6.1
Is BS,...I ( )

For complete continuity of the spatial derivatives appearing in (2.5) and (2.7), one
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should use (at least) N' = 3 for the axial dof’s, and N?= 4 for the transverse dof’s.
There are thus seven dof’s at each nodal point. It is easy to construct the basis func-
tions Pjf} corresponding to these dof’s in terms of polynomials: For the axial displace-
ment, Pf; are 5Sth-order polynomials, while for the transverse displacement P2 are 7th-

order polynomials.

The proposed computational procedure for analyzing vehicle/structure interaction
has been implemented in the research version of FEAP, the Finite Element Analysis Pro-
gram developed by R.L. Taylor — see Zienkiewicz [1977, Chap. 24] for a description of a

simple version, and compiled under the Berkeley Unix 4.3 BSD operating system. The

beam element used in our work is implemented to allow the flexibility to choose different

number of nodal dof’s, i.e., different values of N! and N2

All numerical results reported herein are obtained with the following algorithm con-
stants. In Algorithm 1, we use the constants for the classical Runge-Kutta method
(Remark 4.1), and in Algorithm 2 the constants for the Crane-Klopfenstein and the
Adams-Moulton methods (Remark 4.4). The PECE mode is chosen for Algorithm 2
(m = 1), with starting points’ generated by using Algorithm 1. Integration of structural
motion is performed with v = 1, i.e., the trapezoidal rule. In all examples, the time step
size is kept constant throughout the calculation. Also, all beam structures and their spa-
tial discretizations are uniform. Effects of complete vehicle/structure interaction will be
studied in the following examples for a simple-span and a six-span beam structure dep-

icted in Figure 6.0.

Example 6.1. Vehicle traversing a simple-span guideway. Consider a wheel
of mass M = 3000kg, rotatory inertia I, = 135kgm?, radius R = 0.3m, rolling over a sim-
ply supported beam. The distance from the beam centroidal line to the wheel center of
mass is R = 09m. The beam has a length L = 24m, mass per unit length
A, = 1250kg/m, axial stiffness EA = 5X 10°N, and bending stiffness EI = 10°Nm?. The

wheel is subjected to a constant vertical force F?= —600,000N (see Figure 6.0,
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F'= T = 0). The magnitude of this force is about 20 times that of the weight of the
wheel (acceleration of gravity 9.81m/s?). The maximum mid-span static deflection

corresponding to this load is 0.1728m or about L /140.

The lowest flexural frequency is 2.44Hz; the lowest axial frequency is 20.8Hz. The
following initial conditions are considered: Y'(0) = 0, u($,0) = u,($,0)=0. The wheel
motion is driven mainly by its initial velocity 17'1(0).' Four values of initial velocities —

Imfs, 10m/s, and 100m/st — are chosen to  study the effects of complete

vehicle/structure interaction, and to verify the robustness of the proposed numerical

algorithms. Often, the non-dimensional quantity

y’*l

“= 3FL

(6.2)

where f? is the lowest flexural frequency of a beam of length L, is used to describe the
dynamic character of moving load problems (see Fryba [1972]). In this example, the
above initial velocities correspond to the values of o of 0.00854, 0.0854, and 0.854, respec-
tively. The beam is discretized into two elements with N'= 3 and N*= 4. To
integrate the motion, we used 200 time steps with respect to the traversing time on a
rigid beam for each of the three cases (i.e., 24s, 2.4s, and 0.24s). Thus, the time step size

h takes respectively the values 0.12s, 0.012s, and 0.0012s.

Nominal velocity. The time histories of nominal velocity for different initial veloci-
ties are plotted in Figures 6.1a-c. The largest increase in nominal velocity (about 400%)
is obtained for the smallest initial velocity (Y'(0) = 1m/s, Figure 6.1a). As a result, the
traversing time on the present flexible beam is about one third of the traversing time on
a rigid beam. For an initial velocity of 10m /s, the increase in velocity is drastically
reduced to about 10% (Figure 6.1b), with an exit velocity of 9.96m/s. Figure 6.1c

clearly shows a loss in nominal velocity at the end of the traversing: An initial velocity

t Results for the initial velocity of 50m /s are given in Vu-Quoc & Olsson {1987,1988a.
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of 100m /s drops by 0.7% to an exit velocity of 99.34m /s, with a peak-to-peak variation
in nominal velocity of 1.0% of the initial velocity. For }:'1(0) = 100m /s, an analysis with
100 time steps, i.e., with A = 0.0024s, shows little difference in the results (Figure 6.1c).

We will therefore use this time step size in the examples of a six-span beam below

(Examples 6.3 and 6.4).

Structural deflection. Figure 6.1d shows the vertical mid-span displacement for
different initial velocities, where time is normalized with respect to the traversing time
on a. rigid beam for each case. The dynamic magnification factor is 1.77 for

}:'1(0)= 100m /s. Observe the free vibration of the beam, after the traversing of the

vehicle, clearly shown for ¥(0) = 1m/s.

Energy balance. The soundness of numerical algorithms depends in part on how
well the computed results satisfy energy balance. The variation of the terms in the
expression for energy balance (5.1), as a function of time, for an initial velocity of 10m /s
is plotted in Figure 6.1e, where the legend "energy balance" means the left hand side of
(5.1). (At this scale, the kinetic energy of the beam is too small to be well discernible,

and is not plotted.)

Using Algorithm 1 throughout, the maximum offset of energy balance for
Y'(0) = 10m/s is 0.13% of the initial kinetic energy K, (= 0.225% 10°%kgm?/s%); this max-
imum offset is about 0.018% of K, (= 22.5X 10%kgm?/s?) for Y'(0) = 100m/s. On the
other hand, using Algorithm 2, the maximum offset in energy balance for Y = 100m /s
is 0.008% of the corresponding K,, and occurs near the end of the traversing. Thus, the
offset of energy balance in Algorithm 2 is roughly half of that produced in Algorithm 1.
This remark is also true in later examples. Algorithm 2 therefore not only reduces
significantly the computational effort, but satisfies better the energy balance in com-

parison with Algorithm 1.

Plotted in Figure 6.1f are both the energy balance and the wheel kinetic energy as

a function of time for )}1(0) = 100m /s. The drop in nominal velocity at the exit (Figure
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6.1c) induces a loss in the vehicle kinetic energy; this lost kinetic energy becomes the
required energy to keep the beam in free vibration after the passage of the vehicle. This
energy transfer thus effectively explains the Timoshenko paradox. One would then
immediately ask how much the drop in nominal velocity (and kinetic energy) would be

for a vehicle moving over a multiple-span beam structure. This situation will be con-

sidered in Example 6.3. o

Example 6.2. Growth of energy and proposed treatment. Here is an exam-
ple where without the special treatment in Step 5 and Step 6 of Algorithms 1 and 2, one

could encounter an undesirable growth in the offset of energy balance. Consider a

Maglev magnet with mass M = 12,000kg, and I, = B = 0. A vertical force of

F? = —600,000N is applied at its center of mass. The beam has the same properties as
in Example 6.1. The system be driven by the initial conditions: Y?(0)= 0,

?1(0) = 30m/s (o = 0.256), u($,0) = u,(5,0)=0. The calculation is performed with 200

_ time steps of size b = 0.004s.

Oscillations in numerical results. The time history of the nominal velocity };l(t) is
plotted in Figure 6.2a: The solid line is the result obtained with Algorithm 2; the dotted
line is the result obtained if we do not reset the axial velocity and acceleration (Steps 5
and 6), and use (4.3a) to compute both the axial velocity and the transverse velocity.
Oscillations in the dotted line appear very early, with increasing amplitude compared to
the smoothness of the solid line. This oscillatory pattern is even more pronounced in the
time history of of energy balance (Figure 6.2b). We note that oscillations also appear
when using Algorithm 1, but with somewhat smaller amplitude, if the special treatment
in Steps 5 and 6 is absent. The proposed algorithms therefore effectively remove
undesirable oscillations that may occur in the results. Offset in energy balance for Algo-
rithm 2 (solid line in Figure 6.2b) is less than 0.0013% of the initial kinetic energy
K, (= 5.4X 10%gm?/s%). This offset is 0.0026% for Algorithm 1, in agreement with our

remark in the previous example.
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Source of oscillations. The mechanism triggering the aforementioned oscillatory
phenomenon can be explained by looking at the equations of motion (2.5) and (2.7),
recalling that I, = R =0. In particular, consider the axial acceleration u!,,. This
acceleration can be viewed as a driving force for the nominal motion, and is related to ¥
by equation (2.5a). On the other hand, the nominal acceleration Ve appears on both side
of equations (2.7), and play the role of a time-varying coefficient in the predictor stage.
The numerical error acquired when solving for the predicted structural motion u® is then
fed back to the nominal motion through the axial acceleration !, in equation (2.5a).
Depending on the initial velocity 1?‘(0), this error could accumulate quickly and grow in

amplitude to create the observed oscillations. Moreover, oscillations arise more notice-

ably for a larger ratio M/A,L.

Finally, we note that parameters in the model could play a role in "dampening out”
these oscillations: For instance, the case where the term I,/R? in (2.5¢) is non-zero (posi-
tive). Then the error fed back has diminishing influence on the vehicle motion — more
so with larger value of I,/R? It should be noticed that this type of energy growth does
not occur to the transverse displacement «® for a similar reason: the presence of the fac-
tor u?,s << 1 of u?, (see (2.5b)) as a "dampening" factor. In general, however, the pro-
posed treatment of the axial acceleration during the predictor stage is an efficient way to

eliminate oscillations. e

Example 6.3. High-speed vehicle on a six-span guideway: Energy transfer.
The purpose of this example is to show the effect of vehicle/structure interaction on a
long guideway, and the transfer of kinetic energy from the vehicle to the structure. We
consider here a similar situation as in Example 6.1, except that the structure is a six-
span continuous beam, each span of L = 24m (Figure 6.0, T = 0). Other parameters of
the model are identical to those in Example 6.1, except that here R = 0. The maximum
static deflection is reduced from L /140 to about L /200. The boundary conditions here

are such that »!(0,¢)= w«%kL,t)= 0 for k=0,1,.,6, and ul'g(6L,t) = u?45(0,t)=
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u?,65(6L,t) = 0. Each span of the beam is modeled by one element of the type
(N', N%) = (3,3), which allows discontinuity of u?ss (related to shear force) at the sup-
ports. The initial velocity is set to 1./1(0) = 100m/s. From experience in Example 6.1,
we use 600 time steps (or 100 steps per span) to cover the traversing time on rigid guide-

way of 1.44s, i.e., h = 0.0024s.

Nominal velocity. The vehicle nominal velocity drops steadily to a significant
amount (Figure 6.3a). At the exit, this drop is about 3.5% of the initial velocity. Also,
the computed nominal velocity with the present discretization differs little from that

obtained with a finer space-time discretization (two elements per span, and A = 0.0012s),

as seen from Figure 6.3a.

Energy balance. Observe the drop in nominal velocity in Figure 6.3b, as the wheel
kinetic energy, with a loss of about 6.3% of its initial value, is transferred to the struc-
ture. In Algorithm 2, the offset in energy balance is less than 0.018% of the initial
kinetic energy K, (= 22.5X 10%kgm?/s?); this offset is about 0.031% of K, for Algorithm
1. It is interesting to note that if the guideway (a multiple-span structure, but not
necessarily continuous) is sufficiently long, a vehicle moving under ité initial speed and
its own weight, without any other external force, will experience a continuous drop in
speed due to energy transfer, even in the absence of any energy-dissipative mechanism

such as mechanical friction or aerodynamic drag.

Influence lines. Dynamic influence lines at mid-span (beam mid-span deflection vs.
vehicle nominal position) are given in Figure 6.3c for the first span, and in Figure 6.3d
for the last span, together with the corresponding static influence lines. In the first span,
there is a characteristic delay in the dynamic response at the beginning, and a sustained
motion toward the end of the traversing, instead of a "motion" whose amplitude dies
out quickly as in the static case (Figure 6.3c). In the sixth span, on the other hand, the
response begins to build up quickly, with increasing amplitude, as soon as the vehicle

enters the third span (Figure 6.3d). This amplitude build-up could be explained by the
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fact that the initial value of o = 0.854 is close to the critical value of 1. However, as
noted above, for a sufficiently long continuous guideway and without the aid of any
other external force, this amplitude growth in structural motion could not become

unbounded because of the continuing loss in vehicle kinetic energy.

Contact force. We have in this example a case where the contact force |F2|
reaches 2.5 times the vertical force |F?| (Figure 6.3¢). Again, this points to the impor-
tance of the inertia term Mu 2, and therefore the nonlinear term Mu2,su 2, which must be
retained if the equation for nominal motion (2.5) is to be valid at high speed, as noted in

Remark 2.1. The horizontal contact force F!, has a maximum value of about 10% of

the vertical force |F?| (see Vu-Quoc & Olsson [1987]).

Example 6.4. Effects of braking on vehicle/structure system. The same
model parameters as those in Example 6.3 are used here, except R = 0.9m. We now
consider the effects of applying the following braking torque

—27,000t (Nm) for ¢ € [0, 0.1]
T(t) = —2,700 (Nm) for t > 0.1s (6.3)

to the wheel (Figure 6.0). On a rigid structure, the full torque creates a deceleration of
2m /s?. References on analysis of braking effects of vehicles on bridge structures can be
found, e.g., in Gupta & Traill-Nash [1980], and Lex-Mulcahy [1983]. Note that the vehi-
cle models in these references have no mass in direct contact with the structure, and
hence are simpler to handle. Application of a braking torque is, however, not possible in

these models.

Nominal velocity. Results are given for two initial velocities: 50m /s and 100m/s.}
From Figures 6.4a-b, one observes the more pronounced effects of structure flexibility

with high vehicle speed, as compared with the case of braking on a rigid structure. For

t For this type of resonance, we refer to Smith, Gilchrist & Wormley [1975] where the case of a moving force
with constant speed is studied.
1 See Vu-Quoc & Olsson [1987] for the case with initial velocity at 756m/s.
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the case with 1;'1(0) = 50m /s, the nominal velocity follows more or less that obtained on
a rigid structure (Figure 6.4a). By contrast, the case with Y'(0) = 100m /s leads to a

significant difference in the results (Figure 6.4b). Compared with the drop in velocity at

exit of a rigid structure, the structure flexibility induces an additional drop of about 7% -

for );'1(0) = 50m/s (Figure 6.4a), and -‘-a sharply larger amount of 140% for
1"1(0) = 100m /s (Figure‘ 6.4b: The exit velocity is 93.4m/s on flexible structure, com-
pared with 97.2m/s 6n rigid stru_c_:ture). We note that, in traditional analysis of
vehicle/structure interaction, the prescribed nominal velocity would coincide with the

vehicle velocity on a rigid structure.

Contact force. Had we prescribed the vehicle nominal motion to be the same as

that on a rigid structure, this would result in a drastic difference in the magnitude of

‘horizontal contact force. Compare Figure 6.4c, obtained with unknown nominal motion, -

to Figure 6.4d, obtained with prescribed nominal motion, for }.’1(0) = 100m/s.t These
figures are plotted at different scales to reveal the shifting pattern of the average contact
force in Figure 6.4c, as a result of complete vehicle/structure interaction at high speed.
For lower speed, for example at Y.'1(0)= 50m /s, this contact force does not depart
significantly from the case of traversing a rigid structure. The reason for the much
larger horizontal contact force in the prescribed nominal motion case (3 to 4 times the
contact force for unknown nominal motion) is due to the extra constraint forces that

must be applied on the vehicle to make it follow the prescribed motion. e

7. Closure
We have presented an-efficient and reliable computational procedure for analysis of

complete vehicle/structure interaction valid for high speed regimes. In semi-discrete

form, the equations of motion for the basic interaction model are not ODE’s, but DAE’s.

T See Vu-Quoc & Olsson [1987] for the case with initial velocity at 75m [s.
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The proposed algorithms, carrying special features pertaining to our formulation of the
interaction problem, combine as sub-algorithms efficient integration methods in vehicle
dynamics and in structural dynamics into global predictor/corrector algorithms. The
association of highly accurate, but conditionally stable sub-algorithms to unconditionally

stable sub-algorithms yields a desirable robustness in these predictor/corrector schemes.

Several examples are presented to illustrate the proposed approach. Discrete
energy balance check, monitoring the numerical results, testifies to the reliability of these
results, and therefore the viability of the method. We have shown some significant

differences in the results, compared to those obtained in an analysis where vehicle nomi-

nal motion is prescribed. Further, energy transfer from the traversing vehicle to the

supporting structure — decrease in vehicle kinetic energy, increase in energy stored in
the structure, and balance of system energy — is clearly demonstrated. We thus

effectively resolve the Timoshenko paradox in the spirit of Maunder [1960].

The present basic model is applicable to both wheel-on-rail and Maglev vehicles,
and serves as a building block for general vehicle/structure models — an example is dis-
cussed in Vu-Quoc & Olsson [1988b]. The proposed numerical integration algorithms are
not restricted to the basic model, but are also applicable to general vehicle models. As a
whole, the methodology, in addition to combining the best of both worlds, could also be
easily implemented in existing vehicle dynamics programs as well as in structural

dynamics programs.
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Figﬁre captions

Figure 1.1. Electromagnetic Maglev vehicle with magnet units ("magnetic
wheels").

Figure 2.1. Basic problem. Model parameters.

Figure 8.0. Basic vehicle/structure models. Simple-span and six-span beam struc-
tures. " ' '

Figure 6.1a. Vehicle traversing a simple-span guideway. Nominal velocity vs.
Time. Initial velocity Y'(0) = 1m/s. Beam length L = 24m.

Figure 6.1b. Vehicle traversing a simple-span guideway. Nominal velocity vs.
Time. Initial velocity Y'(0) = 10m/s. Beam length L = 24m.

Figure 8.1c. Vehijcle traversing a simple-span guideway. Nominal velocity vs.
Time. Initial velocity Y'(0) = 100m/s. Beam length L = 24m. Solid line: 200 time
.steps. Dotted line: 100 time steps.

Figure 6.1d. Vehicle traversing a simple-span guideway. Vertical mid-span dis-
placemen} (normalized wrt 0.1728m) vs. Time (normalized wrt traversing time on rigid
beam). Y(0) = 1m/s, 10m/s, 50m /s, 100m /s. L = 24m.

Figure 8.1e. Vehicle traversing a simple-span guideway. Energy (x 10°%) vs. Time.
Initial velocity Y'(0) = 10m/s.

Figure 8.1f. Vehicle traversing a simple-span guideway. Energy (x 10%) vs. Time.
Solid line: energy balance. Dotted line: wheel kinetic energy. Initial velocity
Y(0) = 100m/s.

Figure 6.2a. Growth of energy and proposed treatment. Nominal velocity vs.
Time. Solid line: Algorithm 2. Dotted line: Algorithm 2 without treatment of axial
motion.

Figure 6.2b. Growth of energy and proposed treatment. Energy balance (x 10°%) vs.
Time. Solid line: Algorithm 2. Dotted line: Algorithm 2 without treatment of axial
motion.

Figure 6.3a. High-speed vehicle on a siz-span guideway. Nominal velocity vs.
Time. Solid line: 1 element per span and h = 0.0024s. Dotted line: 2 elements per span
and & = 0.0012s.

Figure 6.3b. High-speed vehicle on a siz-span guideway. Energy (x 10°) vs. Time.
Solid line: energy balance. Dotted line: wheel kinetic energy.

Figure 6.3c. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in first span vs. Nominal position. Solid line: dynamic. Dotted line:
static.
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Figure 6.3d. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in 6th span vs. Nominal position. Solid line: dynamic. Dotted line:
static.

Figure 6.3e. High-speed vehicle on a siz-span guideway. Vertical contact force F2
(normalized wrt vertical force F?) vs. Time.

Figure 6.4a. Effects of braking on vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y(0) = 50m/s. Solid line: flexible structure and
unknown nominal motion. Dotted line: rigid structure, or flexible structure with
prescribed nominal motion.

Figure 6.4b. Effects of braking on vehicle/siructure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y(0) = 100m/s. Solid line: flexible structure and
unknown nominal motion. Dotted line: rigid structure, or flexible structure with
prescribed nominal motion.

Figure 6.4c. Effects of braking on vehicle/structure system. Horizontal contact
force F;! (normalized wrt vertical force |F?|) vs. Time. Solid line: flexible structure and

‘unknown nominal motion. Dotted line: rigid structure. I;'I(O) = 100m /s.

Figure 6.4d. Effects of braking on vehicle/structure system. Horizontal contact
force F,' (normalized wrt vertical force |F?|) vs. Time. Solid line: flexible structure and
prescribed nominal motion. Dotted line: rigid structure. Y'(0) = 100m/s.
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Figure 6.1a. Vehicle traversing a simple-span guideway.
Time. Initial velocity Y'(0) = 1m/s. Beam length L = 24m.
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Figure 6.1b. Vehicle traversing a simple-span guideway.
Time. Initial velocity Y'(0) = 10m/s. Beam length L = 24m.
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Figure 6.1f. Vehicle traversing a simple-span guideway. Energy (X 10°%) vs. Time.
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Y(0) = 100m /s.
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Figure 6.4a. Effects of braking on_ vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y'(0) = 50m/s. Solid line: flexible structure and
unknown nominal motion. Dotted line: rigid structure, or flexible structure with
prescribed nominal motion.
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Figure 6.4b. Effects of braking on vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y'(0) = 100m/s. Solid line: flexible structure and
unknown nominal motion. Dotted line: rigid structure, or flexible structure with

prescribed nominal motion.
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Figure 6.4d. Effects of braking on vehicle/structure system. Horizontal contact
force F! (normalized wrt vertical force |F?|) vs. Time. Solid line: flexible structure and
prescribed nominal motion. Dotted line: rigid structure. Y'(0) = 100m/s.






