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Abstract 

Discrete emotions are known to elicit changes in decision-
making. Previous research has found that affect biases 
response times and the perception of evidence for choices, 
among other key factors of decision-making. However, little is 
known how affect influences the specific cognitive 
mechanisms that underlie decision-making. We investigated 
these mechanisms by fitting a hierarchical reinforcement-
learning decision diffusion model to participant choice data. 
Following the collection of baseline decision-making data, 
participants took part in a writing exercise to generate neutral 
or discrete emotions. Following the writing exercise, 
participants made additional decisions. We found that 
exposure to discrete emotions modulates decision-making 
through several mechanisms including rates of learning and 
evidence accumulation, separation of decision thresholds, and 
sensitivity to noise. Furthermore, we found that exposure to 
each of the four discrete emotions modulated decision-making 
differently. These findings integrate learning and decision 
process models to expand on previous research and elucidate 
processes of affective decision-making.   

Keywords: emotion; decision-making; reinforcement-
learning; drift diffusion 

Introduction 

Emotions can direct us to make decisions to approach or 

withdraw from other people or situations. For example, fear 

can narrow our attention to thinking about possible escapes 

or ways to avoid punishment, whereas desire can drive us 

toward objects of our appetitive urges. Considerable extant 

literature exists supporting the “affect-as-information” 

hypothesis, which suggests that affect itself can support a 

particular action (much like expected utility and cost; 

Greifeneder et al., 2010; Schwarz, 2011). Emotion can also 

influence the speed at which actions are taken, such as in the 

case where negative valence strengthens post-error slowing 

(Inzlicht et al., 2015). However, different discrete emotions 

can have greatly disparate effects. For example, anger, while 

a negative emotion, can lead to approach behaviors (Carver 

& Harmon-Jones, 2009). This highlights a critical gap in the 

literature, namely that the influence of different discrete 

emotions on specific cognitive mechanisms underlying 

decision-making remains unclear. 
Affect-as-information theory suggests that valence, 

intensity, and the weight of affect in evidence accumulation 

processes all contribute to decision-making (Hartley & 

Sokol-Hessner, 2018). It is possible that each of these 

dimensions are independently weighted in the decision-

making processes, giving rise to the observed behavioral 

effects of different discrete emotions. However, little work 

has been done to test this hypothesis. 
Rather, the variability in decision-making has traditionally 

been explained by the confluence of choice behavior, 

response time, and the integration of feedback by the 

decision-maker. The former two indices can be modeled as a 

process of evidence accumulation or drift (Ratcliff, 1978). 

Decision diffusion models (DDM) explain how choices and 

latencies arise from latent mechanisms of information 

processing, such as drift rate, response biases, and decision 

thresholds. The latter index can be modeled with 

reinforcement-learning (see O’Doherty et al., 2017), which 

typically formalize sequential decision-making as learning 

processes influenced by reward prediction errors and noise. 

Together, these two approaches to modeling decision-making 

can identify which latent processes are affected by specific 

discrete emotions. 
Indeed, some prior work suggests that certain discrete 

emotions modulate decision diffusion processes, such as 

emotions induced with fear-related words (Mueller & 

Kuchinke, 2016) and aversive images (Warren et al., 2020). 

That said, these pursuits are sparse in the literature and it is 

unclear how different discrete emotions comparatively 

influence these processes. Furthermore, to the best of our 

knowledge no study to date has incorporated reinforcement-

learning attributes with DDM to investigate their combined 

susceptibility to emotion. Considering these information 

gaps, we aimed to develop a hierarchical reinforcement-

learning DDM with applications for explaining decision-

making influenced by four incidental discrete emotions – 

happiness, sadness, anger, and desire – as compared to a 

neutral emotional state. We fit this model to data from the 

following experiment to explore relationships between 

specific discrete emotions, information processing, and 

learning. Inferences taken from this model are exploratory 

and reported for completeness and to inspire future modeling 

efforts. Replication is needed to validate the findings as 

reported. Future modeling work can consider these findings 

when defining prior expectations in emotion-related 

parameter weights. 

Method 

Participants 

Thirty-one individuals (15 women; mean age = 19.61, SD = 

1.02) participated in this experiment. Participants were 
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recruited from a private Midwestern university and received 

partial course credit for their participation. All participants  
provided written informed consent in accordance with the 

university’s institutional review board. 
 

 

 

 

Figure 1: Task and decision diffusion model. (A) The 2AFC 

task. Participants were presented with images of two doors 

representing different reward probability distributions, and 

were asked to maximize their reward. (B) The decision 

diffusion model. In this model, decisions are made by 

continuously accumulating noisy evidence until a threshold 

is reached. Participants respond according to whether the 

threshold was met for either the upper or lower bound. 

2AFC Task 

All participants completed a novel 2-alternative forced 

choice task (2AFC; Figure 1a.). At the start of each trial, 

participants were presented with a centered white “click” box 

and were instructed to move their mouse cursor to and click 

on this box. Afterwards, the cursor was re-centered and the 

box was replaced with images of two doors. Participants were 

instructed to move their cursor and click on either of these 

two doors with the goal of receiving a reward. Participants 

were also made aware that each door represented a 

probability distribution of reward; one had a 75% chance of 

success (the exploitation door) whereas the other had only a 

25% chance (the exploration door). Seven blocks of ten trials 

each were completed for a total of 70 trials. 

Discrete Emotion Manipulation 

The 2AFC task was completed in five between-subjects 

conditions differing in manipulated discrete emotion: 

Happiness, sadness, anger, desire, and neutral (control). After 

participants had completed the first five blocks, they were 

asked to reflect on and write about a real-life experience that 

made them feel the emotion congruent with their assigned 

condition. For example, a participant in the angry/sad/happy 

condition was asked to, “In detail, please write about the one 

situation that has made you the most angry/sad/happy you 

have been in your life, and describe it such that a person 

reading the description would become angry/sad/happy just 

from reading about the situation.” Participants in the desire 

condition were asked to, “In detail, please write about the one 

situation that you most desire right now, and describe it such 

that a person reading the description would have great desire 

just from reading about the situation. Examples might include 

acing a major test, kissing a person you’re attracted to, etc.”. 

Participants in the neutral condition were instead asked to 

write about their daily routine and “describe it such that a 

person reading the description would have a clear 

understanding of your daily routine”. After this manipulation, 

all participants continued with their remaining two blocks of 

the 2AFC task.  
Participants also completed a computerized Discrete 

Emotions Questionnaire (DEQ; Harmon-Jones et al., 2016) 

both immediately prior to and after experimentation. The 

DEQ was used to measure four distinct state emotions: 

Happiness, sadness, anger, and desire. DEQ state emotion 

scores were considered as manipulation checks for change in 

subjective emotional experience.  

Hierarchical Drift Diffusion Model 

2AFC task performance was modeled by fitting a hierarchical 

DDM to participant choice and response time data. The DDM 

formalizes evidence accumulation by calculating the 

likelihood of response time for choice x with the Wiener first-

passage time distribution: 

 

𝑅𝑇(𝑥) ~ 𝑊𝐹𝑃𝑇[𝛼, 𝜏, 𝑧, 𝛿] 
 

The DDM decomposes response time entirely into four 

parameters: boundary separation, non-decision time, initial 

bias z, and drift rate (Figure 1b). For this 2AFC task, it is 

assumed that participants noisily accumulate evidence at a 

drift rate for either door, and select a door once the evidence 

reaches its corresponding threshold. Thresholds are distanced 

by a boundary separation, with larger separations demanding 

the accrual of more evidence and reflecting an emphasis on 

accuracy over speed. Initial bias represents that starting point 

of the diffusion process, and non-decision time encompasses 

time spent on extraneous processes such as stimulus encoding 

and motor planning. We fit the model to participant data to 

estimate the joint probability of participant choices and 

response times from the values of these four parameters. 

 

Reinforcement-Learning Parameters To account for the 

influence of learning on this task, we modified the DDM to 

update trial-by-trial expected values of reward using a delta 

learning rule (Rescorla & Wagner, 1972). Each door was 

associated with an expected value, calculated as the product 

of its previous value plus the product of learning-rate 𝜂 and a 

reward-prediction error: 
 

𝑄𝑜,𝑖 = 𝑄𝑜,𝑖−1 + η(𝑅𝑒𝑤𝑎𝑟𝑑𝑜,𝑖−1 − 𝑄𝑜,𝑖−1) 
 

A 

B 

𝜷 

“Left Door” RT Distribution 

“Right Door” RT Distribution 

𝜶 

𝜹 

𝝉 
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Additionally, the choice rule for selecting reinforced options 

was formalized as a softmax logistic function (Luce, 1959), 

where the sensitivity 𝛽 scales the probability of choosing 

option 𝑜 as a function of how much larger its expected value 

is compared to other options 𝑛: 

 

𝑝𝑜,𝑖 =
𝑒(𝛽𝑥𝑄𝑜,𝑖)

∑ 𝑒(𝛽𝑥𝑄𝑗,𝑖)𝑛
𝑗=1

 

 

Change in sensitivity is associated with the exploration-

exploitation dilemma (Daw et al., 2006). As 𝛽 → ∞, choice 

becomes deterministic or exploitative. 𝛽=0 is purely 

stochastic or explorative. Together, these two processes 

capture learning in the model and introduce two additional 

free parameters. 
To combine these reinforcement-learning and DDM 

processes, we further decomposed the drift rate parameter of 

the DDM to be the scaled difference between the expected 

value of reinforced options (Frank et al., 2015): 
 

𝛿𝑖, 𝑡 =  𝑣𝑖(𝐸𝑉𝑈 − 𝐸𝑉𝐿) 

 

Where i, t is the drift rate for participant i at trial t, and v 

is a free parameter describing the rate at which the chooser 

accumulates evidence for the expected value difference 

between the upper and lower bounds. 

 

Model Specifications To account for individual differences 

in parameter estimates, the model was fit to individual 

participants’ data using hierarchical Bayesian analysis and 

were partially pooled such that subject-level parameters were 

drawn from common normal group distributions. Posteriors 

were inferred with the Hamiltonian Monte Carlo No-U-Turn 

sampler, which is a specific Markov Chain Monte Carlo 

sampler available in the Stan probabilistic programming 

language (Carpenter et al., 2017). We collected 60,000 

samples for each parameter across 6 chains run in parallel. 

The first 30,000 samples of each chain were discarded as 

warm-up. Chain convergence was diagnosed with traceplots 

and the Gelman-Rubin convergence diagnostic (Gelman & 

Rubin, 1992).  
Priors for the group-level normal means and standard 

deviations were weakly informative and set to standard 

normal (normal (0, 1)) and half-Cauchy (half-Cauchy (0, 5)), 

respectively. We re-parameterized the model to be non-

centered (“Matt trick”) to optimize sampling and reduce 

autocorrelation between group-level parameters (Betancourt 

& Girolami, 2013). 
Parameters were permitted to either vary freely between 

experimental conditions or be fixed across conditions 

(Vandekerckhove & Tuerlinckx, 2007). We fixed initial bias 

to a non-biased value of 0.5 and assumed that non-decision 

time would not vary with emotional state. As such, we 

considered differences in the posterior distributions of four 

free parameters (boundary separation, drift rate, learning rate, 

and sensitivity) across four condition contrasts (Happy-

Neutral, Sad-Neutral, Angry-Neutral, and Desire-Neutral). 

Data preparation scripts and model code are available at 

https://github.com/kjlafoll/emotionddm. 

Equivalence Testing 

After successful parameter estimation, we used Bayesian 

equivalence testing to determine whether a null value was 

among the credible values of the posterior distribution 

differences for the four contrasts. This is analogous to 

frequentist equivalence testing, but with highest density 

intervals instead of confidence intervals. For each parameter 

delta (difference in estimates between conditions) we 

established the 95% highest density interval (HDI) 

representing the 95% most credible difference values. We 

further established a region of practical equivalence (ROPE) 

around the null difference value, specified as half of Cohen’s 

conventional small effect size (Cohen, 1988), the range of -

0.1 to 0.1, scaled by the standard deviation of the dependent 

observation variable, as suggested by Kruschke (2018). 

Using a HDI+ROPE decision rule, we accepted that a 

parameter difference was equivalent to null if the 95% HDI 

fell completely inside the ROPE, and we rejected equivalence 

to the null if it fell completely outside the ROPE. All other 

cases where the 95% HDI was partially within the ROPE 

were considered weakly informative and left to 

interpretation. 

Results 

DEQ Manipulation Checks. A one-way ANOVA for DEQ 

happiness change scores revealed a significant change in self-

reported happiness; F(4, 26) = 3.13, p = 0.03; Happy M = 2, 

Sad M = -0.625, Angry M = -2.6, Desire M = -0.37, Neutral 

M = 0. A one-way ANOVA for DEQ anger change scores 

also revealed a significant change in self-reported anger; F(4, 

26) = 6.07, p < 0.001; Happy M = -3.33, Sad M = 0.125, 

Angry M = 3.2, Desire M = 1.125, Neutral M = -0.428. These 

results suggest that our task was successful in manipulating 

conscious subjective experiences of happiness and anger. 
One-way ANOVAs for DEQ sadness and desire change 

scores failed to yield significant differences in sadness nor 

desire. DEQ sadness was not found to significantly change 

post manipulation; F(4, 26) = 2.02, p = 0.12, nor did DEQ 

desire post-manipulation; F(4, 26) = 1.45, p = 0.24. These 

results suggest that our task was not successful at 

manipulating conscious subjective experience of sadness nor 

desire. 
 

Boundary Separation We found strong evidence supporting 

a negative effect of the happiness condition on boundary 

separation, such that the difference between the Happy and 

Neutral estimates had a probability greater than 99.9% of 

being negative (Mean = -0.11, 95% HDI [-0.220, 0.017]; 

Figure 2). This suggests that the happiness condition reduced 

the amount of evidence necessary to reach a decision 

threshold, and that happy individuals placed a greater 

emphasis on speed over accuracy.  
We also found strong evidence for positive effects of the 

sadness, anger, and desire conditions on boundary separation. 

488



The difference between the Sad and Neutral estimates had a 

probability greater than 99.9% of being positive (Mean = 

0.043, 95% HDI [0.035, 0.053]), as was the difference 

between the Angry and Neutral estimates (Mean = 0.16, 95% 

HDI [0.150, 0.170]) and the difference between the Desire 

and Neutral estimates (Mean = 0.059, 95% HDI [0.049, 

0.070]). This suggests that sadness, anger and desire 

conditions all increase the amount of evidence necessary to 

reach a decision threshold, shifting the emphasis on accuracy 

over speed.  

 
Figure 2: Posterior predictive density plots for effects of 

condition on boundary separation. Black bar is the 95% 

highest density interval, indicating the 95% most credible 

values for the mean difference between conditions. Green bar 

is the region of practical equivalence.   

 

 
 

Figure 3: Posterior predictive density plots for effects of 

condition on the drift rate scaler v. 

 

Drift Rate We found strong evidence supporting negative 

effects of the happiness and anger conditions on drift rate. 

The difference between the Happy and Neutral estimates had 

a probability greater than 99.9% of being negative (Mean = -

0.13, 95% HDI [-0.180, -0.061]; Figure 3), as did the 

difference between the Angry and Neutral estimates (Mean = 

-0.091, 95% HDI [-0.150, -0.041]). This suggests that 

happiness and anger conditions both slow the rate of evidence 

accumulation. 

We also found strong evidence for positive effects of the 

sadness and desire conditions on drift rate. The difference 

between the Sad and Neutral estimates had a probability of 

99.6% of being positive (Mean = 0.06, 95% HDI [0.015, 

0.110]). The difference between the Desire and Neutral 

estimates had a probability greater than 99.9% of being 

positive (Mean = 0.17, 95% HDI [0.120, 0.220]). This 

suggests that sadness and desire conditions both quicken the 

rate of evidence accumulation. 

 

Learning Rate We found weak evidence for positive effects 

of the sadness and desire conditions on learning rate. The 

difference between the Sad and Neutral estimates had a 

probability of 96.6% of being positive (Mean = 0.018, 95% 

HDI [-0.001, 0.036]; Figure 4). The difference between the 

Desire and Neutral estimates had a probability of 75% of 

being positive (Mean = 0.0065, 95% HDI [-0.012, 0.024]). 

The HDI partially fell within the ROPE for both of these 

difference estimates (ROPE [-0.013, 0.013]). While these 

results neither support effects of condition nor equivalence, 

should they continue in the positive direction, it would 

suggest that sadness and desire both increase the weight of 

prediction errors in expected value updating. This suggests 

that sadness and desire conditions quicken learning but also 

increase susceptibility to larger post-error swings. 
We also found weak evidence for equivalence between the 

happiness, anger and neutral conditions with respect to 

learning rate. The difference between the Happy and Neutral 

estimates had a probability of 58.7% of being negative (Mean 

= -0.003, 95% HDI [-0.031, 0.022]) and the difference 

between the Angry and Neutral estimates had a probability of 

55.2% of being positive (Mean = 0.002, 95% HDI [-0.017, 

0.021]). While the HDI only partially fell within the ROPE 

for both of these estimates, the probabilities of direction were 

near chance level, suggesting happiness and anger conditions 

had no effect on learning rate. 
 

Sensitivity We found strong evidence supporting positive 

effects of the sadness and desire conditions on sensitivity. 

The difference between the Sad and Neutral estimates had a 

probability greater than 99.9% of being positive (Mean = 

0.63, 95% HDI [0.260, 0.980]; Figure 5) as did the difference 

between the Desire and Neutral estimates (Mean = 0.77, 95% 

HDI [0.420, 1.100]). This suggests that sadness and desire 

conditions both increase how deterministic or exploitative 

individuals are in their decision-making.  
We also found weak evidence for a negative effect of the 

happiness condition on sensitivity. The difference between 

the Happy and Neutral estimates had a probability of 95.7% 

of being negative (Mean = -0.38, 95% HDI [-0.760, 0.026]). 

Although the HDI did partially fall within the ROPE, this 

does suggest that the happiness condition served to increase 

95% HDI 

95% HDI 95% HDI 

95% HDI 95% HDI 

95% HDI 95% HDI 

Sad vs. Neutral 

Desire vs. Neutral 

Happy vs. Neutral 

Angry vs. Neutral 

Sad vs. Neutral 

Desire vs. Neutral 

95% HDI 

Happy vs. Neutral 

Angry vs. Neutral 
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stochasticity or exploration in decision-making (ROPE [-

0.027, 0.027]). 
Lastly, we found weak evidence for equivalence between 

the anger and neutral conditions with respect to sensitivity. 

The difference between the Angry and Neutral estimates had 

a probability of 69% of being negative (Mean = -0.094, 95% 

HDI [-0.460, 0.300]), indicating that while the HDI only 

partially fell within the ROPE, the probability of direction 

was near chance level. This suggests that the anger condition 

had no effect on sensitivity.  

 
Figure 4: Posterior predictive density plots for effects of 

condition on learning rate. 

 

 
Figure 5: Posterior predictive density plots for effects of 

condition on sensitivity. 

 

Discussion 

To the best of our knowledge, this is the first analysis of 

reinforcement-learning and decision diffusion processes in 

the context of manipulated discrete emotion. This analysis 

demonstrates the utility of computational models in studying 

the influence of affect on decision-making. 

With respect to the efficacy of our manipulation, we were 

successful in increasing self-reported happiness and anger in 

the Happy and Anger conditions, respectively. We were not 

successful in manipulating self-reported sadness and desire. 

When interpreting these results, it is important to remember 

that the intent of this work is to present a novel reinforcement 

learning DDM with applications for studying affective 

decision-making, and that therefore all parameter inference is 

de facto exploratory. We report these results for completeness 

and to guide future replication efforts to ensure that these 

effects are robust. Future research may consider why these 

effects are observed if not for differences in subjective 

emotional experience. For example, although our 

manipulation of sadness was not sustained, participants may 

have associated the explicitly recalled memory with implicit 

mood-congruent memories, biasing behavior while 

remaining unaware of unconscious emotions. 

In the Happy-Neutral contrast we discovered that people in 

the Happy condition had a greater emphasis on speed over 

accuracy, a slower rate of evidence accumulation, and a 

greater propensity to explore. Each of these findings are in 

accordance with what theory would predict with the 

exception of the reduced drift rate. Contrary to our findings, 

Mueller and Kuchinke (2016) discovered that decisions 

related to words with happy connotations had greater drift 

rate than those related to neutral and fear-related words. 

According to Personality Systems Interaction theory (PSI; 

Kuhl, 2000), we should instead expect that negative affective 

states diminish the attentional resources that are needed for 

evidence accumulation, which in fact is supported by 

empirical work (Smallwood et al., 2009). One possible 

explanation for our observed smaller drift rate is that discrete 

emotions on our task were incidental rather than integral. 

Feelings-as-information theory would suggest that incidental 

emotions might not influence unrelated target decisions 

(Schwarz, 2011). Rather, target non-specific mood processes 

may better explain the difference in observed drift rates. 

Future studies should further investigate the role of incidental 

emotion on drift rate. 
In the Sad-Neutral contrast we discovered that people in 

the Sad condition had a greater emphasis on accuracy over 

speed, faster rates of evidence accumulation, faster learning 

rates and a greater propensity to exploit. Both the emphasis 

on accuracy and tendency to exploit could be consequences 

of efforts to reduce current negative affect and maximize 

utility (e.g., Tice et al., 2001). Interestingly, sadness was the 

only discrete emotion associated with a greater learning rate, 

suggesting that sadness was aversive to such an extent that 

learning was accelerated at the expense of greater instability 

when faced with unexpected outcomes. A possible 

explanation for this is that sadness disproportionally weights 

positive and negative feedback. Indeed, differences in 

feedback valence have been related to differences in learning 

rate (Gershman, 2015) and affect has been found to 

differentially influence the perception of these outcomes 

(Eldar & Niv, 2015). To better understand the independent 

influences of positive and negative feedback on learning, 

95% HDI 95% HDI 

95% HDI 95% HDI 

95% HDI 

95% HDI 95% HDI 

95% HDI 

Happy vs. Neutral 

Angry vs. Neutral 

Sad vs. Neutral 

Happy vs. Neutral 

Angry vs. Neutral 

Sad vs. Neutral 

Desire vs. Neutral 

Desire vs. Neutral 
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future studies can incorporate separate learning rates for 

positive and negative prediction errors. This has been 

accomplished in previous reinforcement-learning DDMs 

(e.g., Pedersen et al., 2017), but outside the context of 

discrete emotion where it could be especially important. 
In the Angry-Neutral contrast we discovered that people in 

the Angry condition had a greater emphasis on accuracy over 

speed and slower rates of evidence accumulation. Curiously, 

this combines the drive for accuracy that we associated with 

sadness with the impairment to evidence accumulation that 

we associated with happiness. With both far-reaching 

thresholds and slowed diffusion, anger particularly 

debilitates response time. It is possible that anger becomes 

less debilitating as separation narrows, but our model cannot 

evaluate this as we did not incorporate dynamic decision 

thresholds. Fontanesi and colleagues (2019) accomplished 

this by formalizing boundary separation as the natural 

exponential of the sum of a fixed separation 𝜂i and the 

average expected value of a decision scaled by a threshold 

modulation parameter 𝜂c: 

 

η𝑖, 𝑡 =  exp (η𝑖𝑖 + η𝑐𝑖 (
𝐸𝑉𝑈 + 𝐸𝑉𝐿

2
)) 

 

In the Desire-Neutral contrast we discovered that people in 

the Desire condition had a greater emphasis on accuracy over 

speed, faster rates of evidence accumulation, and a greater 

propensity to exploit. All three of these observations are in 

accordance with what theory would expect of a positively 

valenced, high intensity emotion such as desire. Furthermore, 

these findings support the notion that desire motivates a sense 

of urgency to approach, resulting in highly focused attention 

(Gable & Harmon-Jones, 2010). 
While the current analysis demonstrates the utility of 

computational models at the junction of studying discrete 

emotion and decision-making, our model is not without 

limitations. Notably, our model did not incorporate effects of 

discrete emotion at the algorithmic level. Rather, we 

calculated differences in parameter estimates between 

conditions by comparing the condition-specific posterior 

predictive densities. In place of this rather binary approach to 

appraising the weight of discrete emotion, future studies 

should consider more directed concept-to-parameter 

mapping. For example, the weighted integration model of 

evidence accumulation posits that emotions varying in 

valence and intensity can be differentially weighted in 

evidence accumulation (Hartley & Sokol-Hessner, 2018). 

Specifying such weights directly within a model could 

provide a more precise measure of emotion’s influence of 

specific decision-making processes. 
Our findings are generally consistent with theories of 

emotion regulation and integration, with some exceptions. 

Unfortunately, little empirical work exists at the junction of 

computational modeling and discrete emotions theory to 

better interpret these exceptions. As a first step, this analysis 

provides some empirical clarity at this junction and 

demonstrates the advantages of modeling discrete emotion at 

the process-level. Furthermore, our findings motivate 

interesting theoretical questions about dimension-specific 

effects of emotion on processes of evidence accumulation 

and encourage future work to consider the advantages of 

sophisticated modeling for addressing those questions. 
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