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Background/Aims
Campylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel 
syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model 
of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes. 

Methods
Adult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejuni cdtB knockout (CDT-) or saline vehicle 
(controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. 
Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep mus-
cular plexus interstitial cells of Cajal (DMP-ICC). 

Results
All 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 
groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both con-
trols (P ＜ 0.01) and the CDT- group (P ＜ 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes 
were significantly higher after C. jejuni (C+) infection vs both controls (P ＜ 0.01) and CDT-exposed rats (P ＜ 0.05). The 
counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only 
in rats exposed to wildtype C. jejuni.

Conclusions
In this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rec-
tal inflammation and reduction in DMP-ICC.
(J Neurogastroenterol Motil 2012;18:434-442)
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Introduction
Irritable bowel syndrome (IBS) is a common gastrointestinal 

disorder characterized by chronic or recurrent abdominal dis-
comfort associated with altered bowel habits, abdominal dis-
tention and bloating.1 Another characteristic feature of IBS is that 
symptoms alternate over time, with irregular bowel form and 
frequency.2 While the true pathophysiology of IBS is unknown, 
an increasingly recognized hypothesis is the development of IBS 
following an episode of acute gastroenteritis (post-infectious IBS 
[PI-IBS]).

While the mechanisms for the development of PI-IBS re-
main unknown, studies suggest that the rate of IBS development 
after acute gastroenteritis varies between 4% and 31%,3-10 with 2 
recent meta-analyses reporting a median incidence of 9.8% to 
10%.11,12 In most studies, IBS was determined at least 3 months 
after cessation of the acute illness, and included persistent bowel 
disturbance with increased stool weight and increased rectal 
sensitivity.3 While initial criticism suggested that this was a lin-
gering effect of the gastroenteritis, long-term studies have dem-
onstrated persistence years later. Neal et al8 demonstrated that 
57% of PI-IBS subjects continued to meet Rome criteria for IBS 
6 years after the onset of PI-IBS, supporting the hypothesis that 
an episode of gastroenteritis could produce a persistent long-term 
effect.

Many bacterial pathogens can produce IBS. However, 
Campylobacter jejuni is the most common bacterial cause of diar-
rheal illness in industrialized nations.13 Moreover, acute C. jejuni 
gastroenteritis is a frequently identified antecedent to PI-IBS.14-16 
Cytolethal distending toxin (CDT) is common to many human 
enteric bacterial pathogens.17 In C. jejuni, CDT is a tripartite 
complex of the cdtA, cdtB and cdtC gene products.18 cdtB has ho-
mology with DNase1-like nucleases, and is considered the active 
subunit. Microinjection or transfection of this subunit alone into 
host cells is sufficient to induce the holotoxin’s effects.19 The 
CdtA and CdtC subunits function in the delivery of cdtB into tar-
get cells.18 Once cdtB is translocated into the nucleus, it induces 
double-stranded DNA damage and causes arrest at the G1/S or 
G2/M interface of the cell cycle, depending on the cell type, ulti-
mately leading to cell death.18-22 One in vitro study demonstrated 
that CDT caused irreversible cell cycle arrest of HeLa (after 24 
hours) and Caco-2 cells (after 48 hours) at G2/M phase, finally 
leading to their death.20

In a newly developed rat model of PI-IBS, we showed that 

rats inoculated with C. jejuni develop persistent altered stool form 
and increased rectal intraepithelial lymphocytes (IELs) months 
after complete clearance of the initial infection.23 Further charac-
terization demonstrated a reduction in deep muscular plexus in-
terstitial cells of Cajal (DMP-ICC) in the post-infectious 
phase.24 These findings are similar to findings in humans with 
PI-IBS. In an acute study, rats inoculated with a C. jejuni strain 
carrying an insertional deletion of cdtB demonstrated mucosal 
damage equivalent to wildtype C. jejuni.25 Thus, cdtB appears less 
important acutely. In this report, we examined the role of CDT in 
the development of long-term altered stool form, bowel patterns, 
rectal IEL elevation and DMP-ICC after clearance of C. jejuni 
infection. 

Materials and Methods

Campylobacter Infection of Sprague-Dawley 
Rats

Adult Sprague-Dawley rats were obtained and fresh stool was 
cultured to establish the absence of C. jejuni on BBL™ Campylo-
bacter Agar with 5 antibiotics and 10% sheep blood (Containing 
the antibiotics: Amphotericin B, Cephalothin, Trimethoprim, 
Vancomycin and Polymyxin B; BD Diagnostics, Franklin 
Lakes, NJ, USA) at baseline. Prior to infection, rats received a 1 
mL oral gavage of 5% bicarbonate solution to transiently reduce 
the gastric acidity. One group of rats (n = 54) received a 1 mL 
gavage of 108 CFU/mL C. jejuni 81-176 strain (C+). A second 
group of rats (n = 54) received a 1 mL gavage of 108 CFU/mL 
of a mutated C. jejuni 81-176 that does not express functional 
cdtB, due to an insertion of the kanamycin gene (CDT-). A third 
group of normal Sprague-Dawley rats (n = 25) were gavaged 
with saline vehicle only (controls). The study was approved by the 
Cedars-Sinai Institutional Animal Care & Use Committee.

Tracking Acute Colonization by Campyloba-
cter jejuni

After gavage, fresh stool was collected daily from infected 
animals. The stool specimens were cultured for the presence of C. 
jejuni on Campylobacter selective agar plates. The number of rats 
with at least 1 day defined successful intestinal colonization with 
detectable C. jejuni in stool. The number of days from inoculation 
to first detection of C. jejuni in the stool was then recorded to de-
termine time to successful colonization. Stool cultures continued 
to be performed on a daily basis until 2 consecutive days with 
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negative cultures was seen. The time from gavage to this point 
was marked as the clearance time. 

Determination of Post-infectious Phenotype
Overall, rats were housed for 4 months. This included a 1 

month post-gavage (infectious phase) and a 3-month post-in-
fectious phase. At the end of this 4-month period, fresh stool was 
collected for 3 consecutive days from all rats and graded for ap-
pearance and consistency. A stool consistency score (modified 
Bristol Stool score) was used for grading stool. Normal stool was 
graded as 1; soft and poorly formed stool was graded as 2; and 
watery stool was graded as 3. The collected stool was weighed and 
desiccated. This was accomplished by measuring stool weight be-
fore and after oven drying (24 hours at 70°C in the presence of 
desiccant) and percent liquid contents were calculated. After the 
3-day stool collection, the rats were euthanized by CO2 asphyx-
iation and pneumothorax. Laparotomy was performed and the 
rectum was dissected, fixed in 10% formalin, imbedded in paraf-
fin, then cut and mounted for histological evaluation as pre-
viously described.23 A section of ileum was similarly resected at a 
location 5 cm proximal to the ileocecal valve for staining of 
DMP-ICC as described below. 

Rectal Intraepithelial Lymphocytes 
After rectal tissue was fixed in formalin and sectioned for 

slides, sections were stained using CD3 antibody (Dako, Carpin-
teria, CA, USA) to visualize the presence of IEL as previously 
seen in humans with PI-IBS.14 At this point, all slides were 
randomized and coded. The slides were then examined by read-
ers blinded to the group allocation. The reader was asked to count 
the number of IELs as a function of the number of epithelial 
cells. 

C-kit Staining of Deep Muscular Plexus 
Interstitial Cells of Cajal

Sections of ileum from each paraffin block were stained im-
mugnohistochemically using polyclonal rabbit anti-human CD117, 
c-kit (DakoCytomation, Carpinteria, CA, USA). The positive co-
ntrol used to test the quality of the stain was a c-kit positive gas-
trointestinal stromal tumor. The numbers of DMP-ICC in the 
entire mounted segment of ileum were counted. 

Statistical Methods
During the infectious period, the colonization and clearance 

time were compared between the C+ and CDT- groups using 

the Mann-Whitney U test. At the end of 4 months (in the 
post-infectious phase), the average stool form was graded over 3 
days and wet weight among C+, CDT- and control rats were cal-
culated using one-way ANOVA. Since IBS in humans is charac-
terized by variability in stool form, we also compared the standard 
deviations of the stool form and wet weights between groups. The 
3-day standard deviation represented the variability of the 
measurement. The number of rectal IEL’s was reported as a ratio 
to the number of epithelial cells. This was also compared between 
the 3 groups by one-way ANOVA. Since the numbers of 
DMP-ICC were not normally distributed, a Mann-Whitney U 
test was used to compare counts between groups.

Results

Campylobacter Colonization Phase
Prior to inoculation with C. jejuni 81-176, C. jejuni was not 

detected in the stool of any of the rats at baseline. Post-gavage, 9 
rats infected with C. jejuni (C+ group) died within the first 3 
days after gavage (8 due to severe gavage trauma and 1 due to a 
liver tumor). The remaining rats showed no evidence of gav-
age-induced trauma. Thus, a total of 124 rats (45 rats in C+ 
group, 54 rats in CDT- group and 25 control rats) were included 
for final data analysis. The number of rats with at least 1 day of 
detectable stool colonization by C. jejuni after inoculation was 
equal in the C+ and CDT- groups (Fig. 1A). In the C+ group, 
38 out of 45 rats (84%) were colonized with C. jejuni and in the 
CDT- group, 47 out of 54 rats (87%) were colonized for at least 1 
day after gavage.

Stool cultures were then followed over time. Figure 1B de-
tails and compares the colonization patterns of the 2 groups 
post-inoculation. The average time to first detectable C. jejuni in 
stool after gavage (colonization time) was greater in the C+ 
group (6.7 ± 4.5 days) than in the CDT- group (4.2 ± 2.6 days) 
(P ＜ 0.05). However, when the period of time from the day of 
inoculation to the mean day of complete clearance of C. jejuni 
from the stool was compared between the 2 groups, it was found 
to be shorter in CDT- group (10.7 ± 4.8 days) than in the C+ 
group (12.6 ± 5.9 days) (P ＜ 0.05). The longest period of colo-
nization, 29 days, was observed in a rat in the C+ group. 

Post-infectious Phase
Four months after inoculation with C. jejuni, the 3-day aver-

age percent wet weight of stool among the groups was not sig-
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Figure 1. (A) Campylobacter colonization in rats gavaged with wildtype Campylobacter jejuni (C+) or a C. jejuni cytolethal distending toxin B (cdtB) 
knockout (CDT-). No significant difference was noted between C+ and CDT- groups. (B) Campylobacter colonization and clearance times in C+ and
CDT- groups.

Figure 2. (A) Comparison of 3-day average stool wet weight in uninfected controls, wildtype Campylobacter jejuni (C+) and C. jejuni cytolethal 
distending toxin B (cdtB) knockout (CDT-) infected 4 months after gavage. No significant difference was seen between the groups. (B) Variability in
stool wet weight over 3 days between groups. There was no statistical difference between control and CDT- rats.

nificantly different (Fig. 2A). However, the daily stool wet weight 
variability measured for 3 consecutive days demonstrated a sig-
nificant difference between the groups. As shown in Figure 2B, 
rats in the C+ group exhibited greater wet weight variability of 
stool (8.42 ± 0.96) than control rats (3.98 ± 0.41) (P ＜ 0.01) 
or rats in the CDT- group (4.91 ± 0.74) (P ＜ 0.01). There was 
no statistical difference in stool variability between control and 
CDT- rats. 

When examining the average stool consistency (as measured 

based on a modified Bristol stool score) significant differences 
were observed between groups. From the data presented in 
Figure 3, the C+ group had a higher average stool consistency 
(score 1.51 ± 0.06) and thus less formed stool in comparison 
with the rats in the CDT- group (1.23 ± 0.03) (P ＜ 0.0001) 
and controls (1.15 ± 0.05) (P ＜ 0.0001), where 1.0 was normal. 
There was no statistical difference between the controls and 
CDT- rats.

In addition to average stool consistency, variability of stool 
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Figure 3. Average stool consistence over 3 days between groups. There
was no statistical difference between control and Campylobacter jejuni
cytolethal distending toxin B (cdtB) knockout (CDT-) rats. C+, 
wildtype C. jejuni.

Figure 4. Variability of stool consistency over 3 days between groups. 
There was no statistical difference between control and CDT- rats.

Table. Quantification of Rectal Intraepithelial Lymphocytes and Deep Muscular Plexus Interstitial Cells of Cajal in Rats Gavaged With 
Wildtype Campylobacter jejuni, a C. jejuni Cytolethal Distending Toxin B Knockout or Saline Vehicle

Controls CDT- C+ P-value

No. of IELsa (mean ± SD)
No. of DMP-ICC Controls (mean ± SD)

0.480 ± 0.110
0.218 ± 0.159

0.590 ± 0.090
0.892 ± 0.363

0.970 ± 0.150
0.152 ± 0.121

< 0.05b   < 0.01c

< 0.001b     0.024c

aValues given denote number of intraepithelial lymphocytes per 100 epithelial cells, bP-values are the difference between the control and CDT- groups, cP-values are 
the difference between the control and C+ groups.
CDT-, Campylobacter jejuni cytolethal distending toxin B knockout; C+, wildtype C. jejuni; IELs, intraepithelial lymphocytes; DMP-ICC, deep muscular plexus 
interstitial cells of Cajal.

consistency over 3 days was also compared. In this analysis, C+ 
rats displayed the greatest daily variability of stool consistency 
(0.51 ± 0.06) compared to the variability of CDT- rats (0.30 ± 
0.05) (P ＜ 0.01) and controls (0.28 ± 0.08) (P ＜ 0.05) (Fig. 4). 
The CDT- rats appeared unaffected, as their stool consistency was 
not statistically different from the control group.

Rectal Intraepithelial Lymphocytes
Differences were also seen in the number of rectal IEL in the 

3 groups. The number of rectal IELs was highest in C+ rats 
(0.97 ± 0.15/100 epithelial cells) compared to controls (0.48 ± 
0.11 per 100 epithelial cells, Table) (P ＜ 0.01) and CDT- rats 
(0.59 ± 0.09/100 epithelial cells, Table) (P ＜ 0.05) (Fig. 5). As 
with previous results, the CDT- rats were not statistically differ-
ent from controls.

Deep Muscular Plexus Interstitial Cells of 
Cajal

The DMP-ICC staining from the 3 groups was compared. 

In each case, the numbers of DMP-ICC in the entire mounted 
segment of ileum were counted. Months after clearance of in-
fection, C+ rats had a noticeable and consistent reduction in 
DMP-ICC (0.152 ± 0.121) (Fig. 6C) when compared to con-
trols (0.218 ± 0.159, Table) (P = 0.024, Fig. 6A). However in 
CDT- rats, DMP-ICC numbers were not only preserved but 
greater in number than in controls (0.892 ± 0.363, Table) (P ＜ 
0.001 compared both to controls and to C+, Fig. 6B).

Discussion
The results of this study demonstrate that rats inoculated 

with wildtype C. jejuni 81-176 (C+ rats) exhibit altered varia-
bility of stool form and wet weight 4 months after infection. In 
contrast, rats inoculated with a mutant C. jejuni strain that does 
not express cdtB (CDT- rats) exhibited bowel patterns that were 
closer to normal, as determined from uninfected control rats. In 
addition, rats exposed to wildtype C. jejuni demonstrated elevated 
rectal IELs and reduction in DMP-ICC, which was not seen in 
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Figure 5. Immunohistochemical staining of rectal tissue from control (A), Campylobacter jejuni cytolethal distending toxin B knockout (CDT-, B) and
wildtype C. jejuni (C+, C) rats with antibodies to CD3, to evaluate rectal intraepithelial lymphocytes. (D) Comparison of average intraepithelial rectal 
lymphocytes (per 100 epithelial cells) in uninfected controls, C+ and CDT- infected rats. There was no statistical difference between control and CDT-
rats. IEL, intraepithelial lymphocytes; EC, epithelial cell.

Figure 6. Immunohistochemical staining of ileal tissue from control (A), Campylobacter jejuni cytolethal distending toxin B knockout (CDT-, B) and 
wildtype C. jejuni (C+, C) rats with CD117 to evaluate deep muscular plexus interstitial cells of Cajal (×20 magnification).

rats inoculated with the CDT- C. jejuni. In this PI-IBS rat mod-
el, 3 months after complete clearance of C. jejuni infection, CDT 
appears to be a determinant of the development of altered stool 

form, irregular bowel pattern and inflammation, but does not ap-
pear to affect the establishment of initial colonization during 
acute infection.
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Development of IBS has been demonstrated in patients in-
fected with numerous bacterial pathogens including Shigella, 
Escherichia coli and Salmonella. However, development of PI-IBS 
has been most thoroughly studied in patients who were infected 
with C. jejuni.3-10 The strongest risk factor for the development of 
PI-IBS appears to be prolonged duration of gastroenteritis 
(relative risk = 11.5).4 Human subjects with PI-IBS display the 
characteristic features of IBS, including altered stool form.2 
Another physiologic hallmark of PI-IBS is increased rectal IEL 
counts. Spiller et al14 have demonstrated that 1 year after Campyl-
obacter infection, the number of enteroendochrine cells and IELs 
(per 100 epithelial cells) in the rectum of PI-IBS patients re-
mained significantly elevated compared to a control group (P ＜ 
0.001).14

While animal models of PI-IBS are limited, there is a 
well-characterized model in a mouse previously infected with the 
parasitic pathogen Trichenella spiralis.26 In this model the focus 
has been on post-infectious gut neuromuscular dysfunction and 
visceral hyperalgesia. Although a human outbreak of Trichenella 
britovi from Turkey has demonstrated an overall 13.9% incidence 
of IBS following infection, this pathogen is not common in west-
ern countries.27

In a recent study, we demonstrated that rats exposed to C. je-
juni had greater altered stool form.23 Additionally, these rats dem-
onstrated increased IEL counts in the rectum and left colon, but 
not in cecum or small bowel. This new rat model reproduces IBS 
phenotypes, including altered stool form and increased rectal 
lymphocytes.

Various lines of evidence suggest that during C. jejuni in-
fection, CDT is a key virulent factor. Using a severe combined 
immunodeficient mouse model, Purdy et al28 demonstrated 
greater tissue (blood and liver) invasion and virulence by wild-
type C. jejuni expressing CDT compared to C. jejuni CDT mu-
tants, although the intestinal colonization levels remained equal in 
both 2 groups. This observation was further corroborated with a 
limited enteric flora mouse infection model.29 Fox et al30 demon-
strated that C. jejuni cdtB mutants failed to colonize the gastro-
intestinal tract of C57BL/129 mice (immune competent) in con-
trast to wildtype C. jejuni (0% vs 50%). In addition, using nuclear 
factor κB-deficient mice (3X), they also reported that, despite 
persistent and equal gastrointestinal colonization rates (100%) 
3X mice infected with wildtype C. jejuni exhibited severe gastro-
intestinal inflammatory changes, compared to modest gastro-
intestinal inflammatory changes in mice infected with a cdtB 
mutant. These results imply that CDT may contribute to persis-

tent gastrointestinal colonization, by playing a role in the ability of 
C. jejuni to escape immune surveillance in immunocompetent 
C57BL/129 mice (but not in 3X mice). One proposed mecha-
nism for this phenomenon is its ability to cause cell cycle arrest of 
lymphocytes at G2/M phase, similar to its effect in epithelial 
cells.31 Also, less severe inflammation in 3X mice suggests that 
inflammation of the gastrointestinal tract is a feature of CDT 
activity.30 More recently, Jain et al32 demonstrated that suckling 
mice (which lack a fully mature immune system) inoculated with 
cdtB+ C. jejuni developed pan-mural inflammation with mucosal 
denudation and necrosis affecting the jejunum, ileum and colon 
in all mice, compared to mice infected with cdtB- C. jejuni, which 
showed mild inflammatory changes only in the descending colon. 
These findings are consistent with in vitro studies reporting that 
CDT induces IL-8 from intestinal cell line INT407.33

Our current study supports a longer colonization time among 
rats infected with wildtype C. jejuni vs CDT- C. jejuni. However, 
in a recently published study of acute histological changes in rats 
exposed to wildtype and CDT- C. jejuni, there very few histo-
logical differences during the acute infection during first 4 weeks 
after gavage.25 Both groups had significant disturbances includ-
ing epithelial cell ballooning, villous blunting and villous tip dis-
ruption in the absence of cellular inflammation; these changes re-
solved by 3 months post-infection. Based on these findings, the 
role of CDT may involve mechanisms that are not related to the 
events surrounding the initial acute infection.

Various mechanisms of CDT action have been reported. For 
example, CDT may cause growth arrest of villous epithelial cells, 
thereby decreasing the barrier function of the intestinal epi-
thelium and producing loss of nutrient absorption.20 It is also 
possible that cell cycle arrest of the intestinal epithelial cells would 
increase the contact time between the host and the pathogen.34 
Whether CDT-deficient strains of C. jejuni produce less severe 
diarrheal disease and other chronic sequelae in human infections 
remains to be assessed directly. Many studies have reported the 
existence of higher frequency of cdtB+ C. jejuni compared to 
cdtB- strains,32,35-37 signifying that cdtB is present in majority of C. 
jejuni strains. In a recently concluded study, Jain et al demon-
strated that cdtB+ C. jejuni strains adhere to and invade the 
HeLa cells, more effectively than the cdtB- strains.32 C. jejuni and 
other CDT-producing enteric pathogens may have effects on in-
testinal epithelial cells; specifically cells in the intestinal crypts re-
sulting in rapid G2 phase cell cycle arrest of proliferating cells 
leading to their growth arrest.38 Thus, CDT may have profound 
effects on crypt cell maturation into functional villous epithelial 
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cells. This effect may also be responsible for a temporary villous 
epithelial erosion and loss of absorptive functions,39-41 as sug-
gested by 2 in vitro studies that reported elongation and irrever-
sible loss of tissue culture cells (without recovery of the affected 
cells) at the end of 72 hours when treated with C. jejuni CDT.42,43

The mechanism linking these in vitro toxic effects to pro-
longed bowel disturbance is uncertain. However, increases in in-
flammatory and enteroendocrine cells, observed in colonic muco-
sa of PI-IBS patients, could result in altered bowel patterns and 
changes in neuromuscular function.14 One interesting study 
showed that Campylobacter enteritis leads to loss of gut mucosal 
neural staining.44 Enteric neuronal damage and subsequent bow-
el dysfunction may result from immune mediated mechanisms 
that disturb the enteric nervous system. Our results support this 
possibility. In our study, CDT- C. jejuni did not result in loss of 
DMP-ICC, which suggests that CDT may have a role in degen-
eration of neuronal function in PI-IBS. Another notable example 
of neurotoxicity is Campylobacter-induced post-infective poly-
neuritis, known as Guillain-Barré syndrome, in which Campylo-
bacter, through molecular mimicry, induces a host immune re-
sponse against the GM1 ganglioside in peripheral nerves.45

Modest elevations in rectal lymphocytes are a sign of chronic 
inflammation and have been shown in a number of human studies 
of PI-IBS patients. Spiller and colleagues14 measured an approx-
imately 2-fold increase in IELs per 100 epithelial cells in PI-IBS 
subjects approximately 12 weeks after acute gastroenteritis, ver-
sus healthy controls (0.9 vs 0.5, P-value NS). Gwee et al5 quanti-
fied the total number of mononuclear cells per high power field 
(HPF). Chronic inflammatory cells rose from 79.4/HPF to 
105.7/HPF (P ＜ 0.01) in rectal biopsies from PI-IBS patients 3 
months post-infection, compared to healthy controls. Compara-
ble increases in lamina propria T-cells were measured by Dunlop 
et al.46 Results from this post-infectious rat study demonstrate a 
comparable, significant 2-fold rise in rectal IELs 4 months after 
C. jejuni infection, compared to uninfected controls. Unlike hu-
man studies, all infected rats were categorized as post-infectious 
and analyzed regardless of the degree of “IBS-like” phenotypes.

In this study, CDT appears important in the development of 
altered bowel function and increased rectal IELs in our PI-IBS 
rat model. The stool form and its variability were significantly 
closer to normal among rats infected with a strain that failed to 
express cdtB. It is unclear whether CDT is the sole agent in de-
termining the development of this altered stool form or if any of 
the previously described mechanisms is responsible for these 
features. Perhaps CDT has a neurotoxic effect. This intriguing 

possibility is supported by our recently published finding that 
wildtype CDT produces a reduction in DMP-ICC in this rat 
model.24 In contrast, CDT- rats showed DMP-ICC staining 
that was not reduced but increased compared to controls. This in-
crease in ICC could be a response to infection in the absence of 
CDT; lack of growth arrest of ICCs or lack of cross-reacting im-
mune response to ICCs may underlie this finding, but more work 
is needed to determine whether these or other mechanisms ex-
plain this observation. Future studies need to evaluate the effect 
of CDT on the gut neuromuscular apparatus. 

In conclusion, using wild type and CDT- strains of C. jejuni 
in a post-infectious IBS rat model, we demonstrate that Campylo-
bacter CDT is an important factor in the development of altered 
stool form, chronic altered bowel pattern, rectal inflammation and 
reduced DMP-ICC, since the absence of this toxin resulted in 
post-infectious phenotypes similar to those in uninfected control rats.
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