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Abstract: Background and Objectives: Acute aortic dissection (AD) is a life-threatening condition
in which early detection can significantly improve patient outcomes and survival. This study
evaluates the clinical benefits of integrating a deep learning (DL)-based application for the automated
detection and prioritization of AD on chest CT angiographies (CTAs) with a focus on the reduction
in the scan-to-assessment time (STAT) and interpretation time (IT). Materials and Methods: This
retrospective Multi-Reader Multi-Case (MRMC) study compared AD detection with and without
artificial intelligence (AI) assistance. The ground truth was established by two U.S. board-certified
radiologists, while three additional expert radiologists served as readers. Each reader assessed the
same CTAs in two phases: assessment unaided by AI assistance (pre-AI arm) and, after a 1-month
washout period, assessment aided by device outputs (post-AI arm). STAT and IT metrics were
compared between the two arms. Results: This study included 285 CTAs (95 per reader, per arm) with
a mean patient age of 58.5 years ±14.7 (SD), of which 52% were male and 37% had a prevalence of AD.
AI assistance significantly reduced the STAT for detecting 33 true positive AD cases from 15.84 min
(95% CI: 13.37–18.31 min) without AI to 5.07 min (95% CI: 4.23–5.91 min) with AI, representing a 68%
reduction (p < 0.01). The IT also reduced significantly from 21.22 s (95% CI: 19.87–22.58 s) without
AI to 14.17 s (95% CI: 13.39–14.95 s) with AI (p < 0.05). Conclusions: The integration of a DL-based
algorithm for AD detection on chest CTAs significantly reduces both the STAT and IT. By prioritizing
urgent cases, the AI-assisted approach outperforms the standard First-In, First-Out (FIFO) workflow.

Keywords: aortic dissection; automated detection; deep learning; prioritized worklist; emergency
radiology; multi-reader multi-case study

1. Introduction

Aortic dissection (AD) is a severe thoracic aortic disorder and a cardiovascular emer-
gency associated with a high mortality risk [1]. Its incidence is rising, increasing by 15 cases
per 100,000 patients annually [2–4]. If left untreated, acute AD has a 33% mortality rate
within the first 24 h, which increases to 50% by 48 h and can reach 75% in undiagnosed
cases of ascending AD [2,5–7]. Nearly 22% of patients die before reaching medical care [3,4].
Timely diagnosis through imaging and prompt patient management are critical in cases of
AD, as the mortality risk increases by 1–2% per hour during the first 24 h [8].
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Computed tomography angiography (CTA) is considered to be the gold standard
for diagnosing suspected AD due to its non-invasive nature and its ability to rapidly
produce high-quality images [4]. However, the Royal College of Radiologists reports
that radiologists face significant pressure due to increasing workloads and demands for
efficiency, which contributes to fatigue, errors, and diagnostic delays [9,10]. Some studies
reported severe consequences of treatment delays, often resulting from misdiagnosis, late
diagnosis, or a low clinical index of suspicion in the emergency department [11,12].

Deep learning-based artificial intelligence (AI) systems are emerging in radiology,
showing promise across several fields including neurology, cardiology, thoracic imaging,
and cancer screening [13–17]. Our prior research on AI applications in pulmonary em-
bolism, ASPECTS scoring, and intracranial hemorrhage has consistently demonstrated the
technology’s ability to enhance diagnostic accuracy and workflow efficiency [18–22]. Aortic
dissection—a life-threatening condition which demands rapid and accurate detection where
even minor delays can substantially increase morbidity and mortality—was selected as the
target disease in this study due to its critical clinical urgency and the unique potential for AI
to address significant gaps in diagnostic speed and accuracy in high-stakes, time-sensitive
scenarios. AI tools have been shown to aid in the identification of AD features on CTA,
reducing the risk of missed lesions [23]. New AI tools have been developed and validated
to assist radiologists by prioritizing cases of suspected AD, ensuring they receive urgent
attention [24,25]. These AI systems effectively identify most dissections and all available
aortic ruptures, placing critical cases at the top of radiologists’ worklists. This prioritization
enables timely and accurate diagnosis and treatment for patients requiring immediate care
by streamlining radiologist workflow [26]. This approach offers a more effective alternative
to the First-In, First-Out (FIFO) methodology, which fails to account for case urgency and
severity, potentially increasing patient risk [27].

There are limited studies in the literature on the advantages of computerized tools
for AD detection in relation to radiologist workflow and patient outcomes. A recent
study highlighted that an automated tool not only exhibited good technical performance
but also significantly reduced the average time between study intake and radiologist
interpretation [26]. To elucidate the clinical benefits of integrating an automated tool for
AD detection and prioritization into clinical workflows, we conducted a retrospective Multi-
Reader Multi-Case (MRMC) study. This study aimed to assess the impact of the validated AI
algorithm CINA-CHEST for AD (Avicenna.AI, La Ciotat, France) on radiologists’ efficiency
and the time required to identify AD-positive cases. We simulated two clinical workflows
for AD detection: a conventional FIFO approach without AI assistance and an AI-enhanced
approach based on prioritization. We hypothesized that the use of AI would play a crucial
role in prioritizing critical AD cases, thereby improving the timeliness of diagnosis.

2. Materials and Methods
2.1. Data Collection

This study was conducted in accordance with the 1975 Helsinki Declaration (as revised
in 2013). Prior to investigator assessments, all data were anonymized in compliance with
HIPAA and the General Data Protection Regulation (GDPR) (EU) 2016/679. Informed
consent was waived when it was deemed necessary following national legislation and
institutional protocols. Anonymized CTA cases were acquired between July 2017 and
December 2018 from multiple clinical sites across 90 cities in the U.S. by a large U.S.
teleradiology network and provided retrospectively. The dataset included CTA images from
scanners manufactured by four vendors, representing 16 different scanner models: 5 from
GE Medical Systems (Chicago, IL, USA), 2 from Philips (Amsterdam, The Netherlands),
6 from Siemens (Berlin, Germany), and 3 from Canon/Toshiba (Otawara, Japan). Patients
were selected consecutively based on the following inclusion criteria: (1) age ≥ 18 years old,
(2) chest or thoraco-abdominal CTA scans, (3) slice thickness ≤ 3 mm with no gap between
successive slices, and (4) soft tissue reconstruction kernel. Exclusion criteria included
the following: (1) scans that did not adhere to the recommended acquisition protocol,
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(2) thoracic aorta out of the field of view, and (3) significant acquisition artifacts impeding
CTA interpretation.

2.2. The Ground Truth

Two U.S. board-certified expert radiologists (P.D.C. and D.S.C.), with 7 and 6 years
of experience in clinical practice, respectively, independently reviewed the CTA images to
establish the ground truth. This included determining the presence or absence of aortic
dissections (ADs) and classifying them by type. All classifications of AD—hyperacute,
acute, subacute, or chronic—were considered positive for AD. In case of disagreement, a
third U.S. board-certified expert radiologist (J.E.S.), with 8 years of experience in clinical
practice, evaluated the cases, and the ground truth was determined by majority agreement.
Additionally, the radiologists documented any observed confounding factors, such as
thoracic or abdominal aneurysms, intramural hematoma (IMH), calcifications, streak and
motion artifacts, noise, and postoperative instances (e.g., presence of stents or grafts).

AI Algorithm for AD

An FDA-approved and CE-marked commercially available DL-powered application
for AD, CINA-CHEST v1.0.3 (Avicenna.AI, La Ciotat, France), was utilized in this study.
This application automatically processes CTA scans and generates notifications of suspected
findings, if present, alongside the corresponding image series information. For cases flagged
as positive by the application, the type of AD (Type A or B) is displayed, and the dissection
is identified with a red bounding box. Cases are subsequently prioritized in the radiologist’s
worklist based on their positive or negative classification. A detailed explanation of the
deep learning algorithm and the integration process of CINA-CHEST for AD is available in
a recent study [24].

2.3. Multi-Reader Multi-Case (MRMC) Study

A retrospective, multi-center, fully crossed MRMC study was conducted to evaluate
the clinical efficacy of CINA-CHEST for AD within clinical workflow. The study com-
prised two phases, namely a pre-AI phase (Unaided Arm), in which radiologists identified
AD without access to the software outputs, and a post-AI phase (Aided Arm), in which
radiologists identified AD assisted by the application outputs.

Three radiologists, distinct from those who established the ground truth, participated
in the study (J.C.J., B.W., and C.Z.; two U.S. board-certified radiologists; and one fellow in
general radiology). These readers had 9, 5, and 2 years of experience in radiology clinical
practice, respectively. The readers evaluated all CTA scans twice—once unaided and
once aided by the software outputs—with a 1-month washout period between sessions to
mitigate recall bias. The study design and the radiologist reading workflow are summarized
in Figure 1.

In the pre-AI phase, cases were presented in random order without alerts, simulating
a conventional First-In, First-Out (FIFO) worklist [27]. Radiologists evaluated the cases
as they would in their routine daily practice, with each CTA appearing sequentially in
the worklist and the most recently completed examination positioned at the bottom. In
the post-AI phase, the AI application flagged cases suspected to be positive for AD and
positioned them at the top of the worklist for evaluation (Figures 1b and 2).

All three readers independently evaluated the CTAs for AD. Cases with uncertain
findings were marked as indeterminate and excluded from the analysis, while cases with-
out dissection were labeled “No dissection”. The readers were blinded to each other’s
assessments, the ground truth, and patients’ clinical data.

The evaluation time for each case was automatically recorded, beginning when the
reader initiated the analysis and ending when they validated their result and proceeded
to the next case. Two key metrics were derived from these data. The primary endpoint,
the scan-to-assessment time (STAT) for true positive cases, was defined as the cumulative
duration (in minutes) from when a study became available for interpretation on the clinical
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workstation to the moment the final diagnosis was confirmed. The secondary endpoint was
the per-case interpretation time (IT), defined as the time interval (in minutes) from when a
radiologist opened the corresponding CTA to when they submitted their final diagnosis.
This metric represents the time required for a radiologist to analyze, interpret, and confirm
their findings for a single case before proceeding to the next.

Figure 1. (a) The current study design overview. (b) A workflow diagram illustrating the traditional
radiologist reading process alongside the AI-assisted approach.

Figure 2. CINA-CHEST for aortic dissection (AD) outputs. The red bounding box shows the
localization of the automatically detected AD. The type of AD detected is mentioned as follows:
“Suspected type A AD identified”.

The effectiveness of CINA-CHEST for AD in reducing the time required to identify and
assess AD on CTA was evaluated under the assumption that all the scans were previously
acquired and simultaneously became available for interpretation on the workstation. This
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simulates a high-workload emergency department, representing a situation where rapid
AD identification is essential.

2.4. Statistical Analysis

Initially, the results computed by CINA-CHEST for AD were compared to the ground
truth, with the area under the receiver operating characteristic curve (AUROC) as well
as sensitivity, specificity, and accuracy being calculated for the entire dataset. The 95%
confidence intervals (CIs) for sensitivity, specificity, and accuracy were determined us-
ing the Clopper–Pearson method based on the exact binomial distribution. The perfor-
mance of each of the three U.S. board-certified radiologists was first evaluated individually
against the ground truth and then assessed across both phases of the study—pre- and
post-AI implementation—by measuring the AUROC, sensitivity, specificity, and accuracy
in each phase.

To compare workflow metrics pre- and post-AI, the STAT for each true positive case
was calculated for each arm as follows (Equation (1)):

STAT(n) in minutes = ∑n i = 1IT(i), (1)

where STAT(n) represents the scan-to-assessment time for the n-th case and IT(i) denotes the
interpretation time for the i-th case. Stratified analyses were conducted to explore potential
variations based on readers’ experience, with a per-group comparison of junior (<5 years
of clinical experience) versus senior readers (≥5 years of experience). Additionally, a
comparison of STAT between pre- and post-AI phases including all positive and negative
cases was performed. Per-case IT was calculated for each arm as follows (Equation (2)):

IT (seconds) = TDiagnosis − Tstudy open. (2)

The differences between the aided and unaided arms for mean STAT and mean IT
were assessed.

To evaluate the statistically significant difference (significant reduction, α ≤ 0.05, two-
sided) between the aided and the unaided arms, a mixed-effects repeated measures model
was implemented. Reader, case, and AI usage (aided vs. unaided) were included as fixed-
effect terms in the model and a paired-sample t-test was conducted [28]. A p-value < 0.05
was considered to represent statistical significance. All statistical analyses were conducted
using MedCalc Statistical Software (v22.023, MedCalc Software Ltd., Ostend, Belgium).

3. Results
3.1. AI’s and Readers’ Performance

Each reader reviewed a total of 100 CTAs (65 negatives and 35 positives according
to the ground truth) in the pre-AI phase and post-AI phase. Five negative cases were
marked as indeterminate and thus excluded from the final cohort, resulting in a final
analysis of 285 CTA cases (95 cases per reader, including 35 positive cases) for each arm.
Table 1 summarizes the distribution of cases by scanner manufacturer. The mean patient
age was 58 years ± SD = 14.7, and 52.63% of the patients were male. Among the included
cases, 36% presented confounding factors such as intramural hematoma (IMH), aortic wall
calcifications, aneurysms, and the presence of stents, grafts, or streak/motion artifacts.
Additionally, pulmonary embolism was reported in 4% of cases. This study also considered
different dissection types and complexities, with 15% being Type B dissection (which occurs
in the descending aorta), which is subtle and challenging, and 20% being Type A dissection
(which originates in the ascending aorta), which is larger and generally easier to detect.
The software misclassified CTAs in 2 out of 95 patients (2.1%), resulting in 2 false negatives
and 33 true positives. The first false negative result was attributed to the presence of both
IMH and a graft or stent, while the second was due to the presence of IMH alone. When
compared to the ground truth, CINA-CHEST for AD demonstrated an AUROC of 0.971



Diagnostics 2024, 14, 2689 6 of 14

(95% CI: 0.915–0.995), an accuracy of 97.89% (95% CI: 92.6–99.74%), a sensitivity of 94.29%
(95% CI: 80.84–99.3%), and a specificity of 100% (95% CI: 94.04–100.00%).

Table 1. Data characteristics. Scanner makers and slice thickness distributions.

Scanner Makers Occurrence (%) Slice Thickness Occurrence (%)

GE MEDICAL SYSTEMS 59 (62.11%) ST < 1 mm 4 (4%)
SIEMENS 21 (22.1%) 1 ≤ ST ≤ 2.5 mm 83 (87%)

CANON (Formerly TOSHIBA) 10 (10.53%) ST ≤ 3 mm 8 (9%)
PHILIPS 5 (5.26%)

Total 95

The accuracies of the three readers during the aided phase (using CINA-CHEST for
AD) were 97.89% (95% CI: 92.6–99.74%), 97.89% (95% CI: 92.6–99.74%), and 98.94% (95%
CI: 94.27–99.97%), respectively. In comparison, their accuracies during the unaided phase
(without the software) were 98.95% (95% CI: 94.33 to 99.97%), 97.89% (95% CI: 94.33 to
99.74%), and 97.89% (95% CI: 92.60–99.74%), respectively. The sensitivity, specificity, and
AUROC of each reader across each phase of the study are shown in Table 2. The statistical
analysis found no significant difference in performance between the two phases (p > 0.05).
All readers misclassified one case as positive in the pre-AI phase, which was correctly
identified as a true negative during the post-AI phase. Additionally, two of the three
readers classified two cases as indeterminate in the pre-AI phase; these cases were later
identified as true negatives in the post-AI phase but were excluded from the final analysis.

Table 2. The readers’ performances without and with CINA-CHEST for AD identification. The
results include 95 CTA readings per reader and per arm. AUROC: area under the receiver operating
characteristics curve.

Parameter % [95% CI]
Reader 1 Reader 2 Reader 3

Pre-AI Post-AI Pre-AI Post-AI Pre-AI Post-AI

Accuracy 98.95%
[94.33–99.97%]

97.89%
[92.60–99.74%]

97.895%
[92.60–99.74%]

97.895%
[92.60–99.74%]

97.895%
[92.60–99.74%]

98.94%
[94.27–99.97%]

Sensitivity 100%
[89.99–100.0%]

100%
[89.99–100.0%]

100%
[89.99–100.0%]

94.27%
[80.84–99.3%]

97.143%
[85.08–99.92%]

97.143%
[85.08–99.92%]

Specificity 98.33%
[91.20–99.96%]

96.66%
[88.47–99.59%]

96.66%
[88.47–99.59%]

100%
[94.03–100.0%]

98.33%
[91.20–99.96%]

100%
[94.03–100.0%]

AUROC 0.992
[0.947–1.0]

0.983
[0.933–0.999]

0.983
[0.933–0.999]

0.971
[0.915–0.995]

0.977
[0.924–0.997]

0.986
[0.937–0.999]

3.2. Comparison of Scan-to-Assessment Times
3.2.1. STAT for AD True Positives Cases

An analysis was conducted to compare the STATs for true positive AD cases before and
after the implementation of the AI software v1.0.3. This analysis evaluated the efficiency of
time to assessment across 33 true positive AD cases per reader per arm, resulting in a total
of 99 cases analyzed in both the pre- and post-AI phases.

The results of the analysis across the three readers demonstrated a significant reduction
in the STAT with AI assistance compared to the unaided arm (p < 0.01). In the pre-AI phase,
the mean STAT for true positive cases was 15.84 min (SD: 12.38 min; 95% CI: 13.37–18.31 min).
In the post-AI phase, the mean STAT was notably reduced to 5.07 min (SD: 4.24 min; 95%
CI: 4.23–5.91 min). This represents a decrease of 10.77 min (SD: 12.96 min; 95% CI: −13.36 to
−8.18 min) (Figure 3).
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Figure 3. Comparison of scan-to-assessment time (STAT) only for AD true positive cases before and
after AI implementation. STAT (in minutes) was measured for true positive AD cases in both pre-
and post-AI phases based on assessments by three independent readers evaluating 33 CTA scans
per arm. Each data point represents STAT for individual case, with central line indicating median.
* p < 0.05 for statistically significant difference between two conditions according to paired t-test.

Furthermore, a per-reader analysis of true positive AD cases indicated that each reader
demonstrated a significant reduction in the mean STAT between the pre- and post-AI
phases (p < 0.05). The magnitude of reduction varied across readers, ranging from 5.08
(SD: 7.05 min; 95% CI: −7.64 to −2.53 min) to 15.19 min (SD: 14.69 min; 95% CI: −20.40 to
−9.98 min) (Figure 4 and Table 3).

Figure 4. Per−reader comparison of scan-to-assessment time (STAT) for true positive AD cases before
and after AI implementation. STAT (in minutes) was measured for true positive AD cases in pre-AI
(−) and post-AI (+) phases. Three independent readers (represented by a different color in the figure)
evaluated 33 CTA scans per condition. Main central line corresponds to median value. * p < 0.05 for
statistically significant difference between two conditions according to paired t-test.
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Table 3. Comparison of scan-to-assessment time (STAT) for true positive AD cases between unaided
and aided arms. Overall analysis across all readers (n = 3 radiologists) includes total of 99 cases
for each arm and per-reader comparison with 33 cases per arm. Results are expressed in minutes.
* Difference is statistically significant (p < 0.05) according to paired t-test.

STAT for True
Positive AD Cases

Unaided Arm
Time (min)
Mean ± SD

[95% CI]

Aided Arm
Time (min)
Mean ± SD

[95% CI]

Aided–Unaided
Difference (min)

Mean ± SD
[95% CI]

All readers
(n = 99)

15.84 ± 12.38
[13.37, 18.31]

5.07 ± 4.24
[4.23, 5.91]

−10.77 * ± 12.96
[−13.36, −8.18]

Reader 1
(n = 33)

9.45 ± 6.41
[7.17, 11.72]

4.36 ± 3.36
[3.17, 5.56]

−5.08 * ± 7.05
[−7.64, −2.53]

Reader 2
(n = 33)

19.72 ± 14.09
[14.06, 25.38]

4.53 ± 3.83
[3.17, 5.88]

−15.19 * ± 14.69
[−20.40, −9.98]

Reader 3
(n = 33)

18.36 ± 12.29
[13.79, 22.94]

6.32 ± 5.06
[4.53, 8.10]

−12.04 * ± 13.85
[−18.62, −5.46]

Finally, a per-group analysis on true positive AD cases comparing junior versus senior
readers revealed a significant reduction in the STAT for both groups (p < 0.05). For the junior
group, the difference between pre- and post-AI conditions was −5.08 min (SD: 7.05 min;
95% CI: −7.64 to −2.53 min). For the senior group, the difference was −13.63 min (SD:
14.25 min; 95% CI: −17.12 to −10.13 min) (Table 4).

Table 4. Per-group comparison of scan-to-assessment time (STAT) in junior group versus senior group
for the aided and unaided arm. All readers were taken into account (n = 3 readers) with total of 33
true positive cases per arm. Results are expressed in minutes. * Difference is statistically significant
(p < 0.05) according to paired t-test for mean difference.

Readers’ Experience

Unaided Arm
Time (min)
Mean ± SD

[95% CI]

Aided Arm
Time (min)
Mean ± SD

[95% CI]

Aided–Unaided
Difference (min)

Mean ± SD
[95% CI]

Junior
(n = 33)

9.45 ± 6.41
[7.17, 11.72]

4.36 ± 3.36
[3.17, 5.56]

−5.08 * ± 7.05
[−7.64, −2.53]

Senior
(n = 66)

19.04 ± 13.41
[15.74, 22.67]

5.43 ± 4.54
[4.31, 6.54]

−13.63 * ± 14.25
[−17.12, −10.13]

3.2.2. STAT for All Cases

The STAT was evaluated across all 95 cases, including both AD positives and nega-
tives, to assess the overall impact of AI implementation. The results reflect the combined
performance of all three readers. In the pre-AI phase, the mean STAT was 17.17 min
(SD: 12.16 min; 95% CI: 15.75–18.60 min). With AI software assistance, the mean STAT was
reduced to 12.54 min (SD: 7.15 min; 95% CI: 11.71–13.86 min). This reduction of approxi-
mately 4.62 min (SD: 13.06 min; 95% CI: −6.14 to −3.10 min) was statistically significant
(p < 0.01) (Table 5).

A per-reader STAT analysis was also performed for all cases. The first reader showed
a difference of 0.45 min or 27.26 s (SD: 7.78 min; 95% CI: 1.13–2.04 min) in the mean STAT
between the pre- and post-AI conditions, which was not statistically significant (p > 0.05).
In contrast, the second and third readers exhibited statistically significant reductions in
the STAT between the two study phases: −9.84 min (SD: 14.33 min; 95% CI: −12.76 to
−6.92 min) (p < 0.01) and −4.48 min (SD: 13.33 min; 95% CI: −7.33 to −1.63 min) (p < 0.01),
respectively (Table 5).
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Table 5. A comparison of the scan-to-assessment time (STAT) for all cases between the aided
and unaided arms. The overall analysis across all readers (n = 3 radiologists) includes a total of
285 cases for each arm. A per-reader comparison was conducted with 95 cases (positives and
negatives) per arm. The results are expressed in minutes. * The difference is statistically significant
(p < 0.05) according to the paired t-test.

STAT for All Cases

Unaided Arm
Time (min)
Mean ± SD

[95% CI]

Aided Arm
Time (min)
Mean ± SD

[95% CI]

Aided–Unaided
Difference (min)

Mean ± SD
[95% CI]

All readers
(n = 285)

17.17 ± 12.16
[15.75, 18.60]

12.54 ± 7.15
[11.71, 13.86]

−4.62 * ± 13.06
[−6.14, −3.10]

Reader 1
(n = 95)

10.18 ± 6.10
[8.94, 11.43]

10.64 ± 5.55
[9.51, 11.76]

0.45 ± 7.78
[1.13, 2.04]

Reader 2
(n = 95)

21.46 ± 13.50
[18.71, 24.21]

11.62 ± 6.61
[10.28, 13.04]

−9.84 * ± 14.33
[−12.76, −6.92]

Reader 3
(n = 95)

19.85 ± 12.32
[17.34, 22.36]

15.37 ± 8.22
[13.70, 17.94]

−4.48 * ± 13.33
[−7.33, −1.63]

3.3. Comparison of Per-Case Interpretation Time (IT)

The IT was evaluated for a total of 570 cases (95 cases per arm, per reader). The mean
per-case IT was 21.22 s or 0.35 min (SD: 11.62 s; 95% CI: 19.87–22.58 s) in the pre-AI phase,
whereas in the post-AI (Aided) phase, the value decreased to 14.17 s or 0.24 min (SD: 6.7 s;
95% CI: 13.39–14.95 s). This reduction in IT represents a statistically significant difference
of 7.04 s or 0.11 min (p < 0.01) (Figure 5).

Figure 5. Per-case interpretation time (IT) in pre-AI and post-AI phases. IT times (in seconds)
measured for both phases based on assessments from three independent readers across 95 CTA
scans per condition. Central line corresponds to median value. * p < 0.05 for statistically significant
difference between two conditions according to paired t-test.

4. Discussion

In this retrospective multi-center, fully crossed MRMC study, three radiologists in-
dependently interpreted 95 cases twice—once aided and once without AI assistance—to
assess the clinical efficacy of CINA-CHEST for AD. The primary objective was to determine
whether the use of an AI tool could reduce the STAT for AD-positive cases compared to
the traditional FIFO workflow. The findings highlight the challenges radiologists face in
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promptly identifying urgent cases within high-pressure, high-volume clinical environments.
To the best of our knowledge, this study is the first to demonstrate improved STAT and
IT in the identification and prioritization of AD on CTA scans with the integration of an
AI device.

The CINA-CHEST for AD software demonstrated strong standalone performance,
achieving an AUROC of 0.971, an accuracy of 97.89%, a sensitivity of 94.29%, and a
specificity of 100%. Radiologist performance remained consistently high with the use of
the software. The junior reader maintained 100% sensitivity across both phases, with only
a minor, non-significant drop in specificity (98.33% to 96.66%). Both senior readers showed
slight improvements in accuracy in the post-AI phase, with one of them attaining 98.94%
accuracy compared to 97.89% pre-AI. Across all readers, the overall AUROC remained
consistently high in both phases, highlighting the software’s ability to support accurate
diagnosis without significantly altering radiologist performance. Importantly, in the pre-AI
phase, one case was misclassified as positive by all readers, which was correctly identified
as a true negative with the aid of the device in the post-AI phase. Furthermore, two of
the three readers classified two cases as indeterminate in the pre-AI phase; these cases
were later confirmed as true negatives in the post-AI phase but were excluded from the
final analysis. These findings emphasize the diagnostic accuracy and reliability of the AI
tool, demonstrating its potential to enhance radiologist workflow without introducing
variability in clinical judgment.

By simulating real-world clinical workflow, this study demonstrates that AI expedites
the identification and prioritization of critical AD cases. With AI-assisted detection, radiol-
ogists identified all positive cases in an average of 5.07 min, approximately 11 min faster
than with the traditional FIFO workflow, resulting in a 68% improvement in efficiency. The
non-overlapping 95% confidence intervals between the pre- and post-AI phases provide
compelling evidence that this time reduction is not due to random variations or outliers,
but rather a robust effect of AI support, reinforcing the clinical relevance of AI integration
in time-sensitive and busy diagnostic workflows. Furthermore, by incorporating a balanced
mix of subtle and complex cases, the study evaluated the AI tool’s ability to detect both
straightforward and challenging presentations. This approach underscores the potential of
AI to assist in identifying subtle findings that might otherwise be overlooked, addressing a
key limitation in traditional diagnostics.

Moreover, a global comparison of STAT, encompassing all positive and negative cases,
resulted in a significant reduction of 26.8% (4.6 min) in the aided arm, demonstrating that
AI not only streamlines the detection of critical cases but also enhances overall workflow
efficiency for both urgent and routine cases.

Prioritizing radiology worklists has the potential to enhance patient care and alleviate
radiologist workload in contrast to the traditional FIFO workflow, which often relies upon
incomplete and ambiguous priority categories (e.g., stat, ASAP, now, and critical) defined
by the ordering physician’s urgency assessment [29]. By actively prioritizing cases flagged
as positive, AI may enable radiologists to allocate more time to critical instances, which
are frequently misdiagnosed due to their nonspecific presentation [25,26]. According to
the International Registry of Acute Aortic Dissection, the median time from emergency
department presentation to a definitive diagnosis of acute aortic dissection is 4.3 h, largely
attributed to high patient volumes [30,31]. The implementation of an AI algorithm capable
of detecting AD features on CT images could significantly reduce delays in diagnosing and
treating serious aortic lesions and shorten hospital stays for patients [17,32].

To date, no other studies have specifically addressed the impact of the prioritization of
AD detection on the STAT, although the rapid progression and severe outcomes associated
with AD make it an ideal candidate to showcase AI’s potential for real-time decision
support in high-stakes scenarios. Previous research has primarily assessed the diagnostic
performance of AI triage solutions for AD detection, often comparing the algorithm outputs
to those of radiologists. However, such studies provide limited insight into the broader
clinical benefits of AI on radiology workflow efficiency and patient management [24,33–35].
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Harris et al. developed a convolutional neural network model trained to detect AD and
rupture, resulting in a median reduction of 395 s in the delay time—the interval between
when a study is received by the system and when it is opened by a radiologist. While this
study begins to explore the role of prioritization in AD detection, its primary focus is on
evaluating the technical processing performances of the algorithm [26].

Conversely, several studies have evaluated the effectiveness of AI-based prioritization
for alternative pathologies, such as pulmonary embolism (PE), intracranial hemorrhage
(ICH), and cancer. For example, AI-prioritized worklists have been shown to significantly
reduce the time to diagnosis of incidental PE on CT scans in patients with cancer. The
median turnaround time (TAT) for true positive examinations flagged by the AI software
was reduced to 91 min—a significant improvement from several days to 1.5 h compared to
the traditional FIFO workflow [36]. Moreover, the implementation of AI in the radiology
workflow reduced the scan-to-alert time (from scan initiation to AI alert) for PE cases, with
an average AI alert time of under 6 min. These findings highlight the critical importance of
prioritization models, which potentially improve patients’ chances of survival [18]. Simi-
larly, for ICH detection, the incorporation of a machine learning algorithm into the clinical
radiology workflow significantly decreased the mean report TAT from 75 to 69 min in
emergency settings, expediting critical case identification and improving patient outcomes
in urgent care scenarios [37]. While these studies focus on pathologies other than AD, they
demonstrate that AI-based prioritization can significantly reduce TATs and improve patient
outcomes. These findings highlight the broader potential for similar benefits in various
diagnostic areas.

A stratified analysis of individual reader performance revealed variability in the
impact of AI integration. In an analysis including both positive and negative cases, one of
the three readers demonstrated no significant difference between the aided and unaided
arms and even a negligible, non-significant increase in the STAT. However, despite these
individual discrepancies, the overall STAT was statistically reduced when averaged across
all readers. This variability reflects differences in how AI integration may affect individual
workflows. An analysis of exclusively true positive cases revealed that junior and senior
readers alike demonstrated a significant reduction in the STAT during the post-AI phase,
with reductions ranging from 5 to 15 min compared to the pre-AI phase. Notably, the senior
readers experienced a greater STAT improvement (71.5%) than the junior group (53.8%),
suggesting that more experienced radiologists derived greater efficiency gains from AI
implementation compared to their less experienced counterparts. This observation aligns
with findings from previous studies evaluating the IT. Bennani et al. reported greater IT
improvements for general radiologists (34%) compared to residents (30%) in an MRMC
study on thoracic abnormalities. Muller et al. observed a small increase in IT for one
resident with AI aid; however, residents reported a better overview of cases [38]. The
greater efficiency gains observed among senior radiologists suggests that their advanced
skills and familiarity with complex cases enable them to leverage AI tools more effectively
than junior radiologists. These results highlight that the impact of AI integration is shaped
by individual user experience and clinical context.

Finally, a focused analysis was conducted on the IT, defined as the average time
radiologists spend interpreting a case regardless of its position within the worklist. Our
findings indicate that the aid of the AI software reduced the IT by 33%, underscoring
its utility in facilitating AD detection and the identification of complex cases, enabling
radiologists to dedicate more time to critical cases. These results are consistent with prior
paired design studies, which reported reductions in the IT for chest CT scans of 7–44%
when utilizing AI to detect and measure lung nodules [39]. Similarly, a prospective study
of 390 patients observed a 22.1% reduction in the IT when cardiothoracic radiologists
interpreted chest CT exams with AI assistance. In this study, the AI system automatically
labeled, segmented, and measured both normal structures and abnormalities across the
cardiac, pulmonary, and musculoskeletal systems [40]. Collectively, these findings suggest
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that AI automation enhances radiological efficiency by streamlining diagnostic processes
and optimizing workflows.

In summary, the significant reductions in both the IT and STAT demonstrate the trans-
formative impact of AI on radiology. By streamlining diagnostic processes and improving
the STAT, AI enhances efficiency while shifting the paradigm from traditional FIFO meth-
ods to more effective prioritization strategies. This innovation highlights AI’s remarkable
potential to revolutionize radiology workflows, solidifying its role as an invaluable tool in
modern medical practice. Conducted across multiple clinical sites, scanner manufacturers,
and countries, this reader study benefits from a diverse dataset encompassing a wide
range imaging parameters and patient profiles. Moreover, it engaged a panel of readers
representing different expertise levels, reflecting the real-world diversity of clinical practice.

This study has a few limitations. First, the workflow impact of the AI tool was as-
sessed using a small cohort of three radiologists with varying levels of experience, which
may not fully capture the variability in performance among a broader group of radiolo-
gists. Future research should evaluate AI’s impact across a larger group of radiologists
to enhance generalizability. Additionally, the dataset analyzed comprised only 100 cases,
with 5% being excluded due to indeterminate responses. Expanding the sample size in
future studies would improve the statistical power and reliability of the findings. Finally,
conducting a prospective study would provide a more robust validation of these tools in a
real-world setting.

5. Conclusions

In conclusion, our MRMC study is the first to demonstrate the positive impact of
AI on clinical workflow for detecting AD. The AI tool significantly reduced the time for
radiologists to identify positive cases in the emergency department, enabling the prioritiza-
tion of these critical cases. Given the importance of timely diagnosis and intervention in
improving outcomes for patients with AD, this technology offers a transformative solution
by automatically flagging and prioritizing suspected cases. By enhancing workflow effi-
ciency, the AI tool enables radiologists to focus on the most urgent cases first, ultimately
contributing to improved patient care in emergency medical settings.
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