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Iago Attacks: Why The System Call API Is a Bad Untrusted
RPC Interface

Stephen Checkoway
Johns Hopkins University

Hovav Shacham
UC San Diego

ABSTRACT

In recent years, researchers have proposed systems for run-
ning trusted code on an untrusted operating system. Protec-
tion mechanisms deployed by such systems keep a malicious
kernel from directly manipulating a trusted application’s
state. Under such systems, the application and kernel are,
conceptually, peers, and the system call API defines an RPC
interface between them.

We introduce Iago attacks, attacks that a malicious kernel
can mount in this model. We show how a carefully chosen
sequence of integer return values to Linux system calls can
lead a supposedly protected process to act against its inter-
ests, and even to undertake arbitrary computation at the
malicious kernel’s behest.

Iago attacks are evidence that protecting applications from
malicious kernels is more difficult than previously realized.

1. INTRODUCTION

The prospect of running trusted tasks or processes on an
untrusted operating system is a tantalizing one. Legacy op-
erating systems are complicated and possibly untrustworthy
systems, and retargeting an application written for a legacy
OS to run on another, supposedly secure new OS may be
prohibitively expensive. Retargeting is also not an option
if we wish to provide trusted facilities (such as keyboard
input [18]) to legacy applications.

But how is it possible to protect a task from the operating
system running it? Every interaction between a userland
process and the outside world is mediated by the kernel.
A malicious kernel could lead a trusted process astray by
falsifying its inputs. Furthermore, the kernel runs at higher
privilege on the processor, and is specifically charged with
managing application memory. A malicious kernel could read
an application’s secrets from memory, or cause an application
to misbehave arbitrarily by modifying its program code.
In the last few years, researchers have proposed systems

intended to achieve precisely the objective above: to run
trusted code on an untrusted operating system. These pro-
posed systems insinuate a supervisory module at high privi-
lege that cooperates with the trusted application to isolate
and protect it from the potentially malicious kernel. The
supervisory module may derive its privilege from trusted
hardware, as in XOMOS [14] and Flicker [15, 16, 17], or from
running as a hypervisor, as in Overshadow [6, 22].
In this paper, we give evidence that protecting applica-

tions from malicious kernels is more difficult than previously
realized. For concreteness, we make particular reference to
the design of Overshadow. We stress, however, that it is

Listing 1: A Linux program that can be completely compro-
mised by an Iago attack.

#include <stdlib.h>

int main() {

void *p = malloc (100);

}

not our intention to single out Overshadow. Instead, we
consider an abstract Overshadow-style system that prevents
a malicious kernel from manipulating the protected applica-
tion’s memory and other resources. Under such a system,
the application and kernel are, conceptually, peers, and the
system call API defines an RPC interface between them. We
illustrate this conceptual relationship in Figure 1, on the
next page.

In our main contribution, we describe attacks that a mali-
cious kernel can mount in this model. Specifically, we show
how a carefully chosen sequence of integer return values to
Linux system calls can lead a supposedly protected process
astray. In many cases, including Linux programs as sim-
ple as that given in Listing 1, our attacks induce arbitrary
computation in the protected program. (See Section 4.3 for
details of our attack on the program in Listing 1.) We call
our attacks Iago attacks because our malicious kernel con-
vinces the application to act against its interests simply by
communicating with it.

Some of the systems listed above, such as Flicker, provide
only a narrow interface between the trusted component and
the untrusted OS, and may therefore not be vulnerable to
Iago attacks. The stated design goal of other systems listed
above—notably, Overshadow— is protecting legacy appli-
cations that make general-purpose system calls and run on
untrusted legacy operating systems such as Linux.

Overshadow.
The Overshadow system, proposed by Chen et al. [6] at

ASPLOS 2008, allows legacy applications to run, without
modification, on an untrusted kernel.

The fundamental technique introduced by Overshadow is
cloaking. When the application is running, its memory is
mapped normally. At other times, including when the kernel
handles a system call on the application’s behalf, the applica-
tion’s memory is encrypted and authenticated. Encryption
keeps the kernel from reading application memory, and au-
thentication keeps the kernel from modifying application
memory. The Overshadow monitor interposes on application-
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Figure 1: Software stack abstraction for (a) unprotected
systems and (b) systems protected by an Overshadow-like
mechanism. In an unprotected system, the application com-
municates with the kernel via system calls. Additionally, the
kernel is free to read and write application memory at will.
In a protected system, the application and kernel are peers
which communicate either directly via system calls, as with
an unprotected system, or through supervisor intermedia-
tion. At no point is the kernel able to directly read or write
protected application memory.

kernel switches to swap between the two views. Overshadow
uses virtualization to make cloaking efficient.

A sophisticated system of shims for system calls marshals
data between the application and the kernel. Some sys-
tem calls are modified extensively; for example, Overshadow
applications use mmap() instead of read() and write() for
secure file I/O. Other system calls, such as getpid(), are
considered safe and not interposed on [6, Section 6.1].
As we noted above, the Overshadow system’s stated se-

curity goal is to run general-purpose legacy applications,
unmodified, on arbitrary untrusted kernels. Overshadow’s
authors write:

Overshadow protects legacy applications from
the commodity operating systems running them
. . . it requires no changes to existing operat-
ing systems or applications . . . Overshadow is
backwards-compatible, protecting a broad range
of unmodified legacy applications, managed by un-
modified commodity operating systems [emphasis
added].

Our thesis, in this paper, is that mechanisms for protection
against malicious kernels are better suited to protecting
specialized processes whose limited interface with the OS has
been carefully considered, rather than unmodified, general-
purpose, legacy applications.

Subsequent work by Ports and Garfinkel [22] reconsidered
and refined the security properties provided by Overshadow.
Ports and Garfinkel proposed extensions to Overshadow that
prevent a variety of attacks by a malicious OS on a pro-
tected application. For example, they observe that incorrect
mapping of process IDs can lead to signal misdelivery. To
prevent this attack, Ports and Garfinkel associate a “secure
process ID”with each process. This secure process ID, which
is independent of the usual process ID managed by the OS,
is communicated to the parent process on fork() and is used
for reliable signal delivery.

The attacks considered and protected against are similar to
our Iago attacks. However, Ports and Garfinkel are concerned
with maintaining semantic guarantees for OS services (e.g.,
time, entropy, the filesystem, mutual exclusion from critical
sections, reliable interprocess communication) in the face
of OS misbehavior. By contrast, we show how a malicious
kernel can use system call return values in ways not related to
the semantic content of these system calls. In some cases, our
attacks can cause a protected process to undertake arbitrary
computation.

Threat model.
We consider a trusted application running on a malicious

kernel. We assume that the application is unmodified and
linked against unmodified system libraries, though the im-
plementation of specific library functions might be modified
by the protection system.

The kernel is kept by the protection system from directly
reading or manipulating the application’s state. The kernel
still handles system calls on behalf of the application, however.
We assume that it can provide return values of its choice to
system calls made by the application. We focus on scalar
return values: for example, the ssize_t return value of the
read system call rather than the buffer filled as a result of
the read.

The kernel’s goal is to subvert the trusted application into
disclosing its secrets or behaving otherwise than intended.
In the limit, the kernel’s goal is to cause the application to
undertake arbitrary computation. Simple denial of service is
not in scope, because a malicious kernel could always crash
or just refuse to boot.

Costs and benefits of abstraction.
Our threat model abstracts away the details of how appli-

cations are protected from a malicious kernel. The benefits
of this abstraction are, first, that our findings may be ap-
plicable to more than just one protection mechanism and,
second, that we are able to run concrete experiments using an
off-the-shelf Linux environment. The cost is that we cannot
say with certainty that any attacks we identify will actually
apply to a specific protection mechanism: It is possible that
special-case handling that we have overlooked makes our
attacks impossible on some particular system. (We emphat-
ically do not claim that we have broken the Overshadow
system.)

We believe that the tradeoffs favor studying the problem in
the abstract, as we do. In exhibiting attacks that require no
other affordance than the system call API, we focus attention
on this API as the crux of security in this setting. That is,
even a perfect defense mechanism that makes the kernel an
untrusted peer to applications is not, by itself, sufficient to
secure these applications from attack.
Note that, while we necessarily abstracted Overshadow’s

protection mechanisms, the actual attacks we describe and
mount are absolutely concrete.

Our contributions.
We make the following contributions:

1. We introduce Iago attacks—attacks in which a mali-
cious kernel induces a protected process to act against
its interests by manipulating system call return values—
and give a threat model for them.
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2. We implement a platform for experimenting with Iago
attacks on Linux systems. We add hooks to the Linux
kernel and implement a kernel module which contains
the bulk of the attack code.

3. We demonstrate Iago attacks against Linux applica-
tions. In many cases, our attacks induce arbitrary
computation in the protected program. We validate
these attacks using our experimentation platform.

The rest of this paper is organized as follows. We begin
with a “warmup” and motivating example, showing how
an Iago attack that manipulates getpid() return values
allows connection replay against Apache mod ssl. We next
describe our architecture for experimenting with Iago attacks.
Then, we describe our main technical result, an Iago attack
that induces arbitrary code execution in any Linux process
that uses the malloc() C library function. This is followed
by a different Iago attack that targets programs using the
OpenSSL library. Finally, we consider what makes such Iago
attacks possible, and suggest directions for future research.

2. SSL REPLAY AND getpid()
An important challenge for trusted applications running on

untrusted kernels is communicating with the outside world.
For communicating with a local user, such an application
will require a trusted path to input and output devices. On
the other hand, a trusted application that wishes to com-
municate with a remote user or service faces exactly the
traditional network security problem (with the kernel as an
active network adversary). Cryptography is well suited for
solving this problem; for example, Chen et al. [6] propose
the use of the SSL protocol. Implementing an SSL server
on an untrusted kernel is not trivial; indeed, as Ports and
Garfinkel observe [22], applications use the kernel as their
source of cryptographic randomness. Failure by an applica-
tion to obtain strong randomness from the kernel can have
catastrophic results, as with the Debian PRNG bug [29].
Ports and Garfinkel propose that the trusted supervisor

intercept application reads from entropy sources such as
/dev/random to supply randomness to the application. In
this section, we observe that preventing cryptographic ran-
domness vulnerabilities in trusted applications is more subtle
than just providing a source of strong randomness. In par-
ticular, we show that an Iago attack targeting a seemingly
innocuous system call— getpid()—allows replay attacks
on Apache servers with mod ssl.

Background: SSL and Apache.
Before explaining our attack, we briefly recall the SSL

protocol and the architecture of mod ssl.
An SSL protocol interaction begins with a handshake.

The handshake allows the client and server to pick session
parameters; to establish shared cryptographic secrets; and
to verify the identities of one or both against the public-
key infrastructure. The shared cryptographic secrets are
derived from public nonces contributed by both client and
server (called the client random and server random) and
from a secret value that, in the most common configuration
(RSA key exchange without ephemeral Diffie-Hellman), is
contributed by the client alone. (For the details of the SSL
handshake, see Rescorla [25].)

As a consequence, the only protection that SSL provides a
server against session replay is the server random value. If

an SSL server can be made to reuse a server random value
from some legitimate connection, an attacker can replay
the packets of that connection. The SSL server will accept
the connection, verify and decrypt the application-protocol
packets, and pass their contents on to higher-layer code for
processing. If the higher-layer code does not itself defend
against replay, this weakness can allow attackers to repeat
actions that authorized users intended to occur just once.
For example, a single transfer of money using PayPal could
turn into several transfers of the same amount.

SSL functionality in the Apache Web server is implemented
by the mod ssl extension, which itself is built on the OpenSSL
library. In the usual configuration, The Apache parent pro-
cess performs all initialization tasks, then forks child pro-
cesses that will handle incoming requests. Crucially, the
OpenSSL entropy pool used by mod ssl to generate random-
ness for the SSL protocol is seeded with entropy from the
kernel only in the parent process. Every child process inherits
an identical entropy pool when forked. The child processes
avoid generating the same randomness by stirring into their
entropy pools values that are not secret but that should be
distinct: the process ID, obtained with getpid(), and the
system time in seconds, obtained with time().1 For more
details, see Ristenpart and Yilek [26].

The attack.
Given the facts above, mounting a connection-replay Iago

attack is straightforward. The kernel records the packets
sent by a client to an Apache child process. It then fakes
a network connection to another child process, and replays
the recorded packets to the child. When the child makes
getpid() and time() system calls to stir its entropy pool,
the kernel responds with the same values with which it re-
sponded to the child that handled the legitimate connection.
Ristenpart and Yilek have experimentally verified the fea-
sibility of essentially this attack, in the context of virtual
machine rewinding vulnerabilities [26].
If the supervisor provides secure time to trusted appli-

cations, the kernel will need to perform replay within a
one-second window; otherwise, there is no limit on how long
replay is possible.

Different randomness will be generated in subsequent con-
nections to a child process, but the kernel can simply crash
each child after a connection, causing the Apache parent to
fork a replacement child with the same initial entropy pool.

Lessons.
While the attack describes above allows connection replay

against the most popular Unix SSL server, it is more interest-
ing for relying on such seemingly innocuous system calls as
getpid(). Apache mod ssl is not using the process ID for its
semantic value as an identifier for a process (for example for
sending it signals); instead, it is using it as a nonrepeating
nonce. A supervisor mechanism for ensuring reliable signal
delivery will not necessarily address this non-semantic use of
getpid(). (Indeed, who is to say that a repeating process ID
is unreasonable? The kernel could cause a child to crash and,
when the parent forks a new child in its place, give that child
the same process ID the crashed child had.)
One might argue that this attack could be prevented by

having child processes obtain additional strong entropy from

1In cryptographic terms, this is called domain separation.
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the operating system. But the fact is that Apache as written
does not do this, and in this paper we are considering sys-
tems to protect off-the-shelf applications. In addition, there
are good reasons why Apache is written the way that it is:
most importantly, child processes may run with restricted
privileges, and may not have access to /dev/random or other
sources of entropy.

3. IAGO INFRASTRUCTURE

In this section, we briefly describe our implementation of
a malicious kernel. Readers not interested in these details
are encouraged to skip to the next section.

To create a malicious kernel to carry out the Iago attacks,
we started with Debian revision 35 of version 2.6.32 of the
Linux kernel. In order to ease development of the Iago
attacks, we modified the kernel as little as possible, pushing
most of the implementation of the attacks to a kernel module
that could be easily loaded and unloaded at runtime. The
separation allows easy development and testing of the attacks.

Changes in the kernel proper consisted of providing hooks
for process creation and termination as well as the addi-
tion of a new member, struct shadow_state *ss, in the
mm_struct structure—the structure which maintains all of
the state for a process’s memory map. The shadow_state

structure contains function pointers for the malicious imple-
mentation of the brk, mmap2, and munmap system calls. At
process creation time, if the kernel module is loaded and
wishes to attack the process, it can set ss to point to a partic-
ular shadow_state instance whose function pointer members
are initialized to point to the desired, malicious functionality.
To enable the use of the standard, nonmalicious functions
in the module, the kernel exports symbols corresponding to
the “real” functions which can be called as needed.
The implementation of the three system calls is changed

to check if the ss member is non-NULL and if so if the func-
tion pointer corresponding to the system call is non-NULL.
If both are non-NULL, then the function pointed to by the
pointer is used; otherwise the real function is called. For
example, the complete implementation of the brk system call
is given in Listing 2. The others are similar. Note the calls
to down_write() and up_write(). These are to lock and un-
lock the read/write semaphore that protects the mm_struct

structure. In fact, a significant fraction of the implementa-
tion is concerned solely with avoiding race conditions and
deadlocks, including handling the module being unloaded in
the middle of an active Iago attack.

The majority of the Iago attacks is implemented as a kernel
module. When the module is loaded, it installs hooks for
process creation and exit and exports a simple control inter-
face using the sysfs pseudo file-system. The sysfs interface
allows executables on disk to be associated with a profile.

A profile is the implementation of a particular attack and
consists of a malicious implementation of the system calls
the attack requires. When a process is created after the
module has been loaded, the process creation hook is called.
If the executable on disk has been associated with a profile,
then the process’s mm->ss member is set to an appropriately
filled shadow_state structure. As the program executes, the
relevant system calls are handled by the code for the profile
as described above.

The effort to construct a malicious kernel from a nonmali-
cious kernel is relatively minor. Table 1 shows a breakdown
of the amount of code written.

Listing 2: New implementation of the brk system call.

SYSCALL_DEFINE1(brk ,

unsigned long , brk)

{

unsigned long retvalue;

struct mm_struct *mm;

struct shadow_state *ss;

mm = current ->mm;

down_write (&mm ->mmap_sem );

ss = mm->ss;

if (unlikely(ss != NULL) &&

ss->brk != NULL)

retvalue = (*ss->brk)(brk);

else

retvalue = real_brk(brk);

up_write (&mm->mmap_sem );

return retvalue;

}

Table 1: Lines of code for each component of our malicious
kernel. The number for the kernel is the sum of the number of
lines added (129) and the number of lines deleted (12). The
kernel module is separated into the core—which includes the
code for the sysfs interface, as well as the process creation
and exit hooks—and the profiles described in Sections 4
and 5.

Component lines of code

kernel 141
module core 354
malloc profile 111
openssl profile 111

In principle, the read (or any other system call) could be
handled in the same manner. However, since the behavior
of read does not need to change for our attacks, we rely on
normal input redirection or socket behavior to supply the
necessary data.
Similarly, one could easily modify the kernel to prevent

address space layout randomization (ASLR). A process can
inhibit the randomization of its children in Linux by calling
the personality() function with the ADDR_NO_RANDOMIZE

bit of the argument set. Since it is easiest to work with a
consistent address space layout including stack location, all
of our victim programs are launched via a helper program
which sets the arguments and environment to a known state,
performs input and output redirection, and disables ASLR.

4. COMPROMISING ANY PROGRAM US-

ING malloc()
In this section, we show how any program which uses

malloc()—including the 4-line program in Listing 1—can
be induced to perform arbitrary code execution by a malicious
kernel that behaves exactly like a normal kernel except for
some carefully chosen return values for standard Linux system
calls. We describe the attack in stages.

4.1 mmap() and read()

For the first stage, consider the following code fragment
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Table 2: Standard I/O functions which read files [23].

fgetc() getchar_unlocked()

fgets() getdelim()

fread() getline()

fscanf() gets()

getc() scanf()

getc_unlocked() vfscanf()

getchar() vscanf()

p = mmap(NULL , 1024, prot ,

flags , -1, 0);

read(fd, p, 1024);

which memory maps a 1024 byte region of memory via the
mmap2 system call and then reads up to 1024 bytes into it from
a file descriptor using the read system call. This fragment
of code is vulnerable to an Iago attack.

Since the kernel is responsible for memory management, a
malicious kernel can return an address that is not a newly
allocated memory region, but rather is an address on the
stack. When the read occurs, the stack will be overwritten
with up to 1024 bytes of the kernel’s choice. At this point, a
saved return address on the stack may be overwritten and
the program can be coerced into executing a return-oriented
program [27].

4.2 Standard I/O

Most programs do not themselves use the mmap() and
read() functions; however, any program that uses stan-
dard I/O functions to read from a file— such as those listed
in Table 2—does. In particular, standard I/O functions
like fread() perform I/O buffering for performance rea-
sons. A buffer sized to hold one file system block, typi-
cally 4096 bytes, is allocated by mmap() in the eglibc in-
ternal function _IO_file_doallocate() and filled by the
_IO_new_file_underflow() function which calls read().

As before, the kernel can respond to the mmap2 call with
the address of a saved return address on the stack and then
respond to read with a return-oriented program. In this way,
any program that performs file input using the standard I/O
functions is vulnerable.

4.3 Malloc

By carefully responding to brk system calls, a malicious
kernel can confuse malloc into writing a single word of the
kernel’s choice into the application’s memory. How this is
accomplished depends heavily on the specifics of the opera-
tion of the malloc implementation and how it interacts with
the system call wrappers in the rest of libc. We describe this
in detail below.

The version of malloc used in eglibc 2.1.2 is a substantially
modified version of ptmalloc2 by Wolfram Gloger based on
Doug Lea’s dlmalloc. eglibc’s malloc is cleanly separated
into upper and lower halves. The upper half is responsible for
allocating and freeing regions of memory for the application
by requesting a new region of memory from the lower half,
splitting and merging free regions, managing a menagerie of
free lists, and generally performing the bookkeeping necessary
to handle application requests. It implements the public
functions specified by the C99 standard [7, Section 7.20.3]
including malloc() and free(). This half is, by now, well
studied in the literature [1, 3, 4, 13, 21]. The lower half,

by contrast, is tasked with claiming and releasing pages of
memory from and to the operating system. It is this half
that we are most interested in.
Malloc’s view of allocated memory is different from the

application programmer’s. Every region of allocated memory
tracked by malloc is called a chunk. Broadly speaking, there
are three types of chunks, chunks that are in use by the
program, free chunks, and the special “top” chunk which can
grow and shrink as malloc’s lower half requests memory from
and returns memory to the system. Each chunk contains the
metadata necessary to free the chunk, place it on free lists,
and coalesce it with adjacent chunks. (Having inline meta-
data is not the only way to structure an allocator, see Novark
and Berger for a concise overview of several approaches [19,
Section 2].) A chunk is defined as

struct malloc_chunk {

size_t prev_size;

size_t size;

/* ... */

};

where the elided members are for managing doubly-linked
lists of chunks. The least-significant bit of the size member
is the PREV_INUSE bit. If it is set, then the previous chunk
is in use (or is not tracked by malloc). Otherwise, it is free
and the prev_size member contains its size. The second-
least-significant bit of size is the IS_MMAPPED bit and it is
set if the chunk was allocated using mmap(). (The third-least-
significant bit is also metadata other than the size but it is
not important here.) After a chunk is created to satisfy an
application request, malloc() returns the address 8 bytes
past the start of the chunk; that is, the address of memory
after the size member.2 This is the view of the allocated
memory that the programmer has.
The only member that is always needed when a chunk

is in use is the size member. The prev_size member is
only needed when the preceding chunk is free. As a result,
prev_size can share space with the preceding chunk and
the members for managing the linked lists can share space
with the application memory. Thus, each chunk has only a
4 byte overhead.

Figure 2 shows the three chunks— chunk 1, chunk 2, and
top—that result after several calls to malloc() and free().
First, memory is allocated from the system by the lower half
of malloc, described below, to produce top. Then, chunk 1 and
chunk 2 are split off from top and pointers to the application
region of the chunk is returned to the program. Finally
chunk 1 is freed and the PREV_INUSE bit and the prev_size

member of chunk 2 are set resulting in the values in memory
shown in the figure.

When malloc’s upper half needs more memory, because it
cannot satisfy a request from the free chunks, for example,
it calls the internal function sYSMALLOc(), passing the size
of memory it needs to accommodate the malloc() request,
including 4 bytes for the size member, and maintaining
8 byte alignment. If sYSMALLOc() can satisfy the request, it
will return a pointer to the application memory of a chunk
of the requested size as well as potentially modifying the top
chunk.

2On 64 bit systems, size_t is typically 8 bytes so the address
returned by malloc(), in that case, is 16 bytes past the start
of the chunk. For concreteness, we focus on the 32 bit case.
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Figure 2: The state of the heap after the following function calls.

void *p = malloc (72);

void *q = malloc (100);

free(p);

chunk 1 has a size of 80 bytes (72 plus 4 for metadata plus 4 to get an 8 byte alignment) and has the PREV_INUSE bit set
since it is the first chunk (hence a size field of 81 rather than 80).

chunk 2 has a size of 104 bytes (100 plus 4 for metadata) and the PREV_INUSE bit is clear, because p was freed, so the size of
chunk 1 is stored in prev_size. Since this chunk is in use, the application memory extends into what would otherwise be the
prev_size field of the top chunk.

top is the top-most chunk. It is always free and always has the PREV_INUSE bit set.
Note that pointers p and q point 8 bytes after the start of their corresponding chunks.

A simplified description of the algorithm used by sYSMAL-

LOc() is given in Algorithm 1. This omits all error handling
not essential for our purposes, allocations on threads other
than the main thread, and issues of noncontiguous allo-
cations including applications calling __sbrk() themselves.
The set_size() function sets the size member of a chunk;
chunk2mem() returns the application’s view of the chunk,
namely, it returns the address 8 bytes past the beginning
of the chunk; and chunk_at_offset(chunk, offset) treats
the memory at address chunk+ offset as a chunk.

Lines 2–7 handle the case where the requested size nb meets
the threshold to be allocated directly by mmap(). Lines 8–
10 attempt to extend the program’s data memory using
__sbrk() far enough to accommodate the request along with
some additional padding. If __sbrk() fails, then lines 11–18
resort to allocating at least one megabyte of memory using
mmap() which will become the new top chunk shortly. In the
common case, __sbrk() will succeed and will furthermore
have extended the space previously allocated by an __sbrk().
If so, then the size of the top chunk is set to be the old size
plus the size of the newly allocated region; line 21. The first
time sYSMALLOc() is called, there will have been no previous
call to __sbrk() and thus no space to extend so lines 23–33
will perform the initial setup which consists of ensuring the
beginning and ending alignment of the memory is correct.
(This code path is also taken in the event the __sbrk() on
line 10 failed but the mmap() succeeded.) Finally, if any of
the allocation paths have succeeded in creating a top chunk
that is large enough to satisfy the request, then line 37–40
will split an nb-sized chunk off and return a pointer to the
application memory region.
The alignment fixup the first time sYSMALLOc() is called

in lines 23–33 is to ensure that chunks that are split from
the top chunk are 8-byte aligned and that the top chunk
ends on a page boundary. We can use the interaction of
the three calls to __sbrk() (lines 10, 28, and 31) to control
where malloc thinks the data memory starts and ends. This
is integral to confusing it into writing a word of our choice

at a memory location also of our choice. To see how we
can accomplish this, we need to look at the details of the
__sbrk() function, the __brk() wrapper function, and the
brk system call.
At the lowest level, the brk system call takes as an ar-

gument the requested new program break—the end of the
process’s data memory—and is supposed to return the break
that results from the call. In the special case that the ar-
gument is 0, brk just returns the current break without
changing it. The eglibc wrapper function __brk() takes the
requested break as an argument and returns 0 if the break
returned by the system call is at least as great as the re-
quested break and −1 otherwise. eglibc maintains a global
variable __curbrk which is initially NULL but is updated with
the result of the brk system call in __brk(), even if __brk()
ultimately returns an error.
By contrast, the __sbrk() function takes an amount by

which the break should be incremented and returns the
previous value of the break if it is able to extend the break
by at least that amount, otherwise it returns −1. Algorithm 2
contains the pseudocode for __sbrk().

In order to control where malloc thinks the start and end of
the data memory region lie, the kernel only needs to respond
appropriately to the brk system calls. To see this, assume
the kernel wants malloc to think the start of kernel memory
is at address S and the end lies at address E and that the
first call to sYSMALLOC() has argument nb which is less than
the threshold for using mmap(). Since malloc will ensure that
its start of data memory is on an 8-byte boundary, assume
that S is also on an 8-byte boundary.

At line 10, sYSMALLOc() will call __sbrk() passing in some
positive increment size > nb. Since this is the first time
__sbrk() has been called, __curbrk is NULL and so __brk(0)

is called to set it. At this point, the kernel responds to the
brk system call with S − 1. Since the increment is positive,
__brk() is called with argument S − 1 + size. The kernel
responds to the second brk system call with S − 1 + size,
exactly as requested and thus __sbrk() returns S − 1.
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Algorithm 1 A simplified version of the sYSMALLOc algorithm.

1: function sYSMALLOc(nb) ⊲ nb is the request size in bytes plus 4 aligned to an 8 byte boundrary
2: if nb > mmap threshold then

3: size ← nb + 4 aligned to a page boundrary
4: p← mmap(size)
5: if mmap() call succeeded then

6: set_size(p, size|IS_MMAPPED)
7: return chunk2mem(p)

8: top size ← the size of the top chunk
9: size ← nb + top pad + 8− top size aligned to a page boundrary
10: brk ← __sbrk(size)
11: if __sbrk() call failed then

12: Add the size of the current top chunk, top size, back into size and align to a page boundrary
13: if size < 1MB then

14: size ← 1MB
15: brk ← mmap(size)
16: if mmap() call succeeded then

17: top ← brk
18: set_size(top, size|PREV_INUSE)

19: else

20: if brk is the end of the top chunk then

21: set_size(top, (size + top size)|PREV_INUSE) ⊲ extend the top chunk by size
22: else ⊲ first call to malloc()

23: let correction be the number of bytes needed to ensure chunk2mem(brk) is 8-byte aligned
24: if correction > 0 then

25: brk ← brk + correction

26: correction ← correction + top size ⊲ this was subtracted out in line 9
27: extend correction so that brk + size + correction ends on a page boundrary
28: snd brk ← __sbrk(correction)
29: if __sbrk() call failed then ⊲ determine where the end of the allocated memory lies
30: correction ← 0
31: snd brk ← __sbrk(0)

32: top ← brk
33: set_size(top, (snd brk − brk + correction)|PREV_INUSE))

34: p← top
35: size ← the size of the top chunk
36: if size > nb + 8 then

37: top ← chunk_at_offset(top, nb)
38: set_size(p, nb|PREV_INUSE) ⊲ allocate nb bytes
39: set_size(top, (size − nb)|PREV_INUSE)
40: return chunk2mem(p)

41: return NULL

Algorithm 2 Pseudocode for the __sbrk() function.

function __sbrk(increment)
if __curbrk = NULL then

__brk(0)

if increment = 0 then

return __curbrk

oldbrk ← __curbrk

if oldbrk + increment does not overflow then

if __brk(oldbrk + increment) = 0 then

return oldbrk
return −1

Since the __sbrk() call succeeded and this is the first call
to sYSMALLOc(), it will determine that it needs to increase
brk by 1 on line 25 to reach an 8-byte alignment. It will then
call __sbrk() a second time (line 28) with an additional cor-

rection so that the ending address ends on a page boundary.
This causes a third and final brk system call. The kernel
returns E. If E is less than the requested break, which it
will be for our use, then __curbreak will be set to E and
__sbrk() will return −1. Finally, __sbrk() is called a final
time (line 31) to determine the end of memory and __sbrk()

will return E without consulting the kernel.
After the region of data memory is determined, sYSMAL-

LOc() sets that as the top chunk and then splits off a chunk
of size nb to satisfy the request. In particular, line 39 writes
(E−S−nb)|PREV_INUSE to location S+nb+4, see Figure 3.
By carefully picking the values of S and E, we can cause
sYSMALLOc() to write a word we choose to any location in
memory that has an address congruent to 4 modulo 8.

In particular, the word in memory we wish to overwrite is
a saved instruction pointer from a call instruction. Fortu-
nately (for the attacker), gcc ensures that the stack pointer
is congruent to 0 modulo 16 before every call so that the
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Figure 3: Confusing malloc into overwriting a saved instruction pointer.
During the first call to sYSMALLOc(), malloc will request that the break be extended in order to return a chunk of size nb.

The first call to __sbrk() (line 10) will extend the break and return the old break. At this point, malloc thinks the start of the
heap is at location S—the return value from __sbrk() and the end of the heap is simply S plus the size it requested the
break be extended, as illustrated in (a).

The kernel returns a value that is not 8 byte aligned so malloc increases the start of the heap until it is aligned and requests
the break be extended by the corresponding amount using a second call to __sbrk() (line 28). The kernel returns a value less
than S which causes __sbrk() to return a failure. At this point, (b), malloc knows the start of the heap but not the end.

Next, __sbrk() is called a third time to determine the end of the heap E, as shown in (c). This happens without calling
into the kernel because eglibc has recorded the current value of the break from the previous call to __sbrk().

Finally, a chunk of size nb is split off from the heap which causes E−S−nb+1 to be written to address S+nb+4 as shown
in (d). By carefully responding to system calls, a saved instruction pointer on the application’s stack, at address S + nb + 4,
can be overwritten with the address of the second byte of a function in libc, namely E − S − nb + 1.

instruction pointer is saved to an address congruent to 12
modulo 16 and thus congruent to 4 modulo 8. The address we
choose to write is that of the _IO_gets() function—which is
the implementation of the gets() function—and we write it
over the saved instruction pointer in _int_malloc()’s stack
frame.3 In fact, we cannot write the address of _IO_gets()
because the address is even and ORing PREV_INUSE adds one
to the address. Fortunately, the first byte in the function is
0x55 which is the opcode for the push ebp instruction and
can safely be skipped since we will not be returning from
this function.

A complete example

As a complete example, consider the program in Listing 1.
The request for 100 bytes is increased to 104 bytes for chunk

3The code for sYSMALLOc() is inlined into _int_malloc()
which is called by malloc().

metadata. Since this is already a multiple of 8, nb = 104.
The _IO_gets() function is loaded at address 0xb7ef2010.
The saved instruction pointer for _int_malloc() is on the
stack at location 0xbfffe03c. Since we want to overwrite
the value at that address, we let S = 0xbfffe03c−104−4 =
0xbfffdfd0. And thus E = S + 0xb7ef2010 + 104 =
0x77ef0048. After responding to the brk system calls as
described above, _int_malloc() returns to second instruc-
tion in the _IO_gets() function.

The _IO_gets() function calls a series of functions includ-
ing _IO_default_uflow(); _IO_doallocate(), which allo-
cates a new buffer via the mmap2 system call; and finally,
_IO_new_file_underflow(), which fills the buffer using the
read system call. The kernel responds to the mmap2 sys-
tem call with the address of the saved instruction pointer
in _IO_default_uflow()’s stack frame, 0xbfffe000. For,
read, the kernel fills in the buffer with a return-oriented
program.
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Table 3: Modified system call returns.

System call Argument Return value

brk 0 bfffdfcf

brk c001efcf c001efcf

brk c001f000 77ef0048

mmap2 1000 bfffe000

read 1000 1e∗

∗read reads the 30 byte exploit into the buffer.

Table 3 shows the relevant system calls used by the pro-
gram, their arguments, and how the kernel responds. The
arguments and return values for brk are addresses; the ar-
guments for mmap2 and read are the sizes; and the return
value for mmap2 is the address. The other arguments are
unimportant.

For this example, the exploit is trivial. It is just a chained
return-into-libc that calls the write() function followed by
the _exit() function. When the program is run with the
kernel responding normally, it immediately exits. When run
with the malicious kernel, it outputs a line of text before
quitting.

$ ./ victim

Hi there!

Arbitrary, Turing-complete computation is possible by chang-
ing the exploit to be a more complicated return-oriented
program.

5. COMPROMISING OPENSSL

The procedure for compromising malloc given in Section 4
is general purpose and applies to any program that directly
or indirectly calls malloc(). However, it is only applica-
ble for the first call to malloc(). After the initial call,
the program break has been established by eglibc and
the break can only be increased beyond what is requested
lest __sbrk() fail in sYSMALLOc() on line 10. In principle,
this is no problem since the kernel can take control and
coerce the application to launch an arbitrarily complicated
return-oriented program which is able to disclose whatever
private information was to remain hidden from the kernel.
In practice, emulating enough of the legitimate software
to perform the desired malicious action can be quite com-
plicated [5] and taking control further into the program’s
execution can simplify exploits. In this section, we show
how to leverage malloc’s fallback to mmap() to accomplish
this in some cases where the allocated buffer is used as the
destination of a read() call, similar to the code snippet in
Section 4.1.
From Section 4.3, we can control the starting and ending

addresses of the program’s data region by responding to brk

system calls. There is an additional restriction on where we
can place the end of the data region, which is described below,
but the idea is to leverage this ability to control where in a
program’s execution sYSMALLOc() is called a subsequent time.
That is, the program makes a number of calls to malloc()

and free() and one of the buffers allocated by malloc() is
passed to read().
By responding appropriately to brk, the kernel arranges

for the size of the program’s data region to be just large

enough that when the program attempts to allocate the
region of memory which will be passed to read(), malloc is
forced to call sYSMALLOc(). If the allocation is larger than
the mmap threshold , the allocation will be memory mapped
(lines 2–7) and so the kernel can return the address of the
memory it wishes to overwrite. Otherwise, __sbrk() will be
called. At this point, the kernel can refuse to increase the
break in response to the brk system call which will cause
__sbrk() to fail and sYSMALLOc() will fall back on mmap()

(lines 11–18) and again the kernel can provide the address it
wants.

There are several caveats with this method. The first is
the restriction on ending addresses for the data region. Due
to an assertion early in sYSMALLOc(), the end of the data
region must be aligned on a page boundary.4 The second is
that the chosen end of the data region must be at an address
that is less than the requested one to cause the second call
to __sbrk() to fail. Thus if we want the end to be at a
greater address than requested, we must initially set the end
at a smaller address and then handle successive brk requests
normally until we reach the point we wish it to fail. The final
caveat is that a program may allocate a great deal of memory
initially and then free it such that subsequent allocations
come from the free chunks. The upshot of these caveats is
that we cannot always arrange for brk to fail for exactly
the allocation we wish. However, it may be possible to fail
several allocations early.

A complete example

As an example of the technique of making malloc fall back
on mmap(), we describe attacking the OpenSSL s server pro-
gram. This program (usually started by running the openssl
binary with the s_server option) listens on a specified port
for incoming connections and sets up a TLS/SSL connection.
Afterward, incoming data is decrypted and written to stan-
dard out and data read from standard in is encrypted and
sent over the socket. The secret key and certificate used in
the TLS/SSL protocol are stored in files on disk.

Under the assumptions of an Overshadow-like system, the
kernel would be prevented from reading the contents of
the secret key on disk and, of course, it could not read it
from openssl’s memory during execution. With the help of
OpenSSL’s s client program—the companion program to
s server— the kernel will cause s server to disclose its secret
key, in this case, the RSA private exponent.

The first step is to launch OpenSSL s server.

$ openssl s_server -key secret.key \

-cert cert.pem -accept 8080

This starts the server listening on port 8080. As before, the
kernel responds to the first three brk system calls in order
to set the length of data memory appropriately as described
in Table 4. This causes the top chunk to have 0x13000 bytes
of memory, initially.
The next step is to launch OpenSSL s client with the

exploit payload.

4This assertion appears to be a (mostly harmless) bug in
eglibc. A comment in the code after the second __sbrk()
(corresponding to line 28) indicates that the third call is to
find the end of memory in the hope that the allocation will
still be possible. If the end does not lie on a page boundary,
then the next call to sYSMALLOc() will (erroneously) abort
the program rather than attempt mmap() or return NULL.
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Table 4: Modified system call returns for OpenSSL s server.

System call Argument Return value

brk 0 081e4fff

brk 08205fff 08205fff

brk 08206000 081f8000

brk 0821a000 081f8000

mmap2 1000000 bfeff000

$ openssl s_client -connect \

localhost :8080 <exploit

The client will connect to the server and send the exploit
code. After the client connects, the server will allocate
0x4000 bytes of memory for a buffer into which it will read
the decrypted data. However, by this point, neither the
free chunks nor the top chunk will be large enough to ac-
commodate this allocation, so sYSMALLOc() requests more
memory via __sbrk(). This time, the kernel responds to brk

by returning the same value as before. This causes __sbrk()
to return −1 and sYSMALLOc() falls back on mmap(). The
kernel responds to the mmap2 system call with an address on
the stack. The server sets up a TLS connection with the
client and then reads the encrypted exploit payload. The
payload is decrypted and stored in the buffer which is really
part of SSL_read()’s stack frame. Rather than returning to
the function that called SSL_read(), it returns to a simple
return-oriented program which calls the write() function to
write the contents of the private exponent of the secret key
to stderr and then exits.

6. DISCUSSION AND CONCLUSIONS

We have introduced Iago attacks: attacks in which a ma-
licious kernel induces a protected process to act against its
interests by manipulating system call return values. We
have defined a threat model for Iago attacks, implemented a
platform for experimenting with Iago attacks, and used this
platform to demonstrate Iago attacks against Linux applica-
tions, including any application which uses malloc(). Some
of our attacks induce arbitrary computation in the protected
program.
Iago attacks provide a partial answer to an open prob-

lem posed by Chen et al.: “The implications of maliciously
changing the behavior of seemingly innocuous parts of the
system call API, such as those for managing identity and
concurrency, are still largely unstudied” [6, Section 2.2].

Iago attacks are evidence that protecting applications from
malicious kernels is more difficult than previously realized.
We believe that there are several fundamental reasons for
this difficulty. First, the system call API was not designed
to be an untrusted RPC interface, so unsurprisingly it is a
difficult interface to secure. Second, system calls are used at
all layers of a program, including the libraries the program
links against; securing applications against Iago attacks re-
quires understanding the system calls made at every layer.
Third, system calls are frequently used in other ways than
for their nominal semantic content; providing a replacement
to process IDs for reliable signal delivery does nothing to
help OpenSSL’s reliance on getpid() for entropy stirring.

Ports and Garfinkel [22] suggest that verifying that return
values are correctly computed is easier than undertaking to
compute them, and that a trusted supervisor monitoring the

behavior of an untusted kernel can be smaller and simpler
than the kernel itself. Our findings do not refute this claim,
but they do suggest that the gap between verifying and
computing may be smaller than previously realized, at least
for the more complex of a kernel’s tasks. For some tasks,
such as managing virtual memory, verifying return values
may require the supervisor to have a complete understand-
ing of a kernel’s memory management algorithms and data
structures.
Address-space layout randomization makes it hard to ex-

ploit memory bugs, but the untrusted kernel is in charge
of process creation. How can the supervisor be sure that
the kernel isn’t placing the process’ memory segments in
predictable locations?5 For that matter, what constitutes a
reasonable memory layout? At a crucial point, the attack we
describe in Section 4.3 overlays an mmaped memory region on
the stack, and perhaps this could be noticed and prevented
by the supervisor. But there are legitimate reasons that
processes would want to map memory on top of an existing
mapping. More generally, we believe that variants of our at-
tack are possible without overlapping memory regions. One
promising target for such an approach is the stack segment.
Oberheide recently demonstrated the possibility of “stack
overflow” attacks [20], in which the stack of a program is
induced to extend down so far (by means, for example, of a
recursive function that parses user input) that it (implicitly)
overlaps some other memory segment, leading memory safety
guarantees to be violated. Oberheide was able to exhibit
stack overflow attacks against real programs run on benign
kernels; such attacks would be easier to mount when a mali-
cious kernel decides the layout of the stack and other memory
segments in process memory.
Understanding the situations in which verifying return

values is easier than computing them, for virtual memory
as well as other subsystems represented in the system call
API, remains an important open problem. A particularly
interesting challenge: Is it always possible to verify a system
call return value based on the current state of the system, or
are there system call values that can only be provisionally
verified and must be checked for consistency with subsequent
return values? Put another way, is it or isn’t it possible to
verify the behavior of a kernel using a constant amount of
state as a function of the time a process has been running?
One possibility is that running arbitrary applications on

an untrusted kernels is too ambitious a goal. Instead, the
technologies developed for such systems can and should be
applied to secure custom or special-purpose tasks as part
of a larger system, minimizing the trusted computing base
required for these tasks. We observe a similar trajectory
for system call interposition, which, when introduced, was
envisioned as a means for sandboxing arbitrary untrusted ap-
plications [10, 11, 24]. Sandboxing complex general-purprose
software proved to be difficult [9]; today, system call inter-
position is used fruitfully for sandboxing special-purpose
processes, such as the Chromium renderer [2].

We believe that the software to be run safely on untrusted
kernels will need to be designed specifically for that purpose.
As we have shown, assumptions about system call behavior

5One intriguing possibility is that, on process startup, a shim
runs that randomizes the runtime environment. But this is no
silver bullet; past work has repeatedly shown that attackers
are able to adjust to uncertainty about their target’s memory
layout; see, e.g., Sotirov and Dowd [28].
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can be present at all levels of the software stack, not just in
the application code itself. For example, we have shown that
any application that calls malloc is potentially vulnerable.
But even an application whose memory allocation has been
rewritten to avoid malloc might find that its libraries do; for
example, eglibc’s printf implementation does.
If the applications that will run on untrusted kernels are

written from scratch, it is no longer necessary to use the
legacy Unix system call API. An important question then
arises: are there other resource-management APIs that would
be easier to secure as untrusted RPC interfaces? We hope to
tackle this question in future work. As inspiration, we note
that Mach featured a user-space memory manager [12], and
that research operating systems such as the Exokernel [8]
have radically reimagined the boundary between kernel and
application.
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