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Optimal Design of
Spatial Source-and-Relay Matrices for a

Non-Regenerative Two-Way MIMO Relay System
Shengyang Xu and Yingbo Hua, Fellow, IEEE

Abstract—This paper considers a system where two users
exchange information via a non-regenerative half-duplex two-
way MIMO relay and each of the two users and the relay
is equipped with multiple antennas. We study the design of
the spatial source covariance matrices (or source matrices) at
the two users and the spatial transformation matrix (or relay
matrix) at the relay to maximize the achievable weighted sum
rate of the system. The source matrices and the relay matrix
are optimized alternately until convergence. If the relay matrix
is given, we show that the optimal design of the source matrices
(for uniformly weighted sum rate) follows a generalized water
filling (GWF) algorithm. If the source matrices are given, we
show two search algorithms to optimize the relay matrix. The
first algorithm is a hybrid gradient method which adaptively
switches between the (steepest) gradient descent and the Newton’s
search. The second is an iterative weighted minimum mean
square error (WMMSE) method which alternately refines the
MMSE equalizers at the users and the relay matrix. We compare
the convergence behaviors of the two algorithms and demonstrate
their advantage over prior algorithms. We also show an optimal
structure of the relay matrix, which is useful to reduce the search
complexity.

Index Terms—Smart relays, multi-antenna relays, two-way
relays, power scheduling, eigen-beamforming, gradient methods,
weighted minimum mean square errors, generalized water-filling
algorithm.

I. INTRODUCTION

THE radio frequency spectrum for mobile wireless com-
munication is becoming increasingly crowded especially

in large cities. Developing technologies for efficient spectral
usage is becoming more important. Wireless relays are such
methods that can be rapidly deployed to enhance the coverage,
reliability and throughput of a wireless network subject to
power and spectral constraints. Wireless relays equipped with
multiple antennas, also called MIMO (multiple input multiple
output) relays, are particularly useful for scattering rich and
non-line-of-sight environment. This paper considers a non-
regenerative two-way MIMO relay system where two users
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concurrently exchange information via a single half-duplex
MIMO relay.

The idea of two-way relay has been studied in [2], [3],
[4], [5], [6], [7], [8]. Central to this idea is that two users
served by a relay can transmit their information to the relay
simultaneously in one channel and the relay forwards a
combined information to both users in another channel. And
since each user knows its own information, it can remove its
self-interference from the signal received from the relay pro-
vided that the required channel state information is available.
Although the relay is half-duplex, i.e., requiring two channels
to relay a signal, the two-way scheme allows two users to
share both channels concurrently. This leads to a high spectral
efficiency.

The authors of [2] appear to be the first who proposed the
idea of two-way relay, where they considered a system with
a single-antenna relay and single-antenna users. The work
[3] studied coding schemes for a regenerative MIMO relay
system. In [4], several two-way relay schemes were proposed
and their capacity regions were explored. Insights were ob-
tained for single-antenna users and single-antenna relay. In
[5], the authors considered a power minimization problem
for single-antenna users and a non-regenerative MIMO relay.
For multi-antenna users, they proposed a heuristic sub-optimal
method called dual channel matching strategy. The work [6]
considered the maximization of the sum rates of two single-
antenna users assisted by a non-regenerative MIMO relay
under a high SNR assumption. In [7], a convex optimization
algorithm was formulated to compute the capacity region of
a relay system same as in [6] but without the high SNR
assumption. The algorithm developed in [7] is however not
applicable for multi-antenna users. In [8], suboptimal power
allocation methods were proposed to maximize the system
throughput of a non-regenerative MIMO relay system.

In this paper, we consider the problem of jointly design-
ing/computing the spatial source covariance matrices (source
matrices) and the spatial relay transformation matrix (relay
matrix) for a non-regenerative two-way MIMO relay system
where all nodes (i.e., the relay and the two users) have multiple
antennas. In practice, one of the two “users” can be an access
point, and the other a user equipment. In many situations,
both users are already equipped with multiple antennas. When
a relay is placed between them to improve the power and
spectral efficiency, the relay should be a MIMO relay and
hence each of the nodes in the system is a MIMO node. It

1536-1276/11$25.00 c⃝ 2011 IEEE
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Fig. 1. A non-regenerative two-way MIMO relay system where the
two users are denoted by 𝑈1 and 𝑈2 respectively, and the relay node
by 𝑅.

is not hard to imagine that the source matrix (also called
transmit covariance matrix) used at each user and the relay
matrix used at the relay all affect the system capacity. It is
therefore important to understand how to optimally design
these matrices and how much capacity gain such a design can
yield. This problem has not received enough attention from
researchers.

It is known that a two-user (half-duplex) MIMO relay
system as in Fig. 1 can be treated as two one-way (half-duplex)
MIMO relay systems, and each one-way MIMO relay system
can be treated as in [9]. Partially due to the known optimal
structure of the source and relay matrices as revealed in [9],
the complexity of designing the source and relay matrices for
the one-way scheme is much lower than that for the two-way
scheme. But for two users to exchange their information via
a half-duplex relay, the one-way scheme has a factor-4 loss
of spectral efficiency while the two-way scheme has only a
factor-2 loss. Therefore, the two-way scheme is approximately
twice as spectrally efficient as the one-way scheme.

We will present efficient algorithms for computing the
source matrices and the relay matrix that maximize a
(weighted) sum rate of the two-way system. Our algorithms
are based on an alternate optimization approach where the
source matrices and the relay matrix are optimized alternately
until convergence. When the relay matrix is fixed, finding
the optimal source matrices for the two multi-antenna users
is a convex problem, and for uniformly weighted sum rate,
it can be solved by the generalized water-filling algorithm
developed in [10]. When the source matrices are fixed, we
develop a hybrid gradient algorithm and an iterative weighted
minimum mean square error (WMMSE) algorithm to find the
best relay matrix. The hybrid gradient algorithm combines
the gradient descent search and the Newton’s search. The
iterative WMMSE algorithm is based on an alternate convex
search of the relay matrix and the MMSE equalizer at each
user. This idea was inspired by the work [11] on source
precoding for MIMO broadcasting. We will also show an
optimal structure of the relay matrix, which is useful to reduce
the computational complexity when the number of antennas
at the relay is more than twice the number of the antennas at
each user. This result is a generalization of one shown in [7]
from single-antenna users to multi-antenna users. Furthermore,
we will demonstrate that when applied to the case of single-
antenna users, our search algorithms for the relay matrix yield
the maximum sum rate much faster than the convex method
developed in [7].

It is important to note that while the idea of gradient search

is well known, its application to the problem addressed in this
paper is the first. The problem structure is also exploited to
simplify the expression and computation of the gradient vector
and Hessian matrix. The resulting algorithm provides a new
and useful perspective of other alternative algorithms such as
one in [7] and WMMSE in this paper. This study reveals a
capacity potential of a two-way MIMO relay system that no
other existing work has been able to reveal.

The rest of the paper is organized as follows. In Section
II, we describe in more details the non-regenerative two-
way MIMO relay system, and formulate the optimization
problems we aim to solve. In Section III, we present an
optimal structure of the relay matrix under the condition that
the number of antennas at the relay is larger than twice
of that at each of the users. In IV, we present the hybrid
gradient method to compute the optimal relay matrix with
fixed source covariance matrices. In Section V, the iterative
WMMSE method is presented. In Section VI, the procedure of
finding the optimal source covariance matrices with fixed relay
matrix is described. Section VII illustrates the performance of
our algorithms. The conclusion is given in Section VIII.

II. PROBLEM FORMULATION

The two-way relay system under consideration is illustrated
in Fig. 1, which involves two users and one relay. The two
users are denoted by 𝑈1 and 𝑈2 each with 𝑁 antennas. Since
the two users exchange information with each other, they
are also referred to as sources and destinations. The relay is
denoted by 𝑅 with 𝑀 antennas. We focus on a single carrier
with a narrow enough bandwidth so that the channels between
nodes are flat fading.

The two-way relay scheme has two phases. In the first
phase, 𝑈1 and 𝑈2 transmit x1 = P1s1 and x2 = P2s2, re-
spectively. Here, each of s1 and s2 consists of 𝑁 independent
complex symbols, s𝑖 ∈ ℂ𝑁×1 and E[s𝑖s

𝐻
𝑖 ] = I, 𝑖 = 1, 2 and

P1 and P2 are two square precoding matrices. The signal
received at 𝑅 can be expressed as

y𝑅 = H1𝑅x1 +H2𝑅x2 + n𝑅 (1)

where H𝑖𝑅 ∈ ℂ𝑀×𝑁 , 𝑖 = 1, 2, denotes the channel matrices
(channel state information) from 𝑈𝑖 to 𝑅, and n𝑅 ∈ ℂ𝑀×1

is the noise. We assume that the noise is complex white
Gaussian, i.e., n𝑅 ∼ 𝒞𝒩 (0, I).

In the second phase, 𝑅 transmits y′
𝑅 = Fy𝑅 where F ∈

ℂ𝑀×𝑀 is the relay transformation matrix. The transmit power
consumed at the relay is

𝑝𝑅 = Tr
(
FH1𝑅R𝑥1H

𝐻
1𝑅F

𝐻 + FH2𝑅R𝑥2H
𝐻
2𝑅F

𝐻 + FF𝐻
)

(2)
where R𝑥𝑖 = E[x𝑖x

𝐻
𝑖 ] = P𝑖P

𝐻
𝑖 , 𝑖 = 1, 2, denotes the source

covariance matrix at 𝑈𝑖. Note that P𝑖 is a matrix square root
of R𝑥𝑖 . The signals received at 𝑈𝑖, 𝑖 = 1, 2, are

y𝑖 = H𝑅𝑖FH𝑖𝑅x𝑖 +H𝑅𝑖FH�̄�𝑅x�̄� +H𝑅𝑖Fn𝑅 + n𝑖 (3)

where H𝑅𝑖 ∈ ℂ𝑁×𝑀 denote the channel matrices from 𝑅 to
𝑈𝑖, and n𝑖 ∈ ℂ𝑁×1 is the noise assumed to be 𝒞𝒩 (0, I). Here,
�̄� = 2 for 𝑖 = 1, and �̄� = 1 for 𝑖 = 2. We see that H𝑅1FH1𝑅x1

is the self-interference at 𝑈1, and H𝑅2FH2𝑅x2 is the self-
interference at 𝑈2. With a perfect knowledge of H𝑅1FH1𝑅
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at 𝑈1 and H𝑅2FH2𝑅 at 𝑈2, each of the two users can cancel
out its self-interference. After removing the self-interferences,
the signals at 𝑈1 and 𝑈2 are

y′
𝑖 = H𝑅𝑖FH�̄�𝑅x�̄� +H𝑅𝑖Fn𝑅 + n𝑖 (4)

It is useful to note that the two phases required here may
correspond to two frequency channels or two time slots. If two
time slots are used, the symbol vector y𝑅 needs to be stored at
𝑅 for at least one symbol interval. If two frequency channels
are used, y𝑅 needs not to be stored at 𝑅, and the radio
frequency output of 𝑅 can be simply a frequency translation
of its radio frequency input with the transformation F. The
implementation of F can be done digitally although no packet
decoding or encoding is needed here. Both time division and
frequency division for the two phases appear feasible.

Given the above two-way relay scheme and the signal model
(4), the achievable data rate received at 𝑈𝑖 is known to be
𝑟𝑖 =

1
2 log2 detX𝑖 (under ideal encoding and decoding) where

X𝑖 = I+ (H𝑅𝑖FF
𝐻H𝐻

𝑅𝑖 + I)−1H𝑅𝑖FH�̄�𝑅R𝑥�̄�
H𝐻

�̄�𝑅F
𝐻H𝐻

𝑅𝑖

(5)
The achievable (weighted) sum rate of this relay system is
𝑟𝑠𝑢𝑚(F,R𝑥1 ,R𝑥2) = 𝜇1𝑟1 + 𝜇2𝑟2, where the (non-negative)
weights 𝜇1 and 𝜇2 can be chosen in any way subject to 𝜇1 +
𝜇2 = 2. For uniform weighting, we have 𝜇1 = 𝜇2 = 1.

The sum rate is a function of the source covariance matrices
R𝑥1 and R𝑥2 and the relay matrix F. One important goal
is to develop fast algorithms to determine these matrices to
maximize the sum rate subject to power constraints at 𝑈1, 𝑈2

and 𝑅. This problem can be expressed as follows:

min
F,R𝑥1 ,R𝑥2

−𝑟𝑠𝑢𝑚(F,R𝑥1 ,R𝑥2) (6)

𝑠.𝑡. 𝑝𝑅(F,R𝑥1 ,R𝑥2) ≤ 𝑃𝑅,Tr(R𝑥𝑖) ≤ 𝑃𝑖, 𝑖 = 1, 2

This problem was not solved in the previous works [5], [6]
and [7] except for the special case 𝑁 = 1. When 𝑁 = 1,
there is no issue about the source matrices as R𝑥1 and R𝑥2

reduce to scalars. With 𝑁 > 1 and 𝑀 > 1, this problem is a
much harder (non-convex) problem and there is currently no
globally optimal solution.

In this paper, we propose to optimize the pair R𝑥1 and R𝑥2

and the single matrix F alternately. If we fix R𝑥1 = R
(𝑘−1)
𝑥1

and R𝑥2 = R
(𝑘−1)
𝑥2 where 𝑘 be the index of the 𝑘th iteration,

the problem of finding F is

min
F

−𝑟𝑠𝑢𝑚(F,R(𝑘−1)
𝑥1

,R(𝑘−1)
𝑥2

) (7)

𝑠.𝑡. 𝑝𝑅(F,R
(𝑘−1)
𝑥1

,R(𝑘−1)
𝑥2

) ≤ 𝑃𝑅

where 𝑃𝑅 is the upper bound on the transmit power at
the relay. We will refer to this sub-problem as the relay
optimization problem.

If we fix F = F(𝑘), the problem of finding R𝑥1 and R𝑥2

is

min
R𝑥1 ,R𝑥2

−𝑟𝑠𝑢𝑚(F(𝑘),R𝑥1 ,R𝑥2) (8)

𝑠.𝑡. 𝑝𝑅(F
(𝑘),R𝑥1 ,R𝑥2) ≤ 𝑃𝑅

Tr(R𝑥𝑖) ≤ 𝑃𝑖, R𝑥𝑖 ≥ 0, 𝑖 = 1, 2

where 𝑃𝑖 is the upper bound on the transmit power at 𝑈𝑖, and
R𝑥𝑖 ≥ 0 means that the matrix R𝑥𝑖 is positive semi-definite.

We will refer to this sub-problem as the source optimization
problem.

Our approach to finding R𝑥1 , R𝑥2 and F is based on the
alternation of the optimizations of the above two sub-problems
until convergence. At the time of this writing, we do not
know whether there exists a more effective approach. This
alternate optimization between relay and sources is similar
to one previously used for a one-way MIMO relay system
of two or more hops [12], [9], [13]. But the problem here is
much more complex and, to our knowledge, does not have the
diagonalization property as available for the one-way MIMO
relays.

Unlike the one-way (two-hop) scheme, the relay optimiza-
tion problem here is still non-convex, for which we will
present two algorithms in Section IV. The source optimization
is convex, for which we will present an algorithm in Section
VI based on the generalized water-filling algorithm developed
in [10]. In the next section, we show an optimal structure of
the relay matrix, which is useful to reduce the complexity of
the problem.

III. OPTIMAL STRUCTURE OF THE RELAY MATRIX

Theorem 1: Assume 𝑀 ≥ 2𝑁 . Define the following two
QR decompositions:[

H𝐻
𝑅1 H𝐻

𝑅2

]
= V1R1 (9)[

H1𝑅 H2𝑅

]
= U2R2 (10)

where R1,R2 ∈ ℂ
2𝑁×2𝑁 are upper triangular matrices,

and V1,U2 ∈ ℂ𝑀×2𝑁 are orthonormal matrices. Then, the
optimal relay matrix F that maximizes the sum rate in problem
(7) has the following structure:

F = V1AU
𝐻
2 (11)

where A ∈ ℂ2𝑁×2𝑁 .
Proof: See Appendix A.

Note that this optimal structure of F is governed by the
channel matrices only, which is not affected by the source
covariance matrices. It is also clear from the proof that this
structure of F remains optimal for any weights 𝜇1 and 𝜇2.

If 𝑀 > 2𝑁 , then the 𝑀2 unknowns in F are effectively
reduced to 4𝑁2 unknowns in A for the relay optimization
problem (7). If 𝑀 = 2𝑁 , this theorem does not seem
important. With this theorem, we can now write

F = SAT𝐻 where

{
S = V1,T = U2 if 𝑀 > 2𝑁
S = T = I if 𝑀 ≤ 2𝑁

(12)
We also define G𝑅𝑖 = H𝑅𝑖S and G𝑖𝑅 = T𝐻H𝑖𝑅. Then, (5)
becomes

X𝑖 = I+(G𝑅𝑖AA
𝐻G𝐻

𝑅𝑖+ I)−1G𝑅𝑖AG�̄�𝑅R𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖

(13)
and (2) becomes

𝑝𝑅 = Tr
(
AG1𝑅R𝑥1G

𝐻
1𝑅A

𝐻 +AG2𝑅R𝑥2G
𝐻
2𝑅A

𝐻 +AA𝐻
)

(14)
Although this theorem reduces the complexity (dimension of
search space) of the problem when 𝑀 > 2𝑁 , it does not
change the structure of the remaining problem for finding A.
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In other words, the problem (7) with respect to F has the
same structure as the equivalent problem with respect to A.
For convenience, we will treat F and A in (7) interchangeable.

It remains an open problem to find additional structure in
the optimal A. This difficulty is caused by the fact that the
matrix A is weighted by different matrices in X1 and X2. In
the next two sections, we present two algorithms for finding
the optimal A.

IV. RELAY OPTIMIZATION BY GRADIENT METHOD

In this section, we will present a hybrid gradient method
that dynamically switches between steepest gradient descent
and Newton’s search. We need to solve the relay optimization
problem (7), i.e., minA −𝑟𝑠𝑢𝑚 subject to 𝑝𝑅 ≤ 𝑃𝑅. This is a
non-convex problem because −𝑟𝑠𝑢𝑚 is not a convex function
of A. However, the set defined by 𝑝𝑅 ≤ 𝑃𝑅 with respect to
A is a convex set, i.e., if A1 and A2 satisfy 𝑝𝑅 ≤ 𝑃𝑅, so
does 𝛼A1 + (1− 𝛼)A2 where 0 ≤ 𝛼 ≤ 1. Therefore, we can
apply the interior point method to convert the hard constraint
𝑝𝑅 ≤ 𝑃𝑅 into a soft constraint in the following problem:

min
A

𝑓(A) = −𝑟𝑠𝑢𝑚 − 1

𝑡
ln(𝑃𝑅 − 𝑝𝑅) (15)

where the second term in 𝑓(A) is the soft constraint known
as logarithmic barrier function [14], and 𝑡 is the barrier factor.
By increasing 𝑡 gradually, the soft constraint becomes harder
and harder. For each given 𝑡 and a previous choice of A in the
interior region (satisfying 𝑝𝑅 < 𝑃𝑅), we can apply a gradient
method to optimize A. The loop of increasing 𝑡 is called the
outer loop, the gradient search under each fixed 𝑡 is called the
inner loop. There is no guarantee that this algorithm leads to
the globally optimal solution unless the problem is convex.
Since −𝑟𝑠𝑢𝑚 is non-convex of A, multiple initializations and
multiple runs of the algorithm are desirable to increase the
likelihood of finding the globally optimal solution.

The most common gradient methods are the (steepest)
gradient descent method and the Newton’s method. Both of
these methods are well documented in textbooks on optimiza-
tion, such as Algorithm 9.3 (gradient descent method) and
Algorithm 9.5 (Newton’s method) in [14]. The key component
in the gradient descent method is the computation of the
gradient vector ∇𝑓 of 𝑓(A). In the Newton’s method, we
need the gradient vector ∇𝑓 as well as the Hessian matrix
∇2𝑓 of 𝑓(A). The vector of independent variables here
is x = [𝑅𝑒(a)𝑇 , 𝐼𝑚(a)𝑇 ]𝑇 where a = vec(A). Hence,
∇𝑓 = ∂𝑓

∂x and ∇2𝑓 = ∂2𝑓
∂x∂x𝑇 . Alternatively, we can write

∇𝑓 =
[
vec𝑇

(
∂𝑓

∂𝑅𝑒(A)

)
, vec𝑇

(
∂𝑓

∂𝐼𝑚(A)

)]𝑇
and

∇2𝑓 = ∇(∇𝑓)𝑇 =

⎡
⎢⎢⎣

∂(∇𝑓)𝑇

∂vec(𝑅𝑒(A))
∂(∇𝑓)𝑇

∂vec(𝐼𝑚(A))

⎤
⎥⎥⎦

Next, we explain the key steps needed to derive and compute
∇𝑓 and ∇2𝑓 .

A. Computation of Gradient

It follows from (15) that

∂𝑓(A) = −𝜇1∂𝑟1 − 𝜇2∂𝑟2 +
1

𝑡(𝑃𝑟 − 𝑝𝑅)
∂𝑝𝑅 (16)

where ∂𝑟𝑖 =
1
2 (log2 𝑒)Tr(X

−1
𝑖 ∂X𝑖). For basic facts of matrix

differential calculus, see [15]. Using (13), the chain rule of
differentials, ∂𝐴−1 = −𝐴−1∂𝐴𝐴−1 and Tr(𝐴𝐵) = Tr(𝐵𝐴),
one can verify

Tr(X−1
𝑖 ∂X𝑖) =

−Tr (A𝐻G𝐻
𝑅𝑖D

−1
𝑖 N�̄�X

−1
𝑖 D−1

𝑖 G𝑅𝑖∂A
)

−Tr (G𝐻
𝑅𝑖D

−1N�̄�X
−1
𝑖 D−1

1 G𝑅𝑖A∂A𝐻
)

+Tr
(
G�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅A

𝐻G𝐻
𝑅𝑖X

−1
𝑖 D−1

𝑖 G𝑅𝑖∂A
)

+Tr
(
G𝐻

𝑅𝑖X
−1
𝑖 D−1

𝑖 G𝑅𝑖AG�̄�𝑅R𝑥�̄�
G𝐻

�̄�𝑅∂A
𝐻
)

(17)

where D𝑖 = G𝑅𝑖AA
𝐻G𝐻

𝑅𝑖 + I and N�̄� = G𝑅𝑖AG�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅
A𝐻G𝐻

𝑅𝑖. With these notations, we also have X𝑖 =
I +D−1

𝑖 N�̄�. Using the fact 𝐴(𝐼 + 𝐵𝐴)−1 = (𝐼 + 𝐴𝐵)−1𝐴
(which follows from the matrix inversion lemma), one can
verify that (N�̄�X

−1
𝑖 )𝐻 = N�̄�X

−1
𝑖 . One can also verify that if

∂𝑓 = Tr(𝐴∂𝑋) + Tr(𝐴𝐻∂𝑋𝐻) then ∂𝑓
∂𝑅𝑒(𝑋) = 2𝑅𝑒(𝐴)𝑇

and ∂𝑓
∂𝐼𝑚(𝑋) = −2𝐼𝑚(𝐴)𝑇 . We call the two terms in

Tr(𝐴∂𝑋) + Tr(𝐴𝐻∂𝑋𝐻) a conjugate differential pair. The
first two terms in (17) are a conjugate differential pair, and so
are the last two terms in (17). Therefore,

∂𝑟𝑖
∂𝑅𝑒(A)

= −(log2 𝑒)𝑅𝑒
(
A𝐻G𝐻

𝑅𝑖D
−1
𝑖 N�̄�X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
+(log2 𝑒)𝑅𝑒

(
G�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅A

𝐻G𝐻
𝑅𝑖X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
(18)

and ∂𝑟𝑖
∂𝐼𝑚(A) is the same as the above except that 𝑅𝑒 is replaced

by −𝐼𝑚. Clearly,

∇𝑟𝑖 =

[
vec𝑇

(
∂𝑟𝑖

∂𝑅𝑒(A)

)
, vec𝑇

(
∂𝑟𝑖

∂𝐼𝑚(A)

)𝑇
]𝑇

.

Using the same technique, we can find

∂𝑝𝑅
∂𝑅𝑒(A)

= 2𝑅𝑒(G1𝑅R𝑥1G
𝐻
1𝑅A

𝐻+G2𝑅R𝑥2G
𝐻
2𝑅A

𝐻+A𝐻)𝑇

and ∂𝑝𝑅

∂𝐼𝑚(A) is the same but with 𝑅𝑒 replaced by −𝐼𝑚. Using
the above results, the gradient ∇𝑓 = −𝜇1∇𝑟1 − 𝜇2∇𝑟2 +

1
𝑡(𝑃𝑟−𝑝𝑅)∇𝑝𝑅 can be determined.

B. Computation of Hessian

To compute the Hessian ∇2𝑓 , we need to compute each
term in ∇2𝑓 = −𝜇1∇2𝑟1 − 𝜇2∇2𝑟2 +

1
𝑡(𝑃𝑟−𝑝𝑅)∇2𝑝𝑅. The

procedure of finding ∇2𝑝𝑅 is similar to that of finding ∇2𝑟𝑖
for 𝑖 = 1, 2. To find ∇2𝑟𝑖 = ∇(∇𝑟𝑖)

𝑇 , we need to find

the elements
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
,
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝐼𝑚(A)𝑘,𝑙
,
∂
(

∂𝑟𝑖
∂𝐼𝑚(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
and

∂
(

∂𝑟𝑖
∂𝐼𝑚(A)

)
𝑚,𝑛

∂𝐼𝑚(A)𝑘,𝑙
where 1 ≤ 𝑚,𝑛, 𝑘, 𝑙 ≤ 𝑀0

.
= min(2𝑁,𝑀). In

other words, each entry of the 2𝑀2
0 × 2𝑀2

0 matrix ∇2𝑟𝑖 is
determined by one of the four elements for some 𝑚,𝑛, 𝑘, 𝑙.

To find
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
, we need to take the first order
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differential of (18) to obtain

∂ ∂𝑟𝑖
∂𝑅𝑒(A)

=

−(log2 𝑒)𝑅𝑒
(
∂A𝐻G𝐻

𝑅𝑖D
−1
𝑖 N�̄�X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
+(log2 𝑒)𝑅𝑒

(
A𝐻G𝐻

𝑅𝑖D
−1
𝑖 ∂D𝑖D

−1
𝑖 N�̄�X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
−(log2 𝑒)𝑅𝑒

(
A𝐻G𝐻

𝑅𝑖D
−1
𝑖 ∂N�̄�X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
+(log2 𝑒)𝑅𝑒

(
A𝐻G𝐻

𝑅𝑖D
−1
𝑖 N�̄�X

−1
𝑖 ∂X𝑖X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
+(log2 𝑒)𝑅𝑒

(
A𝐻G𝐻

𝑅𝑖D
−1
𝑖 N�̄�X

−1
𝑖 D−1

𝑖 ∂D𝑖D
−1
𝑖 G𝑅𝑖

)𝑇
+(log2 𝑒)𝑅𝑒

(
G�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅
∂A𝐻G𝐻

𝑅𝑖X
−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
−(log2 𝑒)𝑅𝑒

(
G�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅
A𝐻G𝐻

𝑅𝑖X
−1
𝑖 ∂X𝑖X

−1
𝑖 D−1

𝑖 G𝑅𝑖

)𝑇
−(log2 𝑒)𝑅𝑒

(
G�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅
A𝐻G𝐻

𝑅𝑖X
−1
𝑖 D−1

𝑖 ∂D𝑖D
−1
𝑖 G𝑅𝑖

)𝑇
(19)

where ∂D𝑖, ∂N�̄� and ∂X𝑖 can be determined similarly such
that the resulting expression is a linear function of ∂A and

∂A𝐻 . To obtain
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
from ∂ ∂𝑟𝑖

∂𝑅𝑒(A) , we simply

choose the (𝑚,𝑛)th element of ∂ ∂𝑟𝑖
∂𝑅𝑒(A) , replace ∂A by e𝑘e𝑇𝑙

and replace ∂A𝐻 by e𝑙e
𝑇
𝑘 , where all entries of the vector e𝑘

are zero except that its 𝑘th entry is one.
The expression of ∂ ∂𝑟𝑖

∂𝐼𝑚(A) is also given by (19) except that
the operator 𝑅𝑒 should be replaced by −𝐼𝑚. Then, finding
∂
(

∂𝑟𝑖
∂𝐼𝑚(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
from ∂ ∂𝑟𝑖

∂𝐼𝑚(A) follows the same procedure as
above.

The derivation for
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝐼𝑚(A)𝑘,𝑙
and

∂
(

∂𝑟𝑖
∂𝐼𝑚(A)

)
𝑚,𝑛

∂𝐼𝑚(A)𝑘,𝑙
is the

same as for
∂
(

∂𝑟𝑖
∂𝑅𝑒(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
and

∂
(

∂𝑟𝑖
∂𝐼𝑚(A)

)
𝑚,𝑛

∂𝑅𝑒(A)𝑘,𝑙
, respectively,

except that for the former pair we should replace ∂A by 𝑗e𝑘e
𝑇
𝑙

and ∂A𝐻 by −𝑗e𝑙e
𝑇
𝑘 .

The details of those expressions are tedious and omitted
to save space. However, for computational efficiency, it is
important to program the computations by starting from the
sparse vector e𝑘.

C. Hybrid Gradient Method

Since the function 𝑓(A) is non-convex, there is no guar-
antee that the Hessian ∇2𝑓 is positive definite everywhere
while a positive definite ∇2𝑓 is a necessary condition for the
Newton’s method to converge to even a local minimum. In
fact, our simulation results show that the Newton’s method
does not always converge to a local minimum, and as a
consequence the gradient descent method can sometimes yield
a better result. Therefore, we propose a hybrid gradient method
that combine the two gradient methods. The procedure of the
hybrid gradient method is simple. At each iteration of the
inner loop (under a fixed 𝑡), we compute both the gradient
∇𝑓 and the Hessian ∇2𝑓 . If ∇2𝑓 is singular or the Newton’s
decrement 𝜆2 = ∇𝑓

(∇2𝑓
)−1 ∇𝑓 is less than or equal to zero,

we follow the gradient descent method. Otherwise, we choose
the search (either Newton’s or gradient descent) that produces
a larger descent of 𝑓(A). The iterations of the Newton’s
method stop when 𝜆2 is small enough. When A is close
enough to a local minimum of 𝑓(A), ∇2𝑓 is typically positive
definite and in this case the Newton’s method is known to have
a quadratic convergence rate. For the gradient descent method,
the convergence rate is known to be linear. In simulation, the

hybrid gradient method has consistently produced either the
same or better results than the pure Newton’s method and the
pure gradient descent method.

The hybrid gradient method is summarized as follows:

1) Choose 𝜖 > 0, 𝜂 > 1, 𝛼 ∈ (0.01, 0.3), 𝛽 ∈ (0.1, 0.8).
Initialize a feasible A or its equivalent x. Set 𝑡 = 𝑡0.
Note that the choice of 𝜖 governs the precision of the
final result. See step 6). The choice of 𝜂 (as long as
larger than one) is not critical. See page 570 of [14].
The choices of 𝛼 ∈ (0.01, 0.3) and 𝛽 ∈ (0.1, 0.8) are
empirical as recommended on page 466 of [14].

2) Compute ∇𝑓 and ∇2𝑓 .
3) If ∇2𝑓 is singular or 𝜆2 = (∇𝑓)𝑇 (∇2𝑓)−1∇𝑓 ≤ 0,

set 𝑠 = 1 and Δx(1) = −∇𝑓 . Otherwise, set 𝑠 = 2,
Δx(1) = −∇𝑓 , Δx(2) = −(∇2𝑓)−1∇𝑓 . Set 𝑡(𝑖) = 1
for 𝑖 = 1, 𝑠.

4) Line backtracking: for 𝑖 = 1, 𝑠, while 𝑓(x+𝑡(𝑖)Δx(𝑖)) >
𝑓(x) + 𝛼𝑡(𝑖)(∇𝑓)𝑇Δx(𝑖), 𝑡(𝑖) := 𝛽𝑡(𝑖)

5) Update: if 𝑓(x + 𝑡(2)Δx(2)) ≤ 𝑓(x + 𝑡(1)Δx(1)), let
x := x+ 𝑡(2)Δx(2). Otherwise, let x := x+ 𝑡(1)Δx(1).

6) Go to Step 2 until −(∇𝑓)𝑇Δx < 𝜖.
7) Set 𝑡 := 𝜂𝑡. Go to Step 2 until 1/𝑡 < 𝜖.

For convenience, we have used the same tolerance for both
Steps 6 and 7 although different choices can be made. The
inverse of ∇2𝑓 needs not and should not to be computed
explicitly in order to compute (∇2𝑓)−1∇𝑓 efficiently. It can
be found by solving efficiently the linear equation (∇2𝑓)y =
∇𝑓 . In simulation, we will choose 𝜖 = 10−3, 𝜂 = 3, 𝛼 = 0.01,
𝛽 = 0.5 and 𝑡0 = 1. Only a locally optimal solution can
be found by the hybrid gradient method with a given initial
choice of A. To increase the likelihood of finding the globally
optimal solution, multiple initializations and multiple runs of
the search algorithm are useful.

V. RELAY OPTIMIZATION BY ITERATIVE WMMSE
METHOD

In this section, we present an alternative algorithm for
the relay optimization problem (7) with respect to A. Re-
call 𝑟𝑠𝑢𝑚 = 1

2

∑2
𝑖=1 𝜇𝑖 log2 det(X𝑖) where X𝑖 is given in

(13). Since det(𝐼 + 𝐴𝐵) = det(𝐼 + 𝐵𝐴), we can write
𝑟𝑠𝑢𝑚 = 1

2

∑2
𝑖=1 𝜇𝑖 log2 det(Y𝑖) where

Y𝑖 = I+R𝐻/2
𝑥�̄�

G𝐻
�̄�𝑅A

𝐻G𝐻
𝑅𝑖 ⋅(

G𝑅𝑖AA
𝐻G𝐻

𝑅𝑖 + I
)−1

G𝑅𝑖AG�̄�𝑅R
1/2
𝑥�̄�

(20)

We define 𝐽𝑖 = Tr (W𝑖E𝑖) − log det(W𝑖) − 𝑁 where

E𝑖 = 𝐸
(
(Q𝑖y

′
𝑖 − s�̄�) (Q𝑖y

′
𝑖 − s�̄�)

𝐻
)

and y′
𝑖 is given in (4)

or equivalently

y′
𝑖 = G𝑅𝑖AG�̄�𝑅R

1/2
𝑥�̄�

s�̄� +G𝑅𝑖An𝑅 + n𝑖 (21)

We next consider the following alternative problem

min
A,Q𝑖,W𝑖,𝑖=1,2

𝐽 = 𝜇1𝐽1 + 𝜇2𝐽2 (22)

𝑠.𝑡. 𝑝𝑅(A) ≤ 𝑃𝑅

It is easy to see that the optimal solution of Q𝑖 from (22)
is Q𝑖 = 𝐸(s�̄�y

′𝐻
𝑖 )

(
𝐸(y′

𝑖y
′𝐻
𝑖 )

)−1
. Using (21), one can verify
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that

Q𝑖 = R
𝐻
2
𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖⋅(
G𝑅𝑖AG�̄�𝑅R𝑥�̄�

G𝐻
�̄�𝑅A

𝐻G𝐻
𝑅𝑖 +G𝑅𝑖AA

𝐻G𝐻
𝑅𝑖 + I

)−1

=
(
I+R

𝐻
2
𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖

(
G𝑅𝑖AA

𝐻G𝐻
𝑅𝑖 + I

)−1
G𝑅𝑖A

G�̄�𝑅R
1
2
𝑥�̄�

)−1

R
𝐻
2
𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖

(
G𝑅𝑖AA

𝐻G𝐻
𝑅𝑖 + I

)−1

(23)

where the last equation follows from the matrix inverse lemma.
With the definition of Y𝑖 in (20) and the optimal Q𝑖 in (23), it
is easy to verify that E𝑖 = Y−1

𝑖 . It is also an easy task to verify
that the optimal solution W𝑖 from (22) is simply W𝑖 = Y𝑖.
We see that with the optimal Q𝑖 and W𝑖, 𝐽𝑖 = − log det(Y𝑖)
and hence 𝐽 = −2(log 2)𝑟𝑠𝑢𝑚. Therefore, we have shown
that the optimal solution A to (22) is the same as that to the
original problem (7).

Furthermore, it is important to notice that if we fix {Q𝑖, 𝑖 =
1, 2} and {W𝑖, 𝑖 = 1, 2}, the problem of (22) with respect to
A is a quadratic convex problem. Therefore, we can try to find
the solution to (22) by optimizing {Q𝑖, 𝑖 = 1, 2}, {W𝑖, 𝑖 =
1, 2} and A in a cyclic fashion, which is the following iterative
WMMSE algorithm:

Given ∀A(0);
Repeat Update 𝑘 := 𝑘 + 1;

1) Compute Q(𝑘)
𝑖 based on A(𝑘−1) (see (23));

2) Compute W(𝑘)
𝑖 = Y

(𝑘)
𝑖 based on A(𝑘−1) (see (20) )

3) Compute A(𝑘) by solving (22) and fixing Q𝑖 = Q
(𝑘)
𝑖

and W𝑖 =W
(𝑘)
𝑖 .

Until Convergence

Although there is no proof or disproof that the iterative
WMMSE algorithm yields the optimal A of the original
problem (7), this algorithm is guaranteed to converge locally
due to the minimization of 𝐽 with respect to {Q𝑖, 𝑖 = 1, 2},
{W𝑖, 𝑖 = 1, 2} and A cyclically.

We next show how to implement Step 3 of the above
algorithm. First, using (21) and performing the expectation
in E𝑖, one can verify that, after removing the constant term
log det(W𝑖) +𝑁 ,

𝐽𝑖 = Tr(W𝑖Q𝑖G𝑅𝑖AG�̄�𝑅R𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖Q
𝐻
𝑖 )

+Tr(W𝑖Q𝑖G𝑅𝑖AA
𝐻G𝐻

𝑅𝑖Q
𝐻
𝑖 ) + Tr(W𝑖Q𝑖Q

𝐻
𝑖 )

+Tr(W𝑖)− Tr(W𝑖Q𝑖G𝑅𝑖AG�̄�𝑅R
1
2
𝑥�̄�
)

−Tr(W𝑖R
𝐻
2
𝑥�̄�
G𝐻

�̄�𝑅A
𝐻G𝐻

𝑅𝑖Q
𝐻
𝑖 ) (24)

Recall Tr(𝐴𝐵) = Tr(𝐵𝐴), Tr(𝐴𝐵𝐻) = vec𝐻(𝐵)vec(𝐴),
Tr(𝐴𝐵𝐴𝐻𝐶𝐻) = vec𝐻(𝐶𝐴)vec(𝐴𝐵) = vec(𝐴)𝐻(𝐼

⊗
𝐶)𝐻

(𝐵𝑇 ⊗
𝐼)vec(𝐴) = vec𝐻(𝐴) (𝐵𝑇

⊗
𝐶𝐻)vec(𝐴). It follows

that
𝐽𝑖 = a𝐻A𝑖a− c𝐻𝑖 a− a𝐻c𝑖 + 𝑑𝑖 (25)

where a = vec(A) and

A𝑖 = (G�̄�𝑅R𝑥�̄�
G𝐻

�̄�𝑅)
𝑇 ⊗ (G𝐻

𝑅𝑖Q
𝐻
𝑖 W𝑖Q𝑖G𝑅𝑖)

+I⊗ (G𝐻
𝑅𝑖Q

𝐻
𝑖 W𝑖Q𝑖G𝑅𝑖) (26)

c𝑖 = vec(G𝐻
𝑅𝑖Q

𝐻
𝑖 W𝑖R

𝐻
2
𝑥�̄�
G𝐻

�̄�𝑅) (27)

𝑑𝑖 = Tr(W𝑖Q𝑖Q
𝐻
𝑖 ) + Tr(W𝑖) (28)

Also, we can write (14) as 𝑝𝑅 = a𝐻G𝑅a with G𝑅 =
(G1𝑅R𝑥1G

𝐻
1𝑅 +G2𝑅R𝑥2G

𝐻
2𝑅 + I)𝑇

⊗
I

Therefore, step 3 is equivalent to

min
a

a𝐻G0a− c𝐻a− a𝐻c (29)

𝑠.𝑡. a𝐻G𝑅a− 𝑃𝑅 ≤ 0

where G0 = 𝜇1A1 + 𝜇2A2 and c = 𝜇1c1 + 𝜇2c2. This
is a simple convex problem which can be solved by the
KKT method [14]. Specifically, the optimal a is uniquely
determined by the following equations:⎧⎨

⎩
G0a− c+ 𝜉G𝑅a = 0
𝜉(a𝐻G𝑅a− 𝑃𝑅) = 0
a𝐻G𝑅a− 𝑃𝑅 ≤ 0

(30)

where 𝜉 ∈ ℝ and 𝜉 ≥ 0. There are two possible cases for
the optimal solution a. The first is when the constraint is not
active, i.e., a𝐻G𝑅a < 𝑃𝑅 or equivalently 𝜉 = 0, and the
second is when the constraint is active, i.e., a𝐻G𝑅a = 𝑃𝑅 or
equivalently 𝜉 > 0. In the first case, the solution is a = G−1

0 c.
If this solution does not meet the power constraint, we can
simply abandon it and consider the second case. In the second
case, we have a = (G0 + 𝜉G𝑅)

−1c where 𝜉 > 0 is such that

ℎ(𝜉) = c𝐻(G0 + 𝜉G𝑅)
−1G𝑅(G0 + 𝜉G𝑅)

−1c = 𝑃𝑅 (31)

which can be solved by a 1-D search such as the bisection
method since ℎ(𝜉) is monotonically decreasing function of 𝜉.
In simulation, we will choose the error tolerance 𝜖 = 10−3

for the 1-D search.
The iterative WMMSE method was inspired by the work

[11] where a similar idea was used for MIMO broadcast. In
Section VII, we will compare the iterative WMMSE method
with the hybrid gradient method.

VI. SOURCE OPTIMIZATION BY GENERALIZED WATER

FILLING

We now consider the source optimization problem (8) with
any fixed F. To highlightR𝑥1 and R𝑥2 which are the variables
of interest now, we first reformulate (8) as (ignoring the factor
1/2):

min
R𝑥1 ,R𝑥1

−𝜇2 log2 det(I+H1R𝑥1H
𝐻
1 ) (32)

−𝜇1 log2 det(I+H2R𝑥2H
𝐻
2 )

𝑠.𝑡. Tr(R𝑥𝑖) ≤ 𝑃𝑖, R𝑥𝑖 ≥ 0, 𝑖 = 1, 2

Tr(G1R𝑥1G
𝐻
1 +G2R𝑥2G

𝐻
2 ) ≤ 𝑃3

where H𝑖 =
(
H𝐻

𝑖𝑅F
𝐻H𝐻

𝑅�̄�
(H𝑅�̄�FF

𝐻H𝐻
𝑅�̄�

+ I)−1H𝑅�̄�F

H𝑖𝑅

) 1
2 , G𝑖 = FH𝑖𝑅, 𝑃3 = 𝑃𝑅 − FF𝐻 . For any 𝜇1 and 𝜇2,

the above problem is convex and can be solved by (general
purpose) semi-definite programming (SDP) such as in CVX
[16] . But if 𝜇1 = 𝜇2, there is an alternative method shown
below.

With the uniform weights, we can write (32) as

min
R𝑥≥0

− log2 det(I+HR𝑥H
𝐻) (33)

𝑠.𝑡. Tr(B𝑖R𝑥B
𝐻
𝑖 ) ≤ 𝑃𝑖, 𝑖 = 1, 2, 3

where H = diag(H1,H2), B1 = diag(I,0), B2 =
diag(0, I), B3 = diag(G1,G2). It is clear that if the problem



XU and HUA: OPTIMAL DESIGN OF SPATIAL SOURCE-AND-RELAY MATRICES FOR A NON-REGENERATIVE TWO-WAY MIMO RELAY SYSTEM 1651

(33) has the diagonal constraint R𝑥 = diag(R′
𝑥1
,R′

𝑥2
) where

R′
𝑥1

and R′
𝑥2

have the same dimensions as R𝑥1 and R𝑥2 ,
then (32) and (33) are exactly the same problem and hence
have the same solution, i.e., R′

𝑥1
= R𝑥1 and R′

𝑥2
= R𝑥2 .

Next, we show that R𝑥 = diag(R′
𝑥1
,R′

𝑥2
) is always the

form of the solution to (33). Without loss of generality, we
can write

R𝑥 =

[
R′

𝑥1
R

R𝐻 R′
𝑥2

]

It is easy to see that due to the structures of H, B1, B2 and
B3, the off-diagonal block R of R𝑥 has no effect on the
constraints in (33). Now, we focus on the objective function
of (33), for which we know, due to the Fischer’s inequality
[17], that

det(I+HR𝑥H
𝐻) = det

[
I+H1R

′
𝑥1
H𝐻

1 H1RH
𝐻
2

H2R
𝐻H𝐻

1 I+H2R
′
𝑥2
H𝐻

2

]

≤ det

[
I+H1R

′
𝑥1
H𝐻

1 0
0 I+H2R

′
𝑥2
H𝐻

2

]
= det(I+Hdiag(R′

𝑥1
,R′

𝑥2
)H𝐻) (34)

Therefore, the solution to (33) must be block diagonal.
For (33), we can directly apply the generalized water filling

(GWF) theorem from [10], which yields

R𝑥 = K−𝐻V(I−Σ−2)+V𝐻K−1 (35)

where K = (
∑3

𝑖=1 𝜃𝑖B
𝐻
𝑖 B𝑖)

1
2 , V and Σ are given by the

SVD HK−𝐻 = UΣV𝐻 , and 𝑥+ = max(𝑥, 0) is applied
to each diagonal element in (I − Σ−2)+. The Lagrangian
variables 𝜽 = (𝜃1, 𝜃2, 𝜃3) are the solution to the dual problem

max
𝜽≥0

− log2 det(I+HR𝑥H
𝐻) +

3∑
𝑖=1

𝜃𝑖
(
Tr(B𝑖R𝑥B

𝐻
𝑖 )− 𝑃 ′

𝑖

)
𝑠.𝑡.R𝑥 = K−𝐻V(I −Σ−2)+V𝐻K−1 (36)

The dual problem is convex and can be solved by the Newton’s
method [10]. In our Matlab simulation, the GWF algorithm is
much faster than CVX to solve (33).

Finally, we would like to add that the source optimization
problem (32) differs from a conventional single-link MIMO
channel problem such as in [18]. For the former, the optimal
source matrices are not necessarily diagonal in general.

VII. SIMULATION RESULTS

For simulation, we choose the uniform weights 𝜇1 =
𝜇2 = 1, and the elements in H1𝑅, H2𝑅, H𝑅1, and H𝑅2

as independent complex circular Gaussian random variables
of zero mean and unit variance, i.e., 𝒞𝒩 (0, 1). For illustration
of the convergence behaviors of our algorithms, we will use
one realization of the channel matrices. For illustration of the
averaged sum rate, we will use multiple (100) realizations
of the channel matrices. We assume that all noise vectors
are complex white Gaussian, i.e., n𝑅 ∼ 𝒞𝒩 (0, I) and n𝑖 ∼
𝒞𝒩 (0, I) where 𝑖 = 1, 2. We denote SNR𝑅 = 𝑃𝑅/𝑀 and
SNR𝑖 = 𝑃𝑖/𝑁 where 𝑖 = 1, 2.
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Fig. 2. The sum rate by the hybrid gradient method versus its
iteration. The circles indicate the iteration steps where 𝑡 is increased
by the factor three, and the iterations between two adjacent circles
are the iterations of either the (steepest) gradient descent method
or Newton’s method for a fixed 𝑡. 𝑁 = 2 and 𝑀 = 6. SNR1 =
SNR2 = SNR𝑅 = 10𝑑𝐵.
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Fig. 3. The sum rate by the iterative WMMSE method versus its
iteration. 𝑁 = 2 and 𝑀 = 6. SNR1 = SNR2 = SNR𝑅 = 10𝑑𝐵.

A. Relay Optimization

In this subsection, we assume that Rx1 and Rx2 are diago-
nal matrix with identical entries subject to Tr(Rx1) = 𝑃1 and
Tr(Rx2) = 𝑃2. We randomly generate the initial A satisfying
𝑝𝑅(A) = 𝑃𝑅 − 𝜃 where 𝜃 is a (small) positive value so that
− ln(𝑃𝑅−𝑝𝑅(A)) is not too large. This condition is required
for the gradient methods although it is not necessary for the
iterative MMSE method.

Note that the hybrid gradient method is always much faster
than the gradient descend method and yields the same or
better result than the Newton’s method. Only the comparison
between the hybrid gradient method and the iterative WMMSE
method is shown next.

Under all common initializations of A, the hybrid gradient
method and the iterative WMMSE method have consistently
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Fig. 4. The time-capacity curves of the hybrid gradient method and
the iterative WMMSE method. The time is in seconds. 𝑁 = 2 and
𝑀 = 6. SNR1 = SNR2 = SNR𝑅 = 10𝑑𝐵.

yielded the same maximized sum rate upon convergence. Fig.
2 illustrates the convergence behavior of the hybrid gradient
method, which is the value of the sum rate versus the iteration
index. The circles indicate the locations along the iteration
process where the barrier constant 𝑡 = 3𝑛 is increased by
the factor three. Fig 3 illustrates the convergence behavior
of the iterative WMMSE method versus its iteration cycle of
renewing Q1, Q2, W1 and W2 in the cost 𝐽1 + 𝐽2.

To provide a more precise comparison of the speed of the
two methods, Fig. 4 illustrates the sum rate by the hybrid
gradient method and the iterative WMMSE method versus the
actual computational time (in Matlab on the same computer)
along the iteration process. We call such curves as time-
capacity curves. (Undoubtedly, these curves would be affected
by how each algorithm is implemented. But we believe that
these curves are meaningful to reflect the major performance
gaps between algorithms.) Each point on a time-capacity curve
is a pair of values of time and sum rate. The time is the time
an algorithm takes to produce the corresponding sum rate.
For each of the two methods, we embedded stopwatch check
points in the programs, and the times (in seconds) and the
corresponding values of intermediateA are collected. For each
A, there is a corresponding value of the sum rate. We see that
when the sum rate is close to the optimal, the hybrid gradient
method is much faster. Note that the Newton’s method has
a quadratic convergence rate near the optimal point. On the
other hand, when the sum rate is far from the optimal, the
iterative WMMSE method converges faster initially.

We like to mention that the method shown in [8] is a non-
iterative sub-optimal method. This method is faster than a
single iteration of the hybrid gradient or the iterative WMMSE
method. However, using the method in [8], we obtained the
sum rate at about 8.5 bits/s/Hz, which is significantly smaller
than the maximum sum rate shown in Fig. 4.

The work [7] considered a special case of the two-way
MIMO relay system where each user has a single antenna.
In this case, there is no need for source optimization but
only relay optimization. In [7], an algorithm based on SDP
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Fig. 5. The time-capacity curves of the zoomed SDP method based on
[7], the hybrid gradient method and the iterative WMMSE method.
𝑁 = 1 and 𝑀 = 5. The time is in seconds. SNR1 = SNR2 =
SNR𝑅 = 10𝑑𝐵. The zoomed SDP is approximately 1000 times
slower than the hybrid gradient.

was developed to compute the capacity region of this special
case. This algorithm can be easily adopted to compute the
maximum sum rate as well. In Appendix B, a “zoomed” SDP
algorithm is formulated to compute the maximum sum rate,
which is a modified (and faster) version of the original SDP
algorithm shown in [7]. Upon convergence, the zoomed SDP
method has consistently produced the same sum rates as the
hybrid gradient and iterative WMMSE methods under the
same conditions. Fig. 5 illustrates the time-capacity curves
of the three methods for 𝑁 = 1 and 𝑀 = 5. In this figure,
the zoomed SDP method is about 1000 times slower than the
hybrid gradient method to yield the same maximized sum rate.

B. Joint Source-Relay Optimization

When 𝑁 > 1 and 𝑀 > 1, both the relay optimization and
the source optimization are important. We now let SNR1 =
SNR2 = SNR𝑅 = SNR. Fig. 6 shows the averaged sum rates
achieved by different schemes where SNR varies from 10dB
to 50dB. We used 100 channel realizations for each of the
averaged sum rates.

The scheme of “no optimization (F)” means that both the
source matrices, Rx1 and Rx2 , and the relay matrix F were
chosen randomly but meet power constraints at source and
relay. The scheme of “no optimization (A)” means that the
relay matrix F meets the optimal structure (11) but other-
wise is randomly chosen. For “no optimization (F)” and “no
optimization (A)”, the same source matrices were used. The
scheme of “source only (F)” means that the source matrices
were optimized but the relay matrix F was chosen as in “no
optimization(F)”. The scheme of “source only (A)” means that
the source matrices were optimized and A was chosen as in
“no optimization(A)”. The scheme of “relay only” means that
the source matrices were chosen as in “no optimization” but
the relay matrix F was completely optimized. The scheme of
“joint source-relay optimization” means that both the source
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Fig. 6. Average sum rate under different schemes versus SNR =
SNR1 = SNR2 = SNR𝑅. Averaged over 100 randomly generated
channels. 𝑁 = 2 and 𝑀 = 6.

matrices and the relay matrix were optimized alternately until
convergence.

For the joint optimization, about 5-10 alternations were
needed until convergence with the stopping criterion 10−3.
Both WMMSE and hybrid gradient methods were used (in
separate runs) for finding the relay matrix at each alternation.
The same result was obtained. This is because WMMSE and
hybrid gradient yielded the same locally converged result.

In all cases, the power constraints at the sources and the
relay were met with equality. The order of these curves is
as expected. However, the relay only optimization yields the
largest gain of the sum rate. This is because the number of
antennas at the relay (𝑀 ) is significantly larger the number
of antennas at the users (𝑁 ). Here, 𝑀 = 6 and 𝑁 = 2.

Fig. 7 illustrates the effect of the number of antennas on the
maximum sum rate under the joint source-relay optimization.
We define 𝛾 = 𝑀/𝑁 in this figure. We see that both 𝑁 and
𝑀 have a significant effect on the sum rate. The effect of
𝑀 on the sum rate becomes more significant as 𝑁 becomes
larger. This property makes Theorem 1 important in reducing
the complexity.

VIII. CONCLUSION

In this paper, we have shown a study of the optimal design
of the source and relay matrices for a non-regenerative two-
way MIMO relay system. Although the two-way scheme is
spectrally efficient for a half-duplex MIMO relay, the design
of the optimal source matrices and the optimal relay matrix is
not trivial especially when all nodes have multiple antennas.
This study has shown an optimal structure for the relay matrix,
which is useful for reducing the complexity of the optimal
design when the relay has much more antennas than the
users. For relay matrix optimization, we have developed the
hybrid gradient method and the iterative WMMSE method,
both of which have consistently yielded the same results. The
hybrid gradient method is faster to converge, and the iterative
WMMSE method is easier to implement. Both of these
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Fig. 7. Averaged sum rate of the two-way relay system under joint
source-and-relay optimization versus 𝛾 = 𝑀/𝑁 . SNR1 = SNR2 =
10𝑑𝐵 and SNR𝑅 = 13𝑑𝐵.

methods are much faster than the SDP based optimization
method in [7]. The latter is only applicable to single-antenna
users. We have established that for any given relay matrix, the
optimal design of the source matrices (for uniformly weighted
sum rate) follows the generalized water filling algorithm in
[10]. We have demonstrated that by alternating the relay
optimization and the source optimization, our joint source-and-
relay optimization method can yield much improved system
capacity especially when the number of antennas at all users
is large.

APPENDIX A
PROOF OF THEOREM 1

Without loss of generality, we can express F as

F =
[
V1 V⊥

1

] [A B
C D

] [
U𝐻

2

U⊥𝐻
2

]
(A.37)

where V⊥
1 ∈ ℂ𝑀×(𝑀−2𝑁) is such that

[
V1 V⊥

1

]
is unitary,

U⊥
2 ∈ ℂ

𝑀×(𝑀−2𝑁) is such that
[
U2 U⊥

2

]
is unitary. In

other words, for any given F, there is a unique set of A, B, C
and D, and vice versa. Clearly, V𝐻

1 V
⊥
1 = 0 and U⊥𝐻

2 U2 =
0. Thus, from (9) and (10), we have[

H𝑅1

H𝑅2

]
V⊥

1 =

[
H𝑅1V

⊥
1

H𝑅2V
⊥
1

]
= 0 (A.38)

U⊥𝐻
2

[
H1𝑅 H2𝑅

]
=

[
U⊥𝐻

2 H1𝑅 U⊥𝐻
2 H2𝑅

]
= 0(A.39)

Using the above properties of F in (5), we have

X𝑖 = I+(H𝑅𝑖V1AA
𝐻V𝐻

1 H
𝐻
𝑅𝑖+H𝑅𝑖V1BB

𝐻V𝐻
1 H

𝐻
𝑅𝑖+I)

−1⋅
H𝑅𝑖V1AU

𝐻
2 H�̄�𝑅R𝑥�̄�

H𝐻
�̄�𝑅U2A

𝐻V𝐻
1 H

𝐻
𝑅𝑖 (A.40)

We see that the matrices C and D do not affect X𝑖 and hence
the rates 𝑟𝑖. We now apply the properties of F to (2). We then
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have

𝑝𝑅 = Tr(AU𝐻
2 H1𝑅R𝑥1H

𝐻
1𝑅U2A

𝐻)

+ Tr(CU𝐻
2 H1𝑅R𝑥1H

𝐻
1𝑅U2C

𝐻)

+ Tr(AU𝐻
2 H2𝑅R𝑥2H

𝐻
2𝑅U2A

𝐻)

+ Tr(CU𝐻
2 H2𝑅R𝑥2H

𝐻
2𝑅U2C

𝐻) + Tr(A𝐻A)

+ Tr(B𝐻B) + Tr(C𝐻C) + Tr(D𝐻D) (A.41)

which shows that C and D only increase the transmit power
at the relay unless they are zero. Therefore, the optimal choice
of C and D is simply C = 0 and D = 0. So, we can now
write

𝑝𝑅 = Tr(AU𝐻
2 H1𝑅R𝑥1H

𝐻
1𝑅U2A

𝐻) + Tr(A𝐻A)

+ Tr(AU𝐻
2 H2𝑅R𝑥2H

𝐻
2𝑅U2A

𝐻) + Tr(B𝐻B) (A.42)

The remaining task is to prove that the optimal B is also
zero. Define the positive semidefinite matrices

J𝑖(X) = H𝑅𝑖V1XX
𝐻V𝐻

1 H
𝐻
𝑅𝑖

L𝑖(X) = H𝑅𝑖V1XU
𝐻
2 H�̄�𝑅R𝑥�̄�

H𝐻
�̄�𝑅U2X

𝐻V𝐻
1 H

𝐻
𝑅𝑖

Then, 𝑟𝑖 = 1
2 log2 det(X𝑖) becomes

𝑟𝑖 =
1

2
log2 det

(
I+ (J𝑖(A) + J𝑖(B) + I)−1L𝑖(A)

)
(A.43)

By Lemma 1 shown later, (A.43) implies

𝑟𝑖 ≤ 1

2
log2 det

(
I+ (J𝑖(A) + I)−1L𝑖(A)

)
(A.44)

where the upper bound is achieved when B = 0. We also
know that B only increases 𝑝𝑅 unless B = 0. Therefore, the
optimal B is zero.

Lemma 1: Given the conjugate symmetric matrices X ≥ 0,
Y > 0 and Z ≥ 0, it follows that

det
(
I+ (Y + Z)−1X

) ≤ det(I+Y−1X)

Proof: We can write det
(
I + (Y + Z)−1X

)
=

det
(
I+X

1
2Y− 1

2 (I+Y−𝐻
2 ZY− 1

2 )−1Y−𝐻
2 X

𝐻
2

)
and det(I+

Y−1X) = det
(
I + X

1
2Y− 1

2Y−𝐻
2 X

𝐻
2

)
. We know I +

Y−𝐻
2 ZY− 1

2 ≥ I, (I+Y−𝐻
2 ZY− 1

2 )−1 ≤ I and X
1
2Y− 1

2 (I+
Y−𝐻

2 ZY− 1
2 )−1Y−𝐻

2 X
𝐻
2 ≤ X

1
2Y− 1

2Y−𝐻
2 X

𝐻
2 . Since

A′ ≤ B′ implies det(A′) ≤ det(B′), therefore det
(
I+(Y+

Z)−1X
) ≤ det(I+Y−1X).

APPENDIX B
ZOOMED SDP ALGORITHM

In [7], a special case of the two-way MIMO relay system
was considered where the two users are each with a single
antenna. For this case, there is no need for source optimization
since R𝑥1 and R𝑥2 are simply 𝑃1 and 𝑃2 respectively. And to
maximize the sum rate 𝑟1+𝑟2, the relay optimization problem
is reduced to

max
F

1

2
log2

(
1 +

∣h𝑇
𝑅1Fh2𝑅∣2𝑃2

∣∣F𝐻h∗
𝑅1∣∣2 + 1

)
(B.45)

+
1

2
log2

(
1 +

∣h𝑇
𝑅2Fh1𝑅∣2𝑃1

∣∣F𝐻h∗
𝑅2∣∣2 + 1

)
𝑠.𝑡. ∣∣Fh1𝑅∣∣2𝑃1 + ∣∣Fh2𝑅∣∣2𝑃2 +Tr(FF𝐻) ≤ 𝑃𝑅

Since each user has a single antenna, the channel matrices
H1𝑅, H𝑅1, H2𝑅 and H𝑅2, are now reduced to channel
vectors h1𝑅, h𝑅1, h2𝑅 and h𝑅2. This problem is still non-
convex. In order to use a convex optimization program to
solve this problem, the authors of [7] proposed to fix the ratio
between 𝑟1 and 𝑟2. Specifically, they introduced the rate profile
vector 𝜶 = [𝛼1, 𝛼2] where 𝛼1 = 𝑟1

𝑟𝑠𝑢𝑚
, 𝛼2 = 1 − 𝛼1 = 𝑟2

𝑟𝑠𝑢𝑚

and 𝑟𝑠𝑢𝑚 = 𝑟1 + 𝑟2. For each fixed 𝜶, the sum rate 𝑟𝑠𝑢𝑚 is
maximized by solving the following problem

max
F

𝑟𝑠𝑢𝑚 (B.46)

𝑠.𝑡.
1

2
log2

(
1 +

∣h𝑇
𝑅1Fh2𝑅∣2𝑃2

∣∣F𝐻h∗
𝑅1∣∣2 + 1

)
≥ 𝛼1𝑟𝑠𝑢𝑚

1

2
log2

(
1 +

∣h𝑇
𝑅2Fh1𝑅∣2𝑃1

∣∣F𝐻h∗
𝑅2∣∣2 + 1

)
≥ 𝛼2𝑟𝑠𝑢𝑚

∣∣Fh1𝑅∣∣2𝑃1 + ∣∣Fh2𝑅∣∣2𝑃2 +Tr(FF𝐻) ≤ 𝑃𝑅

which in turn can be solved by a general purpose SDP
algorithm such as in CVX [16]. For more details, see [7] .

To find the maximum sum rate, we have to solve the
additional problem max0≤𝛼1≤1 𝑟𝑠𝑢𝑚. One method is the brute
force search within 0 ≤ 𝛼1 ≤ 1, which is too costly. To do it
more efficiently, we formulate a zoomed SDP algorithm:

1) Let 𝐿 be an even integer larger than or equal to 4.
Choose a small number 𝜖. Partition [0, 1] into 𝐿 uniform
segments each of length 𝛿 = 1/𝐿, which yields 𝐿−1 in-
terior uniform sample points 0 < 𝛼

(1)
1 , ⋅ ⋅ ⋅ , 𝛼(𝐿−1)

1 < 1.
2) Run the above SDP algorithm to compute the maximum

of 𝑟𝑠𝑢𝑚 for each of the 𝐿− 1 sample points.
3) Determine the best sample point: 𝛼∗

1 =
argmax

𝛼
(1)
1 ,⋅⋅⋅ ,𝛼(𝐿−1)

1
𝑟𝑠𝑢𝑚.

4) Partition [𝛼∗
1 − 𝛿, 𝛼∗

1 + 𝛿] into 𝐿 uniform segments (i.e.,
“zooming”), which resets the 𝐿 − 1 uniform sample
points 𝛼

(1)
1 , ⋅ ⋅ ⋅ , 𝛼(𝐿−1)

1 . Also reset 𝛿 := 2𝛿/𝐿
5) Go to Step 2 until 𝛿 < 𝜖.

By choosing 𝐿 to be an even integer, we ensure that each
new set of 𝐿− 1 sample points include 𝛼∗

1 in Step 4. We also
need 𝐿 = 2𝑚 with 𝑚 ≥ 2. Otherwise, if 𝐿 = 2, 𝛿 would
stay the same and the algorithm would not work. The zoomed
SDP algorithm is used to compare with the hybrid gradient
algorithm and the iterative WMMSE algorithm developed in
this paper. We choose 𝜖 = 10−3 and 𝐿 = 4 in simulations.
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