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COMPARISON OF METHODS FOR DETERMINING 
EIGENMODES OF ELLIPTICAL WAVEGUIDES 

D.A. Goldberg, L.J. Laslett, and R.A. Rimmer 

1. Introduction 

Waveguide modes (particularly their cutoff frequencies) in pipes of elliptical cross 
section are of interest in connection with impedance estimates for the Advanced Light 
Source (ALS). First, there will be sections where the ALS beam pipe will in fact be 
elliptical. Second, for those regions where the cross-section is not elliptical (e.g. the 
regions containing the ante-chamber), modes and their cutoff frequencies will have to be 
obtained using numerical field solvers such as URMEL-T; it was felt to be desirable to 
check the numerical accuracy of such codes by examining their results for a problem with 
"known" solutions, e.g., the elliptical waveguide. 

Solutions to the elliptical waveguide problem have been worked out in a classic paper 
by L-J Chu [1], which gives field plots for the lowest few modes, as well as a graph of 
cutoff frequency vs eccentricity for those modes. Initial URMEL-T calculations gave 
frequencies which were in quantitative disagreement with the Chu values. More seriously, 
the field·pattem for the TMo1 mode CeEo in Chu's notation), was qualitatively different 
from that depicted in Chu's paper: URMEL-T yielded a field pattern that was basically a 
deformed version of the TMo1 mode for the circular guide (a single, on-axis "flux tube" of 
E z); Chu' s solution showed a pair of Ez flux tubes, pointing in the same direction, 
located at what appeared to be the foci of the ellipse (see Fig. 1 below). Chu's picture also 
appeared to be at variance with the analytic form of the solution he presented for that mode. 

A quick attempt to "arbitrate" the situation by using an approximate formula contained 
in McLachlan's classic work on Mathieu functions [2] yielded results which disagreed with 
both the above results. It was therefore decided that the most direct approach to resolving 
the various discrepancies, and to establishing URMEL-T's accuracy (at least for the ellipse 
problem) would be to solve the wave equation by numerical integration, using an iterative 
technique to obtain the relevant eigenvalues. 

The original intent of this note was merely to summarize the results of the above 
investigation. However, it was felt that it would be useful to make the work reasonably 
self-contained, so that it could also serve a tutorial function, by including a discussion of 
the wave equation in elliptical coordinates and the properties of its solutions. We have also 
included two appendices, one on the elliptical coordinate system, and a second on a method 
for obtaining plots of transverse field lines. An abbreviated version of this note, restricted 
to a discussion of the analytical solutions and a comparison of Chu 's results with those we 
obtained using numerical integration, has been submitted for publication[3] . 

2. The Wave Equation in Elliptical Coordinates 

For a cylindrical waveguide (i.e. of constant ~ross-section), the z-dependence of the 
electric and magnetic fields is simply given by e-Jkzz. Hence for TM (TE) waves, the wave 
equation for the longitudinal component of the electric (magnetic) field takes the form 

vi{~:} + (k
2
-k}) {~:} = o (1) 

* Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, High Energy Physics Division, U.S. D.O.E., under Contract No. DE-AC03-76SF00098. 
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where V~ represents the two-dimensional (i.e. in the transverse plane) Laplacian, and k is 
the wave number (Ctic) in unbounded space. 

For a waveguide whose cross section is of the form of an ellipse of focal distance p, it 
is convenient to use confocal elliptical coordinates (see Appendix I). In this system, Eq. 1 
can be rewritten as [4] 

Assuming that Ez (Hz) can be written in the form U(~·V(1J) [·e-ikzz], we can rewrite 
Eq. 2 as 

(2) 

(3) 

where by the usual argument, the left- and right-hand sides of Eq. 3 must be equal to a 
separation constant, which in accordance with conventional usage we define as a (not to be 
confused with the semi-major axis of the ellipse); a is actually the second spatial separation 
constant, the first one being kz. We can then rewrite Eq. 3 as two separate equations 

where we have defmed 

d
2
V +(a- 2q cos 211) V = 0 

d1]2 

(4a) 

(4b) 

(5) 

with q effectively replacing kz as the first separation constant. Equation 4b for the 
"angular" dependence is the Mathieu equation; Eq. 4a, which gives the "radial" depend
ence, is usually known as the modified Mathieu equation. 

Equations 4a and 4b exhibit some similarities with their polar-coordinate counterparts, 
but also significant differences. In both cases, solutions to the angular equation must 
exhibit a periodicity of 27t. However, in the polar coordinate case, only one of the separa
tion constants appears in the angular equation. The periodicity requirement determines this 
constant; it can then be inserted into the radial equation, which can then be integrated 
numerically if necessary. For the elliptical equations, both constants appear in both 
equations, and so one must solve for both sets of eigenvalues simultaneously. If we 
denote the solutions of Eqs. 4a and 4b as U(a,q;~ and V(a,q;7J), respectively, one 
chooses a given value of, say q, and then, by numerically integrating Eqs. 4a and 4b, 
finds the values of a which enable U and V to satisfy their respective boundary 
conditions, iterating until one can find a q for which both U and V require the same a. 

We are now in a position to write down formally the solutions to Eq. 3. If we define 

' v 

" 
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then for TM modes (E waves), W describes the ~,7]-dependence of the Ez field; it must 
satisfy the boundary condition U(~0) = 0, where C.0 is the radial coordinate of the 
ellipncal boundary. ForTE modes (H-waves), Waescribes the Hz field, and satisfies the 
boundary condition U'( ~0) = 0 . 

. In the usual fashion, one can obtain the transverse field components from the longitu
dinal field. Shown below are the relevant relations for elliptical coordinates; essentially 
these are the equations apperu?.ng in Refs. 1 and 2, albeit with slightly different notation. In 
all cases a z-dependence of e-Jkzz is understood; for completeness, we include the z-fields 
explicitly. 

TE Modes: 

Hz= A U(~) V(7J) 

HJ: =- E11 = _j kz AU'(~) V(7J) 

~ ZTE Pl (k2-ki:) 

H = E; = _j kz A U(~) V'(7J) 
17 ZrE p 1 (k

2-ki) 

where 

and 

TMModes 

Ez =AU(~ V(7J) 

E -z H - j kzA U'(~) V(7J) 
; - TM 11 - - Pl (k2-ki) 

p1 = p -J cosh2~ - cos2rt = p -J sinh2~ + sinlr, 

(6a,b) 

(7a,b) 

(8a,b) 

(9a,b) 

(10) 

Fincilly, we note a point which will be of particular relevance in discussing the character 
of the solutions presented in Ref. 1. It might appear from the presence of the p1 term in the 
denominators of Eqs. 7 and 8 that there is a singUlarity in the transverse fields at the points 
~ = 0; 7J = 0, 1t, the foci of the ellipses; we will show now that this is not the case. In 
our discussion we will consider only the horizontal £-field at the right hand focus for the 
case of the TM modes; the arguments can easily be extended to all other cases. 

For points on the x-axis to the right of x = p, Ex= E~. Also, for these points 7J = 
0, so that, from Eq. 7b we have 

Ex (~,O) = _j kz AU'(~) V(O) = C U'(~) V(O) 

(k 2-k'}') p1(~,0) sinh~ 
(11a) 

Similarly, for point on the interfocalline to the left of x = p, Ex=- E17 , and ~ = 0, so 
that from Eq. 8b we have 

E (0, ) =- C U(O~ V'(7J) 
X 1J Sin 1J 

(llb) 



where the constant in Eq. 11 b is the same as that in Eq. lla. In the immediate 
neighborhood ofx = p, we can approximate sinh~ by~. sin 17 by 1], U'(~ by 

U" (0) ~ =(a- 2qcosh 2~ U(O) ~.and V'(TJ) by V" (0) 1] = (2qcos 21]- a) V(O) 11 
whereby we find that · 

lim Ex (~,0) =lim Ex (0,1]) =(a- 2q) C U(O) V(O) 
;-+o 11-+o 

From Eq. 12 we see that Ex is both finite and continuous at the point (~,1]) = (0,0). 

(12) 

It might appear that this result would admit of a sign change in Ex in the event that 
either U(O) or V(O) were zero at this point. However, as we shall see, the only way in 
which this can occur is for both solutions to be zero at that point, in which case the field is 
identically equal to zero along the entire length of the x axis. 

2.1 Solutions to the Wave Equation and their Properties 

By analogy with the circular functions, one can denote the V(a,q;T]) which satisfy the 
required periodic boundary conditions as sem(q;ry) and cem(q;TJ), depending on 
whether the function or its derivative is zero at 1J = 0, 27t. In fact, in the limit that q~O. 
sem(q;TJ) and cem(q;TJ) af?proach sin mx and cos mx, respectively; moreover as with 
the crrcular funcnons, m Is equal to the number of nodes in the interval 0 ~ 1J < 7t.1 
Note that in this notation, m has effectively replaced a as the second separation constant, 
with the various V(a,q;T]) of periodicity m defining a function am(q) in the a-q plane; 
as may be seen from Eq. 4b, in the limit of q = 0, m is simply -lli. The one other 
qualitative feature of the Mathieu functions worth noting at this point is their reflection 
symmenies about the points 0, 7t/2, and 7t, which are summarized in Table 1; note that for 
a continuous function, odd reflection symmetry about a point means the function has a 
value of zero at that point, and even reflection symmetry, a zero slope. 

For the radial equation 4a, m has no special significance; however, since the constants 
in that equation must have the same values as those in the angular equation, it makes sense 
to label the radial solutions with m as well. By analogy with the hyperbolic trigonometric 
functions, one uses the notation Sem(q;~ and Cem(q;~ for the two radial solutions. 
Note that the analogy applies only m distinguishing the solutions having zero value at the 
origin from those having zero slope; unlike the hyperbolic functions, the Se and Ce are 
oscillatory functions (for q > 0); in fact it is this oscillatory character that makes possible 
multiple radial eigensolutions (corresponding to different q) for a given m. 

Table 1: Symmetries of the Mathieu functions under reflection about the angles 0, TC/2, and TC. 

REFLECTION 
ABOUT7t/2· 

Even 

Odd 

REFLECTION ABOUT 0,1t 

1 Hence the lowest allowed m for the ce'" is 0 (as q ~ 0, cem(q;x) ~ 1), whereas for se'" it is l. 
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Looking at the full solution, we note that there are two different kinds of W(~,7J), 
namely 

W(~,7J) = Cem(q;~) cem(q;7J) 

W(~,7J) = Sem(q;~) sem(q;7J) 

(13a) 

. (13b) 

sometimes referred to as even and odd solutions, respectively. Although it might seem 
initially that all combinations of the Ce, Se, ce, and se would be possible, continuity of 
both W and its vertical gradient across the interfocalline ~ = 0 restricts the allowed 
combinations to the two shown. This also substantiates our earlier assertion that solutions 
for which either U(O) or V(O) = 0 require that the other be zero as well. 

A requirement for the solutions of Eq. 4a to be non-divergent is that q > 0, a condition 
which Eq. 5 shows is always satisfied. A necessary requirement for the non-divergence of 
solutions to Eq. 4b is that a> -12ql [5]; for the case of m = 0, there is an additional con
straint that a < 0. Since the ratio of V"IV at the points 1J = 0,1t has the value 2q- a, for 
m = 0, those points represent local minima in the magnttude of V; for even m > 0, they 
will be local maxima for small q (q < a/2 "" m2f2), but local minima for larger q. These 
results will be seen to be relevant to the discussion of Chu's results. 

2.2. Calculation of Eigenfrequencies 

Of comparable importance to the field distributions are the frequencies of the various 
eigenmodes. The most direct method of calculating these frequencies is to use the doubly 
iterative numerical integration method described above, looking for combinations of a and 
q, which simultaneously satisfy the angular and radial boundary conditions. Having 
obtained the q (along with the a, or equivalently, them) for a given mode, one can use 
Eq. 5 to obtain the mode frequency. Using the same convention as with circular geometry, 
we label the modes with the indices mr, with m, the index of the angular Mathieu func
tion, indicating the number of oscillations between 0 and 21t, and r indicating that the 
radial solution corresponds to the nh root (i.e. value of q) of U m(q;~0) = 0 (for TM 
modes) or of U m'(q;t;0 ) = 0 (forTE modes). In this notation, 

~ =kmrc =-'-~'"'+k2 
Jmr 2 1C 2 2 z p 

(14a) 

For a cylindrical cavity of length t, kz is n1Cit, where n is the number of longitudinal 
half-waves; for a wave guide, its value is unrestricted. In fact Eq. 14 can be used to fmd 
the cutoff frequency of the mr mode by setting kz = 0, whereupon we have 

~ CU//)1/ - _£_ro:::: 
Jmr - 1C p qmr (14b) 

Chu's [1] method of arriving at the value of qmr was somewhat similar. However, 
rather than numerically integrating the radial equation, Chu used Fourier-Bessel expansions 
of the Cern and Sem, based on (at that time) unpublished M.I.T. tables. Starting with a 
given value of kp (equivalent to assuming a q; see Eq. 5), he t_hen calculated by succes
sive approximation the value of ~0 ( or equivalently the eccentricity e-see Appendix I) for 
which the appropriate radial boundary conditions were satisfied, always restncting himself 
to the lowest radial root (r = 1 ); operationally this amounted to determining e(q) rather 
than q( e). In this way he could obtain a set of "universal" curves by plotting for each 



mode the dimensionless quantity kp as a function of e. Because of the specific problem 
he was considering, Chu mstead chose the equivalent device of scaling the cutoff 
wavelength A.o = 21t/k to the circumference of the ellipse. That quantity is given by 

s = 4p!e E(e) 

where E(e) (sometimes written as E(sin a) or simply E(a)) is the complete elliptic 
integral of the second kind. It then follows that 

A. 
_Q_= 7re = 7re 
s 4E(e) V7f. 2E(e) kp 

. (15) 

(16) 

Having performed this procedure for the six lowest modes, Chu presumably interpolated 
on these curves .(so as to get the appropriate q) to be able to calculate the fields for the case 
e = 0.75, the plots of which are presented in his paper. 

A considerably more· abridged means of arriving at qmr is given by McLachlan, who 
presents the following approximate formulas for the roots of the Cern and Sern; the results 
are parametrized in terms of e, rather than ~0 . 

Ce2rn: 
qmr = {(r+l/2)7r+ (4m+l) tan·l[(l-e)/(l+e)]ll1}2e2f4(1-e2) (17a) 

For Ce2rn+b the quantity (4m+l) in Eq. 17a is replaced by (4m+3). 

(17b) 

Similarly, for Se2rn+2• the quantity (4m+l) in Eq. 17b is replaced by (4m+3). 
McLachlan asserts that the accuracy of these formulas improves as both q and ~ (i.e., the 
order of the zero) increase; as we shall see, our own results support the latter assertion, but 
appear to contradict the former, at least for lowest order zeros. 

The solutions to Eqs. 17a and 17b, when inserted in Eq. 14b, will yield the cutoff 
frequencies for the TM modes. To use these formulas forTE modes, one must rely on 
McLachlan's assertions that the "large zeros" of Ce'rn are in "close agreement" with those 
of Sern+b and those of Se'rn.with those of Cern-1· We have not made a detailed study 
of the TE modes, and so cannot speak to the range of validity of these assertions; for the 
few cases in which we have applied it, the approximation appears of accuracy comparable· 
to that of the determination of TM frequencies. However, note that as written, Eq. 17b will 
be in error by 1 in the denumeration of the radial order of all (even) TE modes for which 
m > 0: For "sufficiently large" q, a- 2q < 0, and so Ce"rn(O) > 0, the first extremum of 
Cern will be the minimum following the first radial node, and the above correspondence of 
zeros is correct However, for all m > 0, the lowest TE mode lies in the regime where 
a- 2q > 0, i.e. where Ce"rn(O) < 0, so that the first zero of Ce'rn will be a maximum, and 
will be associated with a q for which there is no corresponding zero of Sem,+J(~0). Two 
consequences follow from this: frrstly, McLachlan's method cannot be usea to pi:edict the 
frequencies of the even TErn1 modes form-:~= 0; secondly, even though for the higher 
modes (i.e. the larger q) the nh zero of Ce'171 corresponds to the nh zero of Sern~Jt it 
corresponds to the r+ 1 (even) radial TE moae. 
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Table 2: Corresponding TE and TM modes in McLachlan's Approximation. 

TE Modes 

Even TEm,n 

OddTEm,n 

EvenTE 
1 

E TE
p- ,q 

ven p-I +I ,q 

OddTEp+l,q 

(p = 1) 
(p > 1) 

TMModes 

m=O: Odd~l.ll 
~· 

Odd~ln-1 m >0: 
No counterpart 

~ . Even TMm-1 ·" 

¢:::: EvenTMp.q 

(n > 1) 
(n = 1) 

A summary of these correspondences, including the cases of the TE modes for which 
no counterpart modes exist, is summarized in Table 2. Recall that for the odd TEmn 
(TMmn) modes, the minimum allowed m is 1; whereas for the even ones, it is 0. 

3. Comparison of Results 

We compare the eigenmodes for two different ellipses as calculated using five different 
methods; these methods are: 

1. Numerically integrating Eqs. 4a and 4b, and iterating until a common pair of a and 
q can be found which satisfy both the radial and angular boundary conditions. 

2. The method used in Ref. 1, and summarized above; we do not repeat the calcula
tions, but rather read from Figure 2 of that reference the q-values for the specifi¢ 
eccentricity for the lowest six modes of the elliptical waveguide. 

3. Using the McLachlan formulas in Eqs. 17 a and 17b to determine the q for which 
the appropriate boundary conditions are met. 

4. Using the 2-dimensional field code URMEL-T to determine the cutoff frequencies 
of the various modes; in using this code, one specifies a frequency f*, and the 
code returns the frequencies and fields of all modes having frequency f < f*. To 
reduce the calculation time, we made use of the symmetries of the various field 
types and only solved for the fields in one quadrant of the ellipse, using boundary 
conditions (i.e., electric or magnetic wall) on the inter-quadrant boundaries to 
simulate the appropriate field symmetries. As will be discussed below, this had the 
additional salutory effect of reducing mode contamination. 

5. Using the 2-d.imensional field code URMEL. While URMEL results are much less 
sensitive to the choice off* than is URMEL-T, the code is limited in that it can 
only obtain solutions forTE modes. 

The most detailed calculations were done on an ellipse of semi-axes of 6 and 2 em , 
corresponding to an e of .94281; this is the geometry of the proposed ALS beam pipe. 
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Calculations using_ methods 1,2, and 3 were also done (for the lowest six modes) for an 
ellipse of semi-axes 10 and 6.614 em, corresponding to an e of 0.75, the case for which 
the field plots are presented in Ref. 1. 

Comparisons of the eigenfrequencies obtained using the various methods are presented 
in Tables 3 and 4. Since the Method 2 results were obtained by reading numbers off the 

. curves in Ref. 1, they are only quoted to two decimal places. The McLachlan frequencies 
for the TE modes are shown in parentheses, since they are perforce equal to the correspon
ding TM frequencies; as noted above, this method does not give the frequencies for the 
lowest radial even TE modes for non-zero m. For the URMEL-T cases (Table 4 ), it was 
noticed that the accuracy of result for a given mode depended on how far its frequency lay 
below f*; hence the URMEL-T results are tabulated showing the value(s) off* used in 
the calculation of a given mode's frequency. 

Table 3: Eigenfrequencies for the six lowest modes of an ellipse of semi-major axis 10 em 
and an eccentricity of 0. 75 . 

MODE 

EVENTE 11 

ODDTEu 

EVENTMot 

EVENTM11 

EVENTEo1 

ODDTM11 

3.1 Chu' s Results 

CUTOFF FREQUENCY (GHz) 
Method 1 Method 2 Method 3 

(Num late~ ) iC.hJij_ (McLachlan) 

.889 .88 

1.300 1.30 (1.394) 

1.467 1.46 1.394 

2.124 2.11 1.915 

2.500 2.64 (2.527) 

2.554 2.64 2.527 

Comparison of the first two columns in Tables 3 and 4 show that Chu's results 
(Method 2) are extremely accurate for the case of e =.75 (discrepancies here may simply 
be attributable to the accuracy with which one can read the values from the published 
curves). The reduced accuracy for the higher eccentricity, particularly the higher-frequency 
modes, is at least partly attributable to the fact that Chu is plotting the wavelength, rather 
than the frequency, and since the frequency for the higher modes increases with increasing 
eccentricity, a given reading error translates into a larger percentage error in the frequency; 
notwithstanding this consideration, the "exact" solutions (Method 1) clearly lie off Chu 's 
curves for the higher eccentricity. This would suggest that the accuracy of either the tables 
or the truncated expansions used by Chu decreases in the limit of large q and small ~-

Perhaps more striking than the agreement in frequency for the modes of thee= 0.75 
ellipse is the fact that the figure presented for the fields of the even ~1 (or eE0 ) mode, 
shown in Fig. 1, reproduced from Ref. 1, are qualitatively incorrect (th1s despite the fact 
that the cutoff frequency for this mode is correctly calculated in Ref. 1 !). This can be seen 
in several ways. 

\.( 
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Table4: Comparative calculation of eigenfrequencies of an ellipse of semi-major axis 6 em 
and semi-minor axis of 2 em (e== 0.94) . 

MODE CUTOFF FREQUENCY (GHz) 

Method 1 Method2 Method 3 Method 4 (URMEL-1) Method 5 

(Num.lnteg.) (Chu) (McLachlan) Best f !* (URMEL) 

EVENTE11 1.496 1.457 1.489 1.508 1.4953 

ODDTE11 4.095 4.31 (4.15)b 4.116 5.5 4.0864 

EVEN'fMo1 4.205 4.49 4.15 4.2468 4.55 

EVENTM11 5.11 5.91 4.96 5.138 5.5 

EVENTM21 6.08 5.77 6.109 6.15 

EVEN'fEo1 7.876 12.5 (7.90)b 7.98 15. 7.8541 

ODDTM11 7.92 12.5 7.90 8.032 11 

EVENTM41 8.17 7.40 8.175 8.193 

ODDTM21 8.78 8.71 8.833 9.2 

EVEN~2 9.60 (9.52)b 9.627 11 9.5903 

EVENT~1 10.38 9.02 10.363 11 

EVENTMoz 11.66 11.66 11.92 c 15 

EVENTM12 12.50 12.46 12.74c 15 

EVENTM22 13.36 13.27 t3.35ntc 25 

EVENT~2 17.05 16.46 ·. t7.20/66c 25 

a Using anf" of 5.1 GHz, the frequency of this mode was calculated to be 4.257 GHz. 
b Cutoff frequencies forTE modes, as estimated using method 3, are perforce degenerate with those for 

corresponding TM modes (see text). 
c Reduced type sizes indicate uncertainty in mode identification (see text). 

Figure 1 shows a reversal in the sign of Ex as x increases. However, Eqs. 11a and 
11 b show that the relative signs of Ex on either side of the focus2 depend on the relative 
signs of Ceo'(~ and ceo'(17). We have plotted these functions in Figs. 2 and 3, 
respectively, for the case of an ellipse withe= 0.75 and with a q corresponding to the 
cutoff frequency of its TMn1 mode. From Fig. 2, we see that the sign of Ceo'(~ is 
everywhere negative; from 'J!'ig. 3, that the sign of ceo'(17) is positive throughout the 
region 0 s; 1J s; 1t/2. (In fact, both these results are true for any positive value of q, · 
provided the radial function has its first zero at the outer boundary.) Hence, from Eqs. 11a 
and 11 b, we see that the sign of Ex is the same for all positive x, in direct contradiction to 
the figure. · 

2we have already shown, in the discussion accompanying Eq. 12, that Ex is both fmite and continuous 
at the focus. 
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Figure 1. Field pattern for the 'fMo1 mode for an ellipse of e = 0.75, as shown in Ref. 1. 
Both the initial increase in Ez and the change of sign of Ez with increasing x 
are inconsistent with the analytic expression for the field (see text). 

Since the transverse fields are derivable from the longitudinal fields, we might also 
expect a contradiction to arise with respect to Ez, and this is in fact the case. Figure 1 
suggests that the value of Ez on the x-axis initially increases with x, reaching a maximum 
at a point which appears to be the focus of the ellipse (although the point is not explicitly 
identified as such in Ref. 1); in elliptical coordinates this would correspond to 1J decreas
ing from Tt/2 to 0 (see Fig. A.I.1 in Appendix 1). However, as shown in Fig. 3, ceo is a 
maximum at 1J = Tt/2, meaning that Ez decreases with increasing x. In fact, similar to 
the result for the transverse field, this angular dependence of Ez characterizes not only this 
particular TMo1 mode, but rather any m = 0 mode (for any positive q, and hence any 
eccentricity). 
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"Radial" Dependence of TM01 Mode (e=0.75) 
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. Figure 2. Radial dependence of Ez for the 'fMo1 mode for an ellipse withe= 0.75, i.e. 
a plot of Ce01 (q;x) for the q corresponding to the aforementioned mode. · 
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Angular Dependence of TM01 mode (e:0.75) 
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Figure 3. Angular dependence of Ez for the 'fMo1 mode for an ellipse with e = 0. 75, 
i.e. a plot of ce1 (q;x) for the q corresponding to the aforementioned mode. 
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The true appearance of the electric field for the TMo1 mode is as shown in Fig. 4,3 
essentially a deformed version of the corresponding mode for a circular guide, a result . 
which holds for all values of q and e. This result, although not particularly surprising, is 
by no means a universal occurrence. In particular, as far as bifurcation of flux tubes 1s 
concerned, this can indeed occur in the transition between circular and elliptic geometries, 
although it generally happens in the reverse sense: For example, for the even ™ml -
modes with m > 1, what are single flux tubes in moderately eccentric elliptical geometry 
can bifurcate as the geometry becomes more nearly circular. 

1 
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Figure 4. Field pattern for the "fMo1 mode for an ellipse of e = 0.75, obtained from the· 
numerically integrated solutions as described in the text; the field-line 
conventions are the same as in Fig. I. 

-----------------3The procedures for obtaining such plots are described in Appendix II .. 
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It is perhaps a fruitless endeavor to speculate on the origin of the erroneous field plot in 
Ref. 1; however; one cannot help but conjecture. The most likely (and, in our view, the 
only plausible) explanation is that when the fields were calculated, the values of ce0(q;Tf) 
used to generate the fields were, for one reason or other, those corresponding to a negative 
q, albeit with the correct magnitude (the values of Ceo(q;~) would still have had to be 
calulated correctly). This would have interchanged the nature of the extrema at Tf = 0 and 
rr./2 and reversed the relative field directions on either side of the foci, consistent with the 
field plots in Ref. L · 

3.2 The McLachlan Method 

From Tables 3 and 4 we see that McLachlan's formula (Method 3) consistently predicts 
too low a frequency for the ™mn modes. The discrepancy is seen to increase with 
increasing m, but decrease with increasing n; in the relatively few cases examined, it was 
greater for the even modes than the corresponding odd ones. Interestingly, while the 
frequencies the method predicts for those TE modes for which it applies are perforce 
degenerate with those of corresponding TM modes (in this case "corresponding" implies 
different mode numbers; see the last paragraph in Sect. 4), in all cases looked at, the TE 
modes had lower frequencies than their TM counterparts, and the McLachlan estimates 
turned out to lie at a value intermediate to the .two, with comparable percentage discrepancy. 
In contrast with Chu's method, for the two ellipses examined, the accuracy of McLachlan's 
method appears to increase with increasing eccentricity. In general, the results for n > 1 
appear accurate to a few percent, and for the n = 1 modes, the method appears to provide a 
reasonable initial guess for solutions to be obtained by Method 1. 

3.3 URMEL-T Results 

The URMEL-T results (Method 4) are shown in Table 4. As alluded to above, the 
closer f* is to the cut-off frequency of a given mode (i.e., the lower it is), the more 
accurately it determines that frequency. The likely cause for this appears to be that 
URMEL-T (unlike its predecessor code URMEL) does not solve directly for the cutoff 
frequency (or more precisely the cutoff wave number, kc) but rather for the propagation 
constant kz at frequency f*. It then obtains kc by taking 

(18) 

Iff* >> fc, this results in a differencing of large numbers. Assuming the error in 
determining kc is more or less constant, the resulting percentage error in determining kc 
will be larger for large f*. 

For the lowest radial mode corresponding to a given m, even for the larger values of 
j*, URMEL-T gives results which are more accurate than those of the McLachlan method; 
for the higher radial modes, the McLachlan approximation appears to give the more 
accurate result.· The frequencies URMEL-T finds are consistently higher than the actual 
frequencies. The latter effect might be thought to be the result of approximating the ellipse 
by a polygon, since for any non-reentrant curved figure, such a polygon has an area less 
than that of the figure, and so might be expected to have a slightly higher frequency. 
However, when we used URMEL-T to fmd the eigenmodes of a rectangular cavity, it 
consistently found frequencies lower than the predicted values. 

, .. 
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At the higher frequencies, the mode density increases, and identification of given 
modes is less certafn. To facilitate identification, we looked at the associated field plots. 
However, at these frequencies, the character of the modes was not always clear, and in 
some instances there appeared to be contamination by other modes of nearby frequency 
having the same field symmetry (including mixing of TM and TE modes). In this regard, 
the "quartering" of the ellipse and the use of inter-quadrant boundary conditions served to 
reduce the instances of such. mode contamination, but not eliminate them altogether. The 
frequencies obtained for modes which could not be unambiguously identified are shown in 
reduced typeface in Table 4. 

3.4 URMEL Results 

Of all the other methods looked at, Urmel consistently yields values which are closest 
(generally within better than 0.5%, mostly better than 0.1%) to those obtained by numerical 
integration. However, despite the fact that it employs a rectangular grid, and thereby 
underestimates the cross sectional area, it appears consistently to calculate too low a cutoff 
frequency (see the previous comments on URMEL-T). Also, because it calculates kc 
directly (see above discussion on URMEL-T), URMEL also proves to be much less 
sensitive than URMEL-T to the value off*. It also has the nice feature, possibly made 
possible because it employs a rectangular grid, of providing plots of the transverse field 
lines (see the comments in Appendix II). Unfortunately, it can only calculate TE fields, 
and is therefore of limited interest for beam dynamics studies. 

4. Conclusions 

Both URMEL-T and the McLachlan approximation appear to give reasonable values for 
the cutoff frequencies of elliptical waveguides; both are less accurate than URMEL, which 
unfortunately suffers from the drawback that it can only solve forTE modes The accuracy 
of the McLachlan method appears to be greater for higher-order radial modes, lower-order 
angular modes, and increased eccentricity. On the other hand, URMEL-T gives results 
which, while not always as accurate as McLachlan's, appear to be more uniformly accurate 
over a variety of modes. URMEL-T's drawbacks are the necessity for adjusting the search 
frequency f* depending on the frequencies of the modes being searched for, and the 
mixing of nearby modes having the same boundary conditions. As noted, this problem can 
be ameliorated by subdividing the ellipse along its symmetry planes, thereby eliminating 
any contaminant modes which fail to satisfy the same boundary conditions on the 
symmetry planes. It may also be possible use URMEL as a means of increasing the 
confidence in the URMEL-T results, by checking the latter's calculation of TE mode 
frequencies, and also helping to identify which of the ambiguous modes is either aTE 
mode, or suffers from TE contamination. 

The original dilemma which led to this detailed a study of the problem has been 
resolved. The value which Chu obtained for the TMo1 was correct; the field plot for that 
mode was not The discrepancy between the Chu and McLachlan results was simply due 
to the inaccuracy of the latter, that between the Chu and URMEL results, the result of 
starting the latter calculation with too large a value for f*. 

Finally, there is the question of the general usefulness of URMEL-T, and the 
confidence one can have in its results for cavities of other shapes, where "exact" solutions 
do not exist. For lower frequencies, where the mode density is low, for a given/* one 
can expect modes of/~f*/2 to be accurate to a few percent. For the higher-frequency 
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modes, confidence can be increased by using the above subdividing technique, multiple 
choices ofj*, and examination of field plots, as well as conjoint use ofURMEL, to try to 
identify and/or eliminate instances of mode contamination. Also, as we intend to show in 
an accompanying note, for reasonably regular shapes, one can usually determine a 
systematic progression of modes, based on the progression one observes in (and using the 
nomenclature associated with) simpler geometric structures, such as the ellipse or the 
rectangle; establishing such a mode progression helps in identifying potential missing 
modes and contaminated ones, as well as identifying·gross abnormalities which may occur 
in the mode frequencies. 
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APPENDIX I: ELLIPTICAL CO-ORDINATES 

The polar coordinate system is constructed using as the radial coordinate a set of 
concentric circles (each characterized by a size coordinate, the radius), with the orthogonal 
coordinate being a set of lines through the same center as the circles. In like manner pne 
can construct an elliptical coordinate system using as the "radial" coordinate a set of 
confocal ellipses, with the orthogonal coordinate being a set of hyperbolas having the 
same foci (see Figure A.I.l). The following discussion provides a "derivation" of the 
elliptical coordinate system, as well as a summary of the principal formulas associated with 
·ellipses and elliptical coordinates. 

TJ=180° 

11=270° 

Fig. A.I.l 

The semi-major and semi-minor axes of an ellipse, a,b, are related to the focal distance 
pby 

(A.I.l) 

If we formally define the quantity~ by the relation~= cosh-l(alp), then Eq. A.I.l will 
be satisfied, provided that b = p sinh ~. i.e. 

a= pcosh ~ b = p sinh~ (A.I.2a,b) 

Moreover, if we now introduce the variable 17 and formally defme 

x = p cosh ~ cos 17 y = p sinh ~ sin 11 (A.I.3a,b) 

we see that the x andy so defmed satisfy the ellipse equation . 

x2+y2=1 (A.I.4) 
a2 b2 

and so Eqs. 3a and 3b serve to connect the ellipse-related coordinates (~,77) to the familiar 

;~<I 

-·.·-:. 

,. ,., . . 
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cartesian coordina~~s. 

In addition to the quantities a, b, p which can characterize an ellipse, we can add a 
foUrth quantity, the eccentricity e, defmed by 

e= pia (A.I.5) 

The limiting cases are: e = 0, which describes a circle; e = 1, which, from Eq. A.I.l 
implies bla --t 0, and can describe either a straight line of length 2p (b--t 0) or a parabola 
(the location of one of the foci remains finite; the other focus, the center of the ellipse, and 
ball --t co, but bla still --t 0). Note that ~is related toe by 

~ = cosh-1(1/e) 

from which it follows that b can be related to e by 

b=p~l-e2 
e 

(A.I.6a) 

(A.I.6b) 

Normally one needs two of the above quantities to specify a given ellipse, e.g. the 
semi-major and semi-minor axes. However, if one creates a coordinate system which uses 
a set of confocal ellipses4 (thereby specifying p) only a single additional parameter is 
needed, i.e. with p specified, the various ellipses in Fig. A.l.l can be identified any one 
of the other parameters listed above. It will probably come as no surprise that the 
parameter one chooses is ~; among the reasons that this proves to be a convenient choice 
is that the smallest of the confocal ellipses, the straight line running from -p to +p, is 
characterized by~= 0. 

It will probably also come as no surprise that the choice of the second coordinate turns 
out to be TJ. If we define the quantities a,/3 by 

a= p cos 1J f3 = p sin 1J 

then coordinate pairs (x,y) corresponding to a given 1J satisfy the equation 

x2 y2 
---=1 
a2 

13
2 

(A.I.7a,b) 

(A.I.8) 

i.e., they describe a set of hyperbolae which one can straightforwardly show are confocal 
with and orthogonal to the confocal ellipses, as shown in Fig. A.I.l. 

From Eqs. A.l.3a,b we can obtain the expression for the metric coefficients or scale 
factors 

h~-= hh = p y t<cosh2~- cos2Tt) = p y t<sinh2~ +sin~) 
from which we can obtain the differential path length in elliptical coordinates 

(A.I.9) 

- (A.I.lO) 

4Since one almost invariably uses elliptical coordinates to solve a problem involving an elliptical 
boundary, one uses as "radial" coordinates those ellipses which are confocal with the boundary ellipse. 

I' ., 

"' 
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One also has the following inverse relations. If the points (x,y) lie on an ellipse of 
focal length p, then the semi-major axis of the ellipse 'is defined by 

2,2 = x2 + y2 + p2 ~ (x2 + y2 + p2)2- 4 p2x1 (A.Lll) 

from which one can obtain 

~ = cosh-1(~/p) ·11 = cos- 1 (xl~). (A.I.12) 

Finally, if one obtains the solutions to the field equations in elliptical coordinates, he 
generally needs to convert the ( ~. 17) field components to (x,y) components (say for 
plotting purposes). Since the (~,11) system provides a pair of locally orthogonal 
coordinates, the usual transformation equanons apply, viz: 

Ex(x,y) = E; (x,y) cos tJ;x- E1J(x,y) sin tJ;x 

EyCx,y) = E; (x,y) sin tJ;x + E1J(x,y) cos tJ;x 

(A.I.13a) 

(A.I.13b) 

where the values of x andy are obtained from the (~,11) at which the fields were actually 
c_alcul~te~ using Eqs. A.l.3a and A.I.3b, and tJ;x• the angle between the~- andx-direc-
tiOns, 1s g1 ven by · 

(A.I.14) 

from which it follows that 

tanh~ 
cos tJ~ = -;::::.======= 

-J tanh2 ~ + tan2 11 

. .o. tan 11 
Stn v.;x = -;::::.=::===== 

,.; tanh2 ~ + tan2 11 
(A.I.15a,b) 

where consistent signs can be obtained by using the negative value of the radical in the 
second and third quadrants. 
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APPI;:NDIX II: A METHOD FOR OBTAINING FIELD LINES 

FOR THE TRANSVERSE COMPONENTS OF ELECTRIC AND MAGNETIC FIELDS 

We describe here a procedure which can be used to obtain field lines for the transverse 
components of E and H fields. We will discuss specifically the case of TM modes; the 
generalization to the case of TE modes is obvious. It is assumed in the ensuing discussion 
that the longitudinal and transverse components of the fields (the latter may be in non
cartesian coordinates) have already been evaluated. As will be seen, the procedure is most 
readily applied to cases, such as the present problem, in which the boundary conditions 
permit a separation of variables; however, with some additional effort, it can also be 
applied to field solutions obttained from numerical field solvers. 

For a 1M mode, Ez is proportional to the vector potential for the (transverse) H field. 
Hence, lines of constant E z are field lines of H, and uniform spacing of contours of 
constant Ez results in a line density proportional to the value of the local H field. With a 
numerical field solver such as URMEL, Ez would be directly available as output; for the 
present problem Ez can be readily obtained by taking the (previously obtained) numerical 
solutions to Eqs. 4a and 4b, and substituting them into Eq. 6b. For the present problem, 

. finding field contours is quite straightforward; for fields obtained from a numerical field 
solver, the problem may be somewhat more complicated, depending on the density and 
regularity of spacing of field points. 

Obtaining the E fields is somewhat more difficult; moreover the degree of difficulty 
depends on whether the solutions have been obtained by separation of variables and 
numerical integration or by a numerical field solver such as URMEL, and, if the latter, 
whether the solver employs a regular or irregular (e.g. triangular) mesh. We will treat the 
specific example of an elliptical geometry; the results are readily generalized to any planar 
coordinate system. 

In any planar coordinate system, the £-field lines are characterized by the relation 

dxz = !!.1_ Ex2 
dxl hz Ex/ 

(A.II.la) 

where x1 and x2 are the two (orthogonal) transverse coordinates and h1 and h2 are the 
metric coefficients, or scale factors; in the present problem, the coordinates are ~and 17, 
respectively. From Eq. A.I.9, we see that Eq. A.II.la then takes the form 

dT] E11 -=-
d~ E; 

(A.II.lb) 

Differential equations of the general form 

(A.II.2) 

(i.e., such as Eq. A.II.l) can be solved using a numerical integration technique such as the 
Runge-Kutta (R-K) method. In using this method, one successively calculates the 
11m+l(~m+l) by integrating from TJmC~m) with the initial condition TJ'mC~m) =fm· 
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In general, the field point <$m i· 77 +1) which results from the mth integration step 
is not a point for which the origm~ fiel~ solutions were obtained; hence, it would appear 
that at each step an interpolation of those fields would be necessary in order to obtain a 
starting value off m+ 1 to use for the next integration step. If this is indeed the case, then 
clearly such an interpolation will be simpler if the original field mesh is rectangular (as it is · 
for URMEL) than if it is both irregular and triangular (as it is for URMEL-T).5 
However, if the problem is amenable to a separation of variables, the task can be 
considerably simplified. 

First, we note that one can apply the R-K method to a set of coupled differential 
equations of the form · 

(A.II.3) 

where the absence of 77 as a separate dependent variable on the the right hand side simply 
reflects the fact that we· formally consider it as one of the ui (for simplicity, we will 
consider it to be u1). In the present problem, for example, from Eqs. 7b and 8b, we have 

£ 11 U (~ V' (77) 
-=--'----
£~ U' (~) V (77) 

(A.II.4) 

Combining with Eq. A.II.lb gives for the first ofEqs. A.II.3 

(A.II.3.1) 

If we define U and U' to be u2 and u3, respectively, then the second and third of Eqs. 
A.II.3 become 

and 
dU!d~ = U' 

dU'Id~ = a2uta~2 =(a- 2qcosh 2~U 

(A.II.3.2) 

(A.II.3.3) 

To obtain the two remaining equations (for u4 and us equal to V and V'), we note that 
since we are looking for the derivative with respect to ~along the integration path (i.e. 
the field linej, the respective derivatives for V and V' are dV!dg = av1a11 · d77/d g and 
dV'!d~ =a V!a77 2 · d77/d g, where for d77!d ~ we simply use the expression in 
A.II.3.1. The remaining two equations are then 

and 
dV!d~ = V' d77!d g 

dV'Id~ =(-a+ 2qcos 277) V d77!d g 

(A.II.3.4) 

(A.II.3.5) 

It is the separability of variables that makes possible the replacement of the second 
derivatives in Eqs. A.II.3.3 and A.II.3.5 by the functions (and possibly, in the more 
general case, their first derivatives), and hence a set of equations of the form given in 
A.II.3. The great benefit in having a set of equations of this form is that the results of the 

5Two recent LBL technical reports [6,7] describe how such an interpolation can be performed on such a · 
triangular mesh for solutions of Laplace's equation in the r-z plane. 
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integration at step m yield not only the path coordinate 11m+ 1 ( ~m+ 1 ), but also the values 
of U, V, U', and-V' at that point, which are needed for integrating the m+lst step 
(thereby precluding the need for interpolation). Note that for the .first step, we can begin 
integrating at the outer boundary, and so can choose as our starting point a(,, 7]) pair 
from the original numerical solutions of Eqs. 4a and 4b, i.e. one for which we know the 
initial values for U, U', V, and V'. (This would be the procedure even in the cases where 
separation of variables was not possible.) , 

We would like to choose a set of starting coordinates for the R-K method that produce a 
line density proportional to the field strength, as was done with the H-field lines. In 
general, this would mean numerically integrating E 1_ ds (using the previously obtained 
field values) along the outer boundary, and choosing as starting points for the R-K method, 
coordinates which produced equal increments in the flux integral. In general this integral 
will be simpler to calculate in the case of separable variables (where the path is defined by a 
single coordinate). For an elliptical boundary, we have from Eqs. 7b and A.I.lO (see 
Appendix I) that the flux of the electric field on the outer boundary takes the particularly 
simple form 

(A.II.5) 

where we use the previously obtained solutions to Eq. 4b as the values for the integrand. 

':.! 
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