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EFFECTS OF MICROSTRUCTURE ON
DEFORMATION AND FRACTURE OF
PORTLAND CEMENT PASTE

Robert Brady Williamson
and
Ram Pati Tewari
University of California
Berkeley, California 94720

INTRODUCTION

The solidification of portland cement paste by hydration is
one of the most widely utilized reactions in all of Materials
Engineering, and yet the effects of microstructure on mechanical
properties is inexactly understood. In this paper the consti-
tution and hydration of portland cement is reviewed and the
microstructure of hardened cement paste is introduced with scan-
ning electron micrographs. The development of strength of
monoclinic tricalcium silicate (i.e., alite) pastes both with
and without the addition of gypsum is presented using scanning
micrographs of fresh fracture surfaces. This experimental data
is used to illustrate the general principles in the relationship
between microstructure and mechanical properties for portland
cement pastes.

Constitution and Hydration of Portland Cement

Anhydrous portland cement contains four principle com-
pounds, tricalcium silicate (C3S)¥, B-dicalcium silicate (B=C59),
tricalcium aluminate (C3A), and a ferrite phase belonging to
the CpF-CeAsF solid solution series which until recently was
believed to have the fixed composition C,AF. Small amounts of
MgO, Ca0 and alkali sulphates also occur in many cements, and

*The compositions of cement compounds are often represented
as the sum of oxides, the formulae of which are abbreviated:
C=Ca0, S=5i0, A-A1703, F=Fey03, H=Hy0; thus for example,
C35=3Ca0+S10,=Ca35105. This system is used in cement chemistry
interchangeably with ordinary chemical notation.



the presence of foreign ions changes the crystal structure of
the calcium silicates from those of the pure compounds. The
alite form of tricalcium silicate used in the experiments
described in this paper is the monoclinic form which is the most
common form in commercial cements.

When water is added to the anhydrous cement powder, the
calcium silicates form a rather insoluble amorphous hydrous
calcium silicate and calcium hydroxide (CH) which is also known
by its minerological name Portlandite. The approximate chemical
equation for the hydration of C3S can be written

2C35 + 8H > (C38,H, 5) * H, 5 + 3CH, (1)

where the hydrous calcium silicate is represented as containing
2.5 moles of chemically bound water and 2.5 moles of weakly
absorbed water. A graphical representation shown in Figure 1
can be used to describe the sequence of events as the cement
minerals react with water. This reaction produces the continu-
ous solid matrix in the space that was originally occupied by
discrete particles dispersed in water. In Figure 1 the relative
volumes of water and cement are represented by a bar graph
labeled "Fresh Paste" for the case of 0.5 water-to-cement ratio
based on weight, (note that the specific gravity of cement is
3.15). The subsequent hydration reaction is presented on the
basis that one unit volume of cement yields two unit volumes of
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Figure 1, A graphical representation of the relative volumes of
the hydration products of portland cement at three stages of
hydration is shown for a water-to-cement ratio of 0.5.
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hydration products; this is a widely accepted empirical rela-
tionship used by Powers.l The nomenclature of inner and outer
hydration products has been introduced into Figure 1 in order to
discriminate between the products laid down within the bounda-
ries of the original cement grains and the products laid down in
the originally water-filled space. This nomenclature is due to
Taplin,2 although others had come close to it previously.3

Microscopic Observations

The most advanced microscopic techniques have always been
applied to study the hydration of cement as they became avail-
able, and much of the current knowledge of the microstructure
dates back to the classic work of the 19th Century such as that
of LeChatelier.“ Williamson has reviewed the microstructure of
cement paste as observed in both optical and electron micro-
scopes, and he suggests the distribution of hydration products
shown schematically in Figure 2 in and around a single grain of
cement.® This distribution of hydration products fits most
microscopic observations, and it is presented here to acquaint
the reader with the spatial arrangement of the hydration pro-
ducts shown in the bar graph of Figure 1. Williamson chose the
term "columnar zone" because of its similarity to the columnar
zone of metal castings. In choosing the term there was no
intent to restrict the possible origins of the morphology
observed there. The column aspect of this zone is due to the
growth perpendicular to the surface, and there is no single
phase or chemical feature assumed for this zone.

N
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Product
Unhydrated rocu

Cement
Grain

Original
Boundry
of Cement
Grain
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Dendritic Columnar Zone

Portlandite
Crystals };'OL‘

Figure 2. The hydration products formed inside and outside the
cement grain are schematically represented as they appear
through microscopic observation. The hydration process is
continuing since the cement grain is represented as being
suspended in water.
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Mechanical Properties

The development of strength in hydrating cement pastes has
been studied by many investigators since the original work of
LeChatelier,” but the first definitive study of the strengths of
pastes made from the individual pure cement compounds was made
by Bogue and Lerch.® They determined the principal source of
strength in the first thirty to sixty days was the C3S8, although
the B-C,S finally developed greater strength after two years.
There has been a continuing study of the mechanical properties
of cement pastes as hydration proceeds, but these have not shown
any great differences from the Bogue and Lerch study nor has the
role of microstructure been defined in more than a general
fashion. In the experimental work reported below the deforma-
tion and fracture of alite paste samples is measured at ages
from a few hours to ninty days using a hard testing machine, and
the microstructure is shown with scanning electron micrographs.

EXPERIMENTAL TECHNIQUES

The alite used in this investigation was of high-purity
monoclinic structure prepared in a pilot rotary kiln at the
University of California, Berkeley. The details of the raw
materials used and the process have been discussed by Mehta,
Pirtz, and Polivka.’ The alite was ground to a fineness of
3800 cmz/gm Blain. Two mixes were prepared, one without gypsum
and one with 5% analytical reagent grade gypsum. Pastes of 0.3
water-to-cement ratio were prepared and cast into 1 cm cubes for
compression testing and into a special split mold for scanning
electron microscopy. The cubes were demolded after 24 hours and
kept in saturated lime solution until tested.

The compression tests of the cubes were performed using an
MTS electronically servo-controlled hydraulic testing machine,
In order to obtain the complete stress-strain diagram for the
specimen the displacement of the ram was controlled to give a
constant strain rate across the cubes with a first order correc-
tion for the displacement of the load cell and deflection of the
frame. An important advantage of this correction is that when
the specimen begins to fail, the energy stored in the frame and
load cell is not "dumped" into the specimen causing premature
failure. Since the movement of the ram is controlled to produce
a constant rate of strain across the specimen, when the specimen
begins to fail and the load on the test frame begins to de-
crease, the ram will move more slowly or even change direction
momentarily. Thus the complete stress-strain diagram for the
specimen can be determined.

Specimens for the SEM were cast in special split molds
described by Williamson, which could be opened to reveal a fresh
fracture surface on the paste specimen.’ The specimens were
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fractured and placed in the evaporator as quickly as possible to
prevent CO, contamination with the fractured surface. A gold or
platinum-palladium film of approximately 200 8 was evaporated on
the surface. After being coated, the specimens were kept at
65-70° F with 50% relative humidity and viewed in SEM within a
few days; these specimens do not appear to change under these
storage conditions over periods of months.

OBSERVATIONS

Microstructure of Alite Pastes

The fracture surface of an alite paste after one day of
hydration is shown in Figure 3 in a series of scanning micro-

(b )—__20u )

(e)__10u ) (d)___ 5w J
Figure 3. Scanning electron micrographs showing the fracture
surface of a 1 day old 0.3 W/C arite paste. Note that the area
covered in succeeding micrographs is indicated. 1In c), A marks
the typical partially hydrated cement grain with a columnar zone
of outer hydration products on the outside.
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graphs at increasing magnification. At this early age there is
little strength and the individual grains of alite with their
columnar zone of outer hydration products are clearly visible.
An example is shown at A in Figure 3(c). The fracture surface
is primarily made up of outer product zones since the fracture
occurred through water-filled space. This gives a generally
granular texture due to the presence of the individual grains.
The fracture surface of alite pastes at 3, T, 28, and 60 days
are shown in Figure L4 and although one such micrograph cannot be
definitive there is a general trend to a more solid structure.
Figure L{a) at 3 days still shows the granular texture but many
of the grains are broken and there is less outer product colum-
nar zone apparent in the fracture surface. This is interpreted
as meaning that the outer hydration products from adjacent
grains are growing together to make a bond which prevents them

(c)__10u | (d)__1ou

Figure 4. Fracture surfaces of 0.3 W/C alite paste specimens,
(a) at 3 days, (b) at T days, (c) at 28 days, (d) at 60 days.
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from appearing so often on the fracture surface. At T days the
fracture surface as shown in Figure U4(b) has lost its granular
texture and shows at B the cleavage steps of fractured portland-
ite crystals. There appears to be an unhydrated core of an
alite grain at C in Figure 4(b) and a similar core takes up the
central portion of the 28 day specimen shown in Figure L(c).

The 28 day old specimen and the 60 day specimen shown in Figure
L(c, d) appear to have become much more solid than the early
fracture surfaces and the primary features are the unhydrated
core in Figure L(c) and a relatively large portlandite crystal
in Figure 4(d). Williamson has noted that both C3S and 8-C,S
pastes appear to gain their strength through the intergrowth of
the outer product columnar zones of adjacent grains.® A similar
observation has been made by Daimon, Ueda and Kondo® who re-
ferred to earlier suggestions of this mechanism by Richartz and
Locher.? Some of these concepts can be tested by observing the
changes in microstructure accompanying the acceleration in the
hydration process with the addition of gypsum.

The Strengthening of Alite Pastes at Early Ages

The effects of gypsum on the hydration of alite have been
studied by various experimental means, and there is a general
agreement that the hydration process is accelerated.®:2 This
results in a strengthening of the alite pastes at early ages,
and Mehta, Pirtz and Polivka have shown that the strengths of
mortars and concrete made with alite show the same increase in
strength at early ages.’ The effect can be dramatically shown
by the stress-strain curves in Figure 5 for 1 day old specimens
of alite with and without gypsum. Note that there has been a
general increase in stiffness, yield stress, and general defor-
mation behavior, and also note that the stiff testing machine
allowed the recording of a complete stress-strain behavior for
both materials.

The compressive stress-strain curves for alite pastes of
0.3 W/C are shown in Figure 6(a) for 1, 3, T, 28, and 60 days,

25 T T T T T

20— &

1000 psi

ALITE + 5% GYPSUM

ALITE

STRESS ,

2
STRAIN , 0.0l in/in
Figure 5. Compressive stress=strain behavior of 1 cm cubes of
0.3 W/C alite paste, with and without 5% gypsum.
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Figure 6. Compressive stress-strain behavior of 1 cm cubes of
0.3 W/C alite paste from age 1 to 60 days, with and without 5%

gypsum,

and it is apparent that the paste continues to gain substantial
stiffness and strength for the first 28 days. In the correspon-
ding stress-strain curves shown in Figure 6(b) for the specimens
with 5% gypsum the early acceleration is readily apparent, but
at 28 days the difference is negligible. This early increase in
strength is illustrated in Figure 7. It is interesting to note

25 T [ S | T 1 T . T T 1T

1000 psi

ALITE + 5% GYPSUM

COMPRESSIVE STRENGTH ,

1 [ ;! [

: 0 AGE (hours) 190 —
Figure 7. The maximum compressive stress carried by the 1 cm
cubes of 0.3 W/C alite pastes, with and without 5% gypsum are

shown as a function of age.




that the strength of the 1 day old alite specimens with gypsum
is approximately the same as the 3 day old alite specimens with-
out gypsum, and similarly the 3 day old alite specimens with
gypsum are approximately the same as the T day old alite speci-
mens without gypsum. These same trends are apparent in the
microstructure. Representative micrographs of the fracture sur-
face of the alite with 5% gypsum are shown in Figure 8 for ages
of 1, 3, T, and 28 days. As indicated above, the 1 day specimen
shown in Figure 8(a) is very similar to the 3 day specimen with-
out gypsum shown in Figure L(a) with many grains fractured
through but the general granular texture still apparent. The
granular appearance is gone by 3 days age with gypsum as shown
in Figure 8(b). The 7 day old specimen with 5% gypsum appears
in Figure 8(c) to be just as solid as the 28 or 60 day specimens
without gypsum shown in Figure 4 (c, d) respectively.

(a)L___10u ] - (b)L .ilou |

(e)__10u 1 (d)___10u 1

Figure 8. Fracture surfaces of 0.3 W/C alite paste specimens
with 5% gypsum, (a) at 1 day, (b) at 3 days, (c) at 7 days,
(d) at 28 days.
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DISCUSSION

Professor Robert H. Bragg (September 16, 1971)

(1) Comment. Your proposal of "grain refinement" of the Ca(OH),
phase in cement pastes is the most refreshing idea I've heard in the
cement field in a long time.

(2) Question. How does your claim in an article in Science,
that Ca(OH), was a major strengthening phase, go with your present
statement that the reverse is true?

(3) Question. It seems to me that the addition of gypsum to
cement retarded the setting and strength development whereas your
strength vs alloying data (5% gypsum) indicates the opposite. Can
you explain this?

Answer

(1) In the oral presentation I made the proposal that "grain
refinement" of the portlandite might be a way to improve the strength
of mature cement pastes since I believe that the large portlandite
crystals are "flaws" in the system because they cleave so easily.
There are references in the literature to a finer portlandite crystal
size under certain conditions such as limestone aggregate rather than
silicious aggregate.

(2) In an earlier paper* I noted that portlandite acted to
transmit loads within the microstructure and that it was apparently
responsible for the strength of the cement paste. I believe this is
particularly true at early ages, and this is consistent with the
observation that the cleaved portlandite crystals do not begin to
appear on the fracture surfaces until later ages. As I indicated in
the previous answer, I believe that the portlandite crystals represent
flaws in mature pastes.

(3) The gypsum is usually added to portland cement to prevent
the hydration of C3A with the characteristic "flash set.'" In the case
reported above there was no C3A so that we could see the effect of
gypsum on alite.

*R. B. Williamson, Science 164 (1969) 5L9.
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