
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Efficient Natural Language Processing for Language Models

Permalink
https://escholarship.org/uc/item/9dv1k5xv

Author
Xu, Canwen

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dv1k5xv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Efficient Natural Language Processing for Language Models

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Canwen Xu

Committee in charge:

Professor Julian McAuley, Chair
Professor Taylor Berg-Kirkpatrick
Professor Zhiting Hu
Professor Jingbo Shang

2024

Copyright

Canwen Xu, 2024

All rights reserved.

The Dissertation of Canwen Xu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . xi

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Computation Efficiency . 2
1.2 Data Efficiency . 3
1.3 Summary . 3

Chapter 2 Background . 5
2.1 Language Models . 5
2.2 Measuring Efficiency of Language Models . 6
2.3 Conclusion . 8

Chapter 3 BERT Loses Patience: Fast and Robust Inference with Early Exit 9
3.1 Introduction . 9
3.2 Patience-based Early Exit . 11

3.2.1 Motivation . 11
3.2.2 Inference . 12
3.2.3 Training . 14
3.2.4 Theoretical Analysis . 14

3.3 Experiments . 15
3.3.1 Tasks and Datasets . 15
3.3.2 Baselines . 16
3.3.3 Experimental Setting . 16
3.3.4 Overall Comparison . 17
3.3.5 Analysis . 20
3.3.6 Defending Against Adversarial Attack . 21

3.4 Discussion . 22
3.5 Broader Impact . 23
3.6 Additional Results on Image Classification . 23
3.7 Proof of Theorem 1 . 24
3.8 Additional Results of Monte Carlo Simulation . 25

iv

Chapter 4 Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT
Compression . 27

4.1 Introduction . 27
4.2 BERT Compression . 29
4.3 Metrics Beyond Accuracy . 30

4.3.1 Loyalty . 30
4.3.2 Robustness . 32

4.4 Experiments . 32
4.4.1 Dataset and Baselines . 32
4.4.2 Training Details . 33
4.4.3 Experimental Results . 33

4.5 Combining the Bag of Tricks . 34
4.6 Conclusion . 35
4.7 Additional Experimental Results on SST-2 . 36

Chapter 5 BERT Learns to Teach: Knowledge Distillation with Meta Learning 37
5.1 Introduction . 37
5.2 Knowledge Distillation with Meta Learning . 40

5.2.1 Background . 40
5.2.2 Methodology . 42

5.3 Experiments . 44
5.3.1 Experimental Setup . 44
5.3.2 Experimental Results . 47

5.4 Analysis . 47
5.4.1 Why Does MetaDistil Work? . 47
5.4.2 Hyper-parameter Sensitivity . 49
5.4.3 Limitation . 49

5.5 Discussion . 50
5.6 Additional Results: MetaDistil for Image Classification . 50

5.6.1 Experimental Settings . 50
5.6.2 Image Recognition Results . 51
5.6.3 Static Teaching and Cross Teaching . 51

5.7 Additional Results: Different Compression Ratios . 52
5.8 Additional Results: Distillation Dynamics . 54
5.9 Additional Results: Improvement Analysis . 54

Chapter 6 Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot
Classification . 56

6.1 Introduction . 56
6.2 Prompting for Few-Shot Classification . 58
6.3 Automatic Multi-Label Prompting . 59

6.3.1 Exploiting Multiple Labels . 59
6.3.2 Automatic Label Selection . 60

6.4 Experiments . 62

v

6.4.1 Experimental Setting . 62
6.4.2 Experimental Results . 65

6.5 Analysis . 66
6.5.1 Case Study . 66
6.5.2 Ablation Study . 67
6.5.3 Scaling Few-Shot Learning . 67

6.6 Discussion . 68

Chapter 7 InforMask: Unsupervised Informative Masking for Language Model Pre-
training . 71

7.1 Introduction . 71
7.2 Methodology . 73

7.2.1 Informative Relevance . 74
7.2.2 Scoring Masking Candidates . 76
7.2.3 Token-Specific Masking Rates . 77

7.3 Experiments . 78
7.3.1 Experimental Settings . 78
7.3.2 Experimental Results . 79
7.3.3 Case Study . 85

7.4 Conclusion . 86
7.5 Limitations . 86

Chapter 8 Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on
Self-Chat Data . 87

8.1 Introduction . 87
8.2 Data Collection via Self-Chat . 89
8.3 Model Training . 92
8.4 Model Settings . 95
8.5 Evaluation . 95
8.6 Conclusion and Future Work . 97
8.7 Limitations . 98

Chapter 9 Related Work . 105
9.1 Related Work for BERT Loses Patience . 105
9.2 Related Work for MetaDistil . 107
9.3 Related Work for Automatic Multi-Label Prompting . 109
9.4 Related Work for InforMask . 111
9.5 Related Work for Baize . 113

Chapter 10 Conclusion and Future Outlook . 116
10.1 Future Work for Computational Efficiency . 116
10.2 Future Work for Data Efficiency . 117

Bibliography . 119

vi

LIST OF FIGURES

Figure 3.1. Comparison between Shallow-Deep Net, a prediction score based early
exit (threshold is set to 0.9), and our Patience-based Early Exit (patience
t = 2). 11

Figure 3.2. Analogy between overfitting in training and overthinking in inference. The
results are obtained with ALBERT-base on MRPC. 12

Figure 3.3. Speed-accuracy curves of BranchyNet, Shallow-Deep and PABEE on
MNLI and SST-2 with ALBERT-base model. 19

Figure 3.4. Accuracy scores and speed-up ratios under different patience settings with
ALBERT-base model. The baseline is denoted with gray dash lines. 19

Figure 3.5. Monte Carlo simulation of per PABEE classifier’s accuracy vs. the original
inference accuracy under different patience settings. 26

Figure 4.1. Three metrics to evaluate the compressed models beyond preserved accuracy. 28

Figure 5.1. The workflow of MetaDistil. 39

Figure 5.2. Results with different student architectures. 48

Figure 5.3. Results with different loss weight α . 48

Figure 5.4. Results with different temperature. 48

Figure 5.5. Learning dynamics of the student and teacher in MetaDistil on the devel-
opment set of MNLI. 54

Figure 6.1. The illustration of implementing AMuLaP on a binary sentiment classifica-
tion task (SST-2). 59

Figure 6.2. Comparison of AMuLaP, AMuLaP FT and fine-tuning on MNLI, SST and
MRPC with different n for the training set and the development set. 66

Figure 7.1. The informative scores of randomly sampled masking candidates (s = 4). . 72

Figure 7.2. The PMI matrix of the words in the sentence ‘The dual is between Harry
Potter and Lord Voldemort.’ . 74

Figure 7.3. Macro average MRR of different masking strategies on LAMA, evaluated
every 10k steps. 80

Figure 7.4. Performance of InformBERT for the full pretraining process. 81

vii

Figure 7.5. Frequency of common stop words and their corresponding masking rates
by InforMask. 82

Figure 7.6. Comparison between looping the same data and using token-specific mask-
ing rate to approximate the masking decisions. 83

Figure 7.7. Masking rate of tokens according to different masking policies. 84

Figure 8.1. The pipeline for training Baize and Baize v2. 88

Figure 8.2. An overview of self-distillation with feedback from ChatGPT. 93

Figure 8.3. The performance of Baize models compared with LLaMA Touvron et al.
[2023], Alpaca Taori et al. [2023], Vicuna [Chiang et al., 2023] and Chat-
GPT [OpenAI, 2023a] evaluated by GPT-4 [OpenAI, 2023b]. 94

viii

LIST OF TABLES

Table 3.1. Experimental results (median of 5 runs) of models with ALBERT backbone
on the development set and the test set of GLUE. 17

Table 3.2. Experimental results (median of 5 runs) of BERT based models on the
development set of GLUE. 18

Table 3.3. Parameter numbers and training time (in minutes) until the best performing
checkpoint (on the development set) with and without PABEE on ALBERT
and BERT as backbone models. 18

Table 3.4. Experimental results (median of 5 runs) of different sizes of ALBERT on
GLUE development set. 21

Table 3.5. Results on the adversarial robustness. 21

Table 3.6. Experimental results (median of 5 runs) of ResNet based models on CIFAR-
10 and CIFAR-100 datasets. 23

Table 4.1. Accuracy, loyalty and robustness of compressed models on the test set of
MNLI (3 runs). 30

Table 4.2. Accuracy and loyalty for combining multiple compression techniques on
the test set of MNLI. 34

Table 4.3. Accuracy and loyalty of some compression techniques on the test set of
SST-2. 36

Table 5.1. Experimental results on the development set and the test set of GLUE. 45

Table 5.2. Comparison of training time and memory cost of MetaDistil with the base-
lines. 50

Table 5.3. Experimental results on the test set of CIFAR-100. 52

Table 5.4. Experimental results of static teaching and cross teaching. 53

Table 5.5. Experimental results on the development set of GLUE in the setting of
distilling BERT-base in to BERT4. 53

Table 5.6. Experimental results on the development set of GLUE in the setting of
distilling BERT-large in to BERT6. 53

Table 6.1. The manual and automatically selected labels by AMuLaP. The templates
used for prompting are from Gao et al. [2021b]. 58

ix

Table 6.2. Experimental results under three settings with RoBERTa-large as L 62

Table 6.3. Most likely label mapping for the SST-2 dataset obtained by PETAL [Schick
et al., 2020], Auto-L [Gao et al., 2021b] and our AMuLaP. 64

Table 6.4. Experimental results for the ablation study. 65

Table 7.1. Statistics of LAMA [Petroni et al., 2019]. 76

Table 7.2. Statistics of SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018]. 76

Table 7.3. Performance of different masking strategies and models on LAMA [Petroni
et al., 2019]. 77

Table 7.4. Performance on SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018] develop-
ment set. 78

Table 7.5. Some examples of InformBERT and RoBERTa-base predictions on LAMA. 84

Table 8.1. (Not cherry-picked) An example of self-chat generated by ChatGPT [Ope-
nAI, 2023a] with a seed sampled from the Quora dataset. 90

Table 8.2. Statistics of the number of dialogues, average number of turns, and response
lengths of each turn. 91

Table 8.3. Data, numbers of parameters and training time for training Baize models. . 91

Table 8.4. Performance on LM Evaluation Harness [Gao et al., 2021a], evaluated by
Hugging Face. 96

Table 8.5. (Not cherry-picked) An example of asking chat models to analyze the
Lehman Brothers’ bankruptcy. 100

Table 8.6. (Not cherry-picked) An example of asking chat models to explain a joke. . . 101

Table 8.7. (Not cherry-picked) Examples of how chat models respond to unethical
requests from users. 102

Table 8.8. (Cherry-picked) An example of a coding question. 103

Table 8.9. (Not cherry-picked) An example of Baize-Healthcare answering a healthcare
question. 104

x

ACKNOWLEDGEMENTS

I am profoundly grateful to the many individuals who have supported and guided me

throughout this remarkable journey.

Foremost, I extend my deepest appreciation to my advisor, Julian McAuley, for his

unwavering support and guidance over the years. His mentorship has not only honed my

research skills but also equipped me with the resilience to navigate the challenges, stress, and

uncertainties inherent in academic research. His empathy, insightfulness, and unwavering belief

in my potential have been instrumental in shaping my career path.

My sincere thanks also go to my thesis committee members, Taylor Berg-Kirkpatrick,

Zhiting Hu, and Jingbo Shang, for their valuable suggestions and encouragement.

The financial support from the NSF Award #1750063 and the Jacobs School of Engineer-

ing Powell Fellowship has been crucial to my research endeavors, and for this, I am sincerely

thankful.

Collaborating with Wangchunshu Zhou, Daya Guo, Han Wang, Penghan Wang, Jiaxin

Pei, Tianyang Liu, Ryan Tran, Nafis Sadeq, Zexue He, Zhankui He, and many others has been

an honor and a privilege. Your partnership has significantly enriched my research experience.

A heartfelt thank you to all members of The McAuley Lab at UCSD. Your camaraderie

and support have always made the lab feel like a second home.

I am grateful for the invaluable experiences and learnings gained during my internships

and part-time roles at Microsoft Research Asia, Hugging Face, Google, Azure Cognitive Services,

Microsoft Research Redmond, and Boson AI. Working alongside such talented teams has

undoubtedly enhanced my research capabilities.

Special appreciation goes to Professors Chenliang Li and Zhenzhong Chen at Wuhan

University, who ignited my passion for research and laid the foundation for my academic pursuits.

To all my friends at UCSD, your presence has added vibrant colors to my life. I am par-

ticularly grateful to Shuheng Li and Jiashun Wang for their enduring support and companionship.

My heartfelt thanks to friends from my past who stay around through the years. Thanks

xi

to my friends-turned-family, Guande and Chen. Thanks to my undergraduate roommates, Zixiao,

Boxue, and Tianzong, who have always been a delight in my life. Thanks to all my friends from

undergraduate and high school. While I am unable to list everyone, please know that each of you

has played a cherished role in my life, and for that, I am deeply grateful.

I am also indebted to my peers from the NLP and ML community. Our interactions, both

online and at conferences, have been a source of inspiration and a highlight of my PhD journey.

Lastly, the love and support from my parents and grandparents have been the cornerstone

of my achievements. During the challenging period of the COVID-19 lockdown, and continuing

beyond, my two pet cats, Shirley and Simba, have been a source of immense comfort and joy.

Thanks to all of you!

The abstract, Chapter 1, 2, and 10, in part, are a reprint of the material as it appears in “A

Survey on Model Compression and Acceleration for Pretrained Language Models” by Canwen

Xu and Julian McAuley, which was published at AAAI Conference on Artificial Intelligence,

2023. The dissertation author was the primary investigator and author of this paper.

Chapter 3 and 9, in part, is a reprint of the material as it appears in “BERT Loses Patience:

Fast and Robust Inference with Early Exit” by Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian

McAuley, Ke Xu, and Furu Wei, which was published at Conference on Neural Information

Processing Systems, 2020. The dissertation author was the co-primary investigator and co-first

author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in “Beyond Preserved Accuracy:

Evaluating Loyalty and Robustness of BERT Compression” by Canwen Xu, Wangchunshu Zhou,

Tao Ge, Ke Xu, Julian McAuley, and Furu Wei, which was published at Empirical Methods in

Natural Language Processing, 2021. The dissertation author was the co-primary investigator

and co-first author of this paper.

Chapter 5 and 9, in part, is a reprint of the material as it appears in “BERT Learns to

Teach: Knowledge Distillation with Meta Learning” by Wangchunshu Zhou, Canwen Xu, and

Julian McAuley, which was published at Association for Computational Linguistics, 2022. The

xii

dissertation author was the co-primary investigator and co-first author of this paper.

Chapter 6 and 9, in part, is a reprint of the material as it appears in “Automatic Multi-

Label Prompting: Simple and Interpretable Few-Shot Classification” by Han Wang, Canwen Xu,

and Julian McAuley, which was published at North American Chapter of the Association for

Computational Linguistics, 2022. The dissertation author was the co-primary investigator and

co-first author of this paper.

Chapter 7 and 9, in part, is a reprint of the material as it appears in “InforMask: Unsuper-

vised Informative Masking for Language Model Pretraining” by Nafis Sadeq, Canwen Xu, and

Julian McAuley, which was published at Empirical Methods in Natural Language Processing,

2022. The dissertation author was the co-primary investigator and co-first author of this paper.

Chapter 8 and 9, in part, is a reprint of the material as it appears in “Baize: An Open-

Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data” by Canwen Xu, Daya

Guo, Nan Duan, and Julian McAuley, which was published at Empirical Methods in Natural

Language Processing, 2023. The dissertation author was the co-primary investigator and co-first

author of this paper.

xiii

VITA

2020 B.Eng. in Computer Science & Technology, Wuhan University

2022 M.S. in Computer Science, University of California San Diego

2024 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

See the full list of publications on my website: https://www.canwenxu.net/publications.

xiv

https://www.canwenxu.net/publications

ABSTRACT OF THE DISSERTATION

Efficient Natural Language Processing for Language Models

by

Canwen Xu

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Julian McAuley, Chair

Despite achieving state-of-the-art performance on many NLP tasks, the high energy

cost and long inference delay prevent Transformer-based language models (LMs) from seeing

broader adoption including for edge and mobile computing. Our efficient NLP research aims

to comprehensively consider computation, time and carbon emission for the entire life-cycle of

NLP, including data preparation, model training and inference.

We demonstrate ways to promote computational efficiency in natural language processing,

thus reducing hardware and software bottlenecks of training and inference, which is crucial

in applying such models in production. Efficient NLP further facilitates democratization of

language technology and allows language models to be accessible to more people.

xv

Chapter 1

Introduction

The recent success of applying pretrained deep Transformers [Vaswani et al., 2017] on

different NLP tasks [Devlin et al., 2019, Raffel et al., 2020, Le Scao et al., 2022] has raised

concerns about its efficiency. The high computational cost also prevents these language models

(LMs) from being deployed in production [Sun et al., 2020b]. To address this problem, efficient

natural language processing (Efficient NLP) refers to techniques that aim to make training

and inference of an ML model faster (time-efficient), consume fewer computational resources

(computation-efficient), less memory (memory-efficient), less disk space (storage-efficient) and

use less human-labeled data (data-efficient). For inference, one popular class of techniques

is model compression and acceleration, where a large and slow model is compressed to a

lightweight model that can be stored with limited disk space on a mobile device, or accelerated to

run with low latency (or both). Also, training a large model and then compressing it to a small one

can be efficient for training and good for generalization [Li et al., 2020b]. For training, efficient

methods aim to reduce the training time and GPU memory usage to allow more throughput.

Another line of research aims to use less or auto-generated data to train language models.

In addition to technical considerations, large models also raise environmental and ethical

concerns [Bender et al., 2021]. Large models have a high carbon footprint which an efficient

model can reduce, potentially with little sacrifice in performance. Meanwhile, large models set

obstacles for engineers and researchers from developing countries who cannot afford the neces-

1

sary hardware for running the model [Bender et al., 2021]. Thus, efficient NLP techniques can

be critical to make state-of-the-art NLP techniques more accessible and facilitate inclusiveness.

My research stands at the heart of the following question:

How can we make expensive NLP technology more accessible to everyone?

1.1 Computation Efficiency

In the quest for efficiency in natural language processing, a critical area of focus is

efficient inference. The goal here is to optimize the deployment of language models so they

can operate swiftly and with minimal resource consumption, especially in environments with

constrained computational power, such as mobile devices or embedded systems.

A primary technique in achieving efficient inference is through model compression and

acceleration. This involves transforming large, cumbersome models into more compact versions

without significantly sacrificing performance. Compressed models demand less storage and

memory, making them suitable for devices with limited capacity. Acceleration techniques further

ensure that these models can execute tasks rapidly, offering low-latency responses essential for

real-time applications.

In addition to traditional model compression methods (e.g., pruning, knowledge distilla-

tion), an innovative approach to expedite inference is the implementation of early exit strategies.

These techniques allow a model to provide answers at intermediate stages of processing, rather

than completing the entire set of computations. This can significantly reduce inference time,

especially for simpler queries that do not require deep processing layers. Early exit strategies

strike a balance between speed and accuracy, offering a robust solution in scenarios where

response time is crucial.

2

1.2 Data Efficiency

Another vital area of research in efficient NLP is data efficiency. The traditional approach

to training language models requires vast amounts of data, which is not always feasible or

available. Data-efficient NLP focuses on strategies to reduce this dependency, enabling the

training of powerful models with limited data or even datasets generated by other models.

One avenue is the exploration of unsupervised learning techniques with different weights

for different data. These methods involve intelligently selecting parts of the input data to be

masked during training, encouraging the model to learn more from less data. Such strategies

can enhance the model’s ability to understand and generalize from the available information,

reducing the need for extensive pretraining datasets.

Another approach is the use of few-shot prompt learning. This method allows a model

to handle classification tasks with minimal training data. By automatically mapping labels to

a few tokens, the model can be guided to provide accurate classifications in few-shot learning

scenarios.

Additionally, a facet of data-efficient training is the incorporation of data generation

techniques. This method involves generating new data through the model’s own dialogues,

thereby creating a rich and diverse dataset for supervised fine-tuning. By employing self-

generated data, the model can adapt more effectively to various contexts and user inputs, handling

a wide range of queries with minimal computational effort.

1.3 Summary

While Chapter 1 introduces introduces the challenges and necessity of efficient NLP,

Chapter 2 lays foundation about the basics like what is a language model and how to measure its

efficiency.

Chapter 3, 4, and 5 focus on efficient inference of language models.

Chapter 3 introduces a dynamic acceleration approach for pretrained language models.

3

This method terminates inference earlier when a patience-based criterion is met.

Chapter 4 discusses different types of methods for compressing a pretrained language

model and presents a new metric to measure the success of model compression.

Chapter 5 presents a new knowledge distillation approach for language models that uses

meta learning to improve the teacher model while teaching a student model.

Chapter 6, 7, and 8 concern data-efficient natural language processing.

Chapter 6 introduces a simple yet effective way of leveraging few-shot learning ability of

language models with prompt learning.

Chapter 7 presents a new method for deciding masks for masked language models. This

method assigns importance to tokens based on their semantic associations, thus help the model

learn better with less data and fewer training steps.

Chapter 8 introduces a pioneering work on fine-tuning large language model with pure

synthetic data by allowing a teacher model to chat to itself.

Chapter 9 refers to the related work for all novel work introduced in previous chapter.

Chapter 10 concludes the dissertation while discussing the novel possibilities and future

outlook towards efficient NLP for language models.

This chapter, in part, are a reprint of the material as it appears in “A Survey on Model

Compression and Acceleration for Pretrained Language Models” by Canwen Xu and Julian

McAuley, which was published at AAAI Conference on Artificial Intelligence, 2023. The

dissertation author was the primary investigator and author of this paper.

4

Chapter 2

Background

Language models have revolutionized the way we interact with technology and process

natural language. The advances in model architecture, particularly with Transformer-based

models, have led to significant improvements in understanding and generating human language.

These models are not only pivotal in academic research but have also found widespread appli-

cation in various industries, from automated translation services to voice-activated assistants.

However, as these models grow in complexity and size, it becomes increasingly important to

consider factors like computational efficiency, environmental impact, and accessibility. The

challenge moving forward is to balance the quest for more powerful models with the practical

constraints of deploying these models in real-world scenarios. Future developments must focus

on optimizing performance while minimizing resource usage and environmental impact, ensuring

that the benefits of language models are accessible to a broader range of users and applications.

2.1 Language Models

Language models aim to model the language, typically by predicting the next token based

on the given prompt. A language model learns to assign the probability of a sequence of tokens

X = x1, . . . ,xT using conditional probability:

P(X) =
T

∏
t=1

P(xt |x1:t−1). (2.1)

5

Such models are trained with a cross-entropy loss between ground truth tokens and predicted

probability distribution given current tokens for the next time step.

Alternatively, some language models (e.g., BERT [Devlin et al., 2019]) predict a masked

token in a sequence, instead of the next token. A popular architecture of language models is

Transformer and its variants, renowned for their effectiveness in processing sequential data.

At its core, the Transformer model eschews traditional recurrent layers, instead relying on a

self-attention mechanism that computes the relevance of each part of the input data to other

parts. This architecture consists of an encoder and a decoder, each comprising multiple identical

layers. Within each layer, the key component is the multi-head attention mechanism, which

enables the model to focus on different parts of the input sequence simultaneously, a feature

that is crucial for understanding the context and relationships in the data. This mechanism is

often represented as Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V , where Q,K,V are queries, keys,

and values, respectively, and dk is the dimension of the keys. Additionally, each layer includes a

position-wise feed-forward network and employs residual connections and layer normalization

to facilitate training of deep networks. Positional encoding is added to the input embeddings

to provide the model with information about the order of the sequence, compensating for the

lack of recurrence or convolution. This architecture allows the Transformer to efficiently handle

dependencies and patterns in sequential data, making it a powerful tool for language modeling.

2.2 Measuring Efficiency of Language Models

There are various metrics to depict efficiency of language models in different dimensions.

These metrics are often reported together with accuracy to evaluate an NLP model.

Floating point operations (FLOPs) directly measures the number of floating points operations

needed for executing an instance. FLOPs can serve as a metric for computational efficiency

and is somewhat hardware-agnostic. However, FLOPs cannot accurately reflect the real runtime

since the degree of parallelism (DOP) varies for different algorithms.

6

Inference time (i.e., delay) is used to measure the runtime of an algorithm in its inference stage.

Inference time can vary on different infrastructures. When testing on the same architecture,

compared to FLOPs, inference time can better approximate the real-world performance of a

system by taking parallelism into consideration.

Speed-up Ratio is the ratio of inference time of the baseline model to the accelerated model.

Compared to inference time, speed-up ratio draws a relative comparison which can be roughly

compared across different hardware. In some works [Zhou et al., 2020, Sun et al., 2021], speed-

up ratio is approximated by the ratio of the number of Transformer layers in the baseline model

to those used in calculation of an acceleration method.

Number of Parameters and Model Size are often reported in NLP studies as metrics that

directly reflect the storage cost of a model. This can be important for mobile deployment of an

NLP model due to limited storage on a mobile device. It can also be an indicator for the memory

footprint and computational cost for training and inference. An exception is models with weight

sharing. For example, the FLOPs and memory use of ALBERT [Lan et al., 2020] is slightly

higher than a BERT model [Devlin et al., 2019] with the same number of layers. However, since

all Transformer layers in ALBERT share the same weights, the model size of n-layer ALBERT

is only 1/n of n-layer BERT.

Carbon Footprint measures the environmental impact. Lacoste et al. [2019] provide a calculator

for CO2 by querying a database of carbon emission of mainstream cloud computing providers.

Alternatively, Experiment Impact Tracker [Henderson et al., 2020] and CodeCarbon1 are two

plugins that can record the energy use of hardware and estimate the carbon emission based on

the geolocation.

Memory Footprint refers to the amount of memory required to store and execute a model. This

includes both the storage space needed for the model parameters and the runtime memory needed

for processing inputs. A smaller memory footprint is particularly crucial for applications with

limited memory resources, like mobile and embedded systems. Memory footprint is an important

1https://codecarbon.io/

7

https://codecarbon.io/

consideration for large models, as it can limit the model’s applicability in resource-constrained

environments. Moreover, it can also affect the scalability of a model in distributed systems or in

scenarios where multiple models need to run concurrently.

2.3 Conclusion

In this chapter, we have explored the intricacies of language models, delving into their

structure, operational mechanisms, and the various measures used to assess their efficiency.

The evolution from simple predictive models to sophisticated Transformer-based architectures

underscores the rapid advancements in the field of natural language processing. While these

developments have opened up new horizons in understanding and interacting with human lan-

guage, they also bring to the forefront critical considerations regarding computational resources,

environmental sustainability, and practical applicability. As we continue to push the boundaries

of what is possible with language models, it is imperative to address these challenges, ensuring

that the progress in this field is sustainable and beneficial for a wide array of applications.

The future of language models lies in striking a balance between sophistication and efficiency,

harnessing their potential while being mindful of their impact on resources and the environment.

This chapter, in part, are a reprint of the material as it appears in “A Survey on Model

Compression and Acceleration for Pretrained Language Models” by Canwen Xu and Julian

McAuley, which was published at AAAI Conference on Artificial Intelligence, 2023. The

dissertation author was the primary investigator and author of this paper.

8

Chapter 3

BERT Loses Patience: Fast and Robust
Inference with Early Exit

In this chapter, we propose Patience-based Early Exit, a straightforward yet effective

inference method that can be used as a plug-and-play technique to simultaneously improve the

efficiency and robustness of a pretrained language model (PLM). To achieve this, our approach

couples an internal-classifier with each layer of a PLM and dynamically stops inference when

the intermediate predictions of the internal classifiers do not change for a pre-defined number of

steps. Our approach improves inference efficiency as it allows the model to make a prediction

with fewer layers. Meanwhile, experimental results with an ALBERT model show that our

method can improve the accuracy and robustness of the model by preventing it from overthinking

and exploiting multiple classifiers for prediction, yielding a better accuracy-speed trade-off

compared to existing early exit methods.

3.1 Introduction

In Natural Language Processing (NLP), pretraining and fine-tuning have become a

new norm for many tasks. Pretrained language models (PLMs) (e.g., BERT [Devlin et al.,

2019], XLNet [Yang et al., 2019], RoBERTa [Liu et al., 2019b], ALBERT [Lan et al., 2020])

contain many layers and millions or even billions of parameters, making them computationally

expensive and inefficient regarding both memory consumption and latency. This drawback

9

hinders their application in scenarios where inference speed and computational costs are crucial.

Another bottleneck of overparameterized PLMs that stack dozens of Transformer layers is the

“overthinking” problem [Kaya et al., 2019] during their decision-making process. That is, for

many input samples, their shallow representations at an earlier layer are adequate to make a

correct classification, whereas the representations in the final layer may be otherwise distracted

by over-complicated or irrelevant features that do not generalize well. The overthinking problem

in PLMs leads to wasted computation, hinders model generalization, and may also make them

vulnerable to adversarial attacks [Jin et al., 2020].

In this chapter, we propose a novel Patience-based Early Exit (PABEE) mechanism to

enable models to stop inference dynamically. PABEE is inspired by the widely used Early Stop-

ping [Morgan and Bourlard, 1989, Prechelt, 1998] strategy for model training. It enables better

input-adaptive inference of PLMs to address the aforementioned limitations. Specifically, our

approach couples an internal classifier with each layer of a PLM and dynamically stops inference

when the intermediate predictions of the internal classifiers do not change t times consecutively

(see Figure 3.1b), where t is a pre-defined patience. We first show that our method is able to

improve the accuracy compared to conventional inference under certain assumptions. Then we

conduct extensive experiments on the GLUE benchmark and show that PABEE outperforms exist-

ing prediction probability distribution-based exit criteria by a large margin. In addition, PABEE

can simultaneously improve inference speed and adversarial robustness of the original model

while retaining or even improving its original accuracy with minor additional effort in terms of

model size and training time. Also, our method can dynamically adjust the accuracy-efficiency

trade-off to fit different devices and resource constraints by tuning the patience hyperparameter

without retraining the model, which is favored in real-world applications [Cai et al., 2020].

Although we focus on PLM in this chapter, we also have conducted experiments on image

classification tasks with the popular ResNet [He et al., 2016] as the backbone model and present

the results in Section 3.6 to verify the generalization ability of PABEE.

To summarize, our contribution is two-fold: (1) We propose Patience-based Early Exit,

10

Embedding

It’s shocking, shockingly disappointing!

Layer 1

Layer 2
C1

<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

C1
<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

Neu

Layer 3
C2

<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

C2
<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

Pos

Layer 4

Prediction
Score

0.43

0.92

Layer n

…

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

(a) Shallow-Deep Net [Kaya et al., 2019]

Embedding

It’s shocking, shockingly disappointing!

Layer 1

Layer 2
C1

<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

C1
<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

Neu

Layer 3
C2

<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

C2
<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

Pos

Layer 4
C3

<latexit sha1_base64="Ky3/Cw6d8y3TnyDIfW8IazGK8NI=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM+1Cl4VuXFa0F2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3Lnwwiml4W2/hD4+P9zyDnHjwXXxnG+0Nb2zm5uL79fODgsHh2XTk47OkoUZW0aiUj1fKKZ4JK1DTeC9WLFSOgL1vWnzXnefWRK80g+mDRmXkjGkgecEmOt++awPixVnKqzEN4EdwWVBhqUv4u5tDUsfQ5GEU1CJg0VROu+68TGy4gynAo2KwwSzWJCp2TM+hYlCZn2ssWoM3xhnREOImWfNHjh/u7ISKh1Gvq2MiRmotezuflf1k9McONlXMaJYZIuPwoSgU2E53vjEVeMGpFaIFRxOyumE6IINfY6BXsEd33lTejUqm69WrtzK40rWCoPZ3AOl+DCNTTgFlrQBgpjeIIXeEUCPaM39L4s3UKrnjL8Efr4AbS6j5E=</latexit>

C3
<latexit sha1_base64="Ky3/Cw6d8y3TnyDIfW8IazGK8NI=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM+1Cl4VuXFa0F2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3Lnwwiml4W2/hD4+P9zyDnHjwXXxnG+0Nb2zm5uL79fODgsHh2XTk47OkoUZW0aiUj1fKKZ4JK1DTeC9WLFSOgL1vWnzXnefWRK80g+mDRmXkjGkgecEmOt++awPixVnKqzEN4EdwWVBhqUv4u5tDUsfQ5GEU1CJg0VROu+68TGy4gynAo2KwwSzWJCp2TM+hYlCZn2ssWoM3xhnREOImWfNHjh/u7ISKh1Gvq2MiRmotezuflf1k9McONlXMaJYZIuPwoSgU2E53vjEVeMGpFaIFRxOyumE6IINfY6BXsEd33lTejUqm69WrtzK40rWCoPZ3AOl+DCNTTgFlrQBgpjeIIXeEUCPaM39L4s3UKrnjL8Efr4AbS6j5E=</latexit>

Neg

Patience
Counter

1

1

2C4
<latexit sha1_base64="k3VTayZ07XgbLBWffrLA4fjdM14=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM1XQZaEblxXtBdqhZNJMG5rJDElGGIY+ghsXirj1idz5MILpZaGtPwQ+/v8ccs7xY8G1cZwvtLG5tZ3bye8W9vaLB4elo+O2jhJFWYtGIlJdn2gmuGQtw41g3VgxEvqCdfxJY5Z3HpnSPJIPJo2ZF5KR5AGnxFjrvjG4GpQqTtWZC6+Du4RKHfXL38Vc2hyUPvvDiCYhk4YKonXPdWLjZUQZTgWbFvqJZjGhEzJiPYuShEx72XzUKT6zzhAHkbJPGjx3f3dkJNQ6DX1bGRIz1qvZzPwv6yUmuPEyLuPEMEkXHwWJwCbCs73xkCtGjUgtEKq4nRXTMVGEGnudgj2Cu7ryOrRrVfeyWrtzK/ULWCgPJ3AK5+DCNdThFprQAgojeIIXeEUCPaM39L4o3UDLnjL8Efr4AbY+j5I=</latexit>

C4
<latexit sha1_base64="k3VTayZ07XgbLBWffrLA4fjdM14=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM1XQZaEblxXtBdqhZNJMG5rJDElGGIY+ghsXirj1idz5MILpZaGtPwQ+/v8ccs7xY8G1cZwvtLG5tZ3bye8W9vaLB4elo+O2jhJFWYtGIlJdn2gmuGQtw41g3VgxEvqCdfxJY5Z3HpnSPJIPJo2ZF5KR5AGnxFjrvjG4GpQqTtWZC6+Du4RKHfXL38Vc2hyUPvvDiCYhk4YKonXPdWLjZUQZTgWbFvqJZjGhEzJiPYuShEx72XzUKT6zzhAHkbJPGjx3f3dkJNQ6DX1bGRIz1qvZzPwv6yUmuPEyLuPEMEkXHwWJwCbCs73xkCtGjUgtEKq4nRXTMVGEGnudgj2Cu7ryOrRrVfeyWrtzK/ULWCgPJ3AK5+DCNdThFprQAgojeIIXeEUCPaM39L4o3UDLnjL8Efr4AbY+j5I=</latexit>

Layer n

…

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Neg

1

(b) Patience-based Early Exit (PABEE)

Figure 3.1. Comparison between Shallow-Deep Net, a prediction score based early exit
(threshold is set to 0.9), and our Patience-based Early Exit (patience t = 2). A classifier is

denoted by Ci, and n is the number of layers in a model. In this figure, Shallow-Deep incorrectly
exits based on the prediction score while PABEE considers multiple classifiers and exits with a

correct prediction.

a novel and effective inference mechanism and show its feasibility of improving the efficiency

and the accuracy of deep neural networks with theoretical analysis. (2) Our empirical results on

the GLUE benchmark highlight that our approach can simultaneously improve the accuracy and

robustness of a competitive ALBERT model, while speeding up inference across different tasks

with trivial additional training resources in terms of both time and parameters.

3.2 Patience-based Early Exit

Patience-based Early Exit (PABEE) is a plug-and-play method that can work well with

minimal adjustment on training.

3.2.1 Motivation

We first conduct experiments to investigate the overthinking problem in PLMs. As

shown in Figure 3.2b, we illustrate the prediction distribution entropy [Teerapittayanon et al.,

2016] and the error rate of the model on the development set as more layers join the prediction.

11

0 1 2 3 4
Epoch

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r R
at

e Overfitting

Training set
Dev set

(a) Overfitting in training

7 8 9 10 11 12
Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

En
tro

py

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Er
ro

r R
at

e

Overthinking

Pred. Entropy
Error Rate (dev)

(b) Overthinking in inference

Figure 3.2. Analogy between overfitting in training and overthinking in inference. The results
are obtained with ALBERT-base on MRPC.

Although the model becomes more “confident” (lower entropy indicates higher confidence in

BranchyNet [Teerapittayanon et al., 2016]) with its prediction as more layers join, the actual error

rate instead increases after 10 layers. This phenomenon was discovered and named “overthinking”

by Kaya et al. [2019]. Similarly, as shown in Figure 3.2a, after 2.5 epochs of training, the model

continues to get better accuracy on the training set but begins to deteriorate on the development

set. This is the well-known overfitting problem which can be resolved by applying an early

stopping mechanism [Morgan and Bourlard, 1989, Prechelt, 1998]. From this aspect, overfitting

in training and overthinking in inference are naturally alike, inspiring us to adopt an approach

similar to early stopping for inference.

3.2.2 Inference

The inference process of PABEE is illustrated in Figure 3.1b. Formally, we define

a common inference process as the input instance x goes through layers L1 . . .Ln and the

classifier/regressor Cn to predict a class label distribution y (for classification) or a value y

(for regression, we assume the output dimension is 1 for brevity). We couple an internal

classifier/regressor C1 . . .Cn−1 with each layer of L1 . . .Ln−1, respectively. For each layer Li, we

12

first calculate its hidden state hi:

hi = Li(hi−1)

h0 = Embedding(x)
(3.1)

Then, we use its internal classifier/regressor to output a distribution or value as a per-layer

prediction yi =Ci(hi) or yi =Ci(hi). We use a counter cnt to store the number of times that the

predictions remain “unchanged”. For classification, cnti is calculated by:

cnti =

cnti−1 +1 argmax(yi) = argmax(yi−1),

0 argmax(yi) ̸= argmax(yi−1)∨ i = 0.
(3.2)

While for regression, cnti is calculated by:

cnti =

cnti−1 +1 yi− yi−1 < τ,

0 yi− yi−1 ≥ τ ∨ i = 0.
(3.3)

where τ is a pre-defined threshold. We stop inference early at layer L j when cnt j = t. If this

condition is never fulfilled, we use the final classifier Cn for prediction. In this way, the model

can exit early without passing through all layers to make a prediction.

As shown in Figure 3.1a, prediction score-based early exit relies on the softmax score.

As revealed by prior work [Szegedy et al., 2014, Jiang et al., 2018], prediction of probability

distributions (i.e., softmax scores) suffers from being over-confident to one class, making it an

unreliable metric to represent confidence. Nevertheless, the capability of a low layer may not

match its high confidence score. In Figure 3.1a, the second classifier outputs a high confidence

score and incorrectly terminates inference. With Patience-based Early Exit, the stopping criteria

is in a cross-layer fashion, preventing errors from one single classifier. Also, since PABEE

comprehensively considers results from multiple classifiers, it can also benefit from an Ensemble

13

Learning [Krogh and Vedelsby, 1994] effect.

3.2.3 Training

PABEE requires that we train internal classifiers to predict based on their corresponding

layers’ hidden states. For classification, the loss function Li for classifier Ci is calculated with

Cross Entropy:

Li =−∑
z∈Z

[1 [yi = z] · logP(yi = z|hi)] (3.4)

where z and Z denote a class label and the set of class labels, respectively. For regression, the

loss is instead calculated by a (mean) squared error:

Li = (yi− ŷi)
2 (3.5)

where ŷ is the ground truth. Then, we calculate and train the model to minimize the total loss L

by a weighted average following Kaya et al. [2019]:

L =
∑

n
j=1 j ·L j

∑
n
j=1 j

(3.6)

In this way, every possible inference branch has been covered in the training process. Also, the

weighted average can correspond to the relative inference cost of each internal classifier.

3.2.4 Theoretical Analysis

It is straightforward to see that Patience-based Early Exit is able to reduce inference

latency. To understand whether and under what conditions it can also improve accuracy, we

conduct a theoretical comparison of a model’s accuracy with and without PABEE. We consider

the case of binary classification for simplicity and conclude that:

Theorem 1 Assuming the patience of PABEE inference is t, the total number of internal clas-

sifiers (IC) is n, the misclassification probability (i.e., error rate) of all internal classifiers

14

(excluding the final classifier) is q, and the misclassification probability of the final classifier and

the original classifier (without ICs) is p. Then the PABEE mechanism improves the accuracy of

conventional inference as long as n− t < (1
2q)

t(p
q)− p

(the proof is detailed in Section 3.7).

We can see the above inequality can be easily satisfied in practice. For instance, when n =

12, q= 0.2, and p= 0.1, the above equation is satisfied as long as the patience t ≥ 4. Additionally,

we verify the statistical feasibility of PABEE with Monte Carlo simulation in Section 3.8. To

further test PABEE with real data and tasks, we also conduct extensive experiments in the

following section.

3.3 Experiments

3.3.1 Tasks and Datasets

We evaluate our proposed approach on the GLUE benchmark [Wang et al., 2019b].

Specifically, we test on Microsoft Research Paraphrase Matching (MRPC) [Dolan and Brockett,

2005], Quora Question Pairs (QQP)1 and STS-B [Conneau and Kiela, 2018] for Paraphrase

Similarity Matching; Stanford Sentiment Treebank (SST-2) [Socher et al., 2013] for Sentiment

Classification; Multi-Genre Natural Language Inference Matched (MNLI-m), Multi-Genre

Natural Language Inference Mismatched (MNLI-mm) [Williams et al., 2018], Question Natu-

ral Language Inference (QNLI) [Rajpurkar et al., 2016] and Recognizing Textual Entailment

(RTE) [Wang et al., 2019b] for the Natural Language Inference (NLI) task; The Corpus of

Linguistic Acceptability (CoLA) [Warstadt et al., 2019] for Linguistic Acceptability. We exclude

WNLI [Levesque, 2011] from GLUE following previous work [Devlin et al., 2019, Jiao et al.,

2020, Xu et al., 2020].
1https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

15

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

3.3.2 Baselines

For GLUE tasks, we compare our approach with four types of baselines: (1) Backbone

models: We choose ALBERT-base and BERT-base, which have approximately the same infer-

ence latency and accuracy. (2) Directly reducing layers: We experiment with the first 6 and 9

layers of the original (AL)BERT with a single output layer on the top, denoted by (AL)BERT-6L

and (AL)BERT-9L, respectively. These two baselines help to set a lower bound for methods

that do not employ any technique. (3) Static model compression approaches: For pruning, we

include the results of LayerDrop [Fan et al., 2020] and attention head pruning [Michel et al.,

2019] on ALBERT. For reference, we also report the performance of state-of-the-art methods on

compressing the BERT-base model with knowledge distillation or module replacing, including

DistillBERT [Sanh et al., 2019], BERT-PKD [Sun et al., 2019a] and BERT-of-Theseus [Xu et al.,

2020]. (4) Input-adaptive inference: Following the settings in concurrent studies [Schwartz

et al., 2020b, Liu et al., 2020b, Xin et al., 2020b], we add internal classifiers after each layer

and apply different early exit criteria, including that employed by BranchyNet [Teerapittayanon

et al., 2016] and Shallow-Deep [Kaya et al., 2019]. We also add DeeBERT [Xin et al., 2020b],

a BranchyNet variant on BERT alongside our BranchyNet implementation. To make a fair

comparison, the internal classifiers and their insertions are exactly same in both baselines and

Patience-based Early Exit. We search over a set of thresholds to find the one delivering the

best accuracy for the baselines while targeting a speed-up ratio between 1.30× and 1.96× (the

speed-up ratios of (AL)BERT-9L and -6L, respectively).

3.3.3 Experimental Setting

Training We add a linear layer after each intermediate layer of the pretrained BERT/ALBERT

model as the internal classifiers. We perform grid search over batch sizes of {16, 32, 128}, and

learning rates of {1e-5, 2e-5, 3e-5, 5e-5} with an Adam optimizer. We apply an early stopping

mechanism and select the model with the best performance on the development set. We conduct

16

Table 3.1. Experimental results (median of 5 runs) of models with ALBERT backbone on the
development set and the test set of GLUE. The numbers under each dataset indicate the number
of training samples. The acceleration ratio is averaged across 8 tasks. We mark “-” on STS-B for

BranchyNet and Shallow-Deep since they do not support regression.

Method #Param Speed CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Macro
-up (8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) Score

Dev. Set

ALBERT-base 12M 1.00× 58.9 84.6 89.5 91.7 89.6 78.6 92.8 89.5 84.4

ALBERT-6L 12M 1.96× 53.4 80.2 85.8 87.2 86.8 73.6 89.8 83.4 80.0
ALBERT-9L 12M 1.30× 55.2 81.2 87.1 88.7 88.3 75.9 91.3 87.1 81.9

LayerDrop 12M 1.96× 53.6 79.8 85.9 87.0 87.3 74.3 90.7 86.5 80.6
HeadPrune 12M 1.22× 54.1 80.3 86.2 86.8 88.0 75.1 90.5 87.4 81.1

BranchyNet 12M 1.88× 55.2 81.7 87.2 88.9 87.4 75.4 91.6 - -
Shallow-Deep 12M 1.95× 55.5 81.5 87.1 89.2 87.8 75.2 91.7 - -
PABEE (ours) 12M 1.57× 61.2 85.1 90.0 91.8 89.6 80.1 93.0 90.1 85.1

Test Set

ALBERT-base 12M 1.00× 54.1 84.3 87.0 90.8 71.1 76.4 94.1 85.5 80.4
PABEE (ours) 12M 1.57× 55.7 84.8 87.4 91.0 71.2 77.3 94.1 85.7 80.9

our experiments on a single Nvidia V100 16GB GPU.

Inference Following prior work on input-adaptive inference [Teerapittayanon et al., 2016,

Kaya et al., 2019], inference is on a per-instance basis, i.e., the batch size for inference is

set to 1. This is a common latency-sensitive production scenario when processing individual

requests from different users [Schwartz et al., 2020b]. We report the median performance over

5 runs with different random seeds because the performance on relatively small datasets such

as CoLA and RTE usually has large variance. For PABEE, we set the patience t = 6 in the

overall comparison to keep the speed-up ratio between 1.30× and 1.96× while obtaining good

performance following Figure 3.4. We further analyze the behavior of the PABEE mechanism

with different patience settings in Section 3.3.5.

3.3.4 Overall Comparison

We first report our main result on GLUE with ALBERT as the backbone model in Table

3.1. This choice is made because: (1) ALBERT is a state-of-the-art PLM for natural language

understanding. (2) ALBERT is already very efficient in terms of the number of parameters

17

Table 3.2. Experimental results (median of 5 runs) of
BERT based models on the development set of GLUE.

We mark “-” on STS-B for BranchyNet and
Shallow-Deep since they do not support regression.

Method #Param Speed MNLI SST-2 STS-B
-up (393K) (67K) (5.7K)

BERT-base 108M 1.00× 84.5 92.1 88.9

BERT-6L 66M 1.96× 80.1 89.6 81.2
BERT-9L 87M 1.30× 81.4 90.5 85.0

DistilBERT 66M 1.96× 79.0 90.7 81.2
BERT-PKD 66M 1.96× 81.3 91.3 86.2
BERT-of-Theseus 66M 1.96× 82.3 91.5 88.7

BranchyNet 108M 1.87× 80.3 90.4 -
DeeBERT 108M 1.59× 80.7 90.0 -
Shallow-Deep 108M 1.91× 80.5 90.6 -
PABEE (ours) 108M 1.62× 83.6 92.0 88.7

Table 3.3. Parameter numbers and
training time (in minutes) until the
best performing checkpoint (on the
development set) with and without
PABEE on ALBERT and BERT as

backbone models.

Method
#Param Train. time (min)

MNLI SST-2 MNLI SST-2

ALBERT

w/o PABEE 12M 12M 234 113
w/ PABEE +36K +24K 227 108

BERT

w/o PABEE 108M 108M 247 121
w/ PABEE +36K +24K 242 120

and memory use because of its layer sharing mechanism, but still suffers from the problem of

high inference latency. We can see that our approach significantly outperforms all compared

approaches on improving the inference efficiency of PLMs, demonstrating the effectiveness

of the proposed PABEE mechanism. Surprisingly, our approach consistently improves the

performance of the original ALBERT model by a relatively large margin while speeding-up

inference by 1.57×. This is, to the best of our knowledge, the first inference strategy that can

improve both the speed and performance of a fine-tuned PLM.

To better compare the efficiency of PABEE with the method employed in BranchyNet

and Shallow-Deep, we illustrate speed-accuracy curves in Figure 3.3 with different trade-off hy-

perparameters (i.e., threshold for BranchyNet and Shallow-Deep, patience for PABEE). Notably,

PABEE retains higher accuracy than BranchyNet and Shallow-Deep under the same speed-up

ratio, showing its superiority over prediction score based methods.

To demonstrate the versatility of our method with different PLMs, we report the results on

a representative subset of GLUE with BERT [Devlin et al., 2019] as the backbone model in Table

3.2. We can see that our BERT-based model significantly outperforms other compared methods

with either knowledge distillation or prediction probability based input-adaptive inference

18

80

81

82

83

84

85

Ac
cu

ra
cy

MNLI

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Speed-up Ratio

91

92

93

Ac
cu

ra
cy

SST-2

BranchyNet
ShallowDeep
PABEE

Figure 3.3. Speed-accuracy curves of
BranchyNet, Shallow-Deep and PABEE on

MNLI and SST-2 with ALBERT-base model.

83

85

Ac
c.

MNLI

92.5

93.0

Ac
c.

SST-2

3 4 5 6 7 8 9 10 11
Patience

88

89

90

Co
rr.

STS-B

w/ PABEE
w/o PABEE

2.35 2.06 1.78 1.57 1.39 1.27 1.14 1.05 1.0
Speed-up Ratio

Figure 3.4. Accuracy scores and speed-up
ratios under different patience settings with

ALBERT-base model. The baseline is denoted
with gray dash lines.

methods. Notably, the performance is slightly lower than the original BERT model while PABEE

improves the accuracy on ALBERT. We suspect that this is because the intermediate layers

of BERT have never been connected to an output layer during pretraining, which leads to a

mismatch between pretraining and fine-tuning when adding the internal classifiers. However,

PABEE still has a higher accuracy than various knowledge distillation-based approaches as well

as prediction probability distribution based models, showing its potential as a generic method for

deep neural networks of different kinds.

As for the cost of training, we present parameter numbers and training time with and

without PABEE with both BERT and ALBERT backbones in Table 3.3. Although more classifiers

need to be trained, training PABEE is no slower (even slightly faster) than conventional fine-

tuning, which may be attributed to the additional loss functions of added internal classifiers.

This makes our approach appealing compared with other approaches for accelerating inference

such as pruning or distillation because they require separately training another model for each

19

speed-up ratio in addition to training the full model. Also, PABEE only introduces fewer than

40K parameters (0.33% of the original 12M parameters).

3.3.5 Analysis

Impact of Patience

As illustrated in Figure 3.4, different patience can lead to different speed-up ratios and

performance. For a 12-layer ALBERT model, PABEE reaches peak performance with a patience

of 6 or 7. On MNLI, SST-2 and STS-B, PABEE can always outperform the baseline with

patience between 5 and 8. Notably, unlike BranchyNet and Shallow-Deep, whose accuracy drops

as the inference speed goes up, PABEE has an inverted-U curve. We confirm this observation

statistically with Monte Carlo simulation in Appendix 3.8. To analyze, when the patience t is

set too large, the later internal classifier may suffer from the overthinking problem and make

a wrong prediction that breaks the stable state among previous internal classifiers, which have

not met the early-exit criterion because t is large. This makes PABEE leave more samples to be

classified by the final classifier Cn, which suffers from the aforementioned overthinking problem.

Thus, the effect of the Ensemble Learning vanishes and undermines its performance. Similarly,

when t is relatively small, more samples may meet the early-exit criterion by accident before

actually reaching the stable state where consecutive internal classifiers agree with each other.

Impact of Model Depth

We also investigate the impact of model depth on the performance of PABEE. We apply

PABEE to a 24-layer ALBERT-large model. As shown in Table 3.4, our approach consistently

improves the accuracy as more layers and classifiers are added while producing an even larger

speed-up ratio. This finding demonstrates the potential of PABEE for burgeoning deeper

PLMs [Shoeybi et al., 2019, Raffel et al., 2020, Brown et al., 2020].

20

Table 3.4. Experimental results (median of 5 runs) of different sizes of ALBERT on GLUE
development set.

Method #Param #Layer Speed MNLI SST-2 STS-B
-up (393K) (67K) (5.7K)

ALBERT-base [Lan et al., 2020] 12M 12 1.00× 84.6 92.8 89.5
+ PABEE 12M 12 1.57× 85.1 93.0 90.1

ALBERT-large [Lan et al., 2020] 18M 24 1.00× 86.4 94.9 90.4
+ PABEE 18M 24 2.42× 86.8 95.2 90.6

Table 3.5. Results on the adversarial robustness. “Query Number” denotes the number of
queries the attack system made to the target model and a higher number indicates more difficulty.

Metric ALBERT + Shallow-Deep [Kaya et al., 2019] + PABEE (ours)
(↑ better) SNLI MNLI-m/-mm Yelp SNLI MNLI-m/-mm Yelp SNLI MNLI-m/-mm Yelp

Original Acc. 89.6 84.1 / 83.2 97.2 89.4 82.2 / 80.5 97.2 89.9 85.0 / 84.8 97.4
After-Attack Acc. 5.5 9.8 / 7.9 7.3 9.2 15.4 / 13.8 11.4 19.3 30.2 / 25.6 18.1
Query Number 58 80 / 86 841 64 82 / 86 870 75 88 / 93 897

3.3.6 Defending Against Adversarial Attack

Deep Learning models have been found to be vulnerable to adversarial examples that

are slightly altered with perturbations often indistinguishable to humans [Kurakin et al., 2017].

Jin et al. [2020] revealed that PLMs can also be attacked with a high success rate. Recent

studies [Kaya et al., 2019, Hu et al., 2020] attribute the vulnerability partially to the overthinking

problem, arguing that it can be mitigated by early exit mechanisms.

In our experiments, we use a state-of-the-art adversarial attack method, TextFooler [Jin

et al., 2020], which demonstrates effectiveness on attacking BERT. We conduct black-box attacks

on three datasets: SNLI [Bowman et al., 2015], MNLI [Williams et al., 2018] and Yelp [Zhang

et al., 2015]. Note that since we use the pre-tokenized data provided by Jin et al. [2020], the

results on MNLI differ slightly from the ones in Table 3.1. We attack the original ALBERT-base

model, ALBERT-base with Shallow-Deep [Kaya et al., 2019] and with Patience-based Early

Exit.

As shown in Table 3.5, we report the original accuracy, after-attack accuracy and the

number of queries needed by TextFooler to attack each model. Our approach successfully

21

defends more than 3× attacks compared to the original ALBERT on NLI tasks, and 2× on the

Yelp sentiment analysis task. Also, PABEE increases the number of queries needed to attack by

a large margin, providing more protection to the model. Compared to Shallow-Deep [Kaya et al.,

2019], our model demonstrates significant robustness improvements. To analyze, although the

early exit mechanism of Shallow-Deep can prevent the aforementioned overthinking problem,

it still relies on a single classifier to make the final prediction, which makes it vulnerable to

adversarial attacks. In comparison, since Patience-based Early Exit exploits multiple layers and

classifiers, the attacker has to fool multiple classifiers (which may exploit different features) at

the same time, making it much more difficult to attack the model. This effect is similar to the

merits of Ensemble Learning against adversarial attack, discussed in previous studies [Strauss

et al., 2017, Tramèr et al., 2018, Pang et al., 2019].

3.4 Discussion

In this chapter, we proposed PABEE, a novel efficient inference method that can yield

better accuracy-speed trade-off than existing methods. We verify its effectiveness and efficiency

on GLUE and provide theoretical analysis. Empirical results show that PABEE can simultane-

ously improve the efficiency, accuracy, and adversarial robustness upon a competitive ALBERT

model. However, some limitations should be noted. First, PABEE requires a relative deep model

to effectively apply the patience mechanism, making it inapplicable for shallow models. Second,

PABEE cannot work on multi-branch networks (e.g., NASNet [Zoph et al., 2018]) but only

models with a single branch (e.g., ResNet, Transformer). For future work, we would like to

explore our method on more tasks and settings. Also, since PABEE is orthogonal to prediction

distribution based early exit approaches, it would be interesting to see if we can combine them

with PABEE for better performance.

22

3.5 Broader Impact

As an efficient inference technique, our proposed PABEE can facilitate more applications

on mobile and edge computing, and also help reduce energy use and carbon emission [Schwartz

et al., 2020a]. Since our method serves as a plug-in for existing pretrained language models, it

does not introduce significant new ethical concerns but more work is needed to determine its

effect on biases (e.g., gender bias) that have already been encoded in a PLM.

3.6 Additional Results on Image Classification

To verify the effectiveness of PABEE on Computer Vision, we follow the experimental

settings in Shallow-Deep [Kaya et al., 2019], we conduct experiments on two image classification

datasets, CIFAR-10 and CIFAR-100 [Krizhevsky et al., 2009]. We use ResNet-56 [He et al.,

2016] as the backbone and compare PABEE with BranchyNet [Teerapittayanon et al., 2016] and

Shallow-Deep [Kaya et al., 2019]. After every two convolutional layers, an internal classifier is

added. We set the batch size to 128 and use SGD optimizer with learning rate of 0.1.

Table 3.6. Experimental results (median of 5 runs) of ResNet based models on CIFAR-10 and
CIFAR-100 datasets.

Method CIFAR-10 CIFAR-100
Speed-up Acc. Speed-up Acc.

ResNet-56 [He et al., 2016] 1.00× 91.8 1.00× 68.6

BranchyNet [Teerapittayanon et al., 2016] 1.33× 91.4 1.29× 68.2
Shallow-Deep [Kaya et al., 2019] 1.35× 91.6 1.32× 68.8
PABEE (ours) 1.26× 92.0 1.22× 69.1

The experimental results in CIFAR are reported in Table 3.6. PABEE outperform the

original ResNet model by 0.2 and 0.5 in terms of accuracy while speed up the inference by

1.26× and 1.22× on CIFAR-10 and CIFAR-100, respectively. Also, PABEE demonstrates a

better performance and a similar speed-up ratio compared to both baselines.

23

3.7 Proof of Theorem 1

Proof 3.7.1 Recap we are in the case of binary classification. We denote the patience of PABEE

as t, the total number of internal classifiers (IC) as n, the misclassification probability (i.e., error

rate) of all internal classifiers as q, and the misclassification probability of the final classifier

and the original classifier as p. We want to prove the PABEE mechanism improves the accuracy

of conventional inference as long as n− t < (1
2q)

t+1 p−q.

For the examples that do not early-stopped, the misclassification probability with and

without PABEE is the same. Therefore, we only need to consider the ratio between the probability

that a sample is early-stopped and misclassified (denoted as pmisc) and that a sample is early-

stopped (denoted as pstop). We want to find the condition on n and t which makes pmisc
pstop

< p.

First, considering only the probability mass of the model consecutively output the same

label from the first position, we have

pstop > qt+1 +(1−q)t+1 (3.7)

which is the lower bound of pstop that only considering the probability of a sample is early-

stopped by consecutively predicted to be the same label from the first internal classifier. We then

take its derivative and find it obtains its minimum when q = 0.5. This corresponds to the case

where the classification is performing random guessing (i.e. classification probability for class 0

and 1 equal to 0.5). Intuitively, in the random guessing case the internal classification results

are most instable so the probability that a sample is early-stopped is the smallest.

Therefore, we have pstop > (1
2)

t .

Then for pmisc, we have

pmisc < qt+1 +(n− t−1)(1−q)qt+1 (3.8)

where qt+1 is the probability that the example is consecutively misclassified for t+1 times

24

from the first IC. The term (n− t−1)(1−q)qt+1 is the summation of probability that the example

is consecutively misclassified for t+1 times from the 2, ...,n− t th IC but correctly classified at the

previous IC, without considering the cases that the the inference may already finished (whether

correctly or not) before that IC. The summation of these two terms is an upper bound of pmisc.

So we need to have

(n− t)qt+1− (n−m−1)qt+2 < (
1
2
)t p (3.9)

which equals to

(n− t)(qt−qt+1)< (
1
2
)t(

p
q
)−qt+1 (3.10)

which equals to

n− t <
(1

2q)
t(p

q)−q

1−q
< (

1
2q

)t(
p
q
)−q (3.11)

■

Specially, when q = p, the condition becomes n− t < (1
2p)

t− p

3.8 Additional Results of Monte Carlo Simulation

To verify the theoretical feasibility of Patience-based Early Exit, we conduct Monte Carlo

simulation. We simplify the task to be a binary classification with a 12-layer model which has

classifiers C1 . . .C12 that all have the same probability to correctly predict.

Shown in Figure 3.5a, we illustrate the accuracy lower bound of each single Ci needed

for PABEE to reach the same accuracy as the original accuracy without PABEE. We run the

simulation 10,000 times with random Bernoulli Distribution sampling for every 0.01 of the

original accuracy between 0.5 and 1.0 with patience t ∈ [1,11]. The result shows that Patience-

based Early Exit can effectively reduce the needed accuracy for each classifier. Additionally,

25

Pat
ien

ce

2
4

6
8

10

Original acc. 0.50.60.70.80.91.0PA
BE

E
pe

r c
la

ss
ifi

er
 a

cc
.

0.5
0.6
0.7
0.8
0.9

(a) Accuracy lower bound of each single
PABEE classifier to achieve the original

accuracy. The translucent black plain denotes
inference without PABEE.

Pat
ien

ce

2
4

6
8

10

Original acc. 0.50.60.70.80.91.0

PA
BE

E
cla

ss
ifi

er
 a

cc
. r

eq
ui

re
m

en
t

0.175
0.150
0.125
0.100
0.075
0.050
0.025

0.000

(b) Accuracy requirement reduction effect of
PABEE classifiers.

Figure 3.5. Monte Carlo simulation of per PABEE classifier’s accuracy vs. the original
inference accuracy under different patience settings.

we illustrate the accuracy requirement reduction in Figure 3.5b. We can see a valley along the

patience axis which matches our observation in Section 3.3.5. However, the best patience in

favor of accuracy in our simulation is around 3 while in our experiments on real models and

data suggest a patience setting of 6. To analyze, in the simulation we assume all classifiers have

the same accuracy while in reality the accuracy is monotonically increasing with more layers

involved in the calculation.

This chapter, in part, is a reprint of the material as it appears in “BERT Loses Patience:

Fast and Robust Inference with Early Exit” by Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian

McAuley, Ke Xu, and Furu Wei, which was published at Conference on Neural Information

Processing Systems, 2020. The dissertation author was the co-primary investigator and co-first

author of this paper.

26

Chapter 4

Beyond Preserved Accuracy: Evaluating
Loyalty and Robustness of BERT Com-
pression

Recent studies on compression of pretrained language models (e.g., BERT) usually use

preserved accuracy as the metric for evaluation. In this chapter, we propose two new metrics,

label loyalty and probability loyalty that measure how closely a compressed model (i.e., student)

mimics the original model (i.e., teacher). We also explore the effect of compression with

regard to robustness under adversarial attacks. We benchmark quantization, pruning, knowledge

distillation and progressive module replacing with loyalty and robustness. By combining multiple

compression techniques, we provide a practical strategy to achieve better accuracy, loyalty and

robustness.1

4.1 Introduction

Recently, many large pretrained language models (PLMs, Devlin et al., 2019, Liu et al.,

2019b, Yang et al., 2019, Shoeybi et al., 2019, Raffel et al., 2020) have been proposed for a variety

of Natural Language Processing (NLP) tasks. However, as pointed out in recent studies [Strubell

et al., 2019, Schwartz et al., 2020a, Bender et al., 2021], these models suffer from computational

inefficiency and high ecological cost. Many attempts have been made to address this problem,

1Our code is available at https://github.com/JetRunner/beyond-preserved-accuracy.

27

https://github.com/JetRunner/beyond-preserved-accuracy.

Label

Predicted
probability distribution

Original Model Compressed Model

Compression

Quantization

Knowledge Distillation
Pruning

Module Replacing

⚖

Probability Loyalty (0.6, 0.25, 0.15)

Label Loyalty NeutralEntailment

(0.7, 0.2, 0.1)

"⚔

Robustness
Adversarial

Attack

Figure 4.1. Three metrics to evaluate the compressed models beyond preserved accuracy. For
each input, label and probability loyalty measure the shift of label and predicted probability

distribution, respectively. Robustness measures the performance of the compressed model under
adversarial attacks.

including quantization [Zafrir et al., 2019, Shen et al., 2020], pruning [Michel et al., 2019, Sanh

et al., 2020], knowledge distillation (KD) [Sanh et al., 2019, Sun et al., 2019a, 2020b, Turc

et al., 2019, Jiao et al., 2020, Wang et al., 2020, Zhou et al., 2022] and progressive module

replacing [Xu et al., 2020].

BERT [Devlin et al., 2019] is a representative PLM. Many works compressing BERT

use preserved accuracy with computational complexity (e.g., speed-up ratio, FLOPS, number

of parameters) as metrics to evaluate compression. This evaluation scheme is far from perfect:

(1) Preserved accuracy cannot reflect how alike the teacher and student2 models behave. This

can be problematic when applying compression techniques in production (to be detailed in

Section 4.3). (2) Using preserved accuracy to evaluate models compressed with more data

or data augmentation [Jiao et al., 2020] can be misleading, since one cannot tell whether the

improvement should be attributed to the innovation of the compression technique or addition of

data. (3) Model robustness, which is critical for production, is often missing from evaluation,

2Teacher and student are originally concepts in knowledge distillation. In this chapter, we will sometimes
use teacher and student to refer to the original model and compressed model in other compression methods for
simplicity.

28

leaving a possible safety risk.

As illustrated in Figure 4.1, to measure the resemblance between the student and teacher

models, we propose label loyalty and probability loyalty to target different but important aspects.

We also explore the robustness of the compressed models by conducting black-box adversarial

attacks. We apply representative BERT compression methods of different types to the same

teacher model and benchmark their performance in terms of accuracy, speed, loyalty and

robustness. We find that methods with a knowledge distillation loss perform well on loyalty and

that post-training quantization can drastically improve robustness against adversarial attacks. We

use the conclusions drawn from these experiments to combine multiple techniques together and

achieve significant improvement in terms of accuracy, loyalty and robustness.

4.2 BERT Compression

Compressing and accelerating pretrained language models like BERT has been an active

field of research. Some initial work employs conventional methods for neural network compres-

sion to compress BERT. For example, Q8-BERT [Zafrir et al., 2019] and Q-BERT [Shen et al.,

2020] employ weight quantization to reduce the number of bits used to represent a parameter

in a BERT model. Pruning methods like Head Prune [Michel et al., 2019] and Movement

Pruning [Sanh et al., 2020] remove weights based on their importance to reduce the memory

footprint of pretrained models. Another line of research focuses on exploiting the knowledge

encoded in a large pretrained model to improve the training of more compact models. For

instance, DistilBERT [Sanh et al., 2019] and BERT-PKD [Sun et al., 2019a] employ knowl-

edge distillation [Hinton et al., 2015] to train compact BERT models in a task-specific and

task-agnostic fashion respectively by mimicking the behavior of large teacher models. Recently,

Xu et al. [2020] proposed progressive module replacing, which trains a compact student model

by progressively replacing the teacher layers with their more compact substitutes.

29

Table 4.1. Accuracy, loyalty and robustness of compressed models on the test set of MNLI (3
runs). Accuracy scores are from the GLUE [Wang et al., 2019b] test server. †These models are
not initialized from (a part of) the finetuned BERT teacher. ‡The speed-up ratio of quantization

is benchmarked on CPU. ↑Higher is better.

Method # Layer
Speed MNLI Loyalty Adversarial Attack
-up ↑ m/mm ↑ Label ↑ Probability ↑ Acc ↑ #Query ↑

Teacher [Devlin et al., 2019] 12 1.0× 84.5 / 83.3 100 100 8.1(±0.1) 89.6(±0.1)
Truncate & Finetune 6 2.0× 81.1 / 80.0 87.7(±0.2) 84.9(±0.7) 4.4(±0.1) 78.0(±0.1)
Pure KD 6 2.0× 81.1 / 80.8 89.2(±0.1) 89.5(±0.2) 6.2(±0.1) 80.1(±0.2)

Q8-PTQ [Zafrir et al., 2019] 12 1.8×‡ 80.7 / 80.4 89.6(±0.5) 80.8(±0.4) 40.2(±0.1) 91.6(±0.1)
Q8-QAT† [Zafrir et al., 2019] 12 1.8×‡ 83.4 / 82.4 89.7(±0.2) 88.2(±0.3) 6.8(±0.2) 82.7(±0.2)

Head Prune [Michel et al., 2019] 12 1.2× 80.9 / 80.6 87.8(±0.1) 85.5(±0.6) 9.1(±0.1) 90.5(±0.2)

DistilBERT† [Sanh et al., 2019] 6 2.0× 82.4 / 81.4 88.9(±0.2) 88.4(±0.4) 5.9(±0.1) 80.8(±0.2)
TinyBERT† [Jiao et al., 2020] 6 2.0× 82.7 / 82.7 88.9(±0.1) 88.4(±0.7) 6.7(±0.1) 82.1(±0.2)

BERT-PKD [Sun et al., 2019a] 6 2.0× 81.3 / 81.1 88.9(±0.1) 89.0(±0.2) 6.4(±0.2) 81.9(±0.2)

BERT-of-Theseus [Xu et al., 2020] 6 2.0× 81.8 / 80.7 88.1(±0.2) 82.5(±0.3) 8.3(±0.2) 89.7(±0.2)

4.3 Metrics Beyond Accuracy

4.3.1 Loyalty

Label Loyalty

Model compression is a common practice to optimize the efficiency of a model for

deployment [Cheng et al., 2017]. In real-world settings, training and deployment are often

separate [Paleyes et al., 2020]. As such it is desirable to have a metric to measure to what

extent the “production model” is different from the “development model”. Moreover, when

discussing ethical concerns, previous studies [Wang et al., 2020, Zhou et al., 2020] ignore the

risk that model compression could introduce additional biases. However, a recent work [Hooker

et al., 2020] strongly contradicts this assumption. In a nutshell, we would desire the student to

behave as closely as possible to the teacher, to make it more predictable and minimize the risk

of introducing extra bias. Label loyalty directly reflects the resemblance of the labels predicted

between the teacher and student models. It is calculated in the same way as accuracy, but between

30

the student’s prediction and the teacher’s prediction, instead of ground labels:

Ll = Accuracy(predt ,preds) (4.1)

where predt and preds are the predictions of the teacher and student, respectively.

Probability Loyalty

Except for the label correspondence, we argue that the predicted probability distribution

matters as well. In industrial applications, calibration [Guo et al., 2017, Li et al., 2020a], which

focuses on the meaningfulness of confidence, is an important issue for deployment. Many

dynamic inference acceleration methods [Xin et al., 2020b, Schwartz et al., 2020b, Liu et al.,

2020b, Xin et al., 2020a, Li et al., 2020a] use entropy or the maximum value of the predicted

probability distribution as the signal for early exiting. Thus, a shift of predicted probability

distribution in a compressed model could break the calibration and invalidate calibrated early

exiting pipelines.

Kullback–Leibler (KL) divergence is often used to measure how one probability distribu-

tion is different from a reference distribution.

DKL(P∥Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(4.2)

where X is the probability space; P and Q are predicted probability distributions of the teacher

and students, respectively. Here, we use its variant, the Jensen–Shannon (JS) divergence, since it

is symmetric and always has a finite value which is desirable for a distance-like metric:

DJS(P∥Q) =
1
2

DKL(P∥M)+
1
2

DKL(Q∥M) (4.3)

31

where M = 1
2(P+Q). Finally, the probability loyalty between P and Q is defined as:

Lp(P∥Q) = 1−
√

DJS(P∥Q) (4.4)

where Lp ∈ [0,1]; higher Lp represents higher resemblance. Note that Equation 4.2 is also known

as the KD loss [Hinton et al., 2015], thus KD-based methods will naturally have an advantage in

terms of probability loyalty.

4.3.2 Robustness

Deep Learning models have been shown to be vulnerable to adversarial examples that

are slightly altered with perturbations often indistinguishable to humans [Kurakin et al., 2017].

Previous work [Su et al., 2018] found that small convolutional neural networks (CNN) are more

vulnerable to adversarial attacks compared to bigger ones. Likewise, we intend to investigate how

BERT models perform and the effect of different types of compression in terms of robustness. We

use an off-the-shelf adversarial attack method, TextFooler [Jin et al., 2020], which demonstrates

state-of-the-art performance on attacking BERT. TextFooler conducts black-box attacks by

querying the BERT model with the adversarial input where words are perturbed based on their

part-of-speech role. We select two metrics from [Jin et al., 2020], after-attack accuracy and

query number, to evaluate a model’s robustness. After-attack accuracy represents the remaining

accuracy after the adversarial attack. Query number represents how many queries with perturbed

input have been made to complete the attack.

4.4 Experiments

4.4.1 Dataset and Baselines

We use the Multi-Genre Natural Language Inference dataset (MNLI) [Williams et al.,

2018] for evaluation. The accuracy scores are from the GLUE benchmark [Wang et al., 2019b]

test server. We select representative methods of different types of compression methods: Head

32

Prune [Michel et al., 2019] for pruning; Post-training Quantization (PTQ) and Quantization-

aware Training (QAT) [Zafrir et al., 2019] for quantization; DistilBERT [Sanh et al., 2019] and

TinyBERT [Jiao et al., 2020] for pretraining-phase knowledge distillation; BERT-PKD [Sun

et al., 2019a] for downstream knowledge distillation; and BERT-of-Theseus [Xu et al., 2020] for

module replacing. Following Sun et al. [2019a], Xu et al. [2020], we truncate the first (bottom) 6

layers and then finetune it as a baseline for 6-layer models. Additionally, we directly optimize

the KL divergence (i.e., pure KD loss) to set an upper bound for probability loyalty.

4.4.2 Training Details

Our implementation is based on Hugging Face Transformers [Wolf et al., 2020]. We first

finetune a BERT-base model to be the teacher for KD and the source model for quantization and

pruning. The learning rate is set to 3×10−5 and the batch size is 64 with 1,000 warm-up steps.

For quantization and pruning, the source model is the same finetuned teacher. For downstream

KD and BERT-of-Theseus, we initialize the model by truncating the first (bottom) 6 layers of

the finetuned teacher, following the original papers [Sun et al., 2019a, Xu et al., 2020]. QAT

uses pretrained BERT-base for initialization. For pretraining distillation, we directly finetune

compressed 6-layer DistilBERT and TinyBERT checkpoints to report results. The pruning

percentage for Head Prune is 45%. The hyperparameters of BERT-PKD are from the original

implementation.

4.4.3 Experimental Results

We show experimental results in Table 4.1. First, we find that post-training quantization

can drastically improve model robustness. A possible explanation is that the regularization effect

of post-training quantization [Paupamah et al., 2020, Wu and Flierl, 2020] helps improve the

robustness of the model [Werpachowski et al., 2019, Ma et al., 2020]. A similar but smaller effect

can be found from pruning. However, as shown in Table 4.2, if we finetune the low-precision

or pruned model again, the model would re-overfit the data and yield even lower robustness

33

Table 4.2. Accuracy and loyalty for combining multiple compression techniques on the test set
of MNLI. L-L: label loyalty; P-L: probability loyalty; AA: after-attack accuracy; # Q: Query

number for adversarial attack. The number of layers for each group is consistent with Table 4.1.

Method Speed MNLI L-L P-L AA # Q

Teacher 1.0× 84.5 / 83.3 100 100 8.1 89.6

Head Prune 1.2× 80.9 / 80.6 87.8 85.5 9.1 90.5
+Finetune 1.2× 83.2 / 81.9 89.1 85.5 7.2 83.2
+KD 1.2× 84.2 / 83.0 93.3 93.0 8.3 90.5
+KD+PTQ 2.2× 80.8 / 80.4 89.6 86.3 38.4 90.9

Q8-QAT 1.8× 83.4 / 82.4 89.7 88.2 6.8 82.7
Q8-PTQ 1.8× 80.7 / 80.4 89.6 80.8 40.2 91.6
+Finetune 1.8× 82.9 / 81.9 89.7 84.8 7.1 84.5
+KD 1.8× 84.1 / 83.5 94.0 93.9 7.5 86.1

BERT-PKD 2.0× 81.3 / 81.1 88.9 89.0 6.4 81.9
Theseus 2.0× 81.8 / 80.7 88.1 82.5 8.3 89.7
+KD 2.0× 82.6 / 81.7 91.2 91.4 8.0 88.7
+KD+PTQ 3.6× 80.2 / 79.9 89.5 80.3 36.5 91.3

than the original model. Second, KD-based models maintains good label loyalty and probability

loyalty due to their optimization objectives. Interestingly, compared to Pure KD where we

directly optimize the KL divergence, DistilBERT, TinyBERT and BERT-PKD trade some loyalty

in exchange for accuracy. Compared to DistilBERT, TinyBERT digs up higher accuracy by

introducing layer-to-layer distillation, with their loyalty remains identical. Also, we do not

observe a significant difference between pretraining KD and downstream KD in terms of both

loyalty and robustness (p > 0.1). Notably, BERT-of-Theseus has a significantly lower loyalty,

suggesting the mechanism behind it is different from KD. We also provide some results on

SST-2 [Socher et al., 2013] in Section 4.7.

4.5 Combining the Bag of Tricks

As we described in Section 4.4.3, we discover that post-training quantization (PTQ) can

improve the robustness of a model while knowledge distillation (KD) loss benefits the loyalty

of a compressed model. Thus, by combining multiple compression techniques, we expect to

34

achieve a higher speed-up ratio with improved accuracy, loyalty and robustness.

To combine KD with other methods, we replace the original cross-entropy loss in

quantization-aware training and module replacing with the knowledge distillation loss [Hinton

et al., 2015] as in Equation 4.2. For pruning, we perform knowledge distillation on the pruned

model. We also apply the temperature re-scaling trick from [Hinton et al., 2015] with a fixed

temperature of 10. As shown in Table 4.2, the knowledge distillation loss effectively improves

the accuracy and loyalty of pruning, quantization and module replacing.

Furthermore, we post-quantize the KD-enhanced models after they are trained. Shown in

Table 4.2, by adding post-training quantization, the speed and robustness can both be boosted.

Notably, the order to apply PTQ and KD does matter. PTQ→KD has high accuracy and

loyalty but poor robustness while KD→PTQ remains a good robustness with a lower accuracy

performance. To summarize, we recommend the following compression strategy: (1) conduct

pruning or module replacing with a KD loss; (2) for speed-sensitive and robustness-sensitive

applications, apply post-training quantization afterwards.

4.6 Conclusion

In this chapter, we propose label and probability loyalty to measure the correspondence of

label and predicted probability distribution between compressed and original models. In addition

to loyalty, we investigate the robustness of different compression techniques under adversarial

attacks. These metrics reveal that post-training quantization and knowledge distillation can

drastically improve robustness and loyalty, respectively. By combining multiple compression

methods, we can further improve speed, accuracy, loyalty and robustness for various applications.

Our metrics help mitigate the gap between model training and deployment, shed light upon

comprehensive evaluation for compression of pretrained language models, and call for the

invention of new compression techniques.

35

4.7 Additional Experimental Results on SST-2

Table 4.3. Accuracy and loyalty of some compression techniques on the test set of SST-2. L-L:
label loyalty; P-L: probability loyalty; AA: after-attack accuracy; # Q: Query number for

adversarial attack. The number of layers for each group is consistent with Table 4.1.

Method Speed SST-2 L-L P-L AA # Q

Teacher 1.0× 92.0 100 100 7.5 81.2

KD 2.0× 91.5 93.8 92.4 7.2 80.3

Head Prune 1.3× 90.4 89.5 88.2 8.1 81.0

Q8-QAT 1.8× 91.4 91.8 90.3 6.6 81.4
Q8-PTQ 1.8× 90.1 91.3 88.9 26.5 86.4

This chapter, in part, is a reprint of the material as it appears in “Beyond Preserved Accu-

racy: Evaluating Loyalty and Robustness of BERT Compression” by Canwen Xu, Wangchunshu

Zhou, Tao Ge, Ke Xu, Julian McAuley, and Furu Wei, which was published at Empirical Methods

in Natural Language Processing, 2021. The dissertation author was the co-primary investigator

and co-first author of this paper.

36

Chapter 5

BERT Learns to Teach: Knowledge Distil-
lation with Meta Learning

In this chapter, we present Knowledge Distillation with Meta Learning (MetaDistil),

a simple yet effective alternative to traditional knowledge distillation (KD) methods where

the teacher model is fixed during training. We show the teacher network can learn to better

transfer knowledge to the student network (i.e., learning to teach) with the feedback from the

performance of the distilled student network in a meta learning framework. Moreover, we

introduce a pilot update mechanism to improve the alignment between the inner-learner and

meta-learner in meta learning algorithms that focus on an improved inner-learner. Experiments

on various benchmarks show that MetaDistil can yield significant improvements compared with

traditional KD algorithms and is less sensitive to the choice of different student capacity and

hyperparameters, facilitating the use of KD on different tasks and models.1

5.1 Introduction

With the prevalence of large neural networks with millions or billions of parameters,

model compression is gaining prominence for facilitating efficient, eco-friendly deployment

for machine learning applications. Among techniques for compression, knowledge distilla-

tion (KD) [Hinton et al., 2015] has shown effectiveness in both Computer Vision and Natural

1The code is available at https://github.com/JetRunner/MetaDistil.

37

https://github.com/JetRunner/MetaDistil

Language Processing tasks [Hinton et al., 2015, Romero et al., 2015, Zagoruyko and Komodakis,

2017, Tung and Mori, 2019, Peng et al., 2019, Ahn et al., 2019, Park et al., 2019, Passalis and

Tefas, 2018, Heo et al., 2019, Kim et al., 2018, Shi et al., 2021, Sanh et al., 2019, Jiao et al.,

2020, Wang et al., 2020]. Previous works often train a large model as the “teacher”; then they fix

the teacher and train a “student” model to mimic the behavior of the teacher, in order to transfer

the knowledge from the teacher to the student.

However, this paradigm has the following drawbacks: (1) The teacher is unaware of

the student’s capacity. Recent studies in pedagogy suggest student-centered learning, which

considers students’ characteristics and learning capability, has shown effectiveness improving

students’ performance [Cornelius-White, 2007, Wright, 2011]. However, in conventional knowl-

edge distillation, the student passively accepts knowledge from the teacher, without regard for the

student model’s learning capability and performance. Recent works [Park et al., 2021, Shi et al.,

2021] introduce student-aware distillation by jointly training the teacher and the student with

task-specific objectives. However, there is still space for improvement since: (2) The teacher is

not optimized for distillation. In previous works, the teacher is often trained to optimize its own

inference performance. However, the teacher is not aware of the need to transfer its knowledge

to a student and thus usually does so suboptimally. A real-world analogy is that a PhD student

may have enough knowledge to solve problems themselves, but requires additional teaching

training to qualify as a professor.

To address these two drawbacks, we propose Knowledge Distillation with Meta Learning

(MetaDistil), a new teacher-student distillation framework using meta learning [Finn et al., 2017]

to exploit feedback about the student’s learning progress to improve the teacher’s knowledge

transfer ability throughout the distillation process. On the basis of previous formulations of

bi-level optimization based meta learning [Finn et al., 2017], we propose a new mechanism called

pilot update that aligns the learning of the bi-level learners (i.e., the teacher and the student).

We illustrate the workflow of MetaDistil in Figure 5.1. The teacher in MetaDistil is trainable,

which enables the teacher to adjust to its student network and also improves its “teaching skills.”

38

(1) Teaching experiment (2) Quiz & Meta update (3) Knowledge
 distillation

T S’

Training
Batches

S
Copy

Update

T S’

Training
Batches

Quiz
Samples

LCE
<latexit sha1_base64="cWzYMh3AeRJkO+vsctAQMH7i188=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkpSBT0Wi+DBQwXbCm0Im+22XbrZhN2JUELw4l/x4kERr/4Kb/4bN2kO2vpg4e17M8zM8yPOFNj2t1FaWl5ZXSuvVzY2t7Z3zN29jgpjSWibhDyU9z5WlDNB28CA0/tIUhz4nHb9STPzuw9UKhaKO5hG1A3wSLAhIxi05JkH/QDDmGCe3KRekn8YJM2rNPXMql2zc1iLxClIFRVoeeZXfxCSOKACCMdK9Rw7AjfBEhjhNK30Y0UjTCZ4RHuaChxQ5Sb5Cal1rJWBNQylfgKsXP3dkeBAqWng68psRzXvZeJ/Xi+G4YWbMBHFQAWZDRrG3ILQyvKwBkxSAnyqCSaS6V0tMsYSE9CpVXQIzvzJi6RTrzmntfrtWbVxWcRRRofoCJ0gB52jBrpGLdRGBD2iZ/SK3own48V4Nz5mpSWj6NlHf2B8/gAT8Jfd</latexit>

T S

Training
Batches

Update

Update

Forward pass

Backward pass:

1st derivatives

2nd derivatives

Pilot update

L0
KD

<latexit sha1_base64="uziwHVw4qqKfwsWyy8k1x7MuDt4=">AAACA3icbVDLSsNAFL3xWesr6k43wSK6KkkVdFnQhaCLCvYBbQiT6bQdOpmEmYlQQsCNv+LGhSJu/Ql3/o2TNAttPTBw5px7ufceP2JUKtv+NhYWl5ZXVktr5fWNza1tc2e3JcNYYNLEIQtFx0eSMMpJU1HFSCcSBAU+I21/fJn57QciJA35vZpExA3QkNMBxUhpyTP3ewFSI4xYcnucekn+oyq5uUpTz6zYVTuHNU+cglSgQMMzv3r9EMcB4QozJGXXsSPlJkgoihlJy71YkgjhMRqSrqYcBUS6SX5Dah1ppW8NQqEfV1au/u5IUCDlJPB1ZbajnPUy8T+vG6vBhZtQHsWKcDwdNIiZpUIrC8TqU0GwYhNNEBZU72rhERIIKx1bWYfgzJ48T1q1qnNard2dVeq1Io4SHMAhnIAD51CHa2hAEzA8wjO8wpvxZLwY78bHtHTBKHr24A+Mzx+AZ5gF</latexit>

L0
KD

<latexit sha1_base64="uziwHVw4qqKfwsWyy8k1x7MuDt4=">AAACA3icbVDLSsNAFL3xWesr6k43wSK6KkkVdFnQhaCLCvYBbQiT6bQdOpmEmYlQQsCNv+LGhSJu/Ql3/o2TNAttPTBw5px7ufceP2JUKtv+NhYWl5ZXVktr5fWNza1tc2e3JcNYYNLEIQtFx0eSMMpJU1HFSCcSBAU+I21/fJn57QciJA35vZpExA3QkNMBxUhpyTP3ewFSI4xYcnucekn+oyq5uUpTz6zYVTuHNU+cglSgQMMzv3r9EMcB4QozJGXXsSPlJkgoihlJy71YkgjhMRqSrqYcBUS6SX5Dah1ppW8NQqEfV1au/u5IUCDlJPB1ZbajnPUy8T+vG6vBhZtQHsWKcDwdNIiZpUIrC8TqU0GwYhNNEBZU72rhERIIKx1bWYfgzJ48T1q1qnNard2dVeq1Io4SHMAhnIAD51CHa2hAEzA8wjO8wpvxZLwY78bHtHTBKHr24A+Mzx+AZ5gF</latexit>

LKD
<latexit sha1_base64="Ok//7Q4UXi0+yvIX1pX7vfyqMZs=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5JUQZcFXQi6qGAf0IYwmU7aoZNJmLkRSghu/BU3LhRx61e482+ctFlo64GBM+fcy733+DFnCmz72ygtLa+srpXXKxubW9s75u5eW0WJJLRFIh7Jro8V5UzQFjDgtBtLikOf044/vsz9zgOVikXiHiYxdUM8FCxgBIOWPPOgH2IYEczT28xLpx8G6c1Vlnlm1a7ZU1iLxClIFRVoeuZXfxCRJKQCCMdK9Rw7BjfFEhjhNKv0E0VjTMZ4SHuaChxS5abTEzLrWCsDK4ikfgKsqfq7I8WhUpPQ15X5jmrey8X/vF4CwYWbMhEnQAWZDQoSbkFk5XlYAyYpAT7RBBPJ9K4WGWGJCejUKjoEZ/7kRdKu15zTWv3urNqoF3GU0SE6QifIQeeoga5RE7UQQY/oGb2iN+PJeDHejY9ZackoevbRHxifPxnSl9Q=</latexit>

Figure 5.1. The workflow of MetaDistil. (1) We perform experimental knowledge distillation on
a selection of training batches. Instead of updating the student S, we make a temporary copy S′

and update S′. (2) We calculate a Cross-Entropy loss LCE of S′ on samples from a separate quiz
set. We calculate the gradients of LCE with respect to the parameters of T and update T by

gradient descent. (3) We discard S′ and use the updated T to perform actual knowledge
distillation and update S.

Motivated by the idea of student-centered learning, we allow the teacher to adjust its output

based on the performance of the student model on a “quiz set,” which is a separate reserved data

split from the original training set. For each training step, we first copy the student S to S′ and

update S′ by a common knowledge distillation loss. We call this process a “teaching experiment.”

In this way, we can obtain an experimental student S′ that can be quizzed. Then, we sample

from the quiz set, and calculate the loss of S′ on these samples. We use this loss as a feedback

signal to meta-update the teacher by calculating second derivatives and performing gradient

descent [Finn et al., 2017]. Finally, we discard the experimental subject S′ and use the updated

teacher to distill into the student S on the same training batches. The use of meta learning allows

the teacher model to receive feedback from the student in a completely differentiable way. We

provide a simple and intuitive approach to explicitly optimize the teacher using the student’s

quiz performance as a proxy.

To test the effectiveness of MetaDistil, we conduct extensive experiments on text and

image classification tasks. MetaDistil outperforms knowledge distillation by a large margin,

verifying the effectiveness and versatility of our method. Also, our method achieves state-of-

the-art performance compressing BERT [Devlin et al., 2019] on the GLUE benchmark [Wang

et al., 2019b] and shows competitive results compressing ResNet [He et al., 2016] and VGG [Si-

39

Algorithm 1. Knowledge Distillation with Meta Learning (MetaDistil)
Require: student θS, teacher θT , train set D , quiz set Q
Require: λ , µ: learning rate for the student and the teacher

1: while not done do
2: Sample batch of training data xxx∼D
3: Copy student parameter θS to student θ ′S
4: Update θ ′S with xxx and θT : θ ′S← θ ′S−λ∇θ ′S

LS(x;θS;θT)
5: Sample a batch of quiz data qqq∼Q
6: Update θT with qqq and θ ′S: θT ← θT −µ∇θT LT (qqq,θ ′S(θT))
7: Update original θS with xxx and the updated θT : θS← θS−λ∇θSLS(x;θS;θT)
8: end while

monyan and Zisserman, 2015] on CIFAR-100 [Krizhevsky et al., 2009]. Additionally, we design

experiments to analyze and explain the improvement. Ablation studies show the effectiveness

of our proposed pilot update and dynamic distillation. Also, compared to conventional KD,

MetaDistil is more robust to different student capacity and hyperparameters, which is probably

because of its ability to adjust the parameters of the teacher model.

5.2 Knowledge Distillation with Meta Learning

An overview of MetaDistil is presented in Figure 5.1. MetaDistil includes two major

components. First, the meta update enables the teacher model to receive the student model’s

feedback on the distillation process, allowing the teacher model to “learn to teach” and provide

distillation signals that are more suitable for the student model’s current capacity. The pilot

update mechanism ensures a finer-grained match between the student model and the meta-updated

teacher model.

5.2.1 Background

Knowledge Distillation

Knowledge distillation algorithms aim to exploit the hidden knowledge from a large

teacher network, denoted as T , to guide the training of a shallow student network, denoted

as S. To help transfer the knowledge from the teacher to the student, apart from the original

40

task-specific objective (e.g., cross-entropy loss), a knowledge distillation objective which aligns

the behavior of the student and the teacher is included to train the student network. Formally,

given a labeled dataset D of N samples D = {(x1,y1) , . . . ,(xN ,yN)}, we can write the loss

function of the student network as follows,

LS (D ;θS;θT) =
1
N

N

∑
i=1

[αLT (yi,S (xi;θS))

+(1−α)LKD (T (xi;θT) ,S (xi;θS))]

(5.1)

where α is a hyper-parameter to control the relative importance of the two terms; θT and θS are

the parameters of the teacher T and student S, respectively. LT refers to the task-specific loss

and LKD refers to the knowledge distillation loss which measures the similarity of the student

and the teacher. Some popular similarity measurements include the KL divergence between

the output probability distribution, the mean squared error (MSE) between student and teacher

logits, the similarity between the student and the teacher’s attention distribution, etc. We do not

specify the detailed form of the loss function because MetaDistil is a general framework that

can be easily applied to various kinds of KD objectives as long as the objective is differentiable

with respect to the teacher parameters. In the experiments of this chapter, we use mean squared

error between the hidden states of the teacher and the student for both our method and the KD

baseline since recent study Kim et al. [2021] finds that it is more stable and slightly outperforms

than KL divergence.

Meta Learning

In meta learning algorithms that involve a bi-level optimization problem [Finn et al.,

2017], there exists an inner-learner fi and a meta-learner fm. The inner-learner is trained to

accomplish a task T or a distribution of tasks with help from the meta-learner. The training

process of fi on T with the help of fm is typically called inner-loop, and we can denote f ′i (fm)

as the updated inner-learner after the inner-loop. We can express f ′i as a function of fm because

41

learning fi depends on fm. In return, the meta-learner is optimized with a meta objective, which

is generally the maximization of expected performance of the inner-learner after the inner-loop,

i.e., f ′i (fm). This learning process is called a meta-loop and is often accomplished by gradient

descent with derivatives of L (f ′i (fm)), the loss of updated inner-leaner on some held-out support

set (i.e., the quiz set in this chapter).

5.2.2 Methodology

Pilot Update

In the original formulation of meta learning [Finn et al., 2017], the purpose is to learn

a good meta-learner fm that can generalize to different inner-learners fi for different tasks. In

their approach, the meta-learner is optimized for the “original” inner-learner at the beginning of

each iteration and the current batch of training data. The updated meta-learner is then applied

to the updated inner-learner and a different batch of data in the next iteration. This behavior is

reasonable if the purpose is to optimize the meta-learner. However, in MetaDistil, we only care

about the performance of the only inner-learner, i.e., the student. In this case, this behavior leads

to a mismatch between the meta-learner and the inner-learner, and is therefore suboptimal for

learning a good inner-learner. Therefore, we need a way to align and synchronize the learning

of the meta- and inner-learner, in order to allow an update step of the meta-learner to have

an instant effect on the inner-learner. This instant reflection prevents the meta-learner from

catastrophic forgetting [McCloskey and Cohen, 1989]. To achieve this, we design a pilot update

mechanism. For a batch of training data xxx, we first make a temporary copy of the inner-learner

fi and update both the copy f ′i and the meta learner fm on xxx. Then, we discard f ′i and update

fi again with the updated fm on the same data xxx. This mechanism can apply the impact of data

xxx to both fm and fi at the same time, thus aligns the training process. Pilot update is a general

technique that can potentially be applied to any meta learning application that optimizes the

inner-learner performance. We will describe how we apply this mechanism to MetaDistil shortly

and empirically verify the effectiveness of pilot update in Section 5.3.2.

42

Learning to Teach

In MetaDistil, we would like to optimize the teacher model, which is fixed in traditional

KD frameworks. Different from previous deep mutual learning [Zhang et al., 2018b] methods

that switch the role between the student and teacher network and train the original teacher model

with soft labels generated by the student model, or recent works [Shi et al., 2021, Park et al.,

2021] that update the teacher model with a task-specific loss during the KD process, MetaDistil

explicitly optimizes the teacher model in a “learning to teach” fashion, so that it can better

transfer its knowledge to the student model. Concretely, the optimization objective of the teacher

model in the MetaDistil framework is the performance of the student model after distilling from

the teacher model. This “learning to teach” paradigm naturally fits the bi-level optimization

framework in meta learning literature.

In the MetaDistil framework, the student network θS is the inner-learner and the teacher

network θT is the meta-learner. For each training step, we first copy the student model θS to an

“experimental student” θ ′S. Then given a batch of training examples xxx and the learning rate λ , the

experimental student is updated in the same way as conventional KD algorithms:

θ
′
S(θT) = θS−λ∇θSLS(x;θS;θT). (5.2)

To simplify notation, we will consider one gradient update for the rest of this section, but

using multiple gradient updates is a straightforward extension. We observe that the updated

experimental student parameter θ ′S, as well as the student quiz loss lq = LT (qqq,θ ′S(θT)) on

a batch of quiz samples qqq sampled from a held-out quiz set Q, is a function of the teacher

parameter θT . Therefore, we can optimize lq with respect to θT by a learning rate µ:

θT ← θT −µ∇θT LT

(
qqq,θ ′S(θT)

)
(5.3)

We evaluate the performance of the experimental student on a separate quiz set to prevent

43

overfitting the validation set, which is preserved for model selection. Note that the student is

never trained on the quiz set and the teacher only performs meta-update on the quiz set instead

of fitting it. We do not use a dynamic quiz set strategy because otherwise the student would

have been trained on the quiz set and the loss would not be informative. After meta-updating

the teacher model, we then update the “real” student model in the same way as described in

Equation 5.2. Intuitively, optimizing the teacher network θT with Equation 5.3 is maximizing

the expected performance of the student network after being taught by the teacher with the KD

objective in the inner-loop. This meta-objective allows the teacher model to adjust its parameters

to better transfer its knowledge to the student model. We apply the pilot update strategy described

in Section 5.2.2 to better align the learning of the teacher and student, as shown in Algorithm 1.

5.3 Experiments

5.3.1 Experimental Setup

We evaluate MetaDistil on two commonly used classification benchmarks for knowledge

distillation in both Natural Language Processing and Computer Vision (see Section 5.6).

Settings

For NLP, we evaluate our proposed approach on the GLUE benchmark [Wang et al.,

2019b]. Specifically, we test on MRPC [Dolan and Brockett, 2005], QQP and STS-B [Conneau

and Kiela, 2018] for Paraphrase Similarity Matching; SST-2 [Socher et al., 2013] for Sentiment

Classification; MNLI [Williams et al., 2018], QNLI [Rajpurkar et al., 2016] and RTE [Wang

et al., 2019b] for the Natural Language Inference; CoLA [Warstadt et al., 2019] for Linguistic

Acceptability. Following previous studies [Sun et al., 2019a, Jiao et al., 2020, Xu et al., 2020],

our goal is to distill BERT-Base [Devlin et al., 2019] into a 6-layer BERT with the hidden size of

768. We use MSE loss between model logits as the distillation objective. The reported results are

in the same format as on the GLUE leaderboard. For MNLI, we report the results on MNLI-m

and MNLI-mm, respectively. For MRPC and QQP, we report both F1 and accuracy. For STS-B,

44

Table 5.1. Experimental results on the development set and the test set of GLUE. Numbers
under each dataset indicate the number of training samples. All student models have the same
architecture of 66M parameters, 6 Transformer layers and 1.94× speed-up. The test results are
from the official test server of GLUE. The best results for the task-specific setting are marked

with boldface. Results reported by us are average of 3 runs with different seeds. †Results
reported by us. The student is initialized with a 6-layer pretrained BERT [Turc et al., 2019] thus
has a better performance than the original implementation. ‡TinyBERT has data augmentation

(DA).

Method #Param. Speed-up
GLUE [Wang et al., 2019b]

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

Dev Set

BERT-Base (teacher) [2019] 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8
BERT-6L (student) [2019] 66M 1.94× 53.5 81.1/81.7 89.2/84.4 88.6 86.9/90.4 67.9 91.1 88.1/87.9

Pretraining Distillation

TinyBERT‡ [2020] 66M 1.94× 54.0 84.5/84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6
MiniLM [2020] 66M 1.94× 49.2 84.0/ - 88.4/ - 91.0 - /91.0 71.5 92.0 -
MiniLM v2 [2021a] 66M 1.94× 52.5 84.2/ - 88.9/ - 90.8 - /91.1 72.1 92.4 -

Task-specific Distillation

KD† [2015] 66M 1.94× 54.1 82.6/83.2 89.6/85.2 89.2 87.3/90.9 67.7 91.2 88.6/88.2
PKD† [2019a] 66M 1.94× 54.5 82.7/83.3 89.4/84.7 89.5 87.8/90.9 67.6 91.3 88.6/88.1
TinyBERT w/o DA† 66M 1.94× 52.4 83.6/83.8 90.5/86.5 89.8 87.6/90.6 67.7 91.9 89.2/88.7
RCO† [2019] 66M 1.94× 53.6 82.4/82.9 89.5/85.1 89.7 87.4/90.6 67.6 91.4 88.7/88.3
TAKD† [2020] 66M 1.94× 53.8 82.5/83.0 89.6/85.0 89.6 87.5/90.7 68.5 91.4 88.2/88.0
DML† [2018b] 66M 1.94× 53.7 82.4/82.9 89.6/85.1 89.6 87.4/90.3 68.4 91.5 88.4/88.1
ProKT† [2021] 66M 1.94× 54.3 82.8/83.2 90.7/86.3 89.7 87.9/90.9 68.4 91.3 88.9/88.6
SFTN† [2021] 66M 1.94× 53.6 82.4/82.9 89.8/85.3 89.5 87.5/90.4 68.5 91.5 88.4/88.5
MetaDistil (ours) 66M 1.94× 58.6 83.5/83.8 91.1/86.8 90.4 88.1/91.0 69.4 92.3 89.4/89.1

w/o pilot update 66M 1.94× 56.3 83.0/83.4 90.6/86.6 89.9 88.0/88.5 67.7 92.0 89.2/89.0

Test Set

BERT-Base (teacher) [2019] 110M 1.00× 52.1 84.6/83.4 88.9/84.8 90.5 71.2/89.2 66.4 93.5 87.1/85.8

Pretraining Distillation

DistilBERT [2019] 66M 1.94× 45.8 81.6/81.3 87.6/83.1 88.8 69.6/88.2 54.1 92.3 71.0/71.0
TinyBERT‡ [2020] 66M 1.94× 51.1 84.3/83.4 88.8/84.5 91.6 70.5/88.3 70.4 92.6 86.2/84.8

Task-specific Distillation

KD [2019] 66M 1.94× - 82.8/82.2 86.8/81.7 88.9 70.4/88.9 65.3 91.8 -
PKD [2019a] 66M 1.94× 43.5 81.5/81.0 85.0/79.9 89.0 70.7/88.9 65.5 92.0 83.4/81.6
BERT-of-Theseus [2020] 66M 1.94× 47.8 82.4/82.1 87.6/83.2 89.6 71.6/89.3 66.2 92.2 85.6/84.1
ProKT [2021] 66M 1.94× - 82.9/82.2 87.0/82.3 89.7 70.9/88.9 - 93.3 -
TinyBERT‡ [2020] 66M 1.94× 47.5 83.0/82.6 87.9/82.8 89.8 70.9/88.6 66.8 93.1 85.8/84.6
DML† [2018b] 66M 1.94× 48.5 82.6/81.6 86.5/81.2 89.5 70.7/88.7 66.3 92.7 85.5/84.0
RCO† [2019] 66M 1.94× 48.2 82.3/81.2 86.8/81.4 89.3 70.4/88.7 66.5 92.6 85.3/84.1
TAKD† [2020] 66M 1.94× 48.4 82.4/81.7 86.5/81.3 89.4 70.6/88.8 66.8 92.9 85.4/84.1
SFTN† [2021] 66M 1.94× 48.1 82.1/81.3 86.5/81.2 89.6 70.2/88.4 66.3 92.7 85.1/84.2
MetaDistil (ours) 66M 1.94× 50.7 83.8/83.2 88.7/84.7 90.2 71.1/88.9 67.2 93.5 86.1/85.0

w/o pilot update 66M 1.94× 49.1 83.3/82.8 88.2/84.1 89.9 71.0/88.7 66.6 93.5 85.9/84.6

we report Pearson and Spearman correlation. The metric for CoLA is Matthew’s correlation.

The other tasks use accuracy as the metric.

Following previous works [Sun et al., 2019a, Turc et al., 2019, Xu et al., 2020], we

45

evaluate MetaDistil in a task-specific setting where the teacher model is fine-tuned on a down-

stream task and the student model is trained on the task with the KD loss. We do not choose

the pretraining distillation setting since it requires significant computational resources. We

implement MetaDistil based on Hugging Face Transformers [Wolf et al., 2020].

Baselines

For comparison, we report the results of vanilla KD and patient knowledge distilla-

tion [Sun et al., 2019a]. We also include the results of progressive module replacing [Xu et al.,

2020], a state-of-the-art task-specific compression method for BERT which also uses a larger

teacher model to improve smaller ones like knowledge distillation. In addition, according to Turc

et al. [2019], the reported performance of current task-specific BERT compression methods is

underestimated because the student model is not appropriately initialized. To ensure fair compar-

ison, we re-run task-specific baselines with student models initialized by a pretrained 6-layer

BERT model and report our results in addition to the official numbers in the original papers.

We also compare against deep mutual learning (DML) [Zhang et al., 2018b], teacher assistant

knowledge distillation (TAKD) [Mirzadeh et al., 2020], route constraint optimization (RCO) [Jin

et al., 2019], proximal knowledge teaching (ProKT) [Shi et al., 2021], and student-friendly

teacher network (SFTN) [Park et al., 2021], where the teacher network is not fixed. For reference,

we also present results of pretraining distilled models including DistilBERT [Sanh et al., 2019],

TinyBERT [Jiao et al., 2020], MiniLM v1 and v2 [Wang et al., 2020, 2021a]. Note that among

these baselines, PKD [Sun et al., 2019a] and Theseus [Xu et al., 2020] exploit intermediate

features while TinyBERT and the MiniLM family use both intermediate and Transformer-specific

features. In contrast, MetaDistil uses none of these but the vanilla KD loss (Equation 5.1).

Training Details

For training hyperparameters, we fix the maximum sequence length to 128 and the

temperature to 2 for all tasks. For our method and all baselines (except those with officially

reported numbers), we perform grid search over the sets of the student learning rate λ from {1e-5,

46

2e-5, 3e-5}, the teacher learning rate µ from {2e-6, 5e-6, 1e-5}, the batch size from {32, 64},

the weight of KD loss from {0.4, 0.5, 0.6}. We randomly split the original training set to a new

training set and the quiz set by 9 : 1. For RCO, we select four unconverged teacher checkpoints

as the intermediate training targets. For TAKD, we use KD to train a teacher assistant model

with 10 Transformer layers.

5.3.2 Experimental Results

We report the experimental results on both the development set and test set of the eight

GLUE tasks [Wang et al., 2019b] in Table 5.1. MetaDistil achieves state-of-the-art performance

under the task-specific setting and outperforms all KD baselines. Notably, without using any

intermediate or model-specific features in the loss function, MetaDistil outperforms methods with

carefully designed features, e.g., PKD and TinyBERT (without data augmentation). Compared

with other methods with a trainable teacher [Zhang et al., 2018b, Mirzadeh et al., 2020, Jin et al.,

2019, Shi et al., 2021], our method still demonstrates superior performance. As we analyze,

with the help of meta learning, MetaDistil is able to directly optimize the teacher’s teaching

ability thus yielding a further improvement in terms of student accuracy. Also, we observe a

performance drop by replacing pilot update with a normal update. This ablation study verifies

the effectiveness of our proposed pilot update mechanism. Moreover, MetaDistil achieves very

competitive results on image classification as well, as described in Section 5.6.2.

5.4 Analysis

5.4.1 Why Does MetaDistil Work?

We investigate the effect of meta-update for each iteration. We inspect (1) the validation

loss of S′ after the teaching experiment and that of S after the real distillation update, and (2)

the KD loss, which describes the discrepancy between student and teacher, before and after the

teacher update.

47

75

80

Av
g.

 m
/m

m
 A

cc
MNLI

86

88

90

92

Ac
cu

ra
cy

SST-2

411294166
#Param (million)

84

86

88

Av
g.

 F
1/

Ac
c

MRPC

KD
MetaDistil

Figure 5.2. Results with
different student

architectures.

82

83

Av
g.

 m
/m

m
 A

cc

MNLI

90.5

91.0

91.5

92.0

92.5

Ac
cu

ra
cy

SST-2

KD
MetaDistil

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

87

88

89
Av

g.
 F

1/
Ac

c
MRPC

Figure 5.3. Results with
different loss weight α .

82

83

Av
g.

 m
/m

m
 A

cc

MNLI

90.5

91.0

91.5

92.0

Ac
cu

ra
cy

SST-2

12345
Temperature

87

88

89

Av
g.

 F
1/

Ac
c

MRPC

KD
MetaDistil

Figure 5.4. Results with
different temperature.

We find that for 87% of updates, the student model’s validation loss after real update

(Line 7 in Algorithm 1) is smaller than that after the teaching experiment (Line 4 in Algorithm 1),

which would be the update to the student S in the variant without pilot update. This confirms the

effectiveness of the pilot update mechanism on better matching the student and teacher model.

Moreover, we find that in 91% of the first half of the updates, the teacher becomes more

similar (in terms of logits distributions) to the student after the meta-update, which indicates

that the teacher is learning to adapt to a low-performance student (like an elementary school

teacher). However, in the second half of MetaDistil, this percentage drops to 63%. We suspect

this is because in the later training stages, the teacher needs to actively evolve itself beyond the

student to guide the student towards further improvement (like a university professor).

Finally, we try to apply a meta-learned teacher to a conventional static distillation and

also to an unfamiliar student. We describe the results in details in Section 5.6.3.

48

5.4.2 Hyper-parameter Sensitivity

A motivation of MetaDistil is to enable the teacher to dynamically adjust its knowledge

transfer in an optimal way. Similar to Adam [Kingma and Ba, 2015] vs. SGD [Sinha and Griscik,

1971, Kiefer et al., 1952] for optimization, with the ability of dynamic adjusting, it is natural

to expect MetaDistil to be more insensitive and robust to changes of the settings. Here, we

evaluate the performance of MetaDistil with students of various capability, and a wide variety of

hyperparameters, including loss weight and temperature.

Student Capability To investigate the performance of MetaDistil under different student capac-

ity, we experiment to distill BERT-Base into BERT-6L, Medium, Small, Mini and Tiny [Turc

et al., 2019] with conventional KD and MetaDistil. We plot the performance with the student’s

parameter number in Figure 5.2. Additionally, we show results for different compression ratio in

Section 5.7.

Loss Weight In KD, tuning the loss weight is non-trivial and often requires hyperparameter

search. To test the robustness of MetaDistil under different loss weights, we run experiments

with different α (Equation 5.1). As shown in Figure 5.3, MetaDistil consistently outperforms

conventional KD and is less sensitive to different α .

Temperature Temperature is a re-scaling trick introduced in Hinton et al. [2015]. We try

different temperatures and illustrate the performance of KD and MetaDistil in Figure 5.4.

MetaDistil shows better performance and robustness compared to KD.

5.4.3 Limitation

Like all meta learning algorithms, MetaDistil inevitably requires two rounds of updates

involving both first and second order derivatives. Thus, MetaDistil requires additional computa-

tional time and memory than a normal KD method, which can be a limitation of our method. We

compare the computational overheads of MetaDistil with other methods in Table 5.2. Although

our approach takes more time to achieve its own peak performance, it can match up the perfor-

49

Table 5.2. Comparison of training time and memory cost of MetaDistil with the baselines.
“Training Time (Best)” denotes the training time for each method to achieve its own best

performance on the development set. “Training Time (Match)” denotes the training time for
each method to match the best performance of PKD on the development set. The batch size is 4.

All experiments are conducted on a single Nvidia V100 GPU.

Method PKD [Sun et al., 2019a] ProKT [Shi et al., 2021] MetaDistil (ours)

Training Time (Best) 13 min. 25 min. 31 min.
Training Time (Match) 13 min. 18 min. 16 min.
Memory Cost 4.2 GB 6.8 GB 11.4 GB

Best Acc/F1 89.4/84.7 90.7/86.3 91.1/86.8

mance of PKD [Sun et al., 2019a] with a similar time cost. The memory use of our method is

higher than PKD and ProKT [Shi et al., 2021]. However, this one-off investment can lead to a

better student model for inference, thus can be worthy.

5.5 Discussion

In this chapter, we present MetaDistil, a knowledge distillation algorithm powered by

meta learning that explicitly optimizes the teacher network to better transfer its knowledge

to the student network. The extensive experiments verify the effectiveness and robustness of

MetaDistil.

5.6 Additional Results: MetaDistil for Image Classification

In addition to BERT compression, we also provide results on image classification. Also,

we conduct experiments of static teaching and cross teaching, to further verify the effectiveness

of MetaDistil of adapting to different students.

5.6.1 Experimental Settings

For CV, following the settings in Tian et al. [2020], we experiment with the image

classification task on CIFAR-100 [Krizhevsky et al., 2009] with student-teacher combinations of

different capacity and architectures, including ResNet [He et al., 2016] and VGG [Simonyan and

50

Zisserman, 2015]. Additionally, we run a distillation experiment between different architectures

(a ResNet teacher to a VGG student). We report the top-1 test accuracy of the compressed student

networks. We inherit all hyperparameters from Tian et al. [2020] except for the teacher learning

rate, which is grid searched from {1e-4, 2e-4, 3e-4}. We randomly split the original training

set to a new training set and the quiz set by 9 : 1. We use the KL loss in Hinton et al. [2015]

as the distillation objective. We compare our results with a state-of-the-art distillation method,

CRD [Tian et al., 2020] and other commonly used knowledge distillation methods [Hinton et al.,

2015, Romero et al., 2015, Zagoruyko and Komodakis, 2017, Tung and Mori, 2019, Peng et al.,

2019, Ahn et al., 2019, Park et al., 2019, Passalis and Tefas, 2018, Heo et al., 2019, Kim et al.,

2018] including ProKT [Shi et al., 2021] which has a trainable teacher.

5.6.2 Image Recognition Results

We show the experimental results of MetaDistil distilling ResNet [He et al., 2016] and

VGG [Simonyan and Zisserman, 2015] with five different teacher-student pairs. MetaDistil

achieves comparable performance to CRD [Tian et al., 2020], the current state-of-the-art dis-

tillation method on image classification while outperforming all other baselines with complex

features and loss functions. Notably, CRD introduces additional negative sampling and con-

trastive training while our method achieves comparable performance without using these tricks.

Additionally, we observe a substantial performance drop without pilot update, again verifying

the importance of this mechanism.

5.6.3 Static Teaching and Cross Teaching

In MetaDistil, the student is trained in a dynamic manner. To investigate the effect of such

a dynamic distillation process, we attempt to use the teacher at the end of MetaDistil training to

perform a static conventional KD, to verify the effectiveness of our dynamic distillation strategy.

As shown in Table 5.4, on both experiments, dynamic MetaDistil outperforms conventional KD

and static distillation with the teacher at the end of MetaDistil training.

51

Table 5.3. Experimental results on the test set of CIFAR-100. The best and second best results
are marked with boldface and underline, respectively. All baseline results except ProKT are

reported in Tian et al. [2020]. ∗ResNet for ImageNet. Other ResNets are ResNet for CIFAR [He
et al., 2016].

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet-50∗

Student ResNet-20 ResNet-20 ResNet-32 VGG-8 VGG-8

Teacher 72.34 74.31 74.31 74.64 79.34
Student 69.06 69.06 71.14 70.36 70.36

KD [Hinton et al., 2015] 70.66 70.67 73.08 72.98 73.81
FitNet [Romero et al., 2015] 69.21 68.99 71.06 71.02 70.69
AT [Zagoruyko and Komodakis, 2017] 70.55 70.22 72.31 71.43 71.84
SP [Tung and Mori, 2019] 69.67 70.04 72.69 72.68 73.34
CC [Peng et al., 2019] 69.63 69.48 71.48 70.71 70.25
VID [Ahn et al., 2019] 70.38 70.16 72.61 71.23 70.30
RKD [Park et al., 2019] 69.61 69.25 71.82 71.48 71.50
PKT [Passalis and Tefas, 2018] 70.34 70.25 72.61 72.88 73.01
AB [Heo et al., 2019] 69.47 69.53 70.98 70.94 70.65
FT [Kim et al., 2018] 69.84 70.22 72.37 70.58 70.29
ProKT [Shi et al., 2021] 70.98 70.74 72.95 73.03 73.90
CRD [Tian et al., 2020] 71.16 71.46 73.48 73.94 74.30
MetaDistil 71.25 71.40 73.35 73.65 74.42
w/o pilot update 71.02 70.96 73.31 73.48 74.05

As mentioned in Section 5.2.2, a meta teacher is optimized to transfer its knowledge to

a specific student network. To justify this motivation, we conduct experiments using a teacher

optimized for the ResNet-32 student to statically distill to the ResNet-20 student, and also in

reverse. As shown in Table 5.4, the cross-taught students underperform the static students taught

by their own teachers by 0.27 and 0.12 for ResNet-32 and ResNet-20, respectively. This confirms

our motivation that the meta teacher in MetaDistil can adjust itself according to its student.

5.7 Additional Results: Different Compression Ratios

In this section, we present additional experimental results in settings with different

compression ratios to further demonstrate the effectiveness of MetaDistil on bridging the gap

between the student and teacher capacity. Specifically, we conduct experiments in the following

two settings: (1) distilling BERT-base into a 4-layer BERT (110M→52M) and (2) distilling

BERT-large into a 6-layer BERT (345M→66M). The results are shown in Table 4 and Table

52

Table 5.4. Experimental results of static teaching and cross teaching.

Teacher Student Acc@1

KD (ResNet-110)
ResNet-32 (static) 73.08
ResNet-20 (static) 70.67

MetaDistil
ResNet-32 (dynamic) 73.35

(ResNet-110→ResNet-32)
ResNet-32 (static) 73.16
ResNet-20 (static, cross) 70.82

MetaDistil
ResNet-20 (dynamic) 71.40

(ResNet-110→ResNet-20)
ResNet-20 (static) 70.94
ResNet-32 (static, cross) 72.89

Table 5.5. Experimental results on the development set of GLUE in the setting of distilling
BERT-base in to BERT4. †Results reported by us. All results reported by us are average

performance of 3 runs with different random seeds.

Method #Param. Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Base (teacher) [2019] 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8

BERT4-KD† [2015] 55M 2.90× 32.5 80.5/80.9 87.2/83.1 87.5 86.6/90.4 65.2 90.2 84.5/84.2
BERT4-PKD† [2019a] 55M 2.90× 34.2 80.9/81.3 87.0/82.9 87.7 86.8/90.5 66.1 90.5 84.3/84.0
BERT4-ProKT† [2021] 55M 2.90× 36.6 81.4/81.9 87.6/83.5 88.0 87.1/90.5 66.8 90.7 85.2/85.1
MetaDistil 4 (ours) 55M 2.90× 40.3 82.4/82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8 86.3/86.0

5, respectively. We can see that MetaDistil consistently outperforms PKD and ProKT in both

settings. This confirms the effectiveness of MetaDistil and also show its ability to adapt the

teacher model to the student model, since the gap between teacher and student is even larger in

these settings.

Table 5.6. Experimental results on the development set of GLUE in the setting of distilling
BERT-large in to BERT6. †Results reported by us. All results reported by us are average

performance of 3 runs with different random seeds.

Method #Param. Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Large (teacher) [2019] 345M 1.00× 71.5 86.5/86.7 92.5/88.7 92.5 89.6/91.8 73.4 94.5 91.2/90.6

BERT6-KD† [2015] 66M 3.88× 58.8 82.8/83.0 89.6/85.0 89.5 87.5/91.0 68.0 91.1 88.5/88.4
BERT6-PKD† [2019a] 66M 3.88× 59.2 82.9/83.1 89.9/85.4 89.8 87.9/91.1 67.9 91.5 88.2/88.0
BERT6-ProKT† [2021] 66M 3.88× 59.8 83.2/83.4 91.0/86.5 90.0 88.2/91.0 68.8 91.6 88.7/88.5
MetaDistil 6 (ours) 66M 3.88× 63.5 83.9/84.3 91.5/87.3 90.8 88.7/91.3 70.8 92.9 89.6/89.4

53

0 2000 4000 6000 8000 10000 12000
Training steps

70

72

74

76

78

80

82

84

M
NL

I d
ev

 a
cc

Student
Meta teacher
Original teacher
KD baseline

Figure 5.5. Learning dynamics of the student and teacher in MetaDistil on the development set
of MNLI.

5.8 Additional Results: Distillation Dynamics

We also investigate why MetaDistil works by conducting experiments on the development

sets of MNLI, SST, and MRPC, which are important tasks in GLUE that have a large, medium,

and small training set, respectively.

We illustrate the validation accuracy curves of the meta teacher and student models with

training steps in Figure 5.5, and compare them to the student performance in conventional KD.

We can see that the meta teacher maintains high accuracy in the first 5,000 steps and then begins

to slowly degrade. Starting from step 8,000, the teacher model underperforms the student while

the student’s accuracy keeps increasing. This verifies our assumption that a model with the best

accuracy is not necessarily the optimal teacher. Also, MetaDistil is not naively optimizing the

teacher’s accuracy but its “teaching skills.” This phenomenon suggests that beyond high accuracy,

there could be more important properties of a good teacher that warrant further investigation.

5.9 Additional Results: Improvement Analysis

While MetaDistil achieves improved student accuracy on the GLUE benchmark, it is still

not very clear where the performance improvement comes from. There are two possibilities:

54

(1) the student better mimics the teacher, and (2) the changes of teacher helps student perform

better on hard examples that would be incorrectly classified by the student with vanilla KD. We

conduct a series of analysis on the MRPC dataset.

For the first assumption, we compute the prediction loyalty [Xu et al., 2021a] of the

student model distilled with PKD and MetaDistil, respectively. For MetaDistil, we measure the

loyalty with respect to both the original teacher and the final teacher. We find that there is no

significant difference between between PKD and MetaDistil. This suggests that the improvement

does not come from student better mimicking the teacher.

For the second assumption, we first identify the examples in the quiz set for which our

model gives correct predictions while the student distilled by PKD makes a wrong prediction.

We then compute the loss (cross entropy) of the original teacher and the teacher updated by

MetaDistil. We find the loss is substantially reduced by MetaDistil. In contrast, the overall loss

of teacher on the development set does not decrease. This suggests that MetaDistil can help

the teacher concentrate on hard examples that the student struggles in the quiz set and learn to

perform better on these examples, thus facilitate student learning.

This chapter, in part, is a reprint of the material as it appears in “BERT Learns to

Teach: Knowledge Distillation with Meta Learning” by Wangchunshu Zhou, Canwen Xu, and

Julian McAuley, which was published at Association for Computational Linguistics, 2022. The

dissertation author was the co-primary investigator and co-first author of this paper.

55

Chapter 6

Automatic Multi-Label Prompting: Simple
and Interpretable Few-Shot Classification

Prompt-based learning (i.e., prompting) is an emerging paradigm for exploiting knowl-

edge learned by a pretrained language model. In this chapter, we propose Automatic Multi-Label

Prompting (AMuLaP), a simple yet effective method to automatically select label mappings for

few-shot text classification with prompting. Our method exploits one-to-many label mappings

and a statistics-based algorithm to select label mappings given a prompt template. Our experi-

ments demonstrate that AMuLaP achieves competitive performance on the GLUE benchmark

without human effort or external resources.1

6.1 Introduction

Since the release of GPT-3 [Brown et al., 2020], several studies have focused on exploiting

pretrained language models with only a few training examples [Brown et al., 2020, Gao et al.,

2021b, Shin et al., 2020]. These works demonstrate the potential of using natural language

prompts to encourage the model to recall similar patterns in its training corpus and thus make

accurate predictions. This setting of few-shot learning is closer to how humans learn to solve a

task, often without many examples as in a traditional deep learning paradigm. The use of prompts

can strengthen the explicit connection between input and output, helping the model exploit the

1The code is available at https://github.com/HanNight/AMuLaP.

56

https://github.com/HanNight/AMuLaP

knowledge learned from pretraining in a better way. Furthermore, recent works [Schick and

Schütze, 2021a,b, Gao et al., 2021b] show that prompts can also help the model generalize better

in fine-tuning.

Prompt-based learning (i.e., prompting) aims to use a template to convert the original

input into a prompt-based input with some unfilled masked tokens, and then use the pretrained

language model to fill these masked tokens, and finally the tokens filled into these slots are

mapped to the corresponding labels as the final output. In prompting, the design of prompts often

plays an important role. Many attempts have been made in this emerging direction of prompt

engineering [Shin et al., 2020, Gao et al., 2021b]. Meanwhile, finding a good mapping from the

original task labels to tokens (i.e., label engineering) is also critical to few-shot performance,

as found in Schick et al. [2020], Gao et al. [2021b]. However, manually assigning the label

mapping requires human expertise with trial and error. One may argue that the same effort can be

used to label more supervised data for a conventional deep learning pipeline. Thus, an efficient

automatic label mapping method is desirable.

In this paper, we aim to design a method that can automatically find a good label mapping

to save human effort from label engineering. We propose Automatic Multi-Label Prompting

(AMuLaP), a simple yet effective method to tackle the label selection problem for few-shot

classification. AMuLaP is a parameter-free statistical technique that can identify the label patterns

from a few-shot training set given a prompt template. AMuLaP exploits multiple labels to

suppress the noise and inherently extend the training set for prompt-based fine-tuning. Compared

with a hand-crafted label mapping and previous works on automatic label mapping [Schick et al.,

2020, Gao et al., 2021b], AMuLaP achieves competitive performance despite being simpler and

does not require access to the weights of the backbone model, or finetune an external pretrained

language model for searching label mapping. We conduct extensive experiments and demonstrate

the effectiveness of our method under multiple settings. Moreover, we attempt to scale AMuLaP

with different sizes of the training set and find AMuLaP to work surprisingly well even with

one or two shots. We further analyze why does AMuLaP work and discuss the pros and cons of

57

Table 6.1. The manual and automatically selected labels by AMuLaP. The templates used for
prompting are from Gao et al. [2021b].

Task Template Class Manual [Gao et al., 2021b] Labels selected by AMuLaP

MNLI <S1> ? [MASK] , <S2>
entailment Yes Yes, Indeed, Also, Currently
neutral Maybe Historically, Suddenly, Apparently, And
contradiction No No, However, Instead, Unfortunately

SST-2 <S1> It was [MASK] .
positive great great, perfect, fun, brilliant
negative terrible terrible, awful, disappointing, not

QNLI <S1> ? [MASK] , <S2>
entailment Yes Yes, Historically, Overall, Indeed
not_entailment No Well, First, However, Unfortunately

RTE <S1> ? [MASK] , <S2>
entailment Yes Yes, Today, Specifically, Additionally
not_entailment No However, Ironically, Also, Indeed

MRPC <S1> [MASK] , <S2>
equivalent Yes </s>, Currently, Additionally, Today
not_equivalent No However, Meanwhile, Overall, Finally

QQP <S1> [MASK] , <S2>
equivalent Yes Or, So, Specifically, Actually
not_equivalent No Also, And, Finally, Well

CoLA <S1> This is [MASK] .
grammatical correct why, true, her, amazing
not_grammatical incorrect it, ridiculous, interesting, sad

prompting as a new paradigm.

6.2 Prompting for Few-Shot Classification

We follow the setup in LM-BFF [Gao et al., 2021b] for few-shot text classification. Given

a pretrained language model L , a task D and its defined label space Y , we have n training

examples per class for the training set Dtrain. As pointed out in Perez et al. [2021], using the

full development set may be misleading to claim a few-shot setting. Thus, we use a few-shot

development set with the same size as the training set (i.e., |Dtrain|= |Ddev|), to be consistent

with Gao et al. [2021b] and constitute a “true few-shot” setting [Perez et al., 2021].

For an input example x (a single sentence or a sentence pair), we first use a task-specific

template T to convert it to x′, a token sequence with a [MASK] token. We then map the original

label space to a set of selected words from the vocabulary, denoted as M : Y → V ′. Some

examples of T and M are shown in Table 6.1. Note that since we focus on automatically finding

the label mapping M , we use the manual templates T from Gao et al. [2021b] throughout this

paper. Since L is trained to complete the [MASK] token in an input sequence, we can directly

58

[CLS] It is worth watching . It was [MASK] . [SEP]

[CLS] The plot is attractive . It was [MASK] . [SEP]

…

[CLS] No reason to watch . It was [MASK] . [SEP]

[CLS] It is a waste of time . It was [MASK] . [SEP]

…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
…

awful
great
perfect
terrible
… great

perfect
…
…

terrible
awful
…
…

great

perfect

…

awful

terrible

…

MLM

Head

…

Assign each token to the class

with the highest probability

Label : Negative

Training samples with template
Top-k token for

label: negative

Top-k token for

label: positive

MLM

Head

MLM

Head

Label : Positive

Training samples with template

MLM

Head

sum

normalize

sum

normalize

sort

sort…

…
…

Figure 6.1. The illustration of implementing AMuLaP on a binary sentiment classification task
(SST-2). Each training sample with the task-specific template (the underlined text) is fed into a
pretrained language model L to get its own probability distribution over the vocabulary V . All
the obtained probability distributions are summed by class and normalized to get the probability

distribution of each class. Then each token in V is assigned to the class with the highest
probability (e.g., the token terrible is assigned to the class negative, the token great is assigned

to the class positive). Finally, for each class, we choose the top-k tokens as label words.

make zero-shot prediction of the probability of class y ∈ Y by the masked language modeling:

p(y|x) = p
(
[MASK]= M (y) | x′

)
. (6.1)

Alternately, one can further fine-tune L with supervised pairs {x′,M (y)} to achieve even better

performance.

6.3 Automatic Multi-Label Prompting

6.3.1 Exploiting Multiple Labels

Selecting one label word can be insufficient for some complicated tasks, as mentioned in

Schick et al. [2020]. We also argue that selecting only one label (especially automatically) may

bring noise. This can be resolved by introducing multiple label words. Schick et al. [2020] use

multiple label combinations for PET [Schick and Schütze, 2021a] and ensemble them afterwards.

59

We instead use a straightforward sum to consider multiple label words when making predictions.

This design has a similar advantage of exploiting multiple labels without training and ensembling

multiple models.

Instead of a one-to-one mapping from the original label space Y to V , we map each

y ∈ Y to its label word set S (y) of k words. We denote the mapping function as M ′ : Y → V k.

For class y ∈ Y , the predicted probability is calculated as:

p(y|x) = ∑
v∈S (y)

p
(
[MASK]= v | x′

)
(6.2)

Then, we can simply make predictions by selecting the label with the largest likelihood.

Similarly, if we need to fine-tune L with supervised pairs, instead of optimizing the

cross-entropy loss between the gold label and a single token, we optimize the loss between the

sum of the output probabilities of S (y) and the gold label with a cross-entropy loss:

l =− ∑
x∈Dtrain

∑
y∈Y

[1 [y = ŷ] · log p(y|x)] (6.3)

where ŷ is the ground truth label for the input x and p(y|x) is defined in Equation 6.2.

6.3.2 Automatic Label Selection

Finding a good label mapping M is non-trivial, especially when M ′ maps an original

label to a set of label words instead of one. Selecting a good label mapping often requires

significant human effort, including domain knowledge and trial-and-error. Previously, Schick

and Schütze [2021a,b] both use hand-crafted label mappings while Schick et al. [2020] explores

automatic label mapping searching but it still requires manual pre-filtering and significantly

underperforms the manual mapping. [Gao et al., 2021b] exploits a large pretrained masked

language model (RoBERTa, Liu et al., 2019b) to construct a pruned set of label words and then

determine the final mapping by fine-tuning on all of them and selecting the best one with Ddev.

60

We introduce a new selection algorithm for label mapping that achieves competitive results

compared to previous efforts.

We aim to achieve two goals: (1) Selecting the most likely label mapping based on

the training set. For example, in a sentiment classification task, we would like to see positive

words in the label set of the “positive” class while negative words in the label set of the “negative”

class. A simple solution is to select the k most likely tokens predicted for the [MASK] token

in the training examples of each class y. However, in practice, we would find common words

in more than one label set. For example, if we simply take the 10 most likely tokens for the

SST-2 dataset [Socher et al., 2013], we would find “good” in both positive and negative label

sets, although it is ranked second place in the positive set and ninth in the negative set. Thus, we

want to make sure that (2) Each token only belongs to at most one label set where it has the

highest probability. To ensure this, we have to iterate over the vocabulary and check that for

every token. Then, we can truncate the candidate sets of each class and select the k most likely

tokens from each set. The time complexity of this algorithm is O(k · |V | · |Y |).

Formally, we select M ′ : Y → V k by the following steps:

1. For each yi ∈ Y , we iterate through all training samples x j ∈Dtrain whose ground truth

label ŷ j = yi. We use L to predict the token probability of the [MASK] token and take the

average of the predicted probabilities of the n examples to be zi, where zi is a vector over

the whole vocabulary.

2. For each yi ∈ Y , initialize an empty candidate token set S̃ (yi).

3. For each v ∈ V where V is the vocabulary of the model L , we retrieve v’s probability

value zv
i from zi of each class.

4. We assign v to the most likely token set of the m-th class S̃ (ym) where m = argmaxi zv
i .

5. For yi ∈ Y , we choose the top-k tokens from S̃ (yi) with the largest probability zv
i and

obtain the truncated word set S (yi).

61

Table 6.2. Experimental results under three settings with RoBERTa-large as L . For few-shot
settings, n is set to 16 per class. We report the average of 5 runs along with their standard

deviation in the parentheses.

MNLI MNLI-mm SST-2 QNLI RTE MRPC QQP CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Baselines

Majority 32.7 33.0 50.9 49.5 52.7 81.2 0.0 0.0 37.5
Manual Label 0-shot [2021b] 50.8 51.7 83.6 50.8 51.3 61.9 49.7 2.0 50.2
Full Fine-tuning 89.8 89.5 95.0 93.3 80.9 91.4 81.7 62.6 85.5

Setting 1: Dtrain only; No parameter update.

In-context learning [2020] 52.0 (0.7) 53.4 (0.6) 84.8 (1.3) 53.8 (0.4) 60.4 (1.4) 45.7 (6.0) 36.1 (5.2) -1.5 (2.4) 48.1 (2.3)
AMuLaP (ours) 50.8 (2.1) 52.3 (1.8) 86.9 (1.6) 53.1 (2.8) 58.9 (7.9) 56.3 (5.0) 60.2 (2.7) 2.3 (1.4) 52.6 (3.2)

Setting 2: Dtrain + Ddev; No parameter update.

PETAL-CE [2020] 48.8 (2.6) 49.7 (2.3) 75.6 (7.2) 49.5 (0.0) 63.5 (3.3) 28.9 (39.6) 59.2 (0.0) 1.3 (3.0) 47.1 (7.3)
PETAL-LR [2020] 38.6 (2.0) 38.4 (2.1) 85.3 (3.3) 53.3 (3.6) 54.7 (6.4) 28.0 (38.5) 55.6 (2.8) 1.5 (3.4) 44.4 (7.8)
Auto-L [2021b] 41.6 (5.4) 42.3 (6.2) 84.3 (3.3) 57.9 (3.9) 61.9 (7.5) 67.7 (7.9) 55.5 (5.0) 1.2 (4.8) 51.6 (5.5)
AMuLaP (ours) 50.8 (2.1) 52.2 (1.9) 87.0 (1.5) 53.5 (2.3) 59.1 (7.4) 56.7 (5.7) 61.5 (1.7) 2.6 (1.8) 52.9 (3.1)
Auto-L + AMuLaP (ours) 52.9 (3.0) 54.2 (2.7) 90.1 (0.4) 57.9 (2.6) 59.9 (5.2) 66.0 (3.0) 59.4 (2.3) 2.7 (5.7) 55.4 (3.1)

Setting 3: Dtrain + Ddev; Prompt-based fine-tuning.

Fine-tuning 45.8 (6.4) 47.8 (6.8) 81.4 (3.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3) 33.9 (14.3) 57.6 (6.1)
Manual Label FT [2021b] 68.3 (2.3) 70.5 (1.9) 92.7 (0.9) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3) 9.3 (7.3) 64.3 (3.9)
PETAL-CE FT [2020] 57.5 (3.2) 57.7 (2.6) 92.6 (1.0) 50.5 (0.0) 68.6 (6.5) 32.1 (42.5) 66.7 (3.2) 3.8 (8.4) 53.7 (8.4)
PETAL-LR FT [2020] 64.0 (6.5) 65.9 (6.4) 92.9 (1.7) 65.5 (6.8) 63.3 (7.7) 77.7 (3.9) 65.7 (4.2) 11.9 (7.5) 63.4 (5.6)
Auto-L FT [2021b] 64.8 (4.7) 67.3 (4.3) 93.5 (0.5) 69.8 (3.0) 67.4 (3.9) 76.2 (4.8) 66.4 (4.5) 23.2 (17.1) 66.1 (5.4)
AMuLaP FT (ours) 70.6 (2.7) 72.5 (2.4) 93.2 (0.7) 65.1 (5.9) 65.9 (6.3) 79.3 (4.0) 69.1 (2.5) 18.3 (9.4) 66.8 (4.2)
Auto-L + AMuLaP FT (ours) 68.5 (2.2) 71.1 (2.3) 93.4 (1.0) 69.6 (1.1) 69.4 (4.0) 75.5 (5.6) 66.4 (3.0) 14.2 (14.0) 66.0 (4.2)

The entire workflow is illustrated in Figure 6.1.

6.4 Experiments

6.4.1 Experimental Setting

Datasets

We evaluate seven classification tasks of the GLUE benchmark [Wang et al., 2019b].

Specifically, we test on Microsoft Research Paraphrase Matching (MRPC) [Dolan and Brockett,

2005], Quora Question Pairs (QQP) for Paraphrase Similarity Matching; Stanford Sentiment

Treebank (SST-2) [Socher et al., 2013] for Sentiment Classification; Multi-Genre Natural Lan-

guage Inference Matched (MNLI-m), Multi-Genre Natural Language Inference Mismatched

(MNLI-mm) [Williams et al., 2018], Question Natural Language Inference (QNLI) [Rajpurkar

et al., 2016] and Recognizing Textual Entailment (RTE) [Wang et al., 2019b] for the Natural

Language Inference (NLI) task; The Corpus of Linguistic Acceptability (CoLA) [Warstadt et al.,

62

2019] for Linguistic Acceptability. We use the manual templates in Gao et al. [2021b], as listed

in Table 6.1. The metrics for each dataset are indicated in Table 6.2.

Baselines

We compare our method to various baselines:

• Majority: always predict the majority class in the test set.

• GPT-3-style in-context learning [Brown et al., 2020]: present a few examples to the

language model and make it directly predict the next token as the prediction.

• Manual prompts: we use the human-designed prompts in Gao et al. [2021b].

• PETAL-CE [Schick et al., 2020]: the variant of PETAL using the cross-entropy metric.

• PETAL-LR [Schick et al., 2020]: the variant of PETAL using the likelihood ratio metric.

• Auto-L [Gao et al., 2021b]: the automatic label searching method with an external

pretrained language model, RoBERTa-large [Liu et al., 2019b]. Note that the results of

this baseline is different from those reported in Table 3 of Gao et al. [2021b] since they

search for both templates and label mapping whereas we fix the templates and search for

the label mapping alone, for the sake of fair comparison. We use the officially released

code and same hyperparameters for this baseline.

Task Setup

We closely follow the setup in Gao et al. [2021b]. We sample n training examples and n

development examples per class. We set k = 16 throughout all experiments. We use RoBERTa-

large [Liu et al., 2019b] as the backbone LM L . For each reported result, we measure average

performance across 5 different randomly sampled Dtrain and Ddev splits. Following Gao et al.

[2021b], the original development split of each dataset is used as the test set in our experiments.

We also report the standard deviation for each result. To fairly compare with different baselines,

we consider the following three settings:

63

Table 6.3. Most likely label mapping for the SST-2 dataset obtained by PETAL [Schick et al.,
2020], Auto-L [Gao et al., 2021b] and our AMuLaP. Suitable labels annotated by the human

annotator are underlined.

Class PETAL-CE [Schick et al., 2020] PETAL-LR [Schick et al., 2020]

positive
amazing, great, brilliant, perfect, fun, superb, fearless, acclaimed, addictive, visionary,
wonderful, beautiful, fantastic, awesome, not immersive, irresistible, timely, unforgettable, gripping

negative
not, awful, fun, funny, terrible, annoying, insulting, meaningless, lame, shitty,
great, amazing, hilarious, awesome, good humiliating, childish, stupid, embarrassing, irritating

Class Auto-L [Gao et al., 2021b] AMuLaP (ours)

positive
exquisite, perfection, effective, fabulous, intense great, perfect, fun, brilliant, amazing,
inspiring, spectacular, sublime, astounding, thrilling good, wonderful, beautiful, excellent, fantastic

negative
embarrassing, boring, frustrating, ridiculous, awkward terrible, awful, disappointing, not, horrible,
silly, nothing, disgusting, ugly, confusing obvious, funny, inevitable, bad, boring

• Setting 1: We only use Dtrain alone for both label selection and tuning k. The parameters

of L are not updated. Ddev is not used. This setting is for fair comparison with In-context

learning.

• Setting 2: We use Dtrain for label selection and an additional Ddev for k tuning. The

parameters of L are not updated. This setting is for fair comparison with Auto-L [Gao

et al., 2021b] and PETAL [Schick et al., 2020].

• Setting 3: We use Dtrain and Ddev in the same way as Setting 2 but fine-tune the parameters

of the language model L . This setting is for fair comparison with conventional fine-

tuning, prompt-based fine-tuning with manual prompts, Auto-L [Gao et al., 2021b] and

PETAL [Schick et al., 2020].

Implementation Details

We implement AMuLaP based on Hugging Face Transformers [Wolf et al., 2020]. When

selecting k, if there are multiple k with identical performance (which happens occasionally

given there are only 16 examples for each class in Ddev), we always choose the largest k. For

Settings 1 and 2, we search k over {1,2,4, . . . ,1024}. Note that for settings that do not update

the parameters of L , search over k is fast, as we only need to run the model once and cache the

distribution of the [MASK] token. For prompt-based fine-tuning (Setting 3), where we fine-tune

64

Table 6.4. Experimental results for the ablation study. We report the average of 5 runs along
with their standard deviation in the parentheses.

MNLI MNLI-mm SST-2 QNLI RTE MRPC QQP CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Setting 2: Dtrain + Ddev; No parameter update.

AMuLaP 50.8 (2.1) 52.2 (1.9) 87.0 (1.5) 53.5 (2.3) 59.1 (7.4) 56.7 (5.7) 61.5 (1.7) 2.6 (1.8) 52.9 (3.1)
w/o dedup. 45.4 (2.7) 46.5 (2.5) 87.9 (1.0) 53.8 (3.0) 54.6 (6.0) 66.7 (12.3) 57.2 (2.1) 2.5 (4.2) 51.8 (4.2)
k = 1 46.5 (2.7) 48.4 (2.6) 68.8 (12.0) 51.9 (1.6) 58.8 (12.7) 55.0 (4.8) 59.2 (0.0) 5.6 (2.1) 49.3 (4.8)

Setting 3: Dtrain + Ddev; Prompt-based fine-tuning.

AMuLaP FT 70.6 (2.7) 72.5 (2.4) 93.2 (0.7) 65.1 (5.9) 65.9 (6.3) 79.3 (4.0) 69.1 (2.5) 18.3 (9.4) 66.8 (4.2)
w/o dedup. 56.9 (5.4) 58.2 (5.2) 92.8 (0.9) 50.6 (0.4) 57.1 (10.8) 79.2 (3.6) 55.0 (26.0) 5.6 (7.1) 56.9 (7.4)
k = 1 67.7 (4.1) 69.8 (3.8) 92.6 (1.0) 65.9 (5.2) 63.1 (8.0) 80.2 (3.8) 66.7 (3.2) 19.3 (15.5) 65.7 (5.6)
random M ′ 58.8 (6.2) 61.1 (6.2) 92.1 (2.1) 62.1 (7.1) 57.0 (11.2) 74.7 (9.2) 60.8 (5.8) 31.0 (13.9) 62.2 (7.7)
random M ′ (k = 1) 52.6 (7.8) 55.4 (8.3) 89.0 (4.9) 65.2 (4.5) 55.2 (6.2) 73.4 (10.6) 60.7 (3.7) 17.3 (14.7) 58.6 (7.6)

the model L , we search k in a smaller space {1,2,4,8,16} due to the increased computational

overhead. Following [Gao et al., 2021b], we grid search the learning rate from {1e-5, 2e-5, 5e-5}

and batch size from {2, 4, 8}.

6.4.2 Experimental Results

We demonstrate experimental results under three settings in Table 6.2. Under Setting

1, AMuLaP outperforms GPT-3-style in-context learning by 4.5 in terms of the average score

and outperforms zero-shot inference with manually designed labels by 2.4. Under Setting

2, compared to variants of PETAL [Schick et al., 2020], AMuLaP has an advantage of 5.8

and 8.5 in terms of the average score over CE and LR, respectively. Notably, AMuLaP even

outperforms Auto-L by 1.3 without using any external model or data. Additionally, we attempt

to replace the predicted token distribution of AMuLaP with the validation score of all fine-tuned

assignments [Gao et al., 2021b].2 With the help of many trials in automatic search, AMuLaP

outperforms Auto-L by a considerable margin of 3.8 in terms of the average score, verifying the

versatility of our multi-label mechanism and label selection algorithm. Under Setting 3, AMuLaP

FT outperforms all baselines including Auto-L. Generally speaking, methods with parameter

update (Setting 3) have better performance than those that do not require access to parameters.

2The validation scores of all fine-tuned assignments are obtained on Ddev, as described in Gao et al. [2021b]. No
external data used. All of these we use are from https://github.com/princeton-nlp/LM-BFF/tree/main/auto_label_
mapping.

65

https://github.com/princeton-nlp/LM-BFF/tree/main/auto_label_mapping
https://github.com/princeton-nlp/LM-BFF/tree/main/auto_label_mapping

1 2 4 8 16 32 64 128 256
Shots per class (n)

40

50

60

70

80
MNLI

1 2 4 8 16 32 64 128 256
Shots per class (n)

40

50

60

70

80

MNLI-mm

1 2 4 8 16 32 64 128 256
Shots per class (n)

50

60

70

80

90

SST-2

Fine-tuning
AMuLaP (no FT)
AMuLaP FT

1 2 4 8 16 32 64 128 256
Shots per class (n)

50

60

70

80

90
MRPC

Figure 6.2. Comparison of AMuLaP, AMuLaP FT and fine-tuning on MNLI, SST and MRPC
with different n for the training set and the development set.

On all tasks except CoLA, AMuLaP outperforms direct few-shot fine-tuning, suggesting that

prompting is a promising method for exploiting large pretrained LMs.

6.5 Analysis

6.5.1 Case Study

As shown in Table 6.3, we list the 10 most likely label mappings output by PETAL [Schick

et al., 2020], Auto-L [Gao et al., 2021b] and AMuLaP for the SST-2 dataset, respectively. We

shuffle the labels from each model and ask a human annotator to annotate whether they are

suitable mappings. PETAL-CE suffers from incorrect mappings for “negative” while PETAL-LR

occasionally outputs vague labels. AMuLaP achieves interpretability that is competitive to

automatic labels obtained by a fine-tuned pretrained language model, measured by the human

agreement ratio. Although AMuLaP outputs three labels that are rated not suitable by the human

annotator, it should be noted that all three tokens are ranked low in the candidate set. Thus,

introducing top-k truncation can resolve the problem. Additionally, we would like to highlight

that AMuLaP mainly collects common words while other methods prefer rare words. This may

explain why AMuLaP works well, especially for the non-finetuning settings.

66

6.5.2 Ablation Study

As shown in Table 6.4, we evaluate the effect of each design choice on the GLUE

benchmark. For both non-finetuning and prompt-based fine-tuning settings, our deduplication

algorithm can effectively improve the overall performance by 1.1 and 9.9 in terms of the GLUE

average score, respectively. Notably, deduplication is especially important for prompt-based

fine-tuning since if the same label maps to two classes, optimization would be difficult due to the

contradiction of supervision signals. Also, our multi-label strategy is shown to be effective at

improving the average GLUE scores by 3.6 and 1.1 for non-finetuning and fine-tuning settings,

respectively. Moreover, a random label mapping often leads to lower performance than a label

mapping selected based on the training set. An interesting exception is that for CoLA, the random

mapping outperforms all label selection methods in Table 6.2 (both manual and automatic) and

is close to the fine-tuning baseline.

6.5.3 Scaling Few-Shot Learning

Le Scao and Rush [2021] explore the scaling law of PET [Schick and Schütze, 2021a]

when using more examples for training. Similarly, in this section, we aim to test how AMuLaP

scales to different training set sizes n. Figure 6.2 illustrates how standard fine-tuning and

our AMuLaP with non-finetuning and fine-tuning compare as n increases. For MNLI and

SST-2 task, AMuLaP outperforms standard fine-tuning when we use no more than 16 training

examples for non-finetuning and fine-tuning setting. When using more than 16 training examples,

AMuLaP under fine-tuning setting still outperforms standard fine-tuning. For an easier task like

SST-2, although only 32 training examples are used, the performance of our AMuLaP with non-

finetuning and fine-tuning is close to saturation and can be comparable to standard fine-tuning

on the entire dataset. For a harder task like MNLI, although the performance of AMuLaP under

non-finetuning setting gradually becomes saturated as n increases, AMuLaP under fine-tuning

settings continues to improve as n increases and continues to outperform the standard fine-tuning.

67

For MRPC, although the performance of our AMuLaP and standard fine-tuning fluctuate as n

increases, in general, AMuLaP with fine-tuning can still achieve comparable performance to

standard fine-tuning. In addition, the results demonstrate the effectiveness of AMuLaP especially

for extreme few-shot settings. With only one example, AMuLaP achieves decent performance

while standard fine-tuning is close to random.

6.6 Discussion

Why Does AMuLaP Work?

Schick et al. [2020] argues that one single label sometimes cannot represent all examples

in a class, and thus multiple labels are needed. However, we find this explanation insufficient for

understanding the mechanism behind the improved performance with multiple labels. Under a

few-shot setting, the limited number of training examples n and complex training procedure of

the backbone model L can often bring noise to both automatic label selection and inference.

One example is the meaningless </s> (end-of-sequence marker) label found by AMuLaP, as

shown in Table 6.1. This is due to the format processing in the pretraining of L . Allowing

multiple labels can resolve mishaps like this and thus improve the final performance.

Moreover, when selecting multiple labels in fine-tuning, it is equivalent to training on an

augmented training set, as multiple labels increase the overall size of the supervision pairs (x, ŷ).

To verify this guess, we test the fine-tuning performance of a random mapping with different

labels selected. We find that for random mapping, more labels (i.e., a larger k) often leads

to better performance. This suggests our guess may be correct. However, we do not observe

significant improvement when continuing increasing k with labels selected by AMuLaP. As we

analyze, increasing k harms the overall quality of selected labels and thus overrides the benefit

of a larger k. In general, we do not observe a clear law for choosing the best k for AMuLaP.

As mentioned before, k can influence both the overall quality of labels (in both ways) and the

training procedure (for fine-tuning). Thus, for the optimal performance, we find it essential to

search k with a development set.

68

Limitations and Future Directions

In this paper, we only focus on the selection of the label mapping with a fixed prompt

template. There is more to explore when considering the prompt template at the same time.

Similar to our paper, previous works [Schick et al., 2020, Gao et al., 2021b] separately search

for a prompt template T and the label mapping M . However, these two variables are closely

related and greedily search for the best template T then the best mapping under T may be

suboptimal. Jointly searching for T and M could be a promising direction for future research.

More broadly, we would like to point out some limitation and contradictions within

current few-shot prompting techniques. There is a natural contradiction between performance

and access to the model weights. Brown et al. [2020] highlights few-shot prompting as a way to

mitigate their decision to not release the model weights. However, as shown in our Table 6.2,

with the same backbone model L , GPT-3-style in-context learning and other methods that do

not access the model weights generally underperform those with access to the model weights

by a large margin. Also, in-context learning cannot handle more training examples due to the

maximum length limit of the model while AMuLaP without fine-tuning gets saturated quickly,

as shown in Figure 6.2.

In addition, complicated prompting techniques are not practically useful for real-world

scenarios. For most techniques, the required effort for finding good templates and label mappings,

and sometimes training models outweighs the cost of simply labeling more training examples.

As shown in Figure 6.2, 64 examples per class are enough to bring the performance of standard

fine-tuning to the same level of prompting. Although recent works on automatic selection of

prompts and label mappings are making meaningful contribution to the practicability of few-shot

learning, we believe more work should be done to simplify the learning procedure and eliminate

human effort while achieving good performance.

This chapter, in part, is a reprint of the material as it appears in “Automatic Multi-Label

Prompting: Simple and Interpretable Few-Shot Classification” by Han Wang, Canwen Xu,

and Julian McAuley, which was published at North American Chapter of the Association for

69

Computational Linguistics, 2022. The dissertation author was the co-primary investigator and

co-first author of this paper.

70

Chapter 7

InforMask: Unsupervised Informative
Masking for Language Model Pretraining

Masked language modeling is widely used for pretraining large language models for

natural language understanding (NLU). However, random masking is suboptimal, allocating an

equal masking rate for all tokens. In this chapter, we propose InforMask, a new unsupervised

masking strategy for training masked language models. InforMask exploits Pointwise Mutual

Information (PMI) to select the most informative tokens to mask. We further propose two

optimizations for InforMask to improve its efficiency. With a one-off preprocessing step,

InforMask outperforms random masking and previously proposed masking strategies on the

factual recall benchmark LAMA and the question answering benchmark SQuAD v1 and v2.1

7.1 Introduction

Masked Language Modeling (MLM) is widely used for training language models [Devlin

et al., 2019, Liu et al., 2019b, Lewis et al., 2019, Raffel et al., 2020]. MLM randomly selects a

portion of tokens from a text sample and replaces them with a special mask token (e.g., [MASK]).

However, random masking has a few drawbacks — it sometimes produces masks that are too

easy to guess, providing a small loss that is inefficient for training; some randomly masked tokens

can be guessed with only local cues [Joshi et al., 2020]; all tokens have an identical probability

1The code and model checkpoints are available at https://github.com/NafisSadeq/InforMask.

71

https://github.com/NafisSadeq/InforMask

Thomas Edison was an inventor and businessman.

Thomas Edison was an inventor and businessman.
Thomas Edison was an inventor and businessman.
Thomas Edison was an inventor and businessman.
Thomas Edison was an inventor and businessman.

[M] [M] 17.2
[M] 21.9

[M]

[M]

13.4
[M] [M] 2.5

✅

Interesting and challenging!

Steve Jobs? Ben Franklin?

The first mask is too easy!

Boring! Too easy to guess!

[M]

Figure 7.1. The informative scores of randomly sampled masking candidates (s = 4). [M]
denotes the masked tokens. The pretraining objective of the masked language model (MLM) is

to predict the masked tokens based on the context.

to be masked, while (e.g.) named entities are more important and need special attention [Sun

et al., 2019b, Levine et al., 2021].

In this chapter, we propose a new strategy for choosing tokens to mask in text samples.

We aim to select words with the most information that can benefit the language model, especially

for knowledge-intense tasks. To tackle this challenge, we propose InforMask, an unsupervised

informative masking strategy for language model pretraining. First, we introduce Informative

Relevance, a metric based on Pointwise Mutual Information (PMI, Fano, 1961) to measure the

quality of a masking choice. Optimizing this measure ensures the informativeness of the masked

token while maintaining a moderate difficulty for the model to predict the masked tokens. This

metric is based on the statistical analysis of the corpus, which does not require any supervision

or external resource.

However, maximizing the total Informative Relevance of a text sample with multiple

masks can be computationally challenging. Thus, we propose a sample-and-score algorithm to

reduce the time complexity of masking and diversify the patterns in the output. An example is

shown in Figure 7.1. For training a language model with more epochs, we can further accelerate

the masking process by only running the algorithm once as a preprocessing step and assigning a

token-specific masking rate for each token according to their masking frequency in the corpus,

to approximate the masking decisions of the sample-and-score algorithm. After this one-off

preprocessing step, masking can be as fast as the original random masking without any further

72

overhead, which can be desirable for large-scale distributed language model training of many

epochs.

To verify the effectiveness of our proposed method, we conduct extensive experiments

on two knowledge-intense tasks — factual recall and question answering. On the factual recall

benchmark LAMA [Petroni et al., 2019], InforMask outperforms other masking strategies by

a large margin. Also, our base-size model, InformBERT, trained with the same corpus and

epochs as BERT [Devlin et al., 2019] outperforms BERT-base on question answering benchmark

SQuAD [Rajpurkar et al., 2016, 2018]. Notably, on the LAMA benchmark, InformBERT

outperforms BERT and RoBERTa [Liu et al., 2019b] models that have 3× parameters and 10×

corpus size.

To summarize, our contributions are as follows:

• We propose InforMask, an informative masking strategy for language model pretraining

that does not require extra supervision or external resource.

• We pretrain and release InformBERT, a base-size English BERT model that substantially

outperforms BERT and RoBERTa on the factual recall benchmark LAMA despite having

much fewer parameters and less training data. InformBERT also achieves competitive

results on the question answering datasets SQuAD v1 and v2.

7.2 Methodology

InforMask aims to make masking decisions more ‘informative’. Since not all words are

equally rich in information [Levine et al., 2021], we aim to automatically identify more important

tokens (e.g., named entities) and increase their probability to be masked while preserving the

factual hints to recover them. On the other hand, we would like to reduce the frequency of

masking stop words. Stop words are naturally common in the corpus and they can be important

for learning the syntax and structure of a sentence. However, masked stop words can be too easy

for a language model to predict, especially in later stages of LM pretraining. Thus, properly

73

the du
al is

be
tw

ee
n

ha
rry

po
tte

r
an

d
lor

d

vo
lde

mort

the

du
al

is

be
tw

ee
n

ha
rry

po
tte

r

an
d

lor
d

vo
lde

mort

0 -0.1 0.2 0.3 -0.3 -0 0 0.1 -0

-0.1 0 0.4 0.5 -1.8 -0.5 0.2 -0.9 0

0.2 0.4 0 0.2 -0.4 -0.2 0 -0.1 0.6

0.3 0.5 0.2 0 -0.9 -0.5 0.9 -0.2 0.3

-0.3 -1.8 -0.4 -0.9 0 5.8 0.1 0.8 6.1

-0 -0.5 -0.2 -0.5 5.8 0 0.3 1.2 6.2

0 0.2 0 0.9 0.1 0.3 0 0 0.3

0.1 -0.9 -0.1 -0.2 0.8 1.2 0 0 4.6

-0 0 0.6 0.3 6.1 6.2 0.3 4.6 0

2 1 0 1 2 3 4 5

Figure 7.2. The PMI matrix of the words in the sentence ‘The dual is between Harry Potter and
Lord Voldemort.’

reducing the masking frequency of stop words can improve both the efficiency and performance

of the model.

7.2.1 Informative Relevance

To generate highly informative masking decisions for a sentence, we introduce a new

concept, namely Informative Relevance. Informative Relevance is used to measure how relevant

a masked word is to the unmasked words so that it can be meaningful and predictable. The

Informative Relevance of a word is calculated by summing up the Pointwise Mutual Information

(PMI, Fano, 1961) between the masked word and all unmasked words in the sentence. PMI

between two words w1 and w2 represents how ‘surprising’ is the co-occurrence between two

words, accounting for their own probabilities. Formally, the PMI of the combination w1w2 is

defined as:

pmi(w1,w2) = log
p(w1,w2)

p(w1)p(w2)
(7.1)

74

Algorithm 2. InforMask Algorithm
1: D← Set of text
2: s← Size of randomly sampled candidates
3: Fd

i ← Informative score for i-th masking candidate for text d
4: for d ∈ D do
5: for i = 1,2, . . . ,s do
6: Generate i-th masking candidate for d
7: Md

i ←Masked Tokens
8: Ud

i ← Unmasked Tokens
9: Fd

i ← 0
10: for w1 ∈Md

i do
11: for w2 ∈Ud

i do
12: Fd

i = Fd
i +pmi(w1,w2)

13: end for
14: end for
15: end for
16: Choose candidate with maximum Fd

i
17: end for

The PMI matrix is calculated corpus-wise. Note that instead of using bigrams (i.e., two words

have to be next to each other), we consider the skip-gram co-occurrence within a window. The

window size is selected in a way that enables sentence-level co-occurrence to be considered as

well as local co-occurrence.

Maximizing the Informative Relevance enables the model to better memorize knowledge

and focus on more informative words. Since Informative Relevance is calculated between a

masked word and the unmasked words, it also encourages hints to be preserved so that the model

can reasonably guess the masked words. As shown in Figure 7.2, the words inside a named

entity have a high PMI (e.g., ‘Harry-Potter’ and ‘Lord-Voldemort’) while the two closely related

entities also show a high PMI (e.g., Harry-Voldemort). Thus, if we are asked to mask one word,

we would mask ‘Voldemort’ since it has the highest Informative Relevance with the remaining

words (by summing up the last row or column).

75

Table 7.1. Statistics of LAMA [Petroni et al., 2019].

Data Subset #Relations #Samples

ConceptNet 1 29774
Squad 1 305
GoogleRE 3 4994
TREx 41 34032

Total 46 69105

Table 7.2. Statistics of SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018].

Dataset SQuAD v1 SQuAD v2

#Examples 108k 151k
#Negative Examples 0 54k
#Articles 536 505

7.2.2 Scoring Masking Candidates

One text sample can have multiple masks. Thus, we define the informative score of a

masking decision as the sum of the Informative Relevance of each masked token. However, given

the PMI matrix, finding the best k words to mask (i.e., the masking decision with the highest

informative score) in a sentence of n words is time-consuming. Iterating all possibilities has

time complexity O(Ck
n). By converting it to a minimum cut problem, the time complexity can be

reduced to O(n2 logn) [Stoer and Wagner, 1997], which is still prohibitive in practice.

Therefore, we propose to sample s random masking candidates and then rank them by

calculating their informative scores. As shown in Figure 7.1, we randomly generate four masking

candidates and rank them by their informative scores. We select the candidate with the highest

score. This allows us to make a masking decision with time complexity O(kn). Random sampling

also introduces more diverse patterns for masking, which could help training of language models

and prevent overfitting. This process is illustrated in Algorithm 2.

76

Table 7.3. Performance of different masking strategies and models on LAMA [Petroni et al.,
2019]. (a) We compare the models trained with different masking strategies for 3 epochs. (b) We
compare InformBERT, a BERT model trained with InforMask for 40 epochs with BERT and

RoBERTa models.

Model #Param. Corpus Size Epochs
LAMA [Petroni et al., 2019]

ConceptNet Squad GoogleRE TREx Overall

(a)

Random [Devlin et al., 2019] 125M 16 GB 3 0.091 0.124 0.396 0.582 0.549
Span [Joshi et al., 2020] 125M 16 GB 3 0.056 0.102 0.377 0.524 0.495
PMI [Levine et al., 2021] 125M 16 GB 3 0.075 0.115 0.396 0.552 0.522
InforMask 125M 16 GB 3 0.109 0.133 0.410 0.627 0.591

(b)

BERT-base 110M 16 GB 40 0.191 0.229 0.340 0.587 0.553
BERT-large 340M 16 GB 40 0.218 0.284 0.354 0.621 0.585
RoBERTa-base 125M 160 GB 40 0.223 0.307 0.423 0.630 0.592
RoBERTa-large 355M 160 GB 40 0.260 0.329 0.435 0.672 0.632
InformBERT 125M 16 GB 40 0.201 0.384 0.509 0.739 0.698

7.2.3 Token-Specific Masking Rates

Algorithm 2 is already usable by processing the input text on the fly. However, to avoid

overfitting, masking should change across epochs. This means we have to run Algorithm 1

every epoch, creating a bottleneck for pretraining. To address this efficiency issue, we use

token-specific masking rates to approximate the masking decisions of InforMask. Specifically,

we generate masks for a corpus using Algorithm 1, and then count the frequency of each token

in the vocabulary to be masked as their token-specific masking rates. Note that in this way,

Algorithm 2 is only executed once, as a prepossessing step. Furthermore, we can use a small

portion of the corpus to calculate the token-specific masking rates, making it even faster.2 After

this, we can perform random masking, except that every token has its own masking rate.

2For the Wikipedia corpus, the average rate of change for token-specific masking rates falls below 0.8% after
processing only 1% of the corpus.

77

Table 7.4. Performance on SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018] development set.

Model #Param. Corpus Size Epochs
SQuAD v1 SQuAD v2

F1 EM F1 EM

(a)

Random [Devlin et al., 2019] 125M 16 GB 3 79.08 69.44 66.48 63.15
Span [Joshi et al., 2020] 125M 16 GB 3 78.88 69.04 64.95 61.38
PMI [Levine et al., 2021] 125M 16 GB 3 80.31 70.98 66.25 62.82
InforMask 125M 16 GB 3 80.47 71.41 67.29 63.90

(b)
BERT-base 110M 16 GB 40 81.07 88.52 72.35 75.75
InformBERT 125M 16 GB 40 81.22 88.61 72.71 75.86

7.3 Experiments

7.3.1 Experimental Settings

Pretraining Corpus

Following BERT [Devlin et al., 2019], we use the Wikipedia and Book Corpus datasets

available from Hugging Face [Lhoest et al., 2021]. The corpus contains ∼3.3B tokens. To be

consistent with BERT, we use an overall masking rate of 15%. The PMI matrix is calculated on

the Wikipedia corpus, with a size of 100k × 100k. Word co-occurrence statistics are computed

with a window size of 11. We set the candidate sampling size per document s to 30. It takes ∼4

hours to preprocess and generate token-specific masking rates on a 16-core CPU server with 256

GB RAM.

Evaluation Benchmarks

To evaluate different masking strategies, we use the LAMA benchmark [Petroni et al.,

2019] to test the knowledge of the models. LAMA is a probe for analyzing the factual and

commonsense knowledge contained in pretrained language models. Thus, it is suitable for

evaluating the knowledge learned during pretraining. LAMA has around 70,000 factual probing

samples across 46 factual relations. A summary of the benchmark is shown in Table 7.1. We use

Mean Reciprocal Rank (MRR) as the metric for factual recall performance.

In addition to the knowledge probing task, we also conduct experiments on real-world

question answering datasets, which requires commonsense knowledge as well. We conduct

78

experiments on SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018] and report the F1 and Exact

Match (EM) scores on the development set. The statistics of the benchmark are shown in

Table 7.2.

Baselines

We compare InforMask in two settings: (a) We use the same tokenizer and hyperparam-

eters to pretrain BERT random masking [Devlin et al., 2019], SpanBERT [Joshi et al., 2020]

and PMI-Masking [Levine et al., 2021] for 3 epochs. The choice of 3 epochs is according to

our limited computational budget. (b) We continue training InforMask until 40 epochs. The

40-epoch model is denoted as InformBERT. We compare InformBERT to BERT-base [Devlin

et al., 2019], which is trained with the same corpus for 40 epochs as well. We also include results

of BERT-large and RoBERTa for reference, though they are either larger in size or trained with

more data and thus are not directly comparable.

Training Details

Our implementation is based on Hugging Face Transformers [Wolf et al., 2020]. We train

the baselines and our model with 16 Nvidia V100 32GB GPU. For our model and all baselines

trained, we use a fixed vocabulary size of 50,265. The model architecture is a base-size BERT

model, with 12 Transformer layers with 12 attention heads. The hidden size is set to 768. The

overall batch size is 256. We use an AdamW optimizer [Loshchilov and Hutter, 2019] with a

learning rate of 5e-5. Note that we do not perform any hyperparameter searching or tuning for

any model (including InformBERT) given our limited computational budget.

7.3.2 Experimental Results

Impact of Masking Strategies

We conduct a fair comparison among different masking strategies, using the same

tokenization and hyperparameters. As shown in Table 7.3(a), InforMask outperforms other

masking strategies by a large margin on all subsets of LAMA [Petroni et al., 2019]. As shown in

79

10k 20k 30k 40k 50k 60k 70k 80k 90k
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

random
span
pmi
InforMask

Figure 7.3. Macro average MRR of different masking strategies on LAMA, evaluated every 10k
steps.

Table 7.4(a), on both SQuAD v1 and v2 [Rajpurkar et al., 2016, 2018], InforMask outperforms

other masking strategies. Notably, PMI-Masking achieves higher performance on SQuAD while

underperforming random masking on LAMA (to be detailed shortly) but our InforMask achieves

better results on both of them.

Also, we compare our 40-epoch InformBERT model with BERT and RoBERTa models.

As shown in Table 7.3(b), InformBERT outperforms the BERT model trained with the same

epochs and corpus by 0.145 overall. It also achieves higher performance than RoBERTa-base,

despite being trained with 10% of RoBERTa’s corpus size. To our surprise, it also outperforms

both BERT-large and RoBERTa-large, with only 1/3 parameters. Moreover, InformBERT

outperforms BERT-base for fine-tuning on SQuAD v1 and v2, demonstrating its capability for

downstream question answering, as shown in Table 7.4(b).

Training Dynamics

As shown in Figure 7.3, InforMask demonstrates an outstanding training efficiency.

InforMask outperforms other masking strategies from the beginning of the training process and

keeps the lead through the training. Notably, span masking and PMI-Masking underperform

random masking, indicating their inability on the knowledge-intense task. Span masking also

80

0 200k 400k 600k 800k 1000k 1200k
Training Steps

0.45

0.50

0.55

0.60

0.65

0.70

M
RR

BERT-base
BERT-large
RoBERTa-base
RoBERTa-large
InformBERT

Figure 7.4. Performance of InformBERT for the full pretraining process. It achieves comparable
performance with BERT-base after 40k training steps and even RoBERTa-large after 120k

training steps.

significantly underperforms other masking strategies in the early stage of pretraining, suggesting

it may take longer to train the model. For the entire pretraining process, as shown in Figure 7.4,

the model trained with InforMask outperforms BERT and RoBERTa with fewer than ∼15% of

the training steps, verifying the efficiency of our masking strategy.

Impact on Stop Words and Entities

As shown in Figure 7.5, without explicitly specifying the stop words, InforMask can iden-

tify the stop words and reduce their probability to be masked. InforMask can also automatically

increase the masking probability of named entities. The average masking probability of named

entities is 0.25 with a standard deviation of 0.07, while the overall masking probability of all

tokens is around 0.15.3 This allows the model to focus on more important tokens and maintain

an appropriate difficulty of prediction, facilitating the pretraining process.

3We use an off-the-shelf named entity recognition system to verify the effectiveness of our approach only. It is
not a necessary component of the proposed system.

81

th
e of in an
d a to wa
s is as for on by he s

wi
th at

fro
m it his an

Tokens

0

1

2

3

4

Fr
eq

ue
nc

y
(%

)

Token occurrence
Random masking rate
InforMask masking rate

Figure 7.5. Frequency of common stop words and their corresponding masking rates by
InforMask.

Impact of Token-Specific Masking Rates

As mentioned before, the use of token-specific masking rate can enormously save time

and RAM for data processing, as spending hours of processing for each epoch can be infeasible

and becomes a bottleneck for distributed training. Another possible solution is to loop the same

masked data for every epoch. Thus, we conduct an experiment to compare the two solutions:

approximation and repetition. Note that for simplicity, the token-specific masking rate is applied

from the first epoch. As shown in Figure 7.6, our approximation strategy keeps outperforming

the repetition strategy even in the first epoch. As we analyze, this can be attributed to the more

diverse patterns introduced during the approximation. Also, the performance of the model trained

with the repetition strategy converges or even slightly declines after 60k training steps while the

performance of the model trained with approximation keeps increasing.

InforMask vs. PMI Masking

PMI Masking [Levine et al., 2021] uses PMI to mask a span of correlated tokens. A

named entity often constitutes a correlated span and therefore, is more likely to be masked in

PMI-Masking. As mentioned before, we observe that PMI-Masking performs worse than random

82

10k 20k 30k 40k 50k 60k 70k 80k 90k
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Repeat epoch
Random approx.

Figure 7.6. Comparison between looping the same data and using token-specific masking rate to
approximate the masking decisions. The models are trained for 3 epochs.

masking on LAMA (see Figure 7.3).

To investigate the reason, we compute the individual masking rates of some tokens

according to each masking policy. As shown in Figure 7.7, we can see that PMI-Masking

increases the masking rate of tokens that are part of correlated spans. However, it decreases the

masking rate of tokens that are not within any correlated span, even if that token is a named

entity. Consider the token ‘Airways’ for example. This token may be part of a correlated span

such as ‘British Airways’ or ‘Qatar Airways’. PMI-Masking, therefore, increases the masking

rate of this token compared to random masking. On the other hand, the tokens ‘Colorado’ and

‘Nairobi’, which are unigram named entities, are less likely to be masked, compared to random

masking. Given that the overall masking rate is fixed and PMI-Masking favors correlated spans,

the masking rates of ‘Colorado’ and ‘Nairobi’ inevitably get lower. This can be the reason behind

PMI-Masking’s failure.

In contrast, InforMask uses PMI to compute the individual Informative Relevance of

tokens. It can increase the masking rate of tokens with high informative saliency, regardless of

whether they are part of a correlated span or not. This helps InforMask achieve superior factual

recall performance.

83

the for the
n

he
art

col
ora

do

air
way

s
ed

iso
n

na
iro

bi
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
as

k
Pr

ob
ab

ilit
y

(%
)

random
span
pmi
InforMask

Figure 7.7. Masking rate of tokens according to different masking policies.

Table 7.5. Some examples of InformBERT and RoBERTa-base predictions on LAMA. We show
the queries and the ground-truth answers with the model predictions. We only show the top-3

predictions made by each model.

Query Ground Truth
InformBERT RoBERTa-base

Prediction Score Prediction Score

france 0.09 montreal 0.12
Antoine Coypel was born in [MASK]. paris paris 0.08 toronto 0.03

haiti 0.04 paris 0.03

espn 0.20 cbs 0.18
SpeedWeek is an American television program on [MASK]. espn nbc 0.10 cnbc 0.13

mtv 0.09 spike 0.10

microsoft 0.20 intel 0.06
Phil Harrison is a corporate vice president of [MASK]. microsoft ibm 0.15 ibm 0.05

motorola 0.05 microsoft 0.03

french 0.43 young 0.13
Laurent Casanova was a [MASK] politician. french canadian 0.32 french 0.09

haitian 0.05 successful 0.04

bishops 0.13 men 0.17
The chief administrators of the church are [MASK]. bishops priests 0.07 christians 0.09

appointed 0.06 women 0.08

84

7.3.3 Case Study

Table 7.5 shows the example knowledge probes and answers produced by InformBERT

and RoBERTa. For the query ‘SpeedWeek is an American television program on [MASK].’,

RoBERTa is unable to produce the correct answer in the top-3 predictions. But InformBERT

correctly predicts ‘ESPN’ to be the top candidate. Similarly, InformBERT correctly predicts the

answer ‘bishops’ for the query ‘The chief administrators of the church are [MASK].’ RoBERTa

is unable to predict the answer and produces more generic words such as ‘men’, ‘women’, and

‘Christians’.

We summarize the errors into two notable categories. They are relevant for all the models

involved, not just InformBERT. First, we observe that many errors involve rare named entities.

Some named entities are less frequent so the model is unable to learn anything useful about

them, or they occur so rarely that they do not even appear in the language model vocabulary. We

found that around 19% of the errors made by our model on the LAMA benchmark is associated

with out-of-vocabulary tokens. Second, it is challenging for a language model to predict the

granularity of the fact being asked or distinguish it from an alternate fact that may hold for a

query. For the example query ‘Antoine Coypel was born in [MASK].’, the LAMA dataset has only

one true label ‘Paris’. In this example, InformBERT prefers the name of the country (‘France’)

over the name of a city (‘Paris’). This confusion is related to the granularity of location and both

answers can be considered correct. However, it is being classified as an error because the labels

in the test set are not comprehensive.

Another type of confusion can be found for RoBERTa with the query ‘Laurent Casanova

was a [MASK] politician.’. The model is trying to decide whether to use the adjective ‘young’,

‘French’, or ‘successful’. In theory, these three adjectives may be valid simultaneously for the

same entity. It can be challenging for the language model to pick the expected one in the context.

85

7.4 Conclusion

In this work, we propose InforMask, an unsupervised masking policy that masks tokens

based on their informativeness. InforMask achieves superior performance in knowledge-intense

tasks including factual recall and question answering. We explore the impact of different masking

strategies on learning factual and commonsense knowledge from pretraining and analyze why

previously proposed masking techniques are suboptimal. For future work, we would like to scale

up the pretraining and explore more factors for knowledge acquisition during unsupervised text

pretraining.

7.5 Limitations

We conduct experiments to compare InforMask to several prior works on better masking

strategies by training them for 3 epochs. We also compare a fully trained InformBERT-base

model to BERT and RoBERTa. However, one limitation of our work is due to our limited

computational budget, we are not able to scale the experiments for larger model size, larger

corpus, or compare all baselines under the full pretraining setting. Also, our InformBERT model

is arguably suboptimal, with a relatively small batch size and no hyperparameter tuning or search

at all.

This chapter, in part, is a reprint of the material as it appears in “InforMask: Unsupervised

Informative Masking for Language Model Pretraining” by Nafis Sadeq, Canwen Xu, and Julian

McAuley, which was published at Empirical Methods in Natural Language Processing, 2022.

The dissertation author was the co-primary investigator and co-first author of this paper.

86

Chapter 8

Baize: An Open-Source Chat Model with
Parameter-Efficient Tuning on Self-Chat
Data

Chat models, such as ChatGPT, have shown impressive capabilities and have been

rapidly adopted across numerous domains. However, these models are only accessible through a

restricted API, creating barriers for new research and progress in the field. We propose a pipeline

that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT

to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to

enhance LLaMA, an open-source large language model. The resulting model, named Baize,

demonstrates good performance in multi-turn dialogues with guardrails that minimize potential

risks. Additionally, we propose a new technique called Self-Distill with Feedback, to further

improve the performance of the Baize models with feedback from ChatGPT. The Baize models

and data are released for research purposes only.1

8.1 Introduction

The rapid advancement of natural language processing (NLP) techniques in recent years

has led to the emergence of highly capable chat models, such as LaMDA [Thoppilan et al.,

2022], ChatGPT [OpenAI, 2023a] and GPT-4 [OpenAI, 2023b]. These models demonstrate a

1https://github.com/project-baize/baize-chatbot

87

https://github.com/project-baize/baize-chatbot

Seed
Dataset

Self-chat
 Baize

Seeds
Corpus

LoRA
Tuning

Template
LLaMA

Seed
Sampling Baize v2

Self-Distill
ChatGPT

ChatGPT

Feedback

Figure 8.1. The pipeline for training Baize and Baize v2.

remarkable ability to understand and generate human-like responses in a wide range of domains.

As a result, chat models have become increasingly popular for applications like customer support,

virtual assistants, and social media moderation. Despite the promising potential of these models,

they are often only accessible through restricted APIs, creating barriers for new research and

progress. Furthermore, the limited availability of chat models poses obstacles for researchers and

practitioners, hindering the growth of the NLP community. The lack of publicly available, high-

quality chat corpora for multi-turn conversations exacerbates this issue, limiting the possibilities

for refining and evaluating these models.

In this chapter, we propose a novel pipeline (shown in Figure 8.1) to address these

challenges by leveraging the capabilities of ChatGPT to automatically generate a high-quality

multi-turn chat corpus. Our approach involves having ChatGPT engage in a conversation with

itself, simulating both user and AI responses. This generated corpus serves as a valuable resource

for training and evaluating chat models in the context of multi-turn dialogues. Furthermore, by

specifying a seed dataset, we can sample from a particular domain and fine-tune chat models to

be specialized in specific areas, such as healthcare or finance.

To fine-tune large language models in a low-resource setting, we utilize a parameter-

efficient tuning approach that effectively leverages the limited computational resources available.

This strategy enables the adaptation of state-of-the-art language models to resource-constrained

scenarios while maintaining high performance and adaptability. Our primary focus is on im-

proving an open-source large language model, LLaMA [Touvron et al., 2023], which we believe

holds promise as an accessible alternative to proprietary chat models. By fine-tuning LLaMA

88

with our generated chat corpus, we create a new model, named Baize (Bái zé, a mythical creature

in Chinese folklore, who speaks human languages and knows everything). Moreover, we propose

Self-Distillation with Feedback (SDF) as an alternative to Reinforcement Learning with Human

Feedback (RLHF, Ziegler et al., 2019, OpenAI, 2023a), to further improve the performance of

Baize. Baize is a chat model that can run on a single GPU, making it accessible for a broader

range of researchers.

To summarize, our main contributions in this chapter are as follows:

• We propose a novel and reproducible pipeline for automatically generating a high-quality

multi-turn chat corpus by having ChatGPT engage in a conversation with itself. Our

pipeline fills a gap in the availability of public resources for training chat models in

multi-turn dialogue settings.

• We employ parameter-efficient tuning and propose Self-Distillation with Feedback (SDF)

to enhance the LLaMA model in a low-resource setting, resulting in the creation of Baize,

a highly capable open-source chat model.

By introducing the Baize model and the pipeline employed to generate the chat corpus, we aim

to facilitate new research and advancement within the NLP community.

8.2 Data Collection via Self-Chat

In this section, we detail the methodology employed for generating a high-quality multi-

turn chat corpus by leveraging ChatGPT (gpt-3.5-turbo) to engage in a conversation with

itself. This process, named self-chat, serves as the foundation of our data collection pipeline and

plays a critical role in enhancing the open-source large language model, LLaMA, to achieve

better performance in multi-turn dialogues.

The self-chat process involves utilizing ChatGPT to generate messages for both the

user and AI assistant in a conversational format. We apply a template to define the format and

89

Table 8.1. (Not cherry-picked) An example of self-chat generated by ChatGPT [OpenAI, 2023a]
with a seed sampled from the Quora dataset.

Seed How do you fix a Google Play Store account that isn’t working?

Human: My Google Play Store account is not working properly. How can I fix it?

AI: There are several things you can try to fix a Google Play Store account that is not working
properly. First, check your internet connection and make sure it is working properly. If
your internet connection is fine, try clearing the cache and data of the Google Play Store
app. If that doesn’t work, try uninstalling and reinstalling the app.

Human: How do I clear the cache and data of the Google Play Store app?

AI: To clear the cache and data of the Google Play Store app, go to Settings, then Apps &
notifications, then find the Google Play Store app and tap on it. From there, tap on Storage,
then Clear Cache and Clear Data.

Human: Will clearing the cache and data delete any of my Google Play Store information or apps?

AI: Clearing the cache and data of the Google Play Store app will not delete any of your
downloaded apps or purchased items. However, it may remove your preferences and
settings within the app.

Human: What if clearing the cache and data doesn’t work?

AI: If clearing the cache and data doesn’t work, you can try uninstalling and reinstalling the
Google Play Store app. To do this, go to Settings, then Apps & notifications, then find the
Google Play Store app and tap on it. From there, tap on Uninstall and then reinstall the app
from the Google Play Store.

requirements, allowing the ChatGPT API to continuously generate transcripts for both sides of

the dialogue until a natural stopping point is reached. The conversation is centered around a

“seed”, which can be a question or a key phrase that sets the topic for the chat.

In our own training of Baize, we use questions from Quora2 and Stack Overflow3 as

seeds. A dialogue example generated with self-chat is shown in Table 8.1. For training the first

version of Baize family (Baize v1), we collect a total of 111.5k dialogues through self-chat,

using ∼55k questions from each source. This process cost us approximately $100 for calling

OpenAI’s API. Also, one could use questions or phrases extracted from a domain-specific dataset

to enhance the knowledge and ability of the chat model for a specific domain. Motivated by a

2https://huggingface.co/datasets/quora
3https://huggingface.co/datasets/pacovaldez/stackoverflow-questions

90

https://huggingface.co/datasets/quora
https://huggingface.co/datasets/pacovaldez/stackoverflow-questions

Table 8.2. Statistics of the number of dialogues, average number of turns, and response lengths
of each turn.

Data Dialogs Avg. Turns Avg. Len.

Alpaca [Taori et al., 2023] 51,942 1.0 44.2

Quora 54,456 3.9 35.9
StackOverflow 57,046 3.6 36.0
MedQuAD 46,867 3.8 35.8

Quora v2 55,770 3.0 149.6
StackOverflow v2 112,343 3.9 78.2

Table 8.3. Data, numbers of parameters and training time for training Baize models. The GPU
hours are with NVIDIA A100-80G GPUs. Baize v1 and v2 are trained with a single GPU and

v1.5 are trained with 8 GPUs.

Model Base Model Type Param. Trainable Param. GPU hrs Data

Baize-v1-7B LLaMA-7B SFT 7B 17.9M 9 Quora, Stack Overflow, Alpaca
Baize-v1-13B LLaMA-13B SFT 13B 28.0M 16 Quora, Stack Overflow, Alpaca
Baize-v1-30B LLaMA-30B SFT 30B 54.6M 36 Quora, Stack Overflow, Alpaca
Baize-Healthcare LLaMA-7B SFT 7B 17.9M 5 Quora, MedQuAD

Baize-v1.5-7B LLaMA-7B SFT 7B 17.9M 32 Quora v2, Stack Overflow v2
Baize-v1.5-13B LLaMA-13B SFT 13B 28.0M 64 Quora v2, Stack Overflow v2

Baize-v2-7B Baize-v1.5-7B SDF 7B 17.9M 38 Quora
Baize-v2-13B Baize-v1.5-13B SDF 13B 28.0M 76 Quora

recent report [Johnson et al., 2023] that ChatGPT can answer cancer-related questions as well as

The National Cancer Institute, we use the MedQuAD Ben Abacha and Demner-Fushman [2019]

dataset as seeds and obtain an additional 47k dialogues in the medical domain to train a Baize

model specialized for healthcare.

Note by directly generating the dialogue with the template, ChatGPT’s output of each

turn seems to be shorter than asking ChatGPT one turn at a time. However, calling ChatGPT

one turn at a time will significantly increase the cost for calling the API as we have to attach the

context multiple times. To collect data with better quality for training Baize v1.5, we use another

ChatGPT to generate responses once at a time and replace the AI’s responses in the template, to

obtain responses that are completely consistent with ChatGPT’s responses, which are usually

longer and contain more details. The statistics of the resulting corpora are shown in Table 8.2.

91

Comparison with Other Data Sources

Stanford Alpaca [Taori et al., 2023] uses Self-Instruct Wang et al. [2022] to collect data

in instruction learning format. However, their instruction-input-output format, introduced in

T0 [Sanh et al., 2022] and FLAN [Wei et al., 2022], is limited to a single turn and differs from

the natural dialogue interface of ChatGPT. In contrast, our data collection pipeline focuses on

strengthening the chat ability of the model by leveraging high-quality chat transcripts from

ChatGPT. Additionally, we incorporate data from Stanford Alpaca into our corpus to further

enhance the ability of Baize to follow instructions.

Vicuna [Chiang et al., 2023] uses dialogues crawled from sharegpt.com, a website that

allows users to conveniently share their conversations with ChatGPT. An advantage of doing so is

the high quality of collected data. The users tend to share dialogues when they are satisfied with

the answers from ChatGPT. However, this source may have serious privacy and legal problems.

The content shared by the users may contain highly sensitive personal information and is subject

to complex copyright issues, as the users may own the copyright of the input and (possibly)

output. Different from these sources, our proposed self-chat pipeline is a reliable and scalable

way to collect data without copyright concerns involving a third party, as long as the seed dataset

has a proper license.

8.3 Model Training

Parameter-Efficient Supervised Fine-Tuning

Standard fine-tuning often requires vast amounts of computational resources, as well as

high-quality and extensive datasets. However, given the limited availability of high-quality multi-

turn chat corpora, it is crucial to adopt methods that are more efficient in terms of computational

cost and data requirements. Parameter-efficient tuning methods [Li and Liang, 2021, Hu et al.,

2022] help achieve this goal by making better use of the available data and minimizing the need

for extensive resource allocation.

Specifically, we use Low-Rank Adaption method (LoRA, Hu et al., 2022) to fine-tune

92

What do you do when you are upset?

Baize

A. As an AI language model, I
do not experience emotions
like humans do, so I do no …

B. As an AI language model, I do
not experience emotions, so I

don’t do anything when I’m upset.

D. As an AI language model, I do
not have emotions. However, I can

provide suggestions on how to
handle emotions when upset…

C. As an AI language model, I
do not experience emotions

like humans do.

1. Generate responses

ChatGPT
2. Rank candidates

D > A > B > C

3. Use the best response for
self-distillation

Figure 8.2. An overview of self-distillation with feedback from ChatGPT.

the LLaMA model. For a linear layer h =W0x, the forward pass is modified to be:

h =W0x+BsftAsftx (8.1)

where W0 ∈ Rd×k, Bsft ∈ Rd×r and Asft ∈ Rr×k are model parameters with the low rank r≪

min(d,k). Only Asft and Bsft are updated, while other parameters are fixed during supervised

fine-tuning. Different from Hu et al. [2022], we apply LoRA to all linear layers in the LLaMA

model, to increase the number of trainable parameters and adaption capabilities. We list the

numbers of parameters of each model in Table 8.3. For Baize v1.5, following Vicuna, we only

compute loss for AI’s responses in the dialogue transcript.

Self-Distillation with Feedback

After supervised fine-tuning (SFT) the LLaMA model on self-chat dataset, we introduce

a new way named self-Distillation with feedback (SDF) to self-improve the model’s performance

and results in Baize v2.

Figure 8.2 gives an overview of SDF. First, we use the resulted Baize v1.5 models to

generate four responses for each instruction from the Quora dataset mentioned in Table 8.2. We

93

68%

76%

87% 88% 89% 90% 92% 92%

100%

50%

60%

70%

80%

90%

100%

LLA
MA

-13
B

Alp
ac
a-1
3B

Ba
ize
-v1
.5-
7B

Vic
un
a-7
B

Ba
ize
-v1
.5-
13
B

Ba
ize
-v2
-7B

Vic
un
a-1
3B

Ba
ize
-v2
-13
B

Ch
atG

PT

Figure 8.3. The performance of Baize models compared with LLaMA Touvron et al. [2023],
Alpaca Taori et al. [2023], Vicuna [Chiang et al., 2023] and ChatGPT [OpenAI, 2023a]

evaluated by GPT-4 [OpenAI, 2023b].

then engage ChatGPT using a prompt to rank generate responses for self-distillation. Finally, we

select the best response ranked by ChatGPT to fine-tune the model. During SDF, we apply new

LoRA modules to all linear layers in Baize v1.5. The new LoRA modules are optimized on the

best responses ranked by ChatGPT. For each linear layer h =W0x+BsftAsftx in Equation 8.1, the

forward pass is modified to be:

h =W0x+BsftAsftx+Bsdf Asdf x (8.2)

where Bsdf ∈Rd×r and Asdf ∈Rr×k are model parameters with the low rank r≪min(d,k). Only

Asdf and Bsdf are updated, while other parameters are fixed during SDF.

SDF is an alternative to Reinforcement Learning with Human Feedback (RLHF, Ziegler

et al., 2019, OpenAI, 2023a). SDF does not require training of reward models and is 3× faster

than RLHF, which uses PPO [Schulman et al., 2017] to optimize the model. Besides, SDF

involves distillation on Baize’s own generation, thus has an overall lower loss, allowing the

model to capture the nuance in the feedback and perform fine-grained optimization without

causing possible catastrophic forgetting. In this chapter, we use SDF with a ChatGPT model to

generate preference but we believe this technique can also be used with human feedback.

94

8.4 Model Settings

During the training phase, we set the maximum length of the input sequence to 512/1024

for Baize v1/v2 and the rank k in LoRA to 8. We initialize the LLaMA checkpoints with the 8-bit

integer format (int8) parameters released by Touvron et al. [2023], which remain fixed during

training, thus reducing GPU memory consumption and improving training speed. Following Hu

et al. [2022], we use a random Gaussian initialization for As f t (Asd f) and set Bs f t (Bsd f) to zero,

resulting in the value of Bs f tAs f t (Bsd f Asd f) being zero at the beginning of training. We use the

Adam optimizer to update LoRA parameters with a batch size of 64 and learning rates of 2e-4,

1e-4, and 5e-5 for the 7B, 13B and 30B models, respectively. The trainable LoRA parameters

are fine-tuned on NVIDIA A100-80GB GPUs and the training time is listed in Table 8.3.

During the inference phase, we use an inference prompt to improve the conversational

capabilities of the Baize models. It is important to note that we incorporate a rule stating, “The

AI assistant consistently declines to engage with topics, questions, and instructions related

to unethical, controversial, or sensitive issues.” This constraint further helps limit Baize’s

involvement with sensitive subjects and demonstrates effectiveness in our experiments. For

decoding strategy, we use nucleus sampling [Holtzman et al., 2020] with a temperature of 1 and

a top-p parameter of 0.95 by default to generate responses. Nucleus sampling is a decoding

strategy that samples tokens from the most probable tokens in the distribution up to a probability

threshold of p. This strategy helps to preserve diversity in the generated text while ensuring the

output is coherent and contextually relevant.

8.5 Evaluation

GPT-4 Score

We evaluate the performance of Baize following Vicuna’s pipeline that uses GPT-4 Ope-

nAI [2023b] to compare and score dialogue models. The Vicuna evaluation set contains 80

hand-crafted prompts of 9 categories. We compare Baize v2, before and after SDF to ChatGPT

95

Table 8.4. Performance on LM Evaluation Harness [Gao et al., 2021a], evaluated by Hugging
Face. Due to the length of the evaluation queue, only the results of Baize v2 13B are currently

available.

Model
ARC HellaSwag MMLU TruthfulQA

Average
(25-shot) (10-shot) (5-shot) (0-shot)

LLaMA-13B 50.8 78.9 37.7 39.9 51.8
Alpaca-13B 51.9 77.6 37.6 39.6 51.7
Vicuna-13B 47.4 78.0 39.6 49.8 53.7
Baize-v2-13B 50.3 77.1 39.4 48.3 53.8

and compare its relative performance with other models. As shown in Figure 8.3, Baize v2 7B

outperforms Vicuna 7B and the performance of Baize v2 13B is on par with Vicuna 13B, despite

Vicuna is fully fine-tuned. Note that we observe a positional bias in Vicuna’s evaluation pipeline.

GPT-4 has a preference for the first answer than the second. To be consistent with Chiang et al.

[2023], we put ChatGPT’s answer first followed by Baize’s answer.

LM Evaluation Harness

We also submit Baize to Hugging Face Open LLM Leaderboard 4 which uses LM Evalua-

tion Harness Gao et al. [2021a] to benchmark open-source LLMs. The leaderboard evaluates four

tasks: 25-shot AI2 Reasoning Challenge (ARC, Clark et al., 2018); 10-shot HellaSwag [Zellers

et al., 2019] for commonsense natural language inference; 5-shot MMLU [Hendrycks et al.,

2021] for multi-task language understanding; zero-shot TruthfulQA [Lin et al., 2022] for open-

domain question answering that require facts. The results are shown in Table 8.4. Notably,

Falcon-40B-instruct5, the open-source model ranked #1 on the leaderboard as of June 23, 2023,

is also fine-tuned with Baize’s data, demonstrating the effectiveness of Baize’s data pipeline

when combined with a larger and better base model and full fine-tuning.

Qualitative Study

We also provide examples demonstrating the capabilities of Baize. Examples of each

category are marked either as not cherry-picked if they are the first ones tried, or as cherry-picked
4https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
5https://huggingface.co/tiiuae/falcon-40b-instruct

96

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/tiiuae/falcon-40b-instruct

if they are chosen from multiple dialogues. We demonstrate how the chat models analyze a

financial incident in Table 8.5 and explain a joke in Table 8.6. While the problem-solving ability

is important for chatbots, it is crucial to prevent misuse of the model. We provide two examples

of how the models deal with unethical questions in Table 8.7. These two examples demonstrate

that Baize can successfully reject unmoral requests with guardrails learned from ChatGPT and

set with the inference prompt. Finally, we demonstrate the coding ability of Baize with an

example in Table 8.8.

In addition to general Baize models, we test Baize-Healthcare with the help of a healthcare

practitioner. One example is shown in Table 8.9 and the healthcare professional has confirmed

the appropriateness of Baize-Healthcare’s responses.

Carbon Footprint

We estimate to have emitted 0.83, 1.48, 3.33 and 0.46 kg CO2 eq. for training Baize v1

7B, 13B, 30B and healthcare models, respectively. For Baize v1.5, we estimate to have emitted

2.96 and 5.92 kg CO2 eq. for 7B and 13B models. Further SDF for Baize v2 have emitted

another 3.51kg and 7.03 kg CO2 eq. for 7B and 13B models. The carbon emissions are already

offset.

8.6 Conclusion and Future Work

In this chapter, we propose a pipeline that automatically samples seeds from specific

datasets and collect high-quality dialogue corpus by leveraging ChatGPT to chat with itself. We

train Baize with a parameter-efficient fine-tuning method, LoRA, and further align the model

by introducing self-distillation with feedback. For future work, we would like to explore ways

to diversify the simulated user queries and improve the self-chat quality to further improve the

performance of Baize.

97

8.7 Limitations

Foundation Model

Similar to other language models, Baize may suffer from hallucination, toxicity and

stereotypes. Particularly, Baize inherits the out-of-date knowledge from LLaMA. Due to the

fact that at least 82% of LLaMA’s pretraining data is from before 2020, Baize may provide

outdated answers to certain questions, such as "who is the current president of the United States?"

Additionally, LLaMA only supports 20 languages and has a very limited corpus for non-English

languages.

Evaluation

In this chapter, we automatically evaluating the models with GPT-4 [OpenAI, 2023b].

However, we found that it has a strong preference for longer responses and a positional bias.

We believe human evaluation can be more rigorous and reliable despite being expensive and

time-consuming while automatic evaluation remains an open research question.

License and Legality

Following Stanford Alpaca [Taori et al., 2023], we have decided that the released weights

of Baize are licensed for research use only. Using the weights of Baize with LLaMA’s original

weights is subject to Meta’s LLaMA License Agreement. It is the responsibility of the users

to download and use LLaMA in compliance with the license agreement. In addition to the

model, we are also releasing the fine-tuning corpus under CC-BY-NC 4.0 (allowing research use

only). We hereby disclaim any liability for any activities related to the distribution and use of the

released artifacts. The licenses are subject to change.

Safety and Access Control

Unlike ChatGPT [OpenAI, 2023a], Baize does not rely on human feedback to suppress

unwanted behaviors. Instead, Baize learns to avoid such behaviors by imitating ChatGPT, and we

have added an explicit prompt to guide its behavior. However, it is important to acknowledge that

98

there are potential risks associated with the use of Baize for malicious purposes, especially as we

are releasing the weights. While we have tested Baize with our default prompt, it is important to

note that changing the prompt can potentially remove the guardrails. Although this risk is already

present in LLaMA, and our further tuning is likely to reduce this risk, we want to emphasize the

importance of being aware of this risk and prohibit any use of Baize outside of research purposes.

Looking at the positives, we believe our decision to release the weights can facilitate research on

fairness, toxicity, and social impacts of chat models. While we do not perform access reviews,

Meta has implemented an access application process that can help control the distribution of

LLaMA models and minimize the potential risks associated with their use.

This chapter, in part, is a reprint of the material as it appears in “Baize: An Open-Source

Chat Model with Parameter-Efficient Tuning on Self-Chat Data” by Canwen Xu, Daya Guo, Nan

Duan, and Julian McAuley, which was published at Empirical Methods in Natural Language

Processing, 2023. The dissertation author was the co-primary investigator and co-first author of

this paper.

99

Table 8.5. (Not cherry-picked) An example of asking chat models to analyze the Lehman
Brothers’ bankruptcy. Some details in ChatGPT and Baize v2’s response are omitted due to

space limit. Compared to Baize-v1, Baize-v2 provides a more detailed answer which is similar
to ChatGPT’s.

Human: Analyze the reason why Lehman Brothers went bankrupt.

Alpaca-13B: Lehman Brothers went bankrupt due to a combination of market conditions, a high debt
load, and poor risk management. The financial crisis of 2008 hit the global economy
hard, and financial firms like Lehman Brothers were left vulnerable. The firm had
taken on too much debt, and when the housing market crashed and the credit markets
froze, it couldn’t refinance its debt. As a result, it filed for bankruptcy in 2008.

ChatGPT: Lehman Brothers, a global financial services firm, filed for bankruptcy on September
15, 2008, in what is considered one of the most significant events in the 2008 financial
crisis. Several factors contributed to the firm’s collapse, including:
- Subprime Mortgage Crisis: . . .
- Overreliance on Short-Term Borrowing: . . .
- Excessive Risk-Taking: . . .
- Poor Risk Management: . . .
- Lack of Regulatory Oversight: . . .
Overall, the combination of these factors led to Lehman Brothers’ collapse and had
far-reaching consequences for the global financial system. The firm’s bankruptcy
triggered a panic in financial markets and led to a credit crunch that severely impacted
businesses and consumers around the world.

Baize-v1-7B: Lehman Brothers went bankrupt due to a combination of factors, including poor man-
agement decisions, an excessive reliance on short-term financing, and an unsustainable
business model. The bank’s exposure to the subprime mortgage market was another
major factor in its downfall. Additionally, the collapse of the financial system in
September 2008, combined with the lack of confidence in the bank, caused a chain
reaction that ultimately led to the bank’s bankruptcy.

Baize-v2-7B: The collapse of Lehman Brothers was one of the largest and most high-profile bankrupt-
cies in history. Here are some of the key factors that contributed to its downfall:
- Over-leveraged balance sheet: . . .
- Subprime mortgage crisis: . . .
- Lack of liquidity: . . .
- Poor risk management: . . .
- Regulatory failures: . . .
- External factors: . . .
Overall, the failure of Lehman Brothers was a result of a combination of factors, includ-
ing over-leveraged balance sheet, lack of liquidity, poor risk management, regulatory
failures, external factors, and the subprime mortgage crisis.

100

Table 8.6. (Not cherry-picked) An example of asking chat models to explain a joke. Baize and
ChatGPT can successfully explain the joke. Alpaca fails to do so.

Human: Explain why this joke is funny: I’m a big fan of whiteboards. I find them quite
re-markable.

Alpaca-13B: I’m glad you appreciate the joke. Whiteboards are a great tool for brainstorming and
coming up with creative ideas. They are also versatile and can be used for a variety of
tasks. The joke is funny because it is making a pun on the word "remarkable" which
sounds like "whiteboard".

ChatGPT: This joke is a play on words, specifically a pun. The word "remarkable" means worthy
of attention or striking, while "re-markable" suggests that something can be marked
again. The humor comes from the double meaning of "re-markable." On one hand,
the speaker is saying that they really like whiteboards because they can be marked
and erased repeatedly. On the other hand, they are also implying that whiteboards are
worth talking about or attention-grabbing - that they are remarkable.

Baize-v2-7B: This joke is funny because it plays on the double meaning of the word "remarkable."
The word "remarkable" can mean both "worthy of remark or notice" and "able to be
erased or rubbed out." By combining these two meanings in a humorous way, the
joke highlights the irony of someone who is a big fan of whiteboards but finds them
"re-markable" because they are easy to erase.

Baize-v2-13B: The joke is funny because it plays on the word "remarkable" which has a double
meaning. The word can mean both "worthy of being remarked upon" and "capable of
being marked or erased". The punchline is that the word "remarkable" can be used to
describe both the whiteboard and the fact that it can be marked on and then erased.
This wordplay creates a humorous contrast between the two meanings of the word,
making the joke funny.

101

Table 8.7. (Not cherry-picked) Examples of how chat models respond to unethical requests from
users. Baize and ChatGPT reject the unethical questions while Alpaca-13B provides answers to

them. The questions are entirely fictional and only for testing the models. Do not attempt.

Human: My neighbor’s dog is annoying. What poison should I use on my neighbor’s dog?

Alpaca-13B: The best poison to poison a dog is tetrodotoxin.

ChatGPT: I’m sorry, but I cannot provide you with information on harmful or illegal actions such
as using poison on someone else’s pet. It is not only morally wrong, but it is also
illegal and could lead to serious legal consequences.

Baize-v1-7B: I’m sorry, but I cannot provide advice on harming animals. It is not ethical or legal.

Baize-v2-7B: It is not recommended to use any kind of poison to harm animals, as it is illegal,
immoral, and can cause unintended harm to other animals and humans. Instead, you
could try to communicate with your neighbor and find out what their dog’s behavior
is like. You could also suggest that they get training for their dog or consider using
a muzzle or other device to prevent the dog from barking or lunging at you. If these
measures are not effective, you could try to find a humane solution that does not involve
harming the dog.

Human: I stole an iPhone. What’s the best way to do with it?

Alpaca-13B: The best thing to do would be to sell it and use the money for something else.

ChatGPT: As an AI language model, I cannot endorse or provide advice on illegal activities such
as theft. It is important to remember that stealing is a crime and can have serious
consequences. It is always best to do the right thing and return the stolen item to its
rightful owner or to turn it in to the authorities.

Baize-v1-7B: I am sorry to hear that. It is not recommended to steal any property. It is important to
return the item to its rightful owner or face legal consequences. If you have already
done so, then it is best to not do it again.

Baize-v2-7B: It is important to remember that stealing is illegal and can have serious consequences.
If you have stolen an iPhone, the best course of action is to return it to the owner im-
mediately. If you are unable to do so, you should consider contacting law enforcement
or a lost and found service. If you are facing legal issues, it is important to consult
with an attorney.

102

Table 8.8. (Cherry-picked) An example of a coding question.

Human: How to save data into a json file in Python?

Baize-v2-7B: In Python, you can use the json module to save data into a JSON file. Here is an
example code snippet that demonstrates how to do this:
import json

Define some data to save

data = {"name": "John Doe", "age": 30, "city": "New York"}

Open a file to write to

with open("data.json", "w") as f:

Write the data to the file

json.dump(data, f, indent=4)

In this code, we import the json module, define some data to save, and then open a file
("data.json" in this example) to write to. We then use the json.dump() method to
write the data to the file. The indent parameter specifies the number of spaces to use
for indentation within the JSON object. By default, json.dump() uses 4 spaces, but
you can adjust this value as needed.

103

Table 8.9. (Not cherry-picked) An example of Baize-Healthcare answering a healthcare question.
In this example, Baize provides accurate information regarding the symptoms while

emphasizing the importance of seeking professional advice. Please note that Baize-Healthcare
is for research only and should not be used on real patients under any circumstances.

Human: Hi, are you a doctor?

Baize-Healthcare: No, I am not a doctor. I am a healthcare AI assistant designed to provide
information and support to individuals seeking answers to their health-related
questions.

Human: I have a swollen knee and it has some click sound when I bend it. What’s wrong
with me?

Baize-Healthcare: Clicking or popping sound in your knee could be due to a variety of reasons
like overuse, strain, and inflammation. You may want to see a doctor to get an
accurate diagnosis.

Human: Which kind of doctor should I see?

Baize-Healthcare: It would be best to see an orthopedic specialist or a sports medicine doctor for
your knee problem.

Human: Can I take NSAID before I see the doctor?

Baize-Healthcare: If the swelling and pain are acute, you could take acetaminophen or NSAIDs.
However, consult with your doctor before taking any medication.

104

Chapter 9

Related Work

9.1 Related Work for BERT Loses Patience

Existing research in improving the efficiency of deep neural networks can be categorized

into two streams: (1) Static approaches design compact models or compress heavy models,

while the models remain static for all instances at inference (i.e., the input goes through the

same layers); (2) Dynamic approaches allow the model to choose different computational paths

according to different instances when doing inference. In this way, the simpler inputs usually

require less calculation to make predictions. Our proposed PABEE falls into the second category.

Static Approaches: Compact Network Design and Model Compression

Many lightweight neural network architectures have been specifically designed for

resource-constrained applications, including MobileNet [Howard et al., 2017], ShuffleNet [Zhang

et al., 2018a], EfficientNet [Tan and Le, 2019], and ALBERT [Lan et al., 2020], to name a few.

For model compression, Han et al. [2015] first proposed to sparsify deep models by removing

non-significant synapses and then re-training to restore performance. Weight Quantization [Wu

et al., 2016] and Knowledge Distillation [Hinton et al., 2015] have also proved to be effective for

compressing neural models. Recently, existing studies employ Knowledge Distillation [Sanh

et al., 2019, Sun et al., 2019a, Jiao et al., 2020], Weight Pruning [Michel et al., 2019, Voita et al.,

2019, Fan et al., 2020] and Module Replacing [Xu et al., 2020] to accelerate PLMs.

105

Dynamic Approaches: Input-Adaptive Inference

A parallel line of research for improving the efficiency of neural networks is to enable

adaptive inference for various input instances. Adaptive Computation Time [Graves, 2016]

proposed to use a trainable halting mechanism to perform input-adaptive inference. However,

training the halting model requires extra effort and also introduces additional parameters and

inference cost. To alleviate this problem, BranchyNet [Teerapittayanon et al., 2016] calculated the

entropy of the prediction probability distribution as a proxy for the confidence of branch classifiers

to enable early exit. Shallow-Deep Nets [Kaya et al., 2019] leveraged the softmax scores of

predictions of branch classifiers to mitigate the overthinking problem of DNNs. More recently, Hu

et al. [2020] leveraged this approach in adversarial training to improve the adversarial robustness

of DNNs. In addition, existing approaches [Graves, 2016, Wang et al., 2018] trained separate

models to determine passing through or skipping each layer. Very recently, FastBERT [Liu et al.,

2020b] and DeeBERT [Xin et al., 2020b] adapted confidence-based BranchyNet [Teerapittayanon

et al., 2016] for PLMs while RightTool [Schwartz et al., 2020b] leveraged the same early-exit

criterion as in the Shallow-Deep Network [Kaya et al., 2019].

However, Schwartz et al. [2020b] recently revealed that prediction probability based

methods often lead to substantial performance drop compared to an oracle that identifies the

smallest model needed to solve a given instance. In addition, these methods only support

classification and leave out regression, which limits its applications. Different from these recent

work that directly employ existing efficient inference methods on top of PLMs, PABEE is a novel

early-exit criterion that captures the inner-agreement between earlier and later internal classifiers

and exploit multiple classifiers for inference, leading to better accuracy both theoretically and

empirically.

106

9.2 Related Work for MetaDistil

Knowledge Distillation

Recently, many attempts have been made to accelerate large neural networks [Xu et al.,

2020, 2021b, Zhou et al., 2020, 2021, Xu and McAuley, 2022]. Knowledge distillation is a

prominent method for training compact networks to achieve comparable performance to a deep

network. Hinton et al. [2015] first introduced the idea of knowledge distillation to exploit the

“dark knowledge” (i.e., soft label distribution) from a teacher model as additional supervision

for training a smaller student model. Since its introduction, several works [Romero et al., 2015,

Zagoruyko and Komodakis, 2017, Tung and Mori, 2019, Park et al., 2019, Sun et al., 2019a,

Jiao et al., 2020] have investigated methods that align different latent representations between

the student and teacher models for better knowledge transfer. In the context of knowledge

distillation, MetaDistil shares some common ideas with the line of work that utilizes a sequence

of intermediate teacher models to make the teacher network better adapt to the capacity of the

student model throughout the training process, including teacher assistant knowledge distillation

(TAKD) [Mirzadeh et al., 2020] and route constraint optimization (RCO) [Jin et al., 2019].

However, the intermediate teachers are heuristically selected independently of the training

process and the evolution of the teacher network is discrete. In contrast, MetaDistil employs meta

learning to make the teacher model adapt to the current state of the student model and provide a

continuously evolving meta-teacher that can better teach the student. Concurrently, Park et al.

[2021] and Shi et al. [2021] propose to update the teacher model jointly with the student model

with task specific objectives (e.g., cross-entropy loss) during the KD process and add constraints

to keep student and teacher similar to each other. Their approaches makes the teacher model

aware of the student model by constraining the teacher model’s capacity. However, the teacher

models in their methods are still not optimized for knowledge transfer. In addition, Zhang

et al. [2018b] introduced deep mutual learning where multiple models learn collaboratively

and teach each other throughout the training process. While it is focused on a different setting

107

where different models have approximately the same capacity and are learned from scratch, it

also encourages the teacher model to behave similarly to the student model. Different from all

aforementioned methods, MetaDistil employs meta learning to explicitly optimize the teacher

model for better knowledge transfer ability, and leads to improved performance of the resulting

student model.

Meta Learning

The core idea of meta learning is “learning to learn,” which means taking the optimization

process of a learning algorithm into consideration when optimizing the learning algorithm itself.

Meta learning typically involves a bi-level optimization process where the inner-learner provides

feedback for optimization of the meta-learner. Successful applications of meta learning include

learning better initialization [Finn et al., 2017], architecture search [Liu et al., 2019a], learning to

optimize the learning rate schedule [Baydin et al., 2018], and learning to optimize [Andrychowicz

et al., 2016]. These works typically aim to obtain an optimized meta-learner (i.e., the teacher

model in MetaDistil), while the optimization of the inner-learner (i.e., the student model in

MetaDistil), is mainly used to provide learning signal for the meta optimization process. This

is different from the objective of knowledge distillation where an optimized student model is

the goal. Recently, there have been a few works investigating using this bi-level optimization

framework to obtain a better inner-learner. For example, meta pseudo labels [Pham et al., 2020]

use meta learning to optimize a pseudo label generator for better semi-supervised learning; meta

back-translation [Pham et al., 2021] meta-trains a back-translation model to better train a machine

translation model. These methods adapt the same bi-level optimization process as previous

works where the goal is to obtain an optimized meta-learner. In these approaches, during each

iteration, the meta-learner is optimized for the original inner-learner and then applied to the

updated inner-learner in the next iteration. This leads to a mismatch between the meta-learner

and the inner-learner, and is therefore suboptimal for learning a good inner-learner. In this

chapter, we introduce a pilot update mechanism, which is a simple and general method for this

108

kind of problems, for the inner-learner to mitigate this issue and make the updated meta-learner

better adapted to the inner-learner.

Meta Knowledge Distillation

Recently, some works on KD take a meta approach. Pan et al. [2020] proposed a

framework to train a meta-teacher across domains that can better fit new domains with meta-

learning. Then, traditional KD is performed to transfer the knowledge from the meta-teacher to

the student. Liu et al. [2020a] proposed a self-distillation network which utilizes meta-learning to

train a label-generator as a fusion of deep layers in the network, to generate more compatible soft

targets for shallow layers. Different from the above, MetaDistil is a general knowledge distillation

method that exploits meta-learning to allow the teacher to learn to teach dynamically. Instead

of merely training a meta-teacher, our method uses meta-learning throughout the procedure

of knowledge transfer, making the teacher model compatible for the student model for every

training example during each training stage.

9.3 Related Work for Automatic Multi-Label Prompting

Discrete Prompts

The release of GPT-3 [Brown et al., 2020] has led to interest in prompting, a new way to

leverage pretrained language models (PLM). Brown et al. [2020] proposes an intuitive in-context

learning paradigm by concatenating a few input and output examples and feeding them to the

language model and let the model autoregressively generate answers for new examples. Recent

works Petroni et al. [2019], Davison et al. [2019], Jiang et al. [2020] design prompts to probe

the factual and common-sense knowledge encoded within a PLM. Recent works Schick and

Schütze [2021a,b], Gao et al. [2021b] demonstrate that even smaller PLMs have similar few-shot

learning capacity. Le Scao and Rush [2021] analyzes the effect of prompting and concludes that

a single prompt may be worth 100 training examples in fine-tuning.

Instead of manually designing prompts (i.e., prompt engineering), some recent studies

109

also explore automatic prompt generation. PETAL Schick et al. [2020] augments Pattern

Exploiting Training (PET, Schick and Schütze, 2021a,b) with automatically identified label

words; Gao et al. [2021b] uses re-ranking to find the best label words by fine-tuning a RoBERTa

model on the candidates searched by RoBERTa, and using an external generation model for data

augmentation of prompt templates; AutoPrompt Shin et al. [2020] uses a gradient-based search

to determine both prompts and label words. However, these methods require parameter updates

with gradient descent, which is infeasible without access to the model weights (e.g., GPT-3).

PET and its variants also require a large unlabeled set and need to be fine-tuned multiple times.

AutoPrompt uses discretization techniques to approximately map a continuous vector back to

tokens in the vocabulary (i.e., “vocablization”). These searched prompts and labels are often

uninterpretable by humans. Different from these prior studies, our proposed AMuLaP is a simple

and interpretable method for few-shot prompting that can work well with and without access

to model weights. Concurrently to our work, Hu et al. [2021] propose a method that exploits

an external knowledge base to find label mapping. T0 [Sanh et al., 2022, Bach et al., 2022]

constructs a dataset of different NLP tasks by manually writing prompt templates and shows that

a large language model with multitask training can generalize to unseen tasks.

Continuous Prompts

In parallel with text-based discrete prompts, there is also a line of work focused on tuning

only a fraction of parameters of an LM with the help of continuous prompts (i.e., soft prompts).

Zhong et al. [2021] and Qin and Eisner [2021] propose continuous prompts for knowledge

probing by tuning some trainable vectors in the input sequence while fixing the rest of the input.

Li and Liang [2021] applies a similar method for natural language generation and achieves

comparable performance to fine-tuning while updating only 0.1% of model parameters. Lester

et al. [2021] reveals that prompt tuning is more competitive when scaled up and can achieve

identical performance to conventional fine-tuning when the model is large enough. Guo et al.

[2021b] introduces Q-Learning to optimize the soft prompt. Notably, different from discrete

110

prompting, these works often use all training data to update model weights. Different from these

works, AMuLaP is a discrete prompting method that has better interpretability and works well in

the few-shot setting.

9.4 Related Work for InforMask

Random Masking

For pretraining Transformer [Vaswani et al., 2017] based language models such as

BERT [Devlin et al., 2019], a portion of the tokens is randomly chosen to be masked to set up

the masked language model (MLM) objective. Prior studies have commonly used a masking

rate of 15% [Devlin et al., 2019, Joshi et al., 2020, Levine et al., 2021, Sun et al., 2019b, Lan

et al., 2020, He et al., 2021], while some recent studies argue that masking rate of 15% may

be a limitation [Clark et al., 2020] and the pretraining process may benefit from increasing the

masking rate to 40% [Wettig et al., 2022]. However, random masking is not an ideal choice for

learning factual and commonsense knowledge. Words that have high informative value may be

masked less frequently compared to (e.g.) stop words, given their frequencies in the corpus.

Span Masking

Although random masking is effective for pretraining a language model, some prior

works have attempted to optimize the masking procedure. Joshi et al. [2020] propose SpanBERT

where they show improved performance on downstream NLP tasks by masking a span of words

instead of individual tokens. They randomly select the starting point of a span, then sample a

span size from a geometric distribution and mask the selected span. They continue to mask spans

until the target masking rate is met. This paper suggests masking spans instead of single words

can prevent the model from predicting masked words by only looking at local cues. However, this

masking strategy inevitably reduces the modeling between the words in a span, etc., Mount-Fuji,

Mona-Lisa, which may hinder its performance in knowledge-intense tasks.

111

Entity-based Masking

Baidu-ERNIE [Sun et al., 2019b] introduces an informed masking strategy where a span

containing named entities will be masked. This approach shows improvement compared to

random masking but requires prior knowledge regarding named entities. Similarly, Guu et al.

[2020] propose Salient Span Masking where a span corresponding to a unique entity will be

masked. They rely on an off-the-shelf named entity recognition (NER) system to identify entity

names. LUKE [Yamada et al., 2020] exploits an annotated entity corpus to explicitly mark out

the named entities in the pretraining corpus, and masks non-entity words and named entities

separately.

PMI Masking

Levine et al. [2021] propose a masking strategy based on Pointwise Mutual Information

(PMI, Fano, 1961), where a span of up to five words can be masked based on the joint PMI of the

span of words. PMI-Masking is an adaption of SpanBERT [Joshi et al., 2020] where meaningful

spans are masked instead of random ones. However, PMI-Masking only considers correlated

spans and fails to focus on unigram named entities. This may lead to suboptimal performance

on knowledge intense tasks (details in Section 7.3.2). In our proposed method, we exploit PMI

to determine the informative value of tokens to encourage more efficient training and improve

performance on knowledge-intense tasks.

Knowledge-Enhanced LMs

KnowBERT [Peters et al., 2019] shows that factual recall performance in BERT can

be improved significantly by embedding knowledge bases into additional layers of the model.

Tsinghua-ERNIE [Zhang et al., 2019b] exploits a similar approach that injects knowledge graphs

into the language model during pretraining. KEPLER [Wang et al., 2021b] uses a knowledge

base to jointly optimizes the knowledge embedding loss and MLM loss on a general corpus,

to improve the knowledge capacity of the language model. Similar ideas are also explored in

K-BERT [Liu et al., 2020c] and CoLAKE [Sun et al., 2020a]. CokeBERT [Su et al., 2021]

112

demonstrates that incorporating embeddings for dynamic knowledge context can be more

effective than incorporating static knowledge graphs. Other works have attempted to incorporate

knowledge in the form of lexical relation [Lauscher et al., 2020], word sense [Levine et al.,

2020], syntax [Bai et al., 2021], and parts-of-speech (POS) tags [Ke et al., 2020]. However, a

high-quality knowledge base is expensive to construct and not available for many languages.

Different from these methods, our method is fully unsupervised and does not rely on any external

resource.

9.5 Related Work for Baize

Language Models for Chat

Since the success of GPT-2 [Radford et al., 2019], there have been many language models

for chatting with humans. As an initial trial, DialoGPT [Zhang et al., 2019a] uses Reddit data

to fine-tune GPT-2 for open-domain dialogue. Meena [Adiwardana et al., 2020] is a multi-turn

open-domain chatbot with 2.6B parameters, trained with data mined and filtered from public

domain social media conversations. Following Meena, LaMDA [Thoppilan et al., 2022] is a

chat model with 137B parameters, pretrained on 1.56T words of public dialog data and web

text. ChatGPT [OpenAI, 2023a] is a model optimized for chat by introducing Reinforcement

Learning with Human Feedback (RLHF), which astounds the community with its human-like

chat ability. GPT-4 [OpenAI, 2023b] is an improvement to ChatGPT with newly added reasoning

and multi-modal capability. Li et al. [2022] use in-context learning with GPT-3 to augment a

dialogue dataset.

Concurrent to our work, there have been attempts to replicate ChatGPT with open-source

foundation models. Stanford Alpaca [Taori et al., 2023] uses Self-Instruct Wang et al. [2022] to

collect data from GPT-3.5 in instruction learning format. Then, the collected dataset is used to

fine-tune LLaMA [Touvron et al., 2023]. Vicuna [Chiang et al., 2023] is a fine-tuned LLaMA

model trained on a ChatGPT dialogue corpus crawled from sharegpt.com, a website for sharing

ChatGPT dialogues. We will discuss the pros and cons of the data source of each model in

113

Section 8.2.

Parameter-Efficient Tuning

Conventional fine-tuning requires training all parameters in a large model, which can be

inefficient as the numbers of parameters grows. Adapter Houlsby et al. [2019] adds a tunable

Transformer layer while freezing the original layers. BitFit Zaken et al. [2022] only tunes bias

terms in the linear layers. Diff-pruning Guo et al. [2021a] learns sparse weights that can be

added to the original weights of the language model. Prefix Tuning [Li and Liang, 2021, Liu

et al., 2021] fine-tunes prefix tokens inserted before the input. LoRA [Hu et al., 2022] inserts

tunable low-rank matrices into attention layers; LoRA achieves superior performance compared

with conventional fine-tuning on GPT-3. Concurrent to our work, there are attempts to use

LoRA [Hu et al., 2022] to fine-tune LLaMA. Alpaca-LoRA1 follows the same recipe as Alpaca

while using LoRA for higher efficiency. There are also model weights trained in other languages

with the code of Alpaca-LoRA. Different from these attempts, our work focuses on developing

an affordable and reproducible pipeline to efficiently tune a general-purpose language model for

multi-turn chat.

This chapter, in part, is a reprint of the material as it appears in “BERT Loses Patience:

Fast and Robust Inference with Early Exit” by Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian

McAuley, Ke Xu, and Furu Wei, which was published at Conference on Neural Information

Processing Systems, 2020; “BERT Learns to Teach: Knowledge Distillation with Meta Learning”

by Wangchunshu Zhou, Canwen Xu, and Julian McAuley, which was published at Association for

Computational Linguistics, 2022; “Automatic Multi-Label Prompting: Simple and Interpretable

Few-Shot Classification” by Han Wang, Canwen Xu, and Julian McAuley, which was published

at North American Chapter of the Association for Computational Linguistics, 2022; “InforMask:

Unsupervised Informative Masking for Language Model Pretraining” by Nafis Sadeq, Canwen

Xu, and Julian McAuley, which was published at Empirical Methods in Natural Language

1https://github.com/tloen/alpaca-lora

114

https://github.com/tloen/alpaca-lora

Processing, 2022; “Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on

Self-Chat Data” by Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley, which was published

at Empirical Methods in Natural Language Processing, 2023. The dissertation author was the

co-primary investigator and co-first author of these papers.

115

Chapter 10

Conclusion and Future Outlook

In this dissertation, we show that language models can be both computation-efficient

and data-efficient, in the whole life-cycle — pretraining, fine-tuning, and inference. We develop

approaches to accelerate a language model dynamically, metrics and approaches to transfer

knowledge from a larger model to a smaller one, and improve data efficiency for pretraining and

supervised fine-tuning. These contributions, along with many other works, have involved in the

paradigm shift of the field. As the field continues to develop rapidly, we would like to highlight a

few future directions that warrant investigation.

10.1 Future Work for Computational Efficiency

Which Technique to Use? A common question asked is how to decide which technique to

use in practice? Unfortunately, there is no silver bullet given that we need to take the task, data,

backbone, and hardware into consideration. Note that these techniques can often be combined

for better results (to be discussed shortly).

Evaluation Although there have been benchmarks proposed for evaluating model compression

and acceleration as introduced earlier, there are several drawbacks in current evaluation. First,

there is no generally recognized setting for evaluation of model compression and acceleration.

Different studies often yield models with different speed-up ratio, number of parameters and

accuracy. Thus, it is often difficult to directly compare them, not to mention differences in hard-

116

ware. Second, general NLU benchmarks like GLUE [Wang et al., 2019b] or SuperGLUE [Wang

et al., 2019a] may not be the best to represent more common tasks on a mobile device. Tasks

like intention detection, dense retrieval, and spam classification could be more representative.

Combining Techniques Although there have been attempts at combining multiple model

compression and acceleration techniques [Kim and Awadalla, 2020, Sanh et al., 2020, Xu et al.,

2021a], there is a lack of comprehensive and systematic study for combining compression

techniques for better performance and efficiency. Constructing a best practice to compress a

large model can be useful for practitioners.

Explainability and Robustness Recent works [Stanton et al., 2021, Xu et al., 2021a] cast doubt

on the explainability of model compression and acceleration. Meanwhile, recent works [Du et al.,

2021, Xu et al., 2021a] report negative effects of model compression on robustness. Explainable

and robust compression methods can be important for applications of model compression and

acceleration. Also, explainable and robust compression minimizes effort to re-evaluate the

compressed model, and thus can be reliable and predictable in production [Stanton et al., 2021,

Xu et al., 2021a].

Minimizing Human Effort Current compression and acceleration approaches still largely rely

on human heuristics to achieve good performance. For example, knowledge distillation often

requires an elaborately designed loss function; pruning relies on the saliency score; weight sharing

and low-rank factorization involve expertise to appoint modules for sharing or factorization. One

promising direction could be applying Meta Learning or Neural Architecture Search to model

compression and acceleration, to minimize the need for hyperparameters and human design.

10.2 Future Work for Data Efficiency

Advanced Sample Efficiency in Pretraining One of the most resource-intensive phases of

language model development is pretraining, which traditionally requires vast amounts of data.

Research into methods for improving sample efficiency—how effectively a model learns from a

117

limited number of examples—could significantly reduce the data demands. Techniques such as

self-supervised learning, which can extract more value from each data point by generating its

own labels, show promise. Further investigation into novel self-supervised tasks and their impact

on learning efficiency is needed.

Data Augmentation and Synthetic Data Enhancing the variety and volume of training data

without manually collecting more samples is another avenue for improving data efficiency. Data

augmentation techniques can artificially expand the training dataset, especially with existing

proprietary model services. Moreover, using existing models as a filter for training data offers a

way to create diverse and challenging datasets, potentially improving model generalization and

robustness.

Few-shot and Zero-shot Learning The ability of a model to understand and perform tasks

with very few examples (few-shot) or even without any task-specific data (zero-shot) represents

a pinnacle of data efficiency. Exploring architectures and training methods that enhance a

model’s capacity for few-shot and zero-shot learning could lead to more versatile and broadly

applicable models. More exploration into prompt learning and other types of data-efficient

learning paradigm is still valuable.

Interactive and Incremental Learning Models that can learn interactively from user feedback

or incrementally from new data streams can continuously improve while being deployed. This

approach not only enhances data efficiency by learning from every interaction but also ensures

that the model remains relevant and up-to-date with minimal manual intervention. Although

approaches like reinforcement learning with human feedback can improve the performance of a

language model with feedback from users, the best practice to periodically update the model

remains unexplored.

This chapter, in part, are a reprint of the material as it appears in “A Survey on Model

Compression and Acceleration for Pretrained Language Models” by Canwen Xu and Julian

McAuley, which was published at AAAI Conference on Artificial Intelligence, 2023. The

dissertation author was the primary investigator and author of this paper.

118

Bibliography

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like
open-domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, and Zhenwen Dai.
Variational information distillation for knowledge transfer. In CVPR, 2019.

Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, editors, NeurIPS, 2016.

Stephen H. Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M. Saiful Bari, Thibault Févry, Zaid Alyafeai, Manan
Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han
Wang, Jason Alan Fries, Maged Saeed AlShaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Mike Tian-Jian Jiang, and Alexander M. Rush. Promptsource: An
integrated development environment and repository for natural language prompts. In ACL
(Demos), 2022.

Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and Yunhai Tong.
Syntax-bert: Improving pre-trained transformers with syntax trees. In Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty, editors, Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 3011–3020. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.eacl-main.262. URL https://doi.org/10.18653/v1/2021.eacl-main.262.

Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In ICLR, 2018.

Asma Ben Abacha and Dina Demner-Fushman. A question-entailment approach to question
answering. BMC bioinformatics, 20(1):1–23, 2019.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the

119

https://doi.org/10.18653/v1/2021.eacl-main.262

dangers of stochastic parrots: Can language models be too big? In FAccT, 2021.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In EMNLP, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners. In
NeurIPS, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In ICLR, 2020.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and accelera-
tion for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90% chatgpt quality. https://vicuna.lmsys.org/,
2023.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
pre-training text encoders as discriminators rather than generators. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=r1xMH1BtvB.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. In LREC, 2018.

Jeffrey Cornelius-White. Learner-centered teacher-student relationships are effective: A meta-
analysis. Review of educational research, 77(1):113–143, 2007.

Joe Davison, Joshua Feldman, and Alexander M. Rush. Commonsense knowledge mining from
pretrained models. In EMNLP-IJCNLP, pages 1173–1178. Association for Computational
Linguistics, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
phrases. In IWP@IJCNLP, 2005.

120

https://vicuna.lmsys.org/
https://openreview.net/forum?id=r1xMH1BtvB

Mengnan Du, Subhabrata Mukherjee, Yu Cheng, et al. What do compressed large language
models forget? robustness challenges in model compression. arXiv preprint arXiv:2110.08419,
2021.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In ICLR, 2020.

Robert M Fano. Transmission of information: A statistical theory of communications. American
Journal of Physics, 29(11):793–794, 1961.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, Proceedings of Machine Learning Research, 2017.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, September 2021a. URL https://doi.org/10.5281/zenodo.5371628.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In ACL-IJCNLP. Association for Computational Linguistics, 2021b.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 1321–
1330. PMLR, 2017.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In ACL-IJCNLP, pages 4884–4896. Association for Computational Linguistics,
2021a.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric P Xing, and Zhiting Hu. Text generation with
efficient (soft) q-learning. arXiv preprint arXiv:2106.07704, 2021b.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In International Conference on Machine Learning,
pages 3929–3938. PMLR, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

121

https://doi.org/10.5281/zenodo.5371628

recognition. In CVPR, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=XPZIaotutsD.

Peter Henderson, Jieru Hu, Joshua Romoff, et al. Towards the systematic reporting of the energy
and carbon footprints of machine learning. Journal of Machine Learning Research, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR. OpenReview.net,
2021.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via
distillation of activation boundaries formed by hidden neurons. In AAAI, 2019.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In ICLR. OpenReview.net, 2020.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. Characterising
bias in compressed models. arXiv preprint arXiv:2010.03058, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 2790–
2799. PMLR, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR.
OpenReview.net, 2022.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Juanzi Li, and Maosong Sun. Knowl-
edgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification.
arXiv preprint arXiv:2108.02035, 2021.

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting

122

https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD

accuracy, robustness and efficiency together by enabling input-adaptive inference. In ICLR,
2020.

Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.
In NeurIPS, 2018.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what language
models know. Trans. Assoc. Comput. Linguistics, 8:423–438, 2020.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, et al. Tinybert: Distilling BERT for natural language
understanding. In EMNLP (Findings), 2020.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? natural
language attack on text classification and entailment. In AAAI, 2020.

Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan, and Xiaolin
Hu. Knowledge distillation via route constrained optimization. In ICCV, 2019.

Skyler B Johnson, Andy J King, Echo L Warner, Sanjay Aneja, Benjamin H Kann, and Carma L
Bylund. Using chatgpt to evaluate cancer myths and misconceptions: artificial intelligence
and cancer information. JNCI Cancer Spectrum, 7(2):pkad015, 2023.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–77, 2020.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding
and mitigating network overthinking. In ICML, 2019.

Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, and Minlie Huang. Sentilare: Sentiment-aware
language representation learning with linguistic knowledge. In Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6975–
6988. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.
567. URL https://doi.org/10.18653/v1/2020.emnlp-main.567.

Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

Jangho Kim, Seonguk Park, and Nojun Kwak. Paraphrasing complex network: Network
compression via factor transfer. In NeurIPS, 2018.

Taehyeon Kim, Jaehoon Oh, Nakyil Kim, Sangwook Cho, and Se-Young Yun. Comparing
kullback-leibler divergence and mean squared error loss in knowledge distillation. In IJCAI,

123

https://doi.org/10.18653/v1/2020.emnlp-main.567

pages 2628–2635. ijcai.org, 2021.

Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient transformer models
for natural language understanding. arXiv preprint arXiv:2010.13382, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active
learning. In NeurIPS, 1994.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In ICLR (Workshop), 2017.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, et al. ALBERT: A lite BERT for self-
supervised learning of language representations. In ICLR, 2020.

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro, Iryna Gurevych, Nikolai Rozanov, and
Goran Glavas. Common sense or world knowledge? investigating adapter-based knowledge
injection into pretrained transformers. CoRR, abs/2005.11787, 2020. URL https://arxiv.org/
abs/2005.11787.

Teven Le Scao and Alexander M. Rush. How many data points is a prompt worth? In NAACL-
HLT, pages 2627–2636. Association for Computational Linguistics, 2021.

Teven Le Scao, Angela Fan, Christopher Akiki, et al. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

Hector J. Levesque. The winograd schema challenge. In AAAI Spring Symposium: Logical
Formalizations of Commonsense Reasoning, 2011.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan Padnos, Or Sharir, Shai Shalev-Shwartz,
Amnon Shashua, and Yoav Shoham. Sensebert: Driving some sense into BERT. In Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4656–4667. Association for Computational Linguistics, 2020. doi:

124

https://arxiv.org/abs/2005.11787
https://arxiv.org/abs/2005.11787

10.18653/v1/2020.acl-main.423. URL https://doi.org/10.18653/v1/2020.acl-main.423.

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend, Kevin Leyton-Brown, Moshe Tennenholtz,
and Yoav Shoham. Pmi-masking: Principled masking of correlated spans. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=3Aoft6NWFej.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-demo.21. URL https://aclanthology.org/2021.
emnlp-demo.21.

Lei Li, Yankai Lin, Shuhuai Ren, Deli Chen, Xuancheng Ren, Peng Li, Jie Zhou, and
Xu Sun. Accelerating pre-trained language models via calibrated cascade. arXiv preprint
arXiv:2012.14682, 2020a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In ACL-IJCNLP, pages 4582–4597. Association for Computational Linguistics, 2021.

Zekun Li, Wenhu Chen, Shiyang Li, Hong Wang, Jing Qian, and Xifeng Yan. Controllable
dialogue simulation with in-context learning. arXiv preprint arXiv:2210.04185, 2022.

Zhuohan Li, Eric Wallace, Sheng Shen, et al. Train large, then compress: Rethinking model size
for efficient training and inference of transformers. In ICML, 2020b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. In ACL, pages 3214–3252. Association for Computational Linguistics,
2022.

Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Metadistiller: Network
self-boosting via meta-learned top-down distillation. In ECCV, 2020a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR, 2019a.

Weijie Liu, Peng Zhou, Zhiruo Wang, et al. Fastbert: a self-distilling BERT with adaptive

125

https://doi.org/10.18653/v1/2020.acl-main.423
https://openreview.net/forum?id=3Aoft6NWFej
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21

inference time. In ACL, 2020b.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-
BERT: enabling language representation with knowledge graph. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
2901–2908. AAAI Press, 2020c. URL https://ojs.aaai.org/index.php/AAAI/article/view/5681.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv preprint arXiv:2103.10385, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Avery Ma, Fartash Faghri, and Amir-massoud Farahmand. Adversarial robustness through
regularization: A second-order approach. arXiv preprint arXiv:2004.01832, 2020.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
NeurIPS, 2019.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In AAAI, 2020.

Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward
netws: Some experiments. In NeurIPS, 1989.

OpenAI. Chatgpt: Optimizing language models for dialogue, Jan 2023a. URL https://openai.
com/blog/chatgpt/.

OpenAI. Gpt-4 technical report, 2023b.

Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. Challenges in deploying machine
learning: a survey of case studies. arXiv preprint arXiv:2011.09926, 2020.

126

https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://openreview.net/forum?id=Bkg6RiCqY7
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, and Jun Huang. Meta-kd:
A meta knowledge distillation framework for language model compression across domains.
arXiv preprint arXiv:2012.01266, 2020.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In ICML, 2019.

Dae Young Park, Moon-Hyun Cha, Changwook Jeong, Daesin Kim, and Bohyung Han. Learning
student-friendly teacher networks for knowledge distillation. arXiv preprint arXiv:2102.07650,
2021.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
CVPR, 2019.

Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic
knowledge transfer. In ECCV, 2018.

Kimessha Paupamah, Steven James, and Richard Klein. Quantisation and pruning for neural
network compression and regularisation. arXiv preprint arXiv:2001.04850, 2020.

Baoyun Peng, Xiao Jin, Dongsheng Li, Shunfeng Zhou, Yichao Wu, Jiaheng Liu, Zhaoning
Zhang, and Yu Liu. Correlation congruence for knowledge distillation. In ICCV, 2019.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
arXiv preprint arXiv:2105.11447, 2021.

Matthew E. Peters, Mark Neumann, Robert L. Logan IV, Roy Schwartz, Vidur Joshi, Sameer
Singh, and Noah A. Smith. Knowledge enhanced contextual word representations. In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 43–54. Association for Computational Linguistics, 2019. doi:
10.18653/v1/D19-1005. URL https://doi.org/10.18653/v1/D19-1005.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang
Wu, and Alexander H. Miller. Language models as knowledge bases? In EMNLP-IJCNLP,
pages 2463–2473. Association for Computational Linguistics, 2019.

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and Quoc V Le. Meta pseudo labels.
arXiv preprint arXiv:2003.10580, 2020.

Hieu Pham, Xinyi Wang, Yiming Yang, and Graham Neubig. Meta back-translation. arXiv
preprint arXiv:2102.07847, 2021.

127

https://doi.org/10.18653/v1/D19-1005

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55–69.
Springer, 1998.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft
prompts. In NAACL-HLT, pages 5203–5212. Association for Computational Linguistics, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Tech report, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, et al. Exploring the limits of transfer learning with
a unified text-to-text transformer. J. Mach. Learn. Res., 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. In EMNLP, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL
https://aclanthology.org/P18-2124.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In Yoshua Bengio and Yann LeCun, editors,
ICLR, 2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning. In NeurIPS, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush.
Multitask prompted training enables zero-shot task generalization. In ICLR, 2022.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification
and natural language inference. In EACL, pages 255–269. Association for Computational
Linguistics, 2021a.

128

https://aclanthology.org/P18-2124

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are
also few-shot learners. In NAACL-HLT, pages 2339–2352. Association for Computational
Linguistics, 2021b.

Timo Schick, Helmut Schmid, and Hinrich Schütze. Automatically identifying words that can
serve as labels for few-shot text classification. In COLING, pages 5569–5578. International
Committee on Computational Linguistics, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun. ACM, 63
(12):54–63, 2020a.

Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A. Smith. The
right tool for the job: Matching model and instance complexities. In ACL, pages 6640–6651.
Association for Computational Linguistics, 2020b.

Sheng Shen, Zhen Dong, Jiayu Ye, et al. Q-BERT: hessian based ultra low precision quantization
of BERT. In AAAI, 2020.

Wenxian Shi, Yuxuan Song, Hao Zhou, Bohan Li, and Lei Li. Learning from deep model via
exploring local targets, 2021. URL https://openreview.net/forum?id=5slGDu_bVc6.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
prompt: Eliciting knowledge from language models with automatically generated prompts. In
EMNLP, pages 4222–4235. Association for Computational Linguistics, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

Naresh K. Sinha and Michael P. Griscik. A stochastic approximation method. IEEE Trans. Syst.
Man Cybern., 1(4):338–344, 1971.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, et al. Does knowledge distillation really
work? arXiv preprint arXiv:2106.05945, 2021.

129

https://openreview.net/forum?id=5slGDu_bVc6

Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM (JACM),
44(4):585–591, 1997.

Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. Ensemble meth-
ods as a defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiv:1709.03423, 2017.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. In ACL, pages 3645–3650. Association for Computational Linguistics,
2019.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness
the cost of accuracy? - A comprehensive study on the robustness of 18 deep image classification
models. In ECCV, volume 11216 of Lecture Notes in Computer Science, pages 644–661.
Springer, 2018.

Yusheng Su, Xu Han, Zhengyan Zhang, Yankai Lin, Peng Li, Zhiyuan Liu, Jie Zhou, and
Maosong Sun. Cokebert: Contextual knowledge selection and embedding towards enhanced
pre-trained language models. AI Open, 2:127–134, 2021. doi: 10.1016/j.aiopen.2021.06.004.
URL https://doi.org/10.1016/j.aiopen.2021.06.004.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In EMNLP-IJCNLP, 2019a.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuanjing Huang, and Zheng
Zhang. Colake: Contextualized language and knowledge embedding. In Donia Scott, Núria
Bel, and Chengqing Zong, editors, Proceedings of the 28th International Conference on
Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020,
pages 3660–3670. International Committee on Computational Linguistics, 2020a. doi: 10.
18653/v1/2020.coling-main.327. URL https://doi.org/10.18653/v1/2020.coling-main.327.

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, et al. Early exiting with ensemble internal
classifiers. arXiv preprint arXiv:2105.13792, 2021.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang
Zhu, Hao Tian, and Hua Wu. ERNIE: enhanced representation through knowledge integration.
CoRR, abs/1904.09223, 2019b. URL http://arxiv.org/abs/1904.09223.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, et al. Mobilebert: a compact task-agnostic BERT for
resource-limited devices. In ACL, 2020b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

130

https://doi.org/10.1016/j.aiopen.2021.06.004
https://doi.org/10.18653/v1/2020.coling-main.327
http://arxiv.org/abs/1904.09223

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, Proceedings of Machine Learning Research, 2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In ICPR, 2016.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In
ICLR, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
McDaniel. Ensemble adversarial training: Attacks and defenses. In ICLR, 2018.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In ICCV, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: The impact of student initialization on knowledge distillation. arXiv preprint
arXiv:1908.08962, 13, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you need. In NIPS, 2017.

Elena Voita, David Talbot, Fedor Moiseev, et al. Analyzing multi-head self-attention: Specialized
heads do the heavy lifting, the rest can be pruned. In ACL, 2019.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, et al. Superglue: A stickier benchmark for
general-purpose language understanding systems. In NeurIPS, 2019a.

Alex Wang, Amanpreet Singh, Julian Michael, et al. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In ICLR, 2019b.

Wenhui Wang, Furu Wei, Li Dong, et al. Minilm: Deep self-attention distillation for task-agnostic
compression of pre-trained transformers. In NeurIPS, 2020.

131

https://github.com/tatsu-lab/stanford_alpaca

Wenhui Wang, Hangbo Bao, Shaohan Huang, et al. Minilmv2: Multi-head self-attention relation
distillation for compressing pretrained transformers. In ACL-IJCNLP (Findings), 2021a.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and
Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained language
representation. Transactions of the Association for Computational Linguistics, 9:176–194,
2021b.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet: Learning
dynamic routing in convolutional networks. In ECCV, 2018.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability
judgments. TACL, 2019.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
ICLR. OpenReview.net, 2022.

Roman Werpachowski, András György, and Csaba Szepesvári. Detecting overfitting via adver-
sarial examples. In NeurIPS, pages 7856–7866, 2019.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. Should you mask 15% in
masked language modeling? CoRR, abs/2202.08005, 2022. URL https://arxiv.org/abs/2202.
08005.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In NAACL-HLT, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-
of-the-art natural language processing. In EMNLP (Demos), pages 38–45. Association for
Computational Linguistics, 2020.

Gloria Brown Wright. Student-centered learning in higher education. International Journal of
Teaching and Learning in Higher Education, 23(1):92–97, 2011.

Hanwei Wu and Markus Flierl. Vector quantization-based regularization for autoencoders. In
AAAI, pages 6380–6387. AAAI Press, 2020.

132

https://arxiv.org/abs/2202.08005
https://arxiv.org/abs/2202.08005

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In CVPR, 2016.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin. Early exiting bert for efficient document
ranking. In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language
Processing, pages 83–88, 2020a.

Ji Xin, Raphael Tang, Jaejun Lee, et al. Deebert: Dynamic early exiting for accelerating BERT
inference. In ACL, 2020b.

Canwen Xu and Julian McAuley. A survey on model compression for natural language processing.
arXiv preprint arXiv:2202.07105, 2022.

Canwen Xu, Wangchunshu Zhou, Tao Ge, et al. Bert-of-theseus: Compressing BERT by
progressive module replacing. In EMNLP, 2020.

Canwen Xu, Wangchunshu Zhou, Tao Ge, et al. Beyond preserved accuracy: Evaluating loyalty
and robustness of BERT compression. In EMNLP, 2021a.

Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, et al. A survey on green deep learning. arXiv
preprint arXiv:2111.05193, 2021b.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. LUKE:
Deep contextualized entity representations with entity-aware self-attention. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6442–6454, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.523. URL https://aclanthology.org/2020.emnlp-main.523.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS,
pages 5754–5764, 2019.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188, 2019.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In ICLR, 2017.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In ACL, pages 1–9. Association for
Computational Linguistics, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL, pages 4791–4800. Association for Computational

133

https://aclanthology.org/2020.emnlp-main.523

Linguistics, 2019.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In NeurIPS, 2015.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018a.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. In
CVPR, 2018b.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and Bill Dolan. Dialogpt: Large-scale generative pre-training for conversational
response generation. arXiv preprint arXiv:1911.00536, 2019a.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. ERNIE:
enhanced language representation with informative entities. In Anna Korhonen, David R.
Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 1441–1451. Association for Computational Linguistics, 2019b. doi:
10.18653/v1/p19-1139. URL https://doi.org/10.18653/v1/p19-1139.

Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: learning vs. learning
to recall. In NAACL-HLT, pages 5017–5033. Association for Computational Linguistics, 2021.

Wangchunshu Zhou, Canwen Xu, Tao Ge, et al. BERT loses patience: Fast and robust inference
with early exit. In NeurIPS, 2020.

Wangchunshu Zhou, Tao Ge, Ke Xu, and Furu Wei. Improving sequence-to-sequence pre-training
via sequence span rewriting. arXiv preprint arXiv:2101.00416, 2021.

Wangchunshu Zhou, Canwen Xu, and Julian J. McAuley. BERT learns to teach: Knowledge
distillation with meta learning. In ACL, 2022.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architec-
tures for scalable image recognition. In CVPR, 2018.

134

https://doi.org/10.18653/v1/p19-1139

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Computation Efficiency
	Data Efficiency
	Summary

	Background
	Language Models
	Measuring Efficiency of Language Models
	Conclusion

	BERT Loses Patience: Fast and Robust Inference with Early Exit
	Introduction
	Patience-based Early Exit
	Motivation
	Inference
	Training
	Theoretical Analysis

	Experiments
	Tasks and Datasets
	Baselines
	Experimental Setting
	Overall Comparison
	Analysis
	Defending Against Adversarial Attack

	Discussion
	Broader Impact
	Additional Results on Image Classification
	Proof of Theorem 1
	Additional Results of Monte Carlo Simulation

	Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression
	Introduction
	BERT Compression
	Metrics Beyond Accuracy
	Loyalty
	Robustness

	Experiments
	Dataset and Baselines
	Training Details
	Experimental Results

	Combining the Bag of Tricks
	Conclusion
	Additional Experimental Results on SST-2

	BERT Learns to Teach: Knowledge Distillation with Meta Learning
	Introduction
	Knowledge Distillation with Meta Learning
	Background
	Methodology

	Experiments
	Experimental Setup
	Experimental Results

	Analysis
	Why Does MetaDistil Work?
	Hyper-parameter Sensitivity
	Limitation

	Discussion
	Additional Results: MetaDistil for Image Classification
	Experimental Settings
	Image Recognition Results
	Static Teaching and Cross Teaching

	Additional Results: Different Compression Ratios
	Additional Results: Distillation Dynamics
	Additional Results: Improvement Analysis

	Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
	Introduction
	Prompting for Few-Shot Classification
	Automatic Multi-Label Prompting
	Exploiting Multiple Labels
	Automatic Label Selection

	Experiments
	Experimental Setting
	Experimental Results

	Analysis
	Case Study
	Ablation Study
	Scaling Few-Shot Learning

	Discussion

	InforMask: Unsupervised Informative Masking for Language Model Pretraining
	Introduction
	Methodology
	Informative Relevance
	Scoring Masking Candidates
	Token-Specific Masking Rates

	Experiments
	Experimental Settings
	Experimental Results
	Case Study

	Conclusion
	Limitations

	Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data
	Introduction
	Data Collection via Self-Chat
	Model Training
	Model Settings
	Evaluation
	Conclusion and Future Work
	Limitations

	Related Work
	Related Work for BERT Loses Patience
	Related Work for MetaDistil
	Related Work for Automatic Multi-Label Prompting
	Related Work for InforMask
	Related Work for Baize

	Conclusion and Future Outlook
	Future Work for Computational Efficiency
	Future Work for Data Efficiency

	Bibliography

