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ARTICLE
Epidemiology

Exogenous hormone use, reproductive factors and risk of
intrahepatic cholangiocarcinoma among women: results from
cohort studies in the Liver Cancer Pooling Project and the UK
Biobank
Jessica L. Petrick1,2, Úna C. McMenamin3, Xuehong Zhang4, Anne Zeleniuch-Jacquotte5,6, Jean Wactawski-Wende7, Tracey G. Simon8,
Rashmi Sinha1, Howard D. Sesso9,10, Catherine Schairer1, Lynn Rosenberg2, Thomas E. Rohan11, Kim Robien12, Mark P. Purdue1,
Jenny N. Poynter13, Julie R. Palmer2, Yunxia Lu14, Martha S. Linet1, Linda M. Liao1, I-Min Lee9,10, Jill Koshiol1, Cari M. Kitahara1,
Victoria A. Kirsh15, Jonathan N. Hofmann1, Barry I. Graubard1, Edward Giovannucci9, J. Michael Gaziano10,16, Susan M. Gapstur17,
Neal D. Freedman1, Andrea A. Florio1, Dawn Q. Chong18, Yu Chen5,19, Andrew T. Chan4,8,20, Julie E. Buring9,10, Laura E. Beane Freeman1,
Jennifer W. Bea21, Christopher R. Cardwell3, Peter T. Campbell17 and Katherine A. McGlynn1

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) arises from cholangiocytes in the intrahepatic bile duct and is the second
most common type of liver cancer. Cholangiocytes express both oestrogen receptor-α and -β, and oestrogens positively modulate
cholangiocyte proliferation. Studies in women and men have reported higher circulating oestradiol is associated with increased ICC
risk, further supporting a hormonal aetiology. However, no observational studies have examined the associations between
exogenous hormone use and reproductive factors, as proxies of endogenous hormone levels, and risk of ICC.
METHODS: We harmonised data from 1,107,498 women who enroled in 12 North American-based cohort studies (in the Liver
Cancer Pooling Project, LCPP) and the UK Biobank between 1980–1998 and 2006–2010, respectively. Cox proportional hazards
regression models were used to generate hazard ratios (HR) and 95% confidence internals (CI). Then, meta-analytic techniques were
used to combine the estimates from the LCPP (n= 180 cases) and the UK Biobank (n= 57 cases).
RESULTS: Hysterectomy was associated with a doubling of ICC risk (HR= 1.98, 95% CI: 1.27–3.09), compared to women aged 50–54
at natural menopause. Long-term oral contraceptive use (9+ years) was associated with a 62% increased ICC risk (HR=
1.62, 95% CI: 1.03–2.55). There was no association between ICC risk and other exogenous hormone use or reproductive factors.
CONCLUSIONS: This study suggests that hysterectomy and long-term oral contraceptive use may be associated with an increased
ICC risk.

British Journal of Cancer (2020) 123:316–324; https://doi.org/10.1038/s41416-020-0835-5

BACKGROUND
Intrahepatic cholangiocarcinoma (ICC) rates have been rapidly
increasing in the US since the mid-1980s.1 Between 2001 and
2016, ICC rates among US women more than doubled

(from 0.6 to 1.4/100,000 person-years, respectively).2 ICC arises
from cholangiocytes in the intrahepatic bile duct and is the
second most common type of liver cancer in the US, accounting
for 12% of primary liver cancers.3
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As cholangiocytes express both oestrogen receptor-α and -β,4–6

hormonal factors have been hypothesised to play a role in
cholangiocarcinogenesis.7 Experimental evidence suggests that
oestrogen promotes cholangiocarcinogenesis, while selective
oestrogen receptor modulators can inhibit growth.8–10 Addition-
ally, a prior study from Khon Kaen, Thailand, reported higher
circulating oestradiol in men with cholangiocarcinoma compared
to controls.11 Another recent study from the Liver Cancer Pooling
Project (LCPP) reported that higher levels of circulating oestradiol
in women were associated with an increased ICC risk.12 Taken
together, these results suggest that factors that affect oestrogenic
regulation may play a role in the aetiology of ICC.
Several epidemiologic studies have examined exogenous

hormone use and reproductive factors in relation to all primary
liver cancer or hepatocellular carcinoma (HCC) risk,7,13 but not ICC
risk alone. One recent study from Sweden found that menopausal
hormone therapy (MHT) use was associated with a lower risk of
gastrointestinal cancers, but there were too few cases to examine
the association with ICC as a unique outcome.14 Thus, we
conducted a prospective analysis of North American and
European women to examine exogenous hormonal exposures
and reproductive factors, as proxies of endogenous hormonal
exposures, in relation to ICC risk.

METHODS
Study population
For this study, we combined the resources of the National Cancer
Institute (NCI) Cohort Consortium and the UK Biobank. All North
American-based cohort studies that are members of the NCI
Cohort Consortium were invited to participate in the LCPP, as
previously described.13 For the current study, which is restricted to
women, 12 cohorts contributed information on exogenous
hormones and/or reproductive factors and ICC cases: NIH-AARP
Diet and Health Study (AARP),15 Agricultural Health Study (AHS),16

The Breast Cancer Detection Demonstration Project (BCDDP),17

Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial
(PLCO),18 Women’s Health Study (WHS),19 New York University
Women’s Health Study (NYUWHS),20 Cancer Prevention Study–II
(CPS-II) Nutrition Cohort,21 Iowa Women’s Health Study (IWHS),22

Black Women’s Health Study (BWHS),23 Women’s Health Initiative
(WHI),24 Nurses’ Health Study (NHS),25 and the Canadian Study of
Diet, Lifestyle, and Health (CSLDH)26 (Supporting Table S1). The
Physicians’ Health Study (PHS)27 and Health Professionals Follow-
Up Study (HPFS)28 were excluded, as these cohorts only included
men. The US Radiologic Technologists (USRT) Study29 is also
excluded, as this cohort had no women ICC cases. The UK Biobank
is a large prospective cohort study that recruited over 500,000
men and women aged 40–69 years from one of 22 assessment
centres located across England, Scotland and Wales between 2006
and 2010.30 All studies participating in the LCPP contributed de-
identified data following data sharing agreements between NCI
and the cohort’s academic institute; the UK Biobank was approved
by the North West Multi-Centre Research Ethics Committee, and
all participants provided written informed consent.
With the exception of the CSLDH, all other studies contributed

the full cohort of individuals. For cost-efficiency, CSLDH was
performed using a case-cohort design. Thus, from the entire
cohort of women in CSLDH (n= 39,618) at baseline, an age-
stratified random sample was selected to create a sub-cohort of
women (n= 3224), which are utilised in analyses to represent the
full cohort.31 In total, 1,107,498 women participants were included:
851,157 women from the LCPP and 256,341 women from the UK
Biobank.

Outcomes
Incident primary liver cancer (defined as International Classifica-
tion of Diseases, 10th edition [ICD-10] diagnostic code C22) was

ascertained by linkage to state-, provincial- or country-specific
cancer registries or medical/pathology record review; dates of
follow-up are given for each study in Supplemental Table S1.
Cases of ICC were classified using the ICD-O-3 morphology codes
8032–8033, 8041, 8050, 8070–8071, 8140–8141, 8160, 8260, 8480,
8481, 8490 and 8560. The current study included 237 ICC cases
(LCPP n= 180 and UK Biobank n= 57) and 1,107,261 non-cases.

Exposures
In the LCPP, reproductive factors were self-reported via hard copy
questionnaire and included age at menarche, parity, age at first
birth, age at natural menopause, oophorectomy, fertile duration
(years between menarche and menopause), oral contraceptive
use, duration of oral contraceptive use, MHT use, recency of MHT
use (never, current, former), duration of MHT use, type of MHT use
(none, oestrogen-only MHT, oestrogen-progesterone combination
MHT, other), and MHT route of administration (none, oral, non-
oral). In the UK Biobank, the same exposures were assessed in a
similar self-reported manner via touchscreen computerised and
interviewer-administered questionnaires at baseline. The excep-
tion to similar exposure ascertainment is type of MHT, which
was only asked of women who reported ‘current’ MHT use at
baseline and was verified during a verbal interview with a UK
Biobank nurse.

Statistical analysis
Cox proportional hazards regression models were used to
estimate hazard ratios (HRs) and 95% confidence intervals (CIs)
for the associations between exogenous hormone use and
reproductive factors and risk of ICC. To account for the case-
cohort design of CSLDH in the LCPP, all cases were weighted as
one, and non-cases were weighted according to the inverse of
their stratum-specific sampling fractions. All participants in the
remaining cohorts were weighted as one using PROC SURVEY-
PHREG.32 Follow-up of the analytic cohort occurred from time of
exposure ascertainment until an event (i.e., incident ICC) or right-
censoring (i.e., death, loss to follow-up, or last date of follow-up),
whichever occurred first. The proportional hazards assumption
was tested using an interaction between exogenous hormones or
reproductive factors with log(time) in models that included
confounders; no violations were observed (p > 0.05). The adjusted
study-specific effect estimates from the LCPP and the UK Biobank
were combined using fixed-effects meta-analytic models.
Based on existing literature, LCPP models contained the

following potential confounders:33 age (continuous), alcohol
consumption (g/day: none, ≤1.08, >1.08–3.58, >3.58–13.54,
>13.54), body mass index (BMI, <25, 25–29.9, ≥30 kg/m2), diabetes
(yes, no), race (white, other), smoking (never, former, current),
parent cohort study, and education (<high school, high school,
some college/vocational, college, graduate degree). UK Biobank
models contained age (continuous), alcohol consumption [never,
former, current light/occasional (<16 g/day), current heavy (≥16 g/
day)], BMI (<25, 25–29.9, ≥30 kg/m2), smoking (never, former,
current), and education (<secondary school, secondary school,
college, graduate degree). Models using UK Biobank data were not
adjusted for race, as almost 95% of the cohort is white, nor
diabetes, as only one ICC case had a type 2 diabetes diagnosis. In
the UK Biobank, medical history of hepatitis B and C virus (HBV/
HCV) and cirrhosis were examined as potential covariates, but they
did not alter the estimates and are not included in the final
models (data not shown). Models examining reproductive factors
also contained menopausal status (pre-, post-menopausal), while
models examining menopausal factors (i.e., age at menopause and
MHT use) were restricted to post-menopausal women. A lag
analysis, excluding the first two years of follow-up, was performed
to account for potential pre-existing liver disease. Analyses were
conducted using SAS version 9.4 (SAS Institute, Cary, NC) and
STATA version 14 (StataCorp LP, College Station, TX).
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Nested case-control study of HBV/HCV
In the LCPP, 47 ICC cases that had a serum sample available were
tested for determination of HBV and HCV serology status, in
addition to 98 matched controls. To determine HBV status,
hepatitis B surface antigen (HBsAg) was assayed using the Bio-Rad
GS HBsAg 3.0 enzyme immunoassay (Bio-Rad Laboratories,
Redmond, WA, USA). To determine HCV status, antibody to
hepatitis C virus (anti-HCV) was assessed using the Ortho HCV
Version 3.0 ELISA test system (Ortho-Clinical Diagnostics, Inc.,
Raritan, NJ, USA).

RESULTS
Participants averaged 13.0 years of follow-up (maximum 30.4
years) in the LCPP and 5.5 years of follow-up (maximum 8.5
years) in the UK Biobank. Table 1 summarises women participant
characteristics, which were similar between the LCPP and the UK
Biobank. For example, the mean ages of non-cases were 57.7 and
56.1 and cases were 61.9 and 60.3 years, respectively. Among the
non-cases, there was a similar prevalence of non-smokers (51.0 vs.
59.6%) and individuals with a BMI ≥ 30 kg/m2 (20.4 vs. 23.9%) in
the LCPP and the UK Biobank, respectively. However, the LCPP
had more post-menopausal non-cases (83.0 vs. 59.6%). In both the
LCPP and the UK Biobank, ICC cases were more likely to be post-
menopausal, to be current or past smokers, and to have a BMI ≥
30 kg/m2.
As shown in Table 2, there were null associations between age

at menarche, parity, or age at first birth and risk of ICC. Similarly,
there was a null association with ever use of oral contraceptives
(HR= 1.12, 95% CI: 0.82–1.53). However, examining duration of
oral contraceptive use, nine or more years of use was associated
with 62% increased risk of ICC in the combined study population
(HR= 1.62, 95% CI: 1.03–2.55), which was in the same direction in
both LCPP (HR= 1.71, 95% CI: 1.01–2.89) and UK Biobank cohorts
(HR= 1.38, 95% CI: 0.56–3.39).
There was no association with age at natural menopause, but

there was a 2-fold increased risk of ICC associated with
hysterectomy (HR= 1.98, 95% CI: 1.27–3.09), compared to women
aged 50–54 at natural menopause, which was driven by the
results from the LCPP (HR= 2.25, 95% CI: 1.38–3.65; Table 3).
Further adjustment in the LCPP for MHT use did not substantially
affect the estimate (HR= 2.15, 95% CI: 1.31–3.52), although
women with hysterectomy were more likely to report MHT use
—especially oestrogen-only MHT (Supplemental Table S2). There
was no association with total fertile duration. Examining MHT use,
including recency, duration, or route of administration, revealed
no associations with ICC risk. However, there was a possible
indication of increased risk of ICC and oestrogen-only therapy in
post-menopausal women (HR= 1.44, 95% CI: 0.91–2.28).
Among the 47 ICC cases and 98 controls evaluated for HBV and

HCV infections, one case (2.1%) and no controls were positive for
HBsAg. For anti-HCV, no cases and three controls (3.1%) were
positive. The viral results were not incorporated into the main
analyses, as the results were only available for a small proportion
of LCPP participants. In sensitivity analyses that dropped HBsAg
(+) and anti-HCV(+) cases, the results did not differ from the
analyses that included all cases (data not shown). Similarly,
analyses that removed cases that developed in the first two years
of follow-up were similar to those presented (data not shown).

DISCUSSION
In the present study, long-term oral contraceptive use was
associated with a 62% increased ICC risk, and hysterectomy was
associated with a doubling of risk. The other reproductive factors
were not associated with risk of ICC.
This is the first study to date to examine exogenous hormone

use, reproductive factors and ICC risk. Prior studies have been

limited to examination of all primary liver cancer or HCC only,
which is the dominant form of liver cancer and accounts for 75%
of primary liver cancer cases.7 Thus, all prior examinations of
exogenous hormone use and reproductive risk factors for liver
cancer have been primarily driven by the aetiology of HCC.
However, we discuss these prior results herein to highlight the
similarities and differences in the aetiology of these two types of
liver cancer. HCC is 2–3 times more common among men than
women,34 while incidence rates of ICC are only 30% higher in men
than in women.35 Reasons for reduced sex differences in ICC risk
are unclear, but may be partially explained by oestrogenic factors
increasing risk in women, as reported in the current study.
In 1999, the International Agency for Research on Cancer (IARC)

concluded that there was sufficient evidence that oral contra-
ceptives increased risk of liver cancer in the absence of viral
infections.36 However, a meta-analysis reported a 55% increased
risk of liver cancer only in case-control studies, but no association
in cohort studies.37 The most recent 2018 IARC monograph
concluded that there was still sufficient evidence that oestrogen-
progesterone combination oral contraceptives cause liver can-
cer.38 While the recent IARC monograph acknowledged that there
was no association found in cohort studies, the majority of these
to-date have included small numbers of cases. The prior study of
HCC in the LCPP showed an increased, but non-significant, risk of
HCC with more than 6 years of oral contraceptive use,39 which is
similar to the significant increased risk of ICC reported herein for
nine or more years of oral contraceptive use.
The reported associations between MHT use and primary liver

cancer risk have been inconsistent. A recent meta-analysis
reported that MHT was associated with a 40% decreased risk of
primary liver cancer across five studies.40 Inverse associations were
also reported for oestrogen-only, as well as oestrogen-
progesterone combination MHT. However, there was significant
heterogeneity between the studies in the meta-analysis. One of
these studies examined MHT from prescription records and
reported a 42% decreased risk of liver cancer.41 However, none
of these studies were able to examine ICC independent of primary
liver cancer. Our study reported that oestrogen-only MHT use in
post-menopausal women was associated with a possible indica-
tion of increased risk of ICC, albeit non-significant, which was
consistent in the cohorts in North America and the UK. However,
the sample size was limited, and the UK Biobank only assessed
type of MHT for women who reported ‘current’ MHT use at time of
the questionnaire.
Experimental evidence suggests that oestrogen, potentially

mediated through interleukin-6 (IL-6)10 or vascular endothelial
growth factor (VEGF),8 promotes cholangiocarcinogenesis, while
selective oestrogen receptor modulators can inhibit growth.8–10

Cholangiocytes can express both oestrogen receptor (ER)-α and -β,
whereas hepatocytes express only ER-α.42 In bile duct ligated rats,
ER-β increased 5-fold in cholangiocytes, whereas ER-α decreased
in both cholangiocytes and hepatocytes.42 Thus, the increased risk
of ICC associated with oestrogen-only MHT use is biologically
plausible through modulation of cholangiocyte proliferation.43,44

While statistical power was still somewhat limited to examine this
hypothesis, both the LCPP and the UK Biobank reported nearly
identical effect estimates for the oestrogen-only MHT—ICC
association.
In epidemiologic investigations of circulating sex steroid

hormones and ICC risk, two studies have reported higher levels
of circulating oestradiol in both men and women cholangiocarci-
noma cases compared to controls.11,12 One of these studies was
based in the LCPP and reported that a doubling of circulating
oestrogen levels in women was associated with a 40% increased
ICC risk.12 Neither study reported associations with circulating
androgen levels.
Of the reproductive factors, which have been utilised as

proxies of hormone status, parity is the most well studied in
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Table 1. Characteristics of female participants in the Liver Cancer Pooling Project and the UK Biobank.

Liver Cancer Pooling Project UK Biobank

No. non-cases (N= 850,977) No. ICC cases (N= 180) No. non-cases (N= 256,284) No. ICC cases (N= 57)

No. (%) No. (%) No. (%) No. (%)

Age at baseline, mean (SD) 57.7 (10.56) 61.9 (7.20) 56.1 (0.02) 60.3 (0.87)

<50 153,709 (18.1) 9 (5.0) 62,807 (24.5) 5 (8.8)

50–59 286,553 (33.7) 52 (28.9) 88,718 (34.6) 19 (33.3)

60–69 332,574 (39.1) 97 (53.9) 103,704 (40.5) 31 (54.4)

≥70 78,141 (9.2) 22 (12.2) 1,055 (0.4) 2 (3.5)

Menopausal status

Pre-menopausal 134,595 (15.8) 9 (5.0) 62,992 (24.6) 4 (7.0)

Post-menopausal 706,218 (83.0) 171 (95.0) 152,752 (59.6) 41 (71.9)

Missing 10,164 (1.2) 0 (0.0) 40,540 (15.8) 12 (21.1)

Alcohol intake

Liver Cancer Pooling Project

Non-drinker 258,141 (30.3) 48 (26.7)

Quartile 1: ≤1.08 g/day 170,803 (20.1) 41 (22.8)

Quartile 2: 1.09–3.58 g/day 152,765 (18.0) 32 (17.8)

Quartile 3: 3.59–13.54 g/day 129,502 (15.2) 29 (16.1)

Quartile 4: >13.54 g/day 98,621 (11.6) 21 (11.7)

Missing 41,145 (4.8) 9 (5.0)

UK Biobank

Never 15,072 (5.9) 4 (7.0)

Current (<16 g/day) 167,319 (65.3) 39 (68.4)

Current (≥16 g/day) 62,762 (24.5) 10 (17.5)

Former 9251 (3.6) 4 (7.0)

Missing 1,880 (0.7) 0 (0.0)

Smoking status

Never 434,198 (51.0) 80 (44.4) 152,637 (59.6) 20 (35.1)

Former 284,799 (33.5) 75 (41.7) 79,316 (30.9) 29 (50.9)

Current 114,922 (13.5) 23 (12.8) 22,922 (8.9) 8 (14.0)

Missing 17,058 (2.0) 2 (1.1) 1409 (0.6) 0 (0.0)

BMI status (kg/m2)

<25 387,573 (45.5) 59 (32.8) 101,363 (39.6) 22 (38.6)

25–29.9 260,561 (30.6) 67 (37.2) 92,241 (36.0) 20 (35.1)

≥30 173,376 (20.4) 45 (25.0) 61,324 (23.9) 15 (26.3)

Missing 29,467 (3.5) 9 (5.0) 1,356 (0.5) 0 (0.0)

Diabetes

No 792,844 (93.2) 159 (88.3) 247,484 (96.6) 56 (98.3)

Yes 45,678 (5.4) 18 (10.0) 8800 (3.4) 1 (1.7)

Missing 12,455 (1.5) 3 (1.7) 0 (0.0) 0 (0.0)

Race

White 715,739 (84.1) 156 (86.7)

Black 93,734 (11.0) 9 (5.0)

Asian/Pacific Islander 11,297 (1.3) 4 (2.2)

American Indian/Alaskan Native 2,032 (0.2) 0 0.0

Other 19,336 (2.3) 7 (3.9)

Missing 8,839 (1.0) 4 (2.2)

Education

High School or Less 45,659 (5.4) 12 (6.7)

High School 184,586 (21.7) 32 (17.8) 73,038 (28.5) 10 (17.5)

Some College/Vocational 257,563 (30.3) 59 (32.8)

College Degree 190,027 (22.3) 44 (24.4) 41,596 (16.2) 8 (14.0)

Graduate Degree 135,288 (15.9) 25 (13.9) 94,233 (36.8) 18 (31.6)

None of the above 42,439 (16.6) 20 (35.1)

Missing 37,854 (4.4) 8 (4.4) 4978 (1.9) 1 (1.8)
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relation to primary liver cancer but there is significant
heterogeneity in results. A recent meta-analysis reported a
non-linear association, with a J-shaped relationship between
parity and primary liver cancer.40 This restricted cubic spline
model suggested that risk of primary liver cancer began to
increase with more than five live births. Little to no association
has been reported with age at menarche, age at first birth and
age at menopause. However, two studies have reported
oophorectomy is associated with an increased risk of HCC.39,45

Similarly, in two recent studies, medically recorded bilateral
oophorectomy was associated with a 30–70% increased risk of
non-alcoholic fatty liver disease.46,47 While the current study did
not find an association with oophorectomy, there was an
increased risk of ICC associated with hysterectomy. This could be
due either to misclassified self-reported hysterectomy and
oophorectomy status,48 whereby women that had an oophor-
ectomy tend to misreport (i.e., report hysterectomy instead of
oophorectomy), or to alterations in sex steroid hormones,

Table 2. Association between reproductive factors and intrahepatic cholangiocarcinoma in the Liver Cancer Pooling Project and the UK Biobank.

Liver Cancer Pooling Project UK Biobank Combined

Reproductive
Factors

No. non-cases
(N= 722,150)a

No. ICC Cases
(N= 154)a

HRb 95% CI No. non-cases
(N= 209,464)a

No. ICC Cases
(N= 44)a

HRc 95% CI HR 95% CI

Age at menarche

<12 207,893 49 Referent 39,215 4 Referent Referent

12–13 366,443 72 0.73 0.50–1.07 89,034 23 2.59 0.89–7.51 0.84 0.59–1.20

14+ 133,893 29 0.76 0.48–1.20 75,233 16 1.83 0.61–5.52 0.87 0.57–1.32

Missing 13,921 4 5,982 1

p for trend 0.72 0.36

Ever had children

No 98,304 20 Referent 40,205 6 Referent Referent

Yes 611,875 134 0.87 0.54–1.39 169,121 38 1.14 0.47–2.73 0.92 0.61–1.41

Missing 11,971 0 138 0

Number of children

0 97,651 20 Referent 40,205 6 Referent Referent

1 78,487 12 0.67 0.33–1.37 28,182 7 1.37 0.46–4.09 0.83 0.46–1.50

2 185,348 38 0.83 0.48–1.44 91,323 18 1.05 0.41–2.67 0.88 0.55–1.41

3+ 345,531 83 0.82 0.50–1.35 49,752 13 1.16 0.43–3.13 0.88 0.56–1.37

Missing 15,133 1 0 0

p for trend 0.97 0.35

Age at first birth (parous women)

<21 105,544 19 Referent 19,734 5 Referent Referent

21–24 275,185 72 1.31 0.77–2.21 40,407 8 0.88 0.28–2.73 1.22 0.75–1.98

25–28 147,059 25 0.74 0.39–1.39 44,890 9 1.26 0.40–3.95 0.84 0.48–1.47

≥29 59,050 15 1.02 0.49–2.11 35,669 9 1.87 0.57–6.16 1.21 0.65–2.25

Missing 135,312 23 28,419 7

p for trend 0.62 0.90

Oral contraceptive use

No 384,699 97 Referent 39,095 9 Referent Referent

Yes 331,664 57 1.06 0.75–1.48 169,887 35 1.46 0.68–3.16 1.12 0.82–1.53

Missing 5,787 0 480 0

Duration of oral contraceptive use

None 384,699 97 Referent 39,095 9 Referent Referent

<1 year 66,782 12 0.94 0.52–1.69 7,039 2 1.55 0.33–7.24 1.00 0.58–1.74

1–2.5 years 77,857 12 1.09 0.59–2.01 17,999 3 0.92 0.25–3.45 1.06 0.61–1.84

2.5–6 years 50,176 5 0.59 0.24–1.49 22,069 7 2.00 0.72–5.51 1.01 0.51–1.98

6–9 years 70,620 11 1.00 0.54–1.88 22,277 3 0.94 0.25–3.59 0.99 0.57–1.73

9+ years 61,781 17 1.71 1.01–2.89 78,287 14 1.38 0.56–3.39 1.62 1.03–2.55

Missing 10,235 0 22,696 6

p for trend 0.14 0.46

aNumbers are for women with non-missing covariates.
bAdjusted for age (continuous), alcohol (g/day: none, ≤1.08, >1.08–3.58, >3.58–13.54, >13.54), BMI (kg/m2: <25, 25–29.9, ≥30), diabetes (yes, no), race (white,
other), smoking (never, former, current), parent cohort study, menopausal status (pre-, post-menopausal), and education (<high school, high school, some
college/vocational, college, graduate degree).
cAdjusted for age (continuous), alcohol (never, former, current light/occasional (<16 g/day), current heavy (≥16 g/day)), BMI (kg/m2: <25, 25–29.9, ≥30),
smoking (never, former, current), menopausal status (pre-, post-menopausal), and education (<secondary school, secondary school, college, graduate degree).
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Table 3. Associations between menopausal factors and menopausal hormone therapy (MHT) use among post-menopausal women and risk of
intrahepatic cholangiocarcinoma in the Liver Cancer Pooling Project and the UK Biobank.

Liver Cancer Pooling Project UK Biobank Combined

Age at menopause No. non-Cases
(N= 722,150)a

No. ICC Cases
(N= 154)a

HRb 95% CI No. non-Cases
(N= 209,464)a

No. ICC Cases
(N= 44)a

HRc 95% CI HR 95% CI

Natural menopause

<45 35,745 7 0.82 0.37–1.81 11,273 14 1.21 0.38–3.84 0.93 0.48–1.79

45–49 89,227 15 0.68 0.38–1.23 29,137 4 0.62 0.21–1.77 0.67 0.40–1.11

50–54 159,706 42 Referent 63,253 Referent Referent

≥55 35,001 7 0.67 0.30–1.49 20,114 7 1.53 0.61–3.85 0.96 0.52–1.75

p for trend 0.84 0.59

Surgical menopause

Bilateral
oophorectomyd

54,645 12 0.84 0.43–1.63 687 0 – –

Hysterectomyd 100,694 36 2.25 1.38–3.65 15,809 5 1.11 0.39–3.13 1.98 1.27–3.09

Missing 131,173 30 7837 5

Fertile Duration

All women, per year
increase

341,659 80 1.02 0.97–1.07 135,777 34 0.97 0.91–1.03 1.00 0.96–1.04

Menopausal hormone therapy (MHT)

Never 259,833 65 Referent 136,849 23 Referent Referent

Ever use 340,563 83 1.12 0.80–1.56 72,057 21 1.05 0.56–1.96 1.10 0.82–1.49

Missing 5,795 1 556 0

Timing of use

Never 241,746 63 Referent 136,849 23 Referent Referent

Former 81,684 22 0.92 0.56–1.50 63,593 19 1.05 0.55–2.01 0.97 0.65–1.43

Current 227,895 59 1.26 0.87–1.84 8464 2 1.04 0.24–4.47 1.25 0.87–1.78

Missing 54,866 5 556 0

Duration of use

None 130,549 36 Referent 136,849 23 Referent Referent

<5 years 55,378 11 0.79 0.42–1.52 23,845 5 0.84 0.31–2.26 0.80 0.47–1.37

5–9 years 37,442 12 1.30 0.66–2.55 16,452 2 0.45 0.10–1.97 1.09 0.59–2.02

10+ years 66,548 16 0.72 0.35–1.47 13,717 7 1.53 0.62–3.76 0.97 0.55–1.70

Missing 231,499 58 18,599 7

p for trend 0.64 0.05

MHT typee

None 153,760 35 Referent 136,849 23 Referent Referent

Oestrogen only 125,090 38 1.44 0.90–2.31 2708 1 1.45 0.19 10.85 1.44 0.91–2.28

Combination 100,318 22 1.01 0.58–1.76 5735 1 0.79 0.11–5.95 0.99 0.58–1.69

Other MHT 15,982 1 0.34 0.05–2.54

Missing 196,844 44 64,149 19

MHT pill usagee

None 87,966 24 Referent 136,849 23 Referent Referent

Used pills 118,376 36 1.06 0.63–1.79 6,501 2 1.34 0.31–5.76 1.09 0.67–1.78

Other MHT 8,467 1 0.55 0.07–4.10 1879 0 –

Missing 377,185 79 64,233 19

aNumbers are for women with non-missing covariates.
bAdjusted for age (continuous), alcohol (g/day: none, ≤1.08, >1.08–3.58, >3.58–13.54, >13.54), BMI (kg/m2: <25, 25–29.9, ≥30), diabetes (yes, no), race (white,
other), smoking (never, former, current), parent cohort study, menopausal status (pre-, post-menopausal), and education (<high school, high school, some
college/vocational, college, graduate degree).
cAdjusted for age (continuous), alcohol (never, former, current light/occasional (<16 g/day), current heavy (≥16 g/day)), BMI (kg/m2: <25, 25–29.9, ≥30), smoking
(never, former, current), menopausal status (pre-, post-menopausal), and education (<secondary school, secondary school, college, graduate degree).
dReference group for oophorectomy and hysterectomy is females who had natural menopause aged between 50 and 54 years old.
eInformation on MHT type and pill usage only available for current MHT users at baseline in the UK Biobank.
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particularly decreased androgen levels, in hysterectomised
women.49 Additionally, women undergoing hysterectomy may
be more likely to begin taking MHT.50 We also report that MHT
use, in particular oestrogen-only MHT use, is more common
among women who report hysterectomy than in those who
report natural menopause. However, the LCPP does not have
information on age at hysterectomy. In the UK Biobank, only
26% of participants started taking MHT after hysterectomy (7%
within 1-year post-hysterectomy); thus, MHT initiation is not
strongly related to hysterectomy. Further, adjustment for MHT
use did not substantially change the hysterectomy-ICC associa-
tion. Alternatively, hysterectomy, which has been associated
with weight gain and diabetes, may have indirect effects on ICC
risk.51,52 In a recent meta-analysis, we reported that excess
adiposity and diabetes were both associated with a 50%
increased ICC risk.53 Thus, hysterectomy could be leading to
weight gain or development of diabetes in women that places
them at higher ICC risk.
The current report is the first study focused specifically on

reproductive factors and ICC. The large population of over 1.1
million women available from combining the LCPP and the UK
Biobank allowed for investigation of reproductive factors and
exogenous hormonal exposures in relation to ICC risk, which is a
rare tumour with incidence rates typically 1.0/100,000 or less.
Further, as the baseline enrolment for cohorts in the LCPP was
1980–1998 and in the UK Biobank was 2006–2010, the associa-
tions reported in both studies suggest that secular trends did not
have influential effects. This study included a wide geographic
representation from North America and the UK. Additionally, the
prospective design minimises recall bias. In addition, sensitivity
analyses that excluded ICCs that developed in the first two years
of follow-up supported the results of the main analysis.
Limitations include exposure capture, risk factor information,

and generalisability. All exposures in the included cohorts were
self-reported. Thus, some of the exposures, for example
oophorectomy, may not be reported accurately compared to
medical report. However, the majority of studies to date have
relied on self-reported data. In particular, for oral contraceptive
use, there are not currently good resources with prescription
information and sufficient follow-up for any liver cancer out-
come. Formulations of oral contraceptives have changed over
time, which makes examining and definitively addressing the
association between oral contraceptive use and ICC challenging.
Additionally, there was no information on specific MHT formula-
tions, and for the UK Biobank, type of MHT used was only
available for women currently reporting MHT use at the time of
questionnaire administration. As serum or plasma samples were
only available for a small number of ICC cases, we were unable to
include HBV or HCV as potential covariates. However, the
prevalence of HBV and HCV in the general population of women
in the US and UK is exceedingly low (≤1%).54–56 Further, the UK
Biobank is in the process of testing all participants for viral
factors but the data are not yet publicly available. As these
cohorts were established to examine all cancer types, and not
specifically liver cancer, there is no information on pre-existing
liver disease among the participants in the LCPP. Models are
adjusted for diabetes, but diabetes type (1 or 2) is not captured
in the majority of LCPP cohorts. However, type 2 diabetes
accounts for 95% of diabetes diagnoses.57 As this is an older
population, diabetes is utilised as a proxy of type 2 diabetes.
Finally, this is a population of primarily white post-menopausal
women. Thus, the generalisability of these results to other racial/
ethnic groups may not be assumed.
In summary, we report that long-term oral contraceptive use

and hysterectomy are associated with an increased risk of ICC.
Other reproductive factors were unrelated to risk. While intriguing,
replication of these findings is warranted, ideally in populations

with medical record data to avoid potential misclassification of
exposures.
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