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Abstract

The concept of Nash equilibrium has played a profound role
in economics, and is widely accepted as a normative stance for
how people should choose their strategies in competitive envi-
ronments. However, extensive empirical evidence shows that
people often systematically deviate from Nash equilibrium. In
this work, we present the first resource-rational mechanistic
approach to one-shot, non-cooperative games (ONG), show-
ing that a variant of normative expected-utility maximization
acknowledging cognitive limitations can account for impor-
tant deviations from the prescriptions of Nash equilibrium in
ONGs. Concretely, we show that Nobandegani et al.’s (2018)
metacognitively-rational model, sample-based expected util-
ity, can account for purportedly irrational cooperation rates ob-
served in one-shot, non-cooperative Prisoner’s Dilemma, and
can accurately explain how cooperation rate varies depending
on the parameterization of the game. Additionally, our work
provides a resource-rational explanation of why people with
higher general intelligence tend to cooperate less in OPDs, and
serves as the first (Bayesian) rational, process-level explana-
tion of a well-known violation of the law of total probability in
OPDs, documented by Shafir and Tversky (1992), which has
resisted explanation by a model governed by classical proba-
bility theory for nearly three decades. Surprisingly, our work
demonstrates that cooperation can arise from purely selfish,
expected-utility maximization subject to cognitive limitations.

Keywords: One-shot non-cooperative games; Nash equilib-
rium; resource-rational process models; expected utility the-
ory; behavioral game theory; Prisoner’s Dilemma; cooperation

1 Introduction
In his seminal work, Nash (1950) introduced a foundational
concept of equilibrium, now called “Nash equilibrium,” and
mathematically proved that any one-shot, non-cooperative, n-
player game enjoys (at least) one such equilibrium. In simple
terms, Nash equilibrium (NE) is a set of strategies, one for
each of the n players of the game, which has the desirable
property that each player’s strategy is her best response to the
strategies adopted by the n−1 other players.

Importantly, NE satisfies a number of notable conditions
which make it appealing from a normative standpoint. For ex-
ample, NE passes the key announcement test (Holt & Roth,
2004): If all players publicly announce their strategies, no
player would want to reconsider. Furthermore, when the goal
is to advise players of a game about which strategies to fol-
low, NE stands out as a rational choice: Any advice that is not
an NE would have the unsettling property that there would al-
ways be some player(s) who would be better off by deviating
from what they are advised (Holt & Roth, 2004). Finally, NE
is a self-reinforcing agreement (Holt & Roth, 2004): Once

reached by the players, NE does not need any external means
of enforcement to endure.

Despite its firm rational grounds, NE has repeatedly failed
to provide a descriptively adequate account of human behav-
ior in a variety of important game-theoretic settings (e.g.,
Mailath, 1998; Goeree & Holt, 2001). By now, exten-
sive empirical evidence shows that people often systemati-
cally deviate from Nash equilibrium, thus calling for alter-
native accounts (e.g., Fehr & Gächter, 2000; Keser & van
Winden, 2000; Brandts & Schram, 2001). A prominent ex-
ample of such violations of NE is the robust empirical find-
ing that people typically cooperate in 2-player, one-shot, non-
cooperative, Prisoner’s Dilemma (2ONPD) games. Not only
does NE prescribe against cooperation in 2ONPD (more pre-
cisely, every 2ONPD has only a single NE, and that is for
both players to defect), but, more importantly, cooperation is
not even rationalizable in 2ONPD (Bernheim, 1984; Pearce,
1984) because cooperation is not a best response to any strat-
egy adopted by the other player.

From a purely computational perspective, people’s appar-
ent failure to follow the prescriptions of NE is not surpris-
ing: Recent theoretical work in computational complexity
formally showed that evaluating NE is computationally in-
tractable in general (Daskalakis et al., 2009), and, hence, is
generally beyond the capacity of a cognitive system with lim-
ited computational power and resources (Simon, 1957).

In this work, we present the first resource-rational mecha-
nistic approach to one-shot, non-cooperative games (ONGs),
investigating the extent to which violations of NE could be
seen as an optimal response subject to computational and
cognitive limitations (Griffiths, Lieder, & Goodman, 2015;
Nobandegani, 2017). Concretely, we ask whether these vio-
lations can be seen as an optimal behavior with the mind act-
ing as a cognitive miser. To do this, we begin by presenting a
general framework allowing us to conceptualize any ONG as
a set of risky gambles, thereby reducing the problem of strat-
egy selection in ONGs to a problem of choosing between a
set of risky gambles.

To show the efficacy of our framework, we investigate
the robust, yet puzzling, experimental finding that people
typically cooperate in 2ONPD (e.g., Fehr & Gächter, 2000;
Keser & van Winden, 2000; Brandts & Schram, 2001).
As we demonstrate, Nobandegani, da Silva Castanheira,
Otto, and Shultz’s (2018) metacognitively-rational model,
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sample-based expected utility (SbEU), not only can provide a
resource-rational mechanistic explanation of cooperation be-
havior in 2ONPD, but also can provide a remarkably accurate
quantitative account of how cooperation rate varies depend-
ing on the parameterization of 2ONPD (i.e., specific payoffs
of the game).

Our paper is organized as follows. After providing a brief
overview of SbEU, we present a general framework permit-
ting us to reduce the problem of strategy selection in ONGs
to the problem of decision-making under risk. We then turn
to modeling cooperation in 2ONPD. Finally, we conclude by
discussing the implications of our work for the debate on hu-
man rationality.

2 Sample-based Expected Utility Model
Extending the decision-making model of Lieder, Griffiths,
and Hsu (2018) to the realm of metacognition, SbEU is
a metacognitively-rational process model of risky choice,
positing that an agent rationally adapts their strategies de-
pending on the amount of time available for decision-making
(Nobandegani et al., 2018). Concretely, SbEU assumes that
an agent estimates expected utility

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (3)

MSE is a standard normative measure of the quality of an
estimator, and is widely adopted in machine learning and
mathematical statistics (Poor, 2013). In Eqs. (1-3), o denotes
an outcome of a risky gamble, p(o) the objective probabil-
ity of outcome o, u(o) the subjective utility of outcome o, Ê
the importance-sampling estimate of expected utility given in
Eq. (1), q∗ the importance-sampling distribution, oi an out-
come randomly sampled from q∗, and s the number of sam-
ples drawn from q∗.

SbEU posits that, when choosing between a pair of risky
gambles A,B, people make their choice depending on whether
the expected value of the utility difference ∆u(o) is negative
or positive (w.p. stands for “with probability”):

A =

{
oA w.p. PA
0 w.p. 1−PA

(4)

B =

{
oB w.p. PB
0 w.p. 1−PB

(5)

∆u(o) =


u(oA)−u(oB) w.p. PAPB
u(oA)−u(0) w.p. PA(1−PB)
u(0)−u(oB) w.p. (1−PA)PB
0 w.p. (1−PA)(1−PB)

(6)

In Eq. (6), u(·) denotes the subjective utility function of a
decision-maker. Following Nobandegani et al. (2018), and
consistent with prospect theory (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992), in this paper we assume a stan-
dard S-shaped utility function u(x) given by:

u(x) =
{

x0.85 if x≥ 0,
−|x|0.95 if x < 0.

(7)

Nobandegani et al. (2018) recently revealed that SbEU pro-
vides an account of the availability bias, the tendency to over-
estimate the probability of events that easily come to mind
(Tversky & Kahneman, 1973), and can accurately simulate
the well-known fourfold pattern of risk preferences in out-
come probability (Tversky & Kahneman, 1992) and in out-
come magnitude (Markovitz, 1952; Scholten & Read, 2014).
Notably, SbEU is the first rational process model to score
near-perfectly in optimality, economical use of limited cog-
nitive resources, and robustness, all at the same time (see
Nobandegani et al., 2018; Nobandegani et al., 2019a).

3 From One-shot, Non-cooperative Games to
Multi-alternative Risky Choice

In this section, we present a general framework allowing us
to conceptualize any ONG as a set of risky gambles S . Im-
portantly, this framework permits us to reduce the problem of
strategy selection in ONGs to the problem of risky decision-
making. By re-framing the problem this way, the strategy se-
lected by an agent in an ONG corresponds to the risky gamble
that the agent would choose among the set of available gam-
bles S .1

Without loss of generality, and for ease of exposition, we
consider the case of a 2-player, one-shot, non-cooperative
game (2ONG) here. Extending the results to the general case
of an n-player, one-shot, non-cooperative game is straightfor-
ward.

Consider a generic 2ONG whose payoff matrix is given in
Fig. 1. The game has two players: Player 1 (Row Player)
and Player 2 (Column Player). Player 1 has two pure strate-
gies to choose between: the strategy corresponding to choos-
ing the top row (Top Strategy) and the strategy correspond-
ing to choosing the bottom row (Bottom Strategy). Similarly,
Player 2 has two pure strategies to choose from: the strat-
egy corresponding to choosing the left column (Left Strat-
egy) and the strategy corresponding to choosing the right
column (Right Strategy). From the perspective of Player 1,
Player 2 selects the Left Strategy with probability Pl , and the

1We should note that our framework naturally handles “mixed
strategies” wherein the agent probabilistically chooses among the set
of possible “pure strategies.” The validity of this claim follows from
the key understanding that the choice between the set of available
gambles S would be also made probabilistically.
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Figure 1: Payoff matrix for a generic 2-player, one-shot, non-
cooperative game (2ONG). For example, if Player 1 (Row
Player) selects the Top Strategy and Player 2 (Column Player)
selects the Left Strategy, Player 1 and Player 2 receive payoffs
a and x, respectively.

Right Strategy with probability Pr = 1−Pl . Likewise, from
the perspective of Player 2, Player 1 selects the Top Strategy
with probability Pt , and the Bottom Strategy with probability
Pb = 1−Pt . As such, Player 1 is essentially choosing between
the two gambles T and B:

T =

{
a w.p. Pl
b w.p. 1−Pl

(8)

B =

{
c w.p. Pl
d w.p. 1−Pl

(9)

with gambles T,B corresponding to choosing the Top Strat-
egy and the Bottom Strategy, respectively, and Player 2 is
essentially choosing between the two gambles L and R:

L =

{
x w.p. Pt
y w.p. 1−Pt

(10)

R =

{
v w.p. Pt
w w.p. 1−Pt

(11)

with gambles L,R corresponding to choosing the Left Strat-
egy and the Right Strategy, respectively.

The line of reasoning presented above shows that the prob-
lem of strategy selection for a player in 2ONGs can be for-
mally reduced to the problem of deciding between two risky
gambles (T,B for Row Player and L,R for Column Player).
By the same logic, more generally, the problem of strategy
selection for a player in an n-player ONG (with each player
having n pure strategies to choose from) can be formally re-
duced the problem of deciding between n risky gambles.

As evidenced by Eqs. (8-9) depending on the parameter
Pl , Player 1’s choice between T and B explicitly depends on
Player 1’s conception of the probability with which Player 2
would select the Left Strategy (i.e., Pl). Likewise, as evi-
denced by Eqs. (10-11), Player 2’s choice between L and R
explicitly depends on Player 2’s conception of the probability
with which Player 1 would select the Top Strategy (i.e., Pt ).

As a case-study, in the next section we turn our attention
to Prisoner’s Dilemma, and we show that, together with the

general way of reducing ONGs to risky decision-making dis-
cussed above, SbEU can accurately explain cooperation in
2ONPDs, thereby providing a process-level, rational basis for
cooperation in 2ONPDs.

4 Cooperation in One-shot, Non-cooperative
Prisoner’s Dilemma

A wealth of real-life scenarios are modeled as an instance
of Prisoner’s Dilemma, e.g., conflict of two prisoners inde-
pendently questioned by the police (Kaminski, 2003), cartel
problems (Osborne, 1976), the conflict of two superpowers
who engage in a nuclear arms race (Wiesner & York, 1964),
doping in sports (Savulescu, Foddy, & Clayton, 2004; Hau-
gen, 2004), and global warming (Milinski et al., 2008).

Although, normatively, one should never cooperate in one-
shot, non-cooperative Prisoner’s Dilemma games, substantial
experimental evidence shows that people typically cooperate
in 2ONPDs (e.g., Dawes & Thaler, 1988; Fehr & Gächter,
2000; Keser & van Winden, 2000; Brandts & Schram, 2001).

In a 2ONPD, each player has two strategies to choose
from: either to cooperate or to defect. The payoff matrix of a
generic 2ONPD is shown in Fig. 2.
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Figure 2: Payoff matrix of a generic 2-player, one-shot, non-
cooperative Prisoner’s Dilemma (2ONPD), where t > r > p>
v. For 2ONPDs, the constraint r > p ensures that mutual
cooperation is superior to mutual defection, while the con-
straints t > r and p > v grant that defection is the dominant
strategy for both players. Players can either cooperate or de-
fect.

According to the general framework presented in the previ-
ous section, assuming that (from the perspective of a player)
the other player would cooperate with probability Pc, a player
is essentially choosing from the following two risky choices:

Cooperate =
{

r w.p. Pc
v w.p. 1−Pc

Defect =
{

t w.p. Pc
p w.p. 1−Pc

According to the normative principle of least-informative
priors (i.e., those prior distributions attaining highest en-
tropy), having no priori knowledge of, or any opportunity to
learn through interactions about, her opponent—due to the
one-shot, non-cooperative nature of the game—it is rationally
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justified for a player to assume that Pc = 0.5. Accordingly,
throughout this paper we make the assumption that Pc = 0.5.

Recent work has provided mounting evidence suggesting
that people often use very few samples in probabilistic judg-
ments and reasoning (e.g., Vul et al., 2014; Battaglia et al.
2013; Lake et al., 2017; Gershman, Horvitz, & Tenenbaum,
2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012; Ger-
shman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014;
Nobandegani et al., 2018; Lieder, Griffiths, Huys, & Good-
man, 2018). Consistent with this finding, throughout this pa-
per we assume that a player draws very few samples (s = 1;
see Eqs. (2-3)) when deciding between cooperation and de-
fection in 2ONPDs—except for Sec. 4.3 in which we directly
investigate the effect of number of samples s on cooperation.

Under these justified assumptions (i.e, s = 1 and Pc = 0.5),
in the following two subsections we show that Nobandegani
et al.’s (2018) metacognitively-rational model, SbEU, accu-
rately explains how cooperation rate varies depending on the
parameterization of a 2ONPD.

4.1 Manipulation of Cooperation Index
Introduced by Rapoport and Chammah (1965), cooperation
index (CI) is a concrete measure of cooperativeness in 2ON-
PDs; CI is a property of the experimental task. For a 2ONPD
with a generic payoff matrix shown in Fig. 2, CI is given by
(Rapoport & Chammah, 1965):

CI =
r− p
t− v

. (12)

As for any 2ONPD holds t > r > p > v (see Fig. 2), it follows
that 0 < CI < 1. (The latter result follows from having t−v >
r− p > 0.)

Rapoport and Chammah (1965) experimentally demon-
strated a linear relationship between CI and cooperation
rate, with people tending to cooperate more as CI increases.
Several studies have replicated this finding (e.g., Steele &
Tedeschi, 1967; Vlaev & Chater, 2006).

Next, we show that SbEU can remarkably accurately ac-
count for this finding. To test how the cooperation rate pre-
dicted by SbEU changes as CI increases, we use nine repre-
sentative 2ONPD games from Vlaev and Chater (2006, Ta-
ble 1) which allow us to systematically vary CI equidistantly
between 0.1 and 0.9. Recall that 0 < CI < 1. We simulate
N = 100,000 participants, with s = 1 and Pc = 0.5.

As Fig. 3 demonstrates, there is a significant positive, linear
relationship between CI and the cooperation rate predicted
by SbEU (Pearson’s r = .9998, Kendall’s τ = 1, Spearman’s
ρ = 1, Ps < 10−5).

In the next subsection, we directly compare the cooperation
rate predicted by SbEU and human data.

4.2 Manipulation of Defection Payoff p
In a recent experiment investigating the effect of manipula-
tion of defection payoff (i.e., parameter p; see Fig. 2) on co-
operation, Engel and Zhurakhovska (2016) presented partic-
ipants with eleven 2ONPDs; across these stimuli, they sys-
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Figure 3: SbEU (Nobandegani et al., 2018) can accurately
simulate the linear relationship between CI and cooper-
ation rate, experimentally demonstrated by Rapoport and
Chammah (1965).

tematically varied parameter p while keeping the other pa-
rameters fixed (for experimental stimuli see Engel and Zhu-
rakhovska, 2016, Sec. 3).

Fig. 4 shows that SbEU can remarkably accurately account
for Engel and Zhurakhovska’s (2016) observed cooperation
rates, explaining 98% of the variance in the experimental
data (Pearson’s r = .9906, Kendall’s τ = .9909, Spearman’s
ρ = .9977, Ps < .001). In Fig. 4, we simulate N = 100,000
participants, with s = 1 and Pc = 0.5.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Human Data (Engel & Zhurakhovska, 2016)
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Figure 4: SbEU (Nobandegani et al., 2018) simulates Engel
and Zhurakhovska’s (2016) experimental data on the effect of
manipulation of defection payoff (i.e., parameter p) on coop-
eration in 2ONPDs.
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4.3 The Predictive Relationship between Number
of Samples s and Cooperation

In a recent study, Kanazawa and Fontaine (2013) experimen-
tally investigated the effect of general intelligence (measured
by a Raven’s-type nonverbal test of general intelligence) on
cooperation in 2ONPDs, showing that individuals with higher
general intelligence are less likely to cooperate.

In this section we investigate the predictive relationship be-
tween the number of samples s and cooperation rate in 2ON-
PDs. In the context of SbEU, we operationalize the well-
supported assumption that people with higher general intelli-
gence typically enjoy more cognitive resources, e.g. working
memory (e.g., Colom, Jung, & Haier, 2007; Colom et al.,
2008, Burgess, Gray, Conway, & Braver, 2011) by positing
that these individuals tend to draw more samples.

Consistent with Kanazawa and Fontaine’s (2013) finding,
SbEU predicts that cooperation rate should decrease as the
number of samples s increases; see Fig. 5. In Fig. 5, we adopt
the Kanazawa and Fontaine’s (2013) specific PD problem
given to the subjects (a 2ONPD with r = 3,v = 0, t = 5, p =
1), and simulate N = 100,000 participants with Pc = 0.5.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Figure 5: SbEU (Nobandegani et al., 2018) predicts that
cooperation rate should decrease as the number of sam-
ples s increases, consistent with the experimental findings of
Kanazawa and Fontaine (2013).

Importantly, SbEU’s prediction depicted in Fig. 5 is sup-
ported by substantial evidence revealing that, in the context
of 2ONPDs, deliberation (which can be readily operational-
ized in terms of drawing more samples) leads to increased
defection rate, thus bringing behavior closer to the prescrip-
tions of the normative standards of game theory (e.g., Rand,
2016).

4.4 Manipulation of Pc

Shafir and Tversky (1992) examined cooperation rates in a
well-known variant of 2ONPD: In some trials, participants

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
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Figure 6: SbEU (Nobandegani et al., 2018) provides a
resource-rational, process-level explanation of the puzzling
finding of Shafir and Tversky (1992). This finding thus far
has defied any (Bayesian) rational explanation. We simulate
N = 100,000 participants, with s = 1. We use a representa-
tive 2ONPD game from Shafir and Tversky (1992, Fig. 28.2)
with the following parameters: r = 75,v = 25, t = 85, p = 30.

were told what the other player was doing. Unsurprisingly,
when participants were told that the other person decided to
defect, then their probability to cooperate was 0.03; and when
they were told that the other person decided to cooperate, then
their probability to cooperate was 0.16. However, in trials
(within participants design) when participants were not told
what the other person did, the probability to cooperate raised
to 0.37. This pattern of responding has been independently
replicated several times (e.g., Busemeyer, Matthew, & Wang,
2006; Croson, 1999; Li & Taplin, 2002), and has thus far
remained a puzzle for optimal decision theorists to explain.

The present study offers one, and thus far the only,
(Bayesian) rational process-level explanation of this puzzle.
As Fig. 6 shows, SbEU predicts that a participant should have
only a minuscule tendency to cooperate when the other player
is known to either fully cooperate or defect. However, consis-
tent with Shafir and Tversky’s (1992) finding, SbEU predicts
that participants should have a substantially greater tendency
to cooperate when they are maximally uncertain about what
the other player would do. As such, SbEU provides a ratio-
nal explanation of a clear violation of the law of total prob-
ability in 2ONPDs, as demonstrated by Shafir and Tversky
(1992). According to the law of total probability (Durrett,
2010), the cooperation rate under the condition that the oppo-
nent’s choice is unknown must fall between the cooperation
rates observed under the two extreme conditions: full coop-
eration and full defection.

5 General Discussion
Despite its solid normative ground, NE has failed to provide
a satisfying descriptive account of human behavior in many
game-theoretic settings. In this work, we focus on a well-
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documented, yet puzzling, deviation from NE: cooperation
in 2-player, one-shot, non-cooperative, Prisoner’s Dilemma
games (2ONPDs). By way of introducing a general frame-
work allowing us to conceptualize strategy selection in one-
shot, non-cooperative games (ONGs) as the classical problem
of decision-making under risk, we investigate whether (seem-
ingly irrational) cooperation in 2ONPDs could be understood
as an optimal behavior with the mind acting as a miser.

To our knowledge, our work provides the first (but, ad-
mittedly, preliminary) demonstration of how cooperation can
arise from purely selfish, expected-utility maximization under
cognitive limitations. Our findings challenge the widespread
view that observed cooperation in 2ONPD games is primar-
ily due to “cooperation bias” in humans, and are supported by
recent experimental findings revealing little evidence for such
cooperation bias (Pothos et al., 2011). As such, our work re-
futes the (very intuitive) widely-accepted conclusion that “If
players are egoists, cooperation will not be observed in one-
shot PD games” (Cooper et al., 1996).

Concretely, in this work we show that the Nobandegani et
al.’s (2018) metacognitively-rational process model, SbEU,
provides a resource-rational mechanistic explanation of co-
operation in 2ONPDs, and offers an accurate quantitative ac-
count of how cooperation rate varies depending on the pa-
rameterization of a 2ONPD. Furthermore, by operationaliz-
ing higher intelligence in terms of drawing a larger num-
ber of samples in the available time, our work predicts that
more intelligent individuals should tend to cooperate less,
fully consistent with recent experimental findings (Kanazawa
& Fontaine, 2013).

Shafir and Tversky’s (1992) paradoxical finding on the vi-
olation of the law of total probability in 2ONPDs has resisted
explanation by a model governed by classical probability the-
ory (CPT) for nearly three decades. Interestingly, this para-
doxical finding has been recently taken as strong evidence
for quantum-probability models of cognition (e.g., Pothos &
Busemeyer, 2009; Pothos & Busemeyer, 2013). Our work
offers the first, and thus far the only, CPT-based explanation
of Shafir and Tversky’s (1992) paradoxical finding. As such,
our work corroborates the view that decision-making behav-
iors that appear to be inconsistent with CPT, might after all
be reconcilable with CPT when analyzed from an algorith-
mic perspective acknowledging cognitive limitations.

Being primarily inspired by the experimental finding that
deliberation leads to a marked increase in defection rate in
2ONPDs (e.g., Rand, 2016), and applying a dual-process lens
to cooperation in 2ONPDs, some researchers have recently
argued that intuition favors cooperation while deliberation
promotes selfishness (e.g., Rand, Greene, & Nowak, 2012;
Rubinstein, 2007; Rand, 2016). Our work offers a completely
new way of understanding this experimental finding—both
qualitatively and quantitatively.

On the quantitative front, in sharp contrast to a dual-
process perspective, our work presents the first, and thus far
the only, single-process model of cooperation in 2ONPDs,

providing a resource-rational mechanistic explanation of why
deliberation leads to increased defection. According to our
work, it is the optimal use of limited cognitive resources that
underlies deliberation promoting selfishness in 2ONPDs. Re-
latedly, our recent work on modeling fairness in the Ulti-
matum Game (UG) also supports this view (Nobandegani,
Destais, & Shultz, in prep).

On the qualitative side, our work offers a radically different
interpretation of cooperation in 2ONPDs than the one pro-
vided by the classical dual-process account. From a dual-
process perspective, intuition (moderated by System 1) is
good and cooperative while deliberation (moderated by Sys-
tem 2) is evil and uncooperative. However, according to
our singe-process model (SbEU; Nobandegani et al., 2018),
a boundedly-rational agent that selfishly maximizes its ex-
pected utility while optimally using its limited cognitive re-
sources should show the highest cooperation rate as an intu-
itive response, with cooperation rate declining with delibera-
tion. As such, according to our work, humans’ intuitive re-
sponse being to cooperate in 2ONPDs, is still, quite counter-
intuitively, the effect of selfishly maximizing expected utility
while optimally using limited cognitive resources.

Our work contributes to an emerging line of work attempt-
ing to explain human cognition as an optimal use of limited
cognitive resources (rational minimalist program, Nobande-
gani, 2017; Griffiths, Lieder, & Goodman, 2015), thereby
demonstrating that a wide range of human behaviors are ratio-
nal, provided that the computational and cognitive limitations
of the mind are taken into consideration (Simon, 1957).

By demonstrating that SbEU, a recently proposed
metacognitively-rational process model of risky choice
(Nobandegani et al., 2018), can quantitatively account for os-
tensibly irrational cooperation rates in 2ONPDs, our work
bridges between two related, but distinct, areas of research:
game-theoretic decision-making and risky decision-making.
As such, the work presented here brings us a step closer to
developing a unified, mechanistic account of human decision-
making.

Recent work has shown that SbEU can account for the
St. Petersburg paradox, a centuries-old paradox in human
decision-making (Nobandegani, da Silva Castanheira, Shultz,
& Otto, 2019b), and has experimentally confirmed a coun-
terintuitive prediction of SbEU: Deliberation leads people to
move from one well-known bias, framing effect, to another
well-known bias, the fourfold pattern of risk preferences (da
Silva Castanheira; Nobandegani, & Otto, 2019). An impor-
tant line of future work would be to investigate whether SbEU
could also serve as a resource-rational process-level account
of contextual effects in multi-attribute decision-making (e.g.,
the attraction, similarity, and compromise effects), thus bring-
ing us another step closer to developing this unified account
of decision-making.
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