
UC Irvine
ICS Technical Reports

Title
GPERF : a perfect hash function generator

Permalink
https://escholarship.org/uc/item/9f06z999

Authors
Schmidt, Douglas C.
Suda, Tatsuya

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9f06z999
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

GPERF

A Perfect Hash Function Generator

Technical Report 92-47

Douglas C . .§chmid£._and Tatsuya Suda
schmidt@ics.uci.edu and suda@ics.uci.edu

Department of Information and Computer Science,
University of California, Irvine,

Irvine, CA 92717, U.S.A.
(714) 856-4105 (phone)
(714) 856-4056 (jax) 1

z
6f9
123
no, -if?

e_,, 1J

1This material is based upon work supported by the National Science Foundation under Grant No. NCR-8907909.
This research is also in part supported by University of California :MICRO program.

Abstract

gperf is a widely available perfect hash function generator written in C++. It automates a common system
software operation: keyword recognition. gperf translates an n element user-specified keyword list keyfile
into source code containing a k element lookup table and a pair of functions, phash and in_word_set.
phash uniquely maps keywords in keyfile onto the range O .. k - 1, where k 2: n. If k = n, then phash is
considered a minimal perfect hash function. in_word_set uses phash to determine whether a particular
string of characters str occurs in the keyfile, using at most one string comparison.

This paper describes the user-interface, options, features, algorithm design and implementation strategies
incorporated in gperf. It also presents the results from an empirical comparison between gperf-generated
recognizers and other popular techniques for reserved word lookup.

1 Introduction

Perfect hash functions are a time and space efficient implementation for static search sets, e.g., compiler re­
served words. Many articles describe perfect hashing[1, 2, 3, 4, 5] and minimal perfect hashing algorithms. [6,
7, 8, 9, 10, 11] However, few articles describe the design and implementation of a general-purpose perfect
hashing generator tool in detail.[12] gperf is one such utility, it constructs perfect hash functions from a user­
supplied keyword list.

gperf is intended as a practical "software-tool generating-tool," in the spirit of the UNIX utilities lex[l3]
and yacc.[14] The goal of gperf is to completely automate the perfect hash function generation process.
gperf was originally developed to automate keyword recognizer construction for the GNU C and GNU C++
compilers. It removes the drudgery associated with constructing time and space efficient keyword recognizers
by hand.

gperf is designed to run quickly for keyword sets up to approximately 1,000 keys. In addition, internal
data structure and algorithms described below enable gperf to operate on keyword sets containing over 15 ,000
keywords. gperf generates efficient ANSI and K&R C, C++, or Ada source code as output.

gperf was inspired by Keith Bostic's utility "perfect" distributed to net. sources in 1984. C++ source
code for gperf is available via anonymous ftp from ics.uci.edu (128.195 .1.1) and is also distributed along with
the GNU libg++ library. The distribution includes keyfiles for Ada, C, Pascal, C++, Modula 2, and Modula 3
reserved keywords. Finally, a highly portable, functionally equivalent K&R C version of gperf is archived in
volume 20 of comp.sources.unix.

gperf's output is used as the reserved keyword recognizer in lexical analyzers for several production and
research compilers and language processing tools, including GNU C, GNU C++, GNU Pascal, GNU Modula
3, and GNU indent.[15, 16] In addition to the GNU compilers, other known gperf applications include:

• a hash function for 15 ,400 "Medical Subject Headings" used to index journal article citations in MED­
LINE, a large bibliographic database of the biomedical literature maintained by the National Library
of Medicine. Generating this hash function takes approximately 16 minutes of CPU time on a 16 MHz
Sun4/260.

• the GNU indent C code reformatting program, where the inclusion of perfect hashing sped up the
program by an average of 10 percent.

• hash functions for assembly mnemonics in the 80x86, 680x0, Z8000, and MIPS RISC instruction sets.

• a public domain program converting double precision FORTRAN source code to/from single precision
uses gperf to modify subroutine names that depend on the types of their arguments, e.g., replacing
sgefa with dgefa in the UNPACK benchmark. Each name corresponding to a subroutine is recog­
nized via gperf and substituted with the version for the appropriate precision.

• a speech synthesizer system, where there is a cache between the synthesizer and a larger, disk-based
dictionary. A word is hashed using gperf, and if the word is already in the cache it is not looked up in
the dictionary.

The remainder of the paper is organized as follows: Section 2 describes various search structure imple­
mentations and compares them against gperf-generated hash tables; Section 3 presents a sample input keyfile;
Section 4 discusses various design and implementation issues; and Section 5 shows the results from empirical
benchmarks between gperf-generated recognizers and other popular techniques for reserved word lookup.

2 Static Sear.ch Structure Implementations

gperf generates source code that implements a static search structure. A static search structure is an ab­
stract data type with certain fundamental operations, such as initialize, insert, and retrieve. It is a useful

1

data structure for representing static search sets.[1] Static search sets are common in system software appli­
cations. Typical static search sets include compiler reserved words, assembler instruction mnemonics, and
built-in shell interpreter commands. Search set elements are called keywords. Keywords are inserted into the
structure once, usually at compile-time.

Numerous static search structure implementations exist, e.g., sorted and unsorted arrays and linked lists,
AVL trees, optimal binary search trees, digital search tries, deterministic finite-state automata, and various
hash table schemes, such as open addressing and bucket chaining.(17) Different approaches offer trade-offs
between memory utilization and search time efficiency. For example, an n element sorted array is space
efficient, though the average- and worst-case time complexity for retrieval operations using binary search on
a sorted array is proportional to 0 (log n). [17] Conversely, chained hash table implementations locate a table
entry in constant, i.e., 0 (1), time on the average. However, they typically impose additional memory overhead
for link pointers and/or unused hash table buckets and also exhibit 0(n2) worst-case performance.[17)

A minimal perfect hash function is a static search structure implementation defined by two properties:
1. Perfect Property: locating a table entry requires 0(1) time, i.e., at most one string comparison is

required to perform keyword recognition within the static search set.

2. Minimal Property: the memory allocated to store the keywords is precisely large enough for the key­
word set and no larger.

Minimal perfect hash functions provide a theoretically optimal time and space efficient solution for static
search sets.[17] However, several variations are also useful for many practical hashing applications, especially
ones involving hundreds or thousands of keywords:

• Non-Minimal Perfect Hash Functions: These functions do not possess the minimal property, since
they return a range of hash values larger than the total number of keywords in the table. However, they
do possess the perfect property, since at most one string comparison is required to determine if a string
is in the table. There are two main reasons to generate non-minimal hash functions:

1. Generating non-minimal perfect functions can be substantially faster than generating minimal per­
fect hash functions.[8, 2)

2. Non-minimal perfect hash functions can also execute faster than minimal ones when searching for
elements that are not in the table. This situation often occurs when recognizing reserved words in
program source code.[6, 18)

• Near-Perfect Hash Functions: Near-perfect hash functions do not possess the perfect property, since
they allow non-unique keyword hash values[2] (they may or may not possess the minimal property,
however). This technique is a compromise that trades increased generated-code-execution-time for
decreased function-generation-time. Near-perfect hash functions are useful when main memory is at a
premium, since they tend to produce much smaller lookup tables.

gperf has command-line options that instruct it generate minimal. perfect, non-minimal perfect, and near­
perfect hash functions.

3 Interacting with gperf

gperf reads a keyword list and optional associated attributes from a keyfile or from the standard input.
Keywords are specified as arbitrary character strings delimited by a user-specified field separator defaulting
to ' , ' (i.e., keywords can contain spaces and any other ASCII characters). Associated attributes can be any
C literals. For example, keywords in Figure 1 represent months of the year. Associated attributes in this
figure include the number of leap year and non-leap year days in each month, as well as the months' ordinal
numbers, i.e., january = 1, february = 2, ... , december = 12.

gperf's input format is structurally similar to the UNIX utilities lex and yacc, and uses the following
format:

2

%{
#include <stdio.h>
#include <string.h>
/* Command-line options: -C -p -a -n -t -o -j 1 -k 2,3 -N is_month */
%}
struct months char *name; int number; int days; int leap_days; };
%%
january,
february,
march,
april,
may,
june,
july,
august,
september,
october,
november,
december,
%%
#ifdef DEBUG
int main () {

1,
2,
3,
4,
5,
6,
7,
8,
9,

10,
11,
12,

char buf[80];
while (gets (buf))

31, 31
28, 29
31, 31
30, 30
31, 31
30, 30
31, 31
31, 31
30, 30
31, 31
30, 30
31, 31

struct months *p is month (buf, strlen (buf));
printf ("%s is%s a month\n", p ? p->name : buf, p ? ""

}
#endif

" not");

Figure 1: An Example Keyfile for Months of the Year

declarations and text inclusions
%%
keywords and optional attributes
%%
auxiliary functions

A pair of consecutive % symbols in the first column separate declarations from the list of keywords and
their optional attributes. C, C++, or Ada source code and comments are included verbatim into the generated
output file by enclosing the text inside % { % } delimiters (which are stripped off when the output file is
generated), e.g.:
%{
#include <stdio.h>
#include <string.h>
/* Command-line options: -C -p -a -n -t -o -j 1 -k 2,3 -N is_month */
%}

An optional user-supplied st ru ct declaration can be placed at the end of the declaration section, just
before the % % separator. This feature enables typed attribute initialization. In Figure 1, for example, st ru ct
months is defined to have four fields that correspond to the initializer values given for the month names and
their respective associated values, e.g.:
struct months { char *name; int number; int days; int leap days; };
%% -

Lines containing keywords and associated attributes appear in the "keywords and optional attributes"
section of the keyfile. The first field of each line always contains the keyword itself, left-justified against the
first column and without surrounding quotation marks. Any additional attribute fields follow the keyword.
Attributes are separated from the keyword and from each other by field separators, and they continue up to
the end-of-line marker (which is '\n' by default). The attribute field values are used to initialize components
of the user-supplied st ru ct appearing at the end of the declaration section, e.g.:

3

january,
february,
march,

1,
2,
3,

31,
28,
31,

31
29
31

As with lex and yacc, it is legal to omit the initial declaration section entirely. In this case, the keyfile
begins with the first non-comment line (lines beginning with a '#' character are treated as comments and
ignored). This format style is useful for building keyword set recognizers that do not possess any associated
attributes. For example, a perfect hash function for "frequently occurring English words" can efficiently filter
out uninformative words such as "the," "as," and "this," etc. from consideration in a "key-word-in-context"
indexing application. (17]

Again, as with lex and yacc, all text in the optional third "auxiliary functions" section is included verbatim
into the generated output file, starting immediately after the final % % and extending to the end of the keyfile.
Naturally, it is the user's responsibility to ensure that the inserted code is valid C, C++, or Ada. In Figure 1
example, this "auxiliary" code provides a test driver that is conditionally compiled if the DEBUG symbol is
enabled when compiling the generated C or C++ code.

4 Design and Implementation Issues

gperf is written in approximately 4,500 lines of C++ source code. [19, 20] C++ was chosen as the implementa­
tion language because it supports data abstraction and information hiding better than C, while still maintaining
C's efficiency and expressiveness.[21] The following section explains gperf's internal data structures, outlines
its perfect hash function generation algorithm, examines its generated source code output, describes several
reusable class components, and discusses the program's current limitations.

4.1 Internal Data Structures

gperf's implementation involves two important internal data structures: keyword signatures and the associ­
ated values array.

4.1.1 Keyword Signatures

Every user-specified keyword and its attributes are read from the keyfile and stored on a linked list node. gperf
only considers a subset of each keywords' characters while searching for a perfect hash function solution. The
subset is called the "keyword signature," or keysig; it contains the particular subset of characters used by the
automatically generated recognition function to compute a keyword's hash value. Keysig's are also created
and cached in each linked list node when the keyfile is initially processed.

Users can control the generated hash function's contents by explicitly specifying the keyword index posi­
tions to use as keysig elements. Choosing different key positions is easily expressed in gperf's command-line
syntax using the '-k' option. The default is '-k 1, $',where the'$' represents the keyword's final
character. However, a keysig is actually a multiset or bag, as it may contain multiple occurrences of certain
characters. This approach differs from other perfect hash function methods, where only the keyword's first
and last characters, plus its length, are examined when computing the hash value.[6]

The generated hash function properly handles keywords shorter than a specified index position by skipping
characters that exceed the keyword's length. Users can also instruct gperf to include all of a keyword's
characters in its keysig via the ' - k * ' option. Table 1 shows the keywords, keysigs, and hash value for each
month shown in the Figure 1 keyfile.

4

Keyword Keysig Hash Value
january an 3
february be 9
march ar 4
april pr 2
may ay 8
june nu 1
july lu 6
august gu 7
september ep 0
october ct 10
november ov 11
december ce 5

Table 1: Keywords, Keysigs, and Hash Values for the Months Example

4.1.2 Associated Values Array

The associated values array is a data structure closely related to keysigs; it is indexed by keysig characters.
The array is constructed internally by gperf, referenced frequently during gperf's execution, and later out­
put in the generated hash function as a static local array. This array is declared as "unsigned int
as so_ values [MNCASCI LSIZE] ." When searching for a perfect hash function solution, gperf repeat­
edly reassigns different values to certain ass o _values elements specified by keysig entries. At every step
during the search for the perfect hash function solution, the asso_values array's contents represent the
current associated values' configuration.

By default, gperf searches for an associated values configuration that maps all n keysigs onto non­
duplicated hash values. A perfect hash function is produced when gperf finds a configuration that assigns
each keysig to a unique location within the generated lookup table. The resulting perfect hash function re­
turns an unsigned int value in the range O .. (k - 1), where k =(maximum keyword hash value+ 1).
When k = n a minimal perfect hash function is produced; fork larger than n, the lookup table's load factor.
is .!!:. (number of keywords)

k total table size •
A keyword's hash value is computed by combining the associated values of its keysig with its length (the

'-n' option instructs gperf not include the length of the keyword when computing the hash function). By
default, the hash function adds the associated value of a keyword's first index position plus the associated
value of its last index position to its length, i.e.:

hash value= asso values[keyword[O]]
- + asso.=values[keyword[length - 1]] +length;

Other combinations are often necessary in practice.[22] For example, using this default scheme for C++ causes
a collision between the delete and double reserved words. Resolving this collision and generating a
perfect hash function for C++ reserved words requires adding an additional character to the keysig via the
'-k' option with parameters '1, 2, $',i.e.:

hash value asso values[keyword[O]] + asso values[keyword[l]]
+ asso.=values[keyword[length - l]J +length;

5

4.2 Perfect Hash Function Generation

gperf's three main phases for generating a perfect or near-perfect hash function are:
1. Process command-line options, read keywords and attributes (the input format is described in Section 3),

and initialize internal data structures (described in Section 4.1).

2. Perform a non-backtracking, heuristically guided search for a perfect hash function (described in Sec­
tion 4.2.1 and Section 4.2.2 below).

3. Generate formatted C, C++, or Ada code according to the command-line options (output format is
described in Section 4.3 below).

These next subsections gives a detailed description of gperf's non-backtracking search algorithm used in the
second phase mentioned above.

4.2.1 Main Algorithm

gperf iterates sequentially through the list of i keywords (1 s; i s; n), where n equals the total number of
keywords. During each iteration gperf attempts to extend the set of uniquely mapped keywords by 1. It
succeeds if the hash value computed for keyword i does not collide with the previous i - 1 uniquely hashed
keywords, i.e.:

Algorithm 1
for i f- 1 to n loop

if phash (ith key) collides with any phash (1st key ... (i - 1)st key) then
modify disjoint union of associated values to resolve collisions
based upon certain collision resolution heuristics

end if
end loop

The algorithm terminates and generates a perfect hash function when i = n and no unresolved hash collisions
remain. The best-case asymptotic time-complexity for this algorithm is linear in the number of keywords,
i.e., (n).

4.2.2 Collision Resolution Strategies

Disjoint Union As outlined in Algorithm 1 above, gperf attempts to resolve keyword hash collisions by
modifying certain associated values. To avoid performing unnecessary work, gperf is selective when chang­
ing associated values. It only considers characters comprising the disjoint union of the colliding keywords'
keysigs. The disjoint union of two keysigs {A} and { B} is defined as {AU B} - {A n B}. Note that no
other associated values can possibly resolve the collision at this point.

For instance, the keywords january and march have the keysigs 'an' and 'ar', respectively (see
Table 1). A collision occurs during gperf's execution when as so_ values ['a' J, as so_ values [' n' J,
and as so_ values [' r'] all equal 0 (note that since the '-n' option is used, the different keyword lengths
are not considered in the resulting hash function). When gperf resolves this collision it only considers chang­
ing the associated values for ' n' and/or ' r' . Changing ' a' by any increment will not resolve the collision,
since ' a' occurs the same number of times in each keysig.

By default, all asso_values are initialized to 0, and when a collision is detected gperf increments the
selected associated value by 5. The command-line option ' - j ' can be used to increment by a random amount
or by any fixed amount. In the months example, the ' - j 1' option was used, so gperf quickly resolves the
collision between january and march by incrementing as so_ value [' n' J by 1 (which also turns out
to be its final value, as shown in Table 1).

6

Keysig Associated Frequency of
Characters Values Occurrence

'a' 2 3
'b' 9 1
'c' 5 2
'e' 0 3
'g' 7 1
'l' 6 1
'n' 1 2
'o' 1 1
'p' 0 2
'r' 2 2
't' 5 1
'u' 0 3
'v' 0 1
'y' 6 1

Table 2: Associated Values and Occurrences for Keysig Characters

Heuristics As a heuristic, characters in the disjoint union are sorted by increasing frequency of occurrence,
so that less frequently used characters are changed before more frequently used characters. The assumption
here is that changing less frequently used characters first decreases the negative impact on keywords that are
already uniquely hashed with respect to each other. Table 2 shows the associated values and frequency of
occurrences for all the keysig characters in the months example.

A perfect hash function is achieved if the systematic changes to the associated values configuration de­
scribed in the previous paragraph eliminate all keyword collisions upon reaching the end of the keyword list.
The worst-case asymptotic time-complexity for this algorithm is 0(n 3 l), where l is the number of characters
in the largest disjoint union between colliding keyword keysigs. After experimenting with gperf on many
keyfiles it appears that such worst-case behavior occurs rarely in practice.

Many perfect hash function generation algorithms are sensitive to the order that keywords are considered.[8,
2] If the '-o' command-line option is enabled, gperf mitigates this effect by optionally reordering the key­
words before invoking the main algorithm. This reordering is done in a two stage pre-pass that applies two
common heuristics described by Cichelli.[18] First, the keyword list is sorted by decreasing frequency of
keysig characters' occurrence. The second reordering pass then places keys with "already determined keysig
values" earlier in the keylist.

These two heuristics potentially prune the search space by handling inevitable collisions early in the gen­
eration process. If gperf can resolve these collisions quickly by changing the appropriate associated values it
will run faster on many keyword sets and often decrease the perfect hash function range. On the other hand, if
the number of keywords is large and the user wishes to generate a near-perfect hash function, this reordering
sometimes increases gperf's execution time, since collisions begin earlier and frequently persist throughout
the remainder of keyword processing. Additional details and rationalizations for these reordering heuristics
are discussed by Cichelli and Brain.[18, 2]

7

static unsigned int phash (const char *str, int len) {
static con st unsigned char as so values [l = {

12,
12,
12,
12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 2, 9, 5,
12, 0, 12, 7, 12, 12, 12, 12, 6, 12, 1, 11, 0, 12, 2, 12, 5, O, O, 12,
12, 6, 12, 12, 12, 12, 12, 12,

} ;
return asso_values[str[2]] + asso _values[str[l]J;

Figure 2: The phash Function

4.3 Output Format

Figure 8 depicts the C++ code produced from the gperf-generated minimal perfect hash function correspond­
ing to the keyfile depicted in Figure 1. Execution time was negligible on a Sun 4/260, i.e., 0.0 user and 0.0
system time. The following section uses portions of this code as a working example to illustrate various
aspects of gperf's output.

4.3.1 Generated Symbolic Constants

gperf's output contains seven symbolic constants that summarize the results of applying Algorithm 8 to the
keyfile, e.g.:

enum {

} ;

TOTAL KEYWORDS
MIN HASH VALUE
DUPLICATES

12, MIN WORD LENGTH
0, MA2CHASH-VALUE
0

3, MAX WORD LENGTH
11, HASH VALUE RANGE

9,
12,

Aminima/perfecthashfunctionoccurswhenHASH_VALUE_RANGE = TOTAL_KEYWORDS and DUPLICATES
= 0. A non-minimal perfect hash function occurs when DUPLICATES = 0 and HASH_VALUE_RANGE >
TOTAL_KEYWORD s. Finally, a near-perfect hash function occurs when DUPLICATE s > 0 and DUPLICATE s
~ TOTAL-KEYWORDS.

4.3.2 The Generated Lookup Table

When given a keyfile as input, gperf attempts to generate a perfect hash function that uses at most
one string comparison to recognize keywords in the lookup table. gperf produces a lookup table called
as so_ values, shown in Figure 2. as so_ values is used by the two generated functions that compute
hash values and perform table lookup.

The lookup table is implemented by either an array or a switch statement (note, the generated Ada code
uses a case statement rather than a switch statement). An array is generated by default, emphasizing run­
time speed over minimal memory utilization. However, there are command-line options that allow trading-off
memory for execution-time. For example, expanding the range of hash values produces a sparser lookup table.
This generally yields faster keyword searches but requires additional memory.

The array-based method works best when the HASH_VALUE_RANGE is not considerably larger than the
TOTAL_KEYWORDS. When there are a large number of keywords, and an even larger range of hash values,
however, the wordl is t array shown in Figure 3 can become extremely large. Several problems arise in this
case, (1) the time to compile the sparsely populated array is excessive, (2) the array size may be too large to
store in main memory, or (3) a large array may lead to increased thrashing in virtual memory environments.

8

canst struct months *is month (canst char *str, int len)
static canst struct months wordlist[] = {

{"septernber", 9, 30, 30}, {"june", 6,
{"april", 4, 30, 30}, {"january", 1,
{"march", 3, 31, 31}, {"decernber", 12,
{"july", 7, 31, 31}, {"august", 8,
{"may", 5, 31, 31}, {"february", 2,
{"october", 10, 31, 31}, {"novernber", 11,

} ;

if (len <= MAX WORD LENGTH && len >= MIN_WORD_LENGTH) {
int key= phash-(str, len);

}

if (key <= MAX HASH VALUE && key >= MIN_HASH_VALUE)
/* ... see text .~. */

return O;

30,
31,
31,
31,
28,
30,

Figure 3: The is...month Function

30}'
31},
31}'
31}'
2 9},
30}'

To handle the problems mentioned above, gperf can also generate one or more switch statements to
implement the lookup table. Depending on the underlying compiler's switch optimization capabilities, the
switch-based method may produce smaller and faster code, compared with the large, sparsely filled array.
Note that .more than one switch statement may be required, since many C compilers do not generate correct
code for extremely large switch statements e.g., greater than 10,000 cases. Figure 4 shows how the switch
statement code appears if the months example is generated with gperf's '-S 1' option.

Since the months example is somewhat contrived, the trade-off between the array and switch approach
is not particularly obvious. However, a good compiler can generate assembly code implementing a "binary­
search-of-labels" scheme if the switch statement's case labels are sparse compared to the range between
the smallest and largest case labels.[16] This technique can save a great deal of space by not emitting un­
necessary empty array locations or jump-table slots. The exact time and space savings of this approach varies
according to the underlying compiler's optimization strategy.

gperf generates source code that constructs the array or switch statement lookup table at compile-time.
Therefore, initializing the keywords and any associated attributes requires little additional execution-time
overhead when the recognizer function is run, since the "initialization" is automatically performed as the
program's binary image is loaded from disk into main memory.

4.3.3 The Generated Functions

gperf generates a hash function and a lookup function. By default, they are called pha sh and i n_wo rd_s et,
although a different name can be given for in_word_set using the '-N' command-line option. Both func­
tions require two arguments, a pointer to a NUL-terminated (' \0') array of characters, char * str, and a
length parameter, int len.

The Generated Hash Function (phash) Figure 2 shows the phash function generated from the input
keyfile shown in Figure 1. Since the command-line option '-k 2, · 3' was enabled, phash returns an
unsigned int value calculated by indexing the keysig characters (in this case ASCII values of the second
and third characters) from its str argument into the local static array asso_values (C arrays start at
0, so str [1] is actually the second character). The two resulting numbers are added together to compute
st r's hash value. The ass o _ v a 1 u es array is constructed by gperf; it maps the user-defined keywords onto

9

con st struct months *rw;

switch (key) {
case 0: rw &wordlist[OJ; break; case 1: rw = &wordlist [1];
case 2: rw &wordlist[2]; break; case 3: rw = &wordlist[3];
case 4: rw &wordlist [4] ; break; case 5: rw = &wordlist [5];
case 6: rw &wordlist[6]; break; case 7: rw = &wordlist[7];
case 8: rw &wordlist[8]; break; case 9: rw = &wordlist [9];
case 10: rw &wordlist [10]; break; case 11: rw = &wordlist [11];
default: return O;

if (*str == *rw->name && !strcmp (str + 1, rw->name + 1))
return rw;

return O;

Figure 4: The switch-based Lookup Table

unique hash values (additional. details are described in Section 4.1.2).

break;
break;
break;
break;
break;
break;

Note that all asso_values array entries with values greater thanMA2LHASH_VALUE (i.e., all the "12's"
in the asso_values array in Figure 2) represent ASCII characters that do not occur as either the second
or third characters in the months of the year. This information is used by the is..month function shown in
Figure 3 to quickly eliminate input strings that cannot possibly be month names.

Generated Lookup Function (in_word_set) The in_word_set function is the interface to the perfect
hash lookup routines (the phash function is declared static and is not directly invoked by application
programs). If the function's first parameter, char *str, isa valid user-define keyword then in_word_set
returns a pointer to the corresponding record containing each keyword and its associated attributes, otherwise
a NULL pointer is returned.

Figure 3 shows the in_word_set function, renamed to is_month for the current example via the '-N'
command-line option. Note how gperf checks the len parameter and resulting phash function return
value against the symbolic constants for MA2LWORD_LENGTH, MIN_WORD_LENGTH, MA2CHASH_VALUE,
and MIN_HASH_ VALUE. This quickly eliminates many non-month names from further consideration. If users
know in advance that all input strings are valid keywords, gperf can be instructed to suppress this addition
checking with the '-o' option.

If gperf is instructed to generate an array-based lookup table the generated code is quite concise, i.e., once
it is determined that the hash value lies within the proper range the code is simply (filling in the I* . . . see
text *I comment from Figure 3):

char *s = wordlist[key];
if (*s == *str && !strcmp (str + 1, s + 1))

return s;

The ' * s == *st r' expression quickly detects when the computed hash value indexes into a "null"
table slot, since ' * s ' is the NUL character (' \ O ') in this case. This is useful when searching a sparse
keyword lookup table, where there is a higher probability of locating a null entry. If a null entry is located,
there is no need to perform a full string comparison (note that since the months example generates a minimal
perfect hash function null enties never appear; the check is still useful, however, since it avoids calling the
string comparison routine when the st r's first letter does not match any of the keywords in the lookup table).

10

Std-Err

Options --

Hash_ Table

Key..List ---

Gen_Ferf

Bool..Array

,- - - - - - - - - - - - - - - - ...,

: Makes-Calls-To: - - - - - :

1 Is-Parent-Of-. ---
: Derived Class:! ,
I I
, Base Class:~ 1

'- - - - - - - - - - - - - - - - _,

Figure 5: gperf's Inheritance Hierarchy

4.4 Reusable Class Components

Figure 5 illustrates gperf's overall program structure. gperf is constructed from reusable components that
also serve as base-classes in a "forest"-style library.[23] Each of these classes evolved "bottom-up" from
special-purpose utilities into reusable software components. Several noteworthy reusable classes include the
following abstract data types:

• Std_Err: This class standardizes and consolidates the formatting of error messages throughout gperf.
St d_E r r generalizes the functionality of the UNIX per ro r library routine. A static class mem­
ber function, with type signature void Std-Err: : report_error (con st char *, ...) ,
interprets a printf-style format string containing directives that provide a uniform error handling fa­
cility. Standard services include: (1) writing a user specified error message to the standard error stream,
(2) formatting and printing various common data types passed as arguments to the variadic function,
(3) displaying appropriate system error messages corresponding to failed system and library calls, (4)
aborting the program with a specified exit code, (5) calling function-pointers passed as parameters, and
(6) displaying the name used to invoke the main program in error messages.

• Read.Line: Each line in gperf's input contains a single keyword followed by any optional associated
attributes, endingwithanewlinecharacter ('\n'). The 'Read_Line:: get_line' member function
copies an arbitrarily long '\ n '-terminated string of characters from the input into a dynamically allo­
cated buffer. A recursive auxiliary function, 'Read_Line: : readln_aux', insures only one call is
made to the free store allocator per input line read, i.e., there is no need for reallocating and resizing
buffers dynamically. This routine proved useful enough to be incorporated as an extension in the GNU
libg++ stream library.[24]

• Hash_Table: This class provides a search structure implemented via double hashing.(17] During pro­
gram initialization gperf uses an instance of this class to detect keyfile entries that are guaranteed to pro­
duce duplicate hash values. These duplicates occur whenever keywords possess both identical keysigs
and identical lengths, e.g., the double and delete collision described in Section 4.1.2. Unless the
user specifies that a near-perfect hash function is desired, attempting to generate a perfect hash function
for keywords with duplicate keysigs and identical lengths is an exercise in futility!

11

• Hool.Array: Earlier versions of gperf were instrumented with a run-time code profiler. The results
showed that gperf spent approximately 90 to 99 percent of its time in a single routine when performing
Algorithm 1 (described in Section 4.2.1) on large input keyfiles that evoke many collisions. This one
routine, 'Gen_Perf:: affects_previous', determines how changes to associated values affect
previously hashed keywords. In particular, it identifies duplicate hash values that occur during program
execution.

Since this routine is called so frequently, it is important that it exhibits minimal execution overhead.
gperf employs a novel boolean array abstract data type called BooLArray to expedite this process.
The C++ interface for the Bool..Array class is depicted in Figure 6. All class data and member
functions are declared with storage class static, since only one copy of Bool..Array is required
(this reduces run-time overhead since no "this" pointer is passed during function calls).

Class member function BooLArray: : in_set (int) efficiently detects duplicate keyword hash
values for a given associated values configuration, returning non-zero if a value is already in the set and
zero otherwise. Whenever a duplicate is detected, Bool..Array: : reset () is called to reset all the
array elements back to "empty" for ensuing iterations of the search process.

H many hash collisions occur, BooLArray: : reset () is executed frequently during the duplicate
detection and elimination process. Processing large keyfiles, e.g., containing more than 1,000 keywords,
tends to require a maximum hash value k that is often much larger than n, the total number of keywords.
Due to the large range, it becomes expensive to explicitly reset all elements in Bool..Array: : array
back to empty, especially when the number of keywords actually checked for duplicate hash values is
comparatively small. Algorithm 2 describes a technique called generation numbering that is used to
optimize this process by not explicitly reinitializing the entire array.

Algorithm 2 The generation numbering technique operates as follows:

1. The class constructor dynamically allocates space fork unsigned short integers and points
Bool..Array:: array attheallocatedmemory. AllkarrayelementsinBool..Array:: array
are initiallyassignedO (representing "empty") and the BooLArray: : generation_number
counter is set to 1.

2. The BooL..Array: : in_set (int) member function is used to detect duplicate keyword hash
values. lfthenumberstoredatthephash (keyword) indexpositioninBool...Array:: array
is not equal to the current generation number, then that hash value is not already in the set. In this
case, the current generation number is immediately assigned to the phash (keyword) array
location, thereby marking it as a duplicate if it is subsequently referenced during this particular
iteration of the search process.

3. Otherwise, if the value at location Bool..Array: : array [phash (keyword)] is equal to
the generation number, a duplicate exists and the algorithm must try modifying certain associated
values to resolve the collision.

4. If a duplicate is detected, the Bool..Array: : array elements are reset to empty for subse­
quent iterations of the search process. Bool..Array: : res et () simply increments the value of
Bool..Array: : generation_number by 1. The entire karray locations are only reinitialized
to 0 when the generation number exceeds the range of an unsigned short integer (this occurs
infrequently in practice).

A design principle employed throughout gperf's implementation is "first determine a clean set of op­
erations and interfaces, then successively tune the implementation." In the case of generation number­
ing, this policy of optimizing performance, without compromising program clarity, decreased gperf's

12

class Bool Array
{ -
private:

typedef unsigned short TYPE;
static TYPE generation number;
static TYPE *array; -
static int size;

public:
Bool Array (int k);

-Boal-Array (void);

} ;

static int in set (int value);
static void reset (void);

II Using unsigned short saves space
II Current generation count
II Dynamically allocated storage buffer
II Length of dynamically allocated array

II Allocate a k element dynamic array
II Returns dynamic memory to free store
II Checks if 'value' is a duplicate
II Reinitializes all set elements to FALSE

Figure 6: Boolean Array Abstract Data Type

execution-time by an average of 25 percent for large keyfiles, compared with the previous method that
explicitly "zeroed out" the entire boolean array's contents on every reset.

4.5 Current Compromises and Limitations

Se~eral other hash function generation algorithms utilize some form of backtracking when searching for a
perfect or minimal perfect solution.[8, 6, 2] For example, Cichelli's algorithm recursively attempts to find an
associated values configuration that uniquely maps all n keywords to distinct integers in the range 1 .. n. In his
scheme, the algorithm "backs up" if computing the current keyword's hash value exceeds the minimal perfect
table size constraint at any point during program execution. Cichelli's algorithm then proceeds by undoing
selected hash table entries, reassigning different associated values, and continuing to search for a solution.
Unfortunately, the exponential growth rate associated with the backtracking search process is simply too time
consuming for large keyfiles, since even "intelligently-guided" exhaustive search quickly becomes impractical
for more than several hundred keywords.

To simplify Algorithm 1 and improve average-case performance, gperf does not backtrack when keyword
hash collisions occur. gperf may process the entire keyfile input, therefore, without finding a unique associated
values configuration for every keyword, even if one exists. If a unique configuration is not found, users have
two choices: (1) they can either run gperf again, enabling different options in search of a perfect hash function,
or (2) they can guarantee a solution by instructing gperf to generate an near-perfect hash function.

Near-perfect hash functions permit gperf to operate on keyword sets that it otherwise could not handle,
e.g., if the keyfile contains duplicates or there are a very large number of keywords. Although the resulting
hash function is no longer "perfect," it can handle keyword membership queries efficiently, since only a small
number of duplicates usually remain (the exact number depend on the keyword set and the command-line
options).

Both duplicate keyword entries and unresolved keyword collisions are handled by generalizing the switch­
based scheme described in Section 3. gperf treats duplicate keywords as members of an equivalence class
and generates switch statement code containing cascading if-else comparisons within a case label to
handle non-unique keyword hash values.

For example, if gperf is run with the default keysig selection command-line option ' - k 1, $' on a keyfile
containing C++ reserved words, a hash collision occurs between the delete and double keywords, thereby
preventing a perfect hash function. Using the '-D' option produces a near-perfect hash function, that allows
at most one string comparison for all keywords except double, which is recognized after two comparisons.
Figure 7 shows the relevant fragment of the generated near-perfect hash function code.

13

char *rw;

switch (phash (str, len)) {

case 46:
rw = "delete";
if (*str == *rw && !strcmp

return rw;
rw = "double";
if (*str -- *rw && !strcmp

return rw;
return O;

case 47:
rw = "default"; break;

case 49:
rw = "void"; break;

(str + 1, rw + 1, len - 1))

(str + 1, rw + 1, len - 1))

if (*str == *rw && !strcmp (str + 1, rw + 1, len - 1))
return rw;

return O;

Figure 7: The Near-Perfect Lookup Table Fragment

Executable Input File
Program ET++.in NIH.in g++.in idraw.in cfront.in
control.exe 38.8 j 1.00 15.4 j 1.00 15.2 I 1.00 8.9 I 1.00 5.7 I 1.00
trie.exe 59.1 I 1.52 23.8 I 1.54 23.8 I 1.56 13.7 I 1.53 8.6 I 1.50
flex.exe 60.5 j 1.55 23.9 I 1.55 23.9 I 1.57 13.8 I 1.55 8.9 I 1.56
gperf.exe 64.6 I 1.66 26.0 j 1.68 25.1 j 1.65 14.6 I 1.64 9.7 I 1.70
chash.exe 69.2 j l.78 27.5 I 1.78 27.1 I 1.78 15.8 I 1.77 10.1 j 1.77
patricia.exe 71.7 I 1.84 28.9 I 1.87 27.8 I 1.82 16.3 I 1.83 10.8 I 1.89
binary.exe 72.5 I 1.86 29.3 I 1.90 28.5 I 1.87 16.4 j 1.84 10.8 j 1.89
comp-flex.exe 80.1 I 2.06 31.012.01 32.6 I 2.14 18.2 I 2.04 11.6 I 2.03

Table 3: Raw and Normalized CPU Processing Time

libg++.in
4.5 I 1.00
7.0 I 1.55
7.1 I 1.57
7.7 I 1.71
8.2 I 1.82
8.7 I 1.93
8.8 I 1.95
9.212.04

A simple linear search is performed on duplicate keywords that hash to the same location. Linear search
is effective since most keywords still require only one string comparison. Support for duplicate hash values
is useful in several circumstances, such as large input keyfiles (e.g., dictionaries), highly similar keyword sets
(e.g., assembler instruction mnemonics), and secondary keys. In the latter case, if the primary keywords are
distinguishable only via secondary key comparisons, the user can edit the generated code by hand or via an
automated script to completely disambiguate the search key.

5 Empirical Results

Tool-generated recognizers are useful from a software engineering perspective, since they reduce development
time and decrease the likelyhood of development errors. However, they are not necessarily advantageous
for production-quality applications unless the resulting executable code speed is competitive with typical

14

Input File Identifiers Keywords Total
ET++.in 624,156 350,466 974,622
NIH.in 209,488 181,919 391,407
g++.in 278,319 88,169 366,488
idraw.in 146,881 74,744 221,625
cfront.in 98,335 51,235 149,570
libg++.in 69,375 50,656 120,031

Table 4: Total Identifiers and Keywords for Each Input File

alternative implementations. In fact, it has been argued that there are no circumstances where perfect hashing
proves worthwhile, compared with other common static search structure methods.[25]

To compare the efficacy of the gperf-generated perfect hash functions against other common static search
structure implementations, seven test programs were developed and executed on six large input files. Each
test program implemented the same function: a recognizer for the 71 GNU G++ reserved words. The function
returns 1 if a given input string is identified as a reserved word and 0 otherwise.

The seven test programs are described below. They are listed by increasing order of execution time, as
shown in Table 3. The input files used for the test programs are described in Table 4. Table 5 shows the
number of bytes for each test program's compiled object file, listed by increasing size (both patricia. o
and ch ash. o use dynamic memory, so their overall memory usage depends upon the underlying free store
mechanism; these statistics are based upon the malloc routine from the GNU libg++ 1.37 library).

• trie.exe: a program based upon an automatically generated table-driven search trie created by the trie·
gen utility included with the GNU libg++ distribution.

• flex.exe: a flex-generated recognizer created with the '-f' (no table compaction) option. Note that
both the fiex.exe and trie.exe are uncompacted, deterministic finite automata (DFA)-based recognizers.
Not using compaction maximizes speed in the generated recognizer, at the expense of much larger
tables. For example, the uncompacted flex. exe program is almost5 times larger than the compacted
comp-flex. exe program, i.e., 117,808 bytes versus 24,416 bytes.

• gperf.exe: a gperf-generated recognizer created with the '-a -D -S 1 -k 1, $' options. These
options mean "generate ANSI C prototypes ('-a'), handle duplicate keywords ('-D'), via a single
switch statement ('-s 1 ') , and make the keysig be the first and last character of each keyword."

• chash.exe: a dynamic chained hash table lookup routine similar to the one that recognizes reserved
words for AT&T's cfront 2.0 C++ compiler. The table's load factor is 0.39, the same as it is in cfront
2.0, i.e. i7l1 for chash.exe versus 14z83 for cfront 2.0.

• patricia.exe: a PATRICIA trie recognizer, where PATRICIA stands for "Practical Algorithm to Retrieve
Information Coded in Alphanumeric."[26] A complete PATRICA trie implementation is available in the
GNU libg++ class library distribution.

• binary.exe: a carefully coded binary search routine that minimizes the number of complete string
comparisons.

• comp-flex.exe: a flex-generated recognizer created with the default '-cem' options, providing the
highest degree of table compression. Note the obvious time/space trade-off between the uncompacted
flex. exe (which is faster and larger) and the compacted comp-flex. exe (which is smaller and
much slower).

15

Object Byte Count
File text data bss dynamic total
control.o 88 0 0 0 88
binary.o 1,008 288 0 0 1,296
gperf.o 2,672 0 0 0 2,672
chash.o 1,608 304 8 1,704 3,624
patricia.o 3,936 0 0 2,272 6,208
comp-flex.o 7,920 56 16,440 0 24,416
trie.o 79,472 0 0 0 79,472
flex.o 3,264 98,104 16,440 0 117,808

Table 5: Size of Object Files in Bytes

In addition to these seven test programs, a simple C++ program called control. exe measures and
controls for 1/0 overhead, i.e.:

int main (void) {
const int MAX ID = 80; /* Larger than any input identifier. */
char buf[MAX ID];
while (gets (buf))
_ printf ("%s", buf);

All of the above reserved word recognizer programs were compiled by the GNU G++ 1.37 compiler with
the '-0 -£strength-reduce -finline-functions -fdelayed-branch' options enabled.
They were then tested on an otherwise idle 16 MHz Sun 4/260 with 32 megabytes of RAM.

All six input files used for the tests contained a large number of words, both user-defined identifiers and
G++ reserved words, organized with one word per line (this formate was automatically created by running
the UNIX command "tr -cs A-Za-z_ '\ 012'" on the preprocessed source code for several large C++
systems. These systems included the ET++ windowing toolkit (ET++. in), the NIH class library (NIH. in),
the GNU G++ 1.37 C++ compiler (g++. in), the idraw figure drawing utility from the lnterViews 2.6 dis­
tribution (idraw. in), the AT&T cfront 2.0 C++ compiler (cfront. in), and the GNU libg++ 1.37 C++
class library (libg++. in). Table 4 shows the relative number of identifiers and keywords for the test input
files.

Table 3 depicts the amount of time each search structure implementation spent executing the test programs,
listed by increasing execution time. The first number in each column represents the user-time CPU seconds
for each recognizer. The second number is "normalized execution time," i.e., the ratio of user-time CPU
seconds divided by the control. exe program execution time. The normalized execution time for each
technique is very consistent across the input test file suite, illustrating that the timing results are representative
for different source code inputs.

Several conclusions result from these empirical benchmarks:

• The uncompacted, DFA-based trie (trie. exe and flex (flex. exe) implementations are both the
fastest and the largest implementations, illustrating the time/space trade-off dichotomy. Applications
where saving time is more important than conserving space may benefit from these approaches.

• While the tr i e . ex e and fl ex . ex e recognizers allow programmers to trade-off space for time, the
gperf-generated perfect hash function gperf. exe is comparatively time and space efficient. Empir­
ical support for this claim may be calculated from the data for the programs that did not allocate dy­
namic memory, i.e., trie. exe, flex. exe, gperf. exe, binary. exe, and comp-flex. exe.

16

The number of identifiers scanned per second per byte of executable program overhead was 5.6 for
gperf. exe, but less than 1.0 for trie. exe, flex. exe, and comp-flex. exe.

Since gperf generates a stand-alone recognizer, it is easily incorporated into an otherwise hand-coded
lexical analyzer, such as the ones found in the GNU C and GNU C++ compiler. It is more difficult, on the
other hand, to partially integrate fiex or lex into a lexical analyzer, since they are generally used in an "all or
nothing" fashion. Furthermore, neither fiex nor lex can generate recognizers for the 15,400 line MEDLINE
keyfile input, because the size of the state machine is too large for their internal DFA state tables.

6 Future Directions and Conclusions

Fully automating the perfect hash function generation process remains gperf 's most significant unfinished
extension. One approach is to replace gperf's current algorithm with a more exhaustive approach, e.g., Brain
and Tharp's enhancements to Cichelli's algorithm.[2] Due to gperf's object-oriented program design, these
modifications will not unduly disrupt the overall program structure. The perfect hash function generation
module, class Gen_Perf, is essentially independent from other program components; it represents only
about 10 percent of gperf's overall lines of source code.

A more comprehensive, albeit computationally expensive, approach could switch over to a backtracking
strategy when the initial, computationally less expensive, non-backtracking first pass fails to generate a perfect
hash function. For many common uses, where the search sets are relatively small, the program will run
successfully without incurring backtracking overhead. In practice, the utility of these proposed modifications
remains an open question.

Another potentially worthwhile feature is enhancing gperf to automatically select the keyword index posi­
tions. This would assist users in generating time or space efficient hash functions quickly and easily. Currently,
the user must use the default behavior or explicitly select these positions via command-line arguments. Fi­
nally, gperf's output routines can be extended to generate code for other languages, e.g., a Modula 2/Module 3
module or an Eiffel class.

gperf's was originally designed to automate compiler keyword recognizer construction. The various fea­
tures described in this paper enable it to achieve its goal, as evidenced by its use in the GNU compiler and
language processing tools. gperf also works well on larger keyword sets, as evidenced by the 15,400 line
MEDLINE data. Since automatic static search structure generators perform well in practice and are widely
and freely available, there seems little incentive to code keyword recognition functions by hand for most
applications.

Acknowledgments

In addition to Keith Bostic, who initially inspired gperf, special thanks is extended to Michael Tiemann and
Doug Lea. Michael wrote the GNU G++ compiler. Doug gave me a forum in GNU libg++ to exhibit my
creation; he also commented on drafts of this paper. Adam de Boor and Nels Olson contributed many insights
that greatly helped improve the quality and functionality of gperf. Vern Paxson provided an efficient fiex
input specification file for the GNU C++ keywords. Finally, Rolf Ebert extended gperf to generate Ada code.

17

/* C code produced by gperf version 2.5 (GNU C++ version) */
/* Command-line: gperf -C -p -a -n -t -o -j 1 ·-k 2,3 -N is month months.gperf */
#include <stdio.h>
#include <string.h>
/* Command-line options: -C -p -a -n -t -o -j 1 -k 2,3 -N is month */
struct months { char *name; int number; int days; int leap_days; };
enum {

TOTAL KEYWORDS 12, MIN WORD LENGTH 3, MAX WORD LENGTH 9,
MIN HASH VALUE = 0, MAX-HASH-VALUE = 11, HASH VALUE RANGE = 12,
DUPLICATES = 0

} ;
static unsigned int phash (canst char *str, int len)

static con st unsigned char as so values [J = {
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 0, 12, 7, 12, 12, 12, 12, 6, 12, 1, 11, O,
12, 6, 12, 12, 12, 12, 12, 12,

} ;
return asso values[str[2JJ + asso_values[str[l]J;

}
canst struct months *is month (canst char *str, int len)

}

static canst struct months wordlist[] =
{"september", 9, 30, 30}, {"june",
{"april", 4, 30, 30}, {"january",
{"march", 3, 31, 31}, {"december",
{"july", 7, 31, 31}, {"august",
{"may", S, 31, 31}, {"february",
{"october", 10, 31, 31}, {"november",

} ;

{
6,
1,

12,
8,
2,

11,

30, 30}'
31, 31}'
31, 31}'
31, 31}'
28, 29}'
30, 3 0 }",

if (len <= MAX WORD LENGTH && len >= MIN_WORD_LENGTH)
int key= phash (str, len);
if (key <= MAX HASH VALUE && key >= MIN_HASH_VALUE)

char *s = wordlist[key] .name;
if (*str == *s && !strcmp (str + 1, s + 1))

return &wordlist[key];

return O;

#ifdef DEBUG
int main () {

is month (buf, strlen (buf)) ;

12, 12, 12,
12, 12, 12,
12, 12, 12,
12, 12, 12,
12, 12, 12,
12, 2, 12,

12,
12,
12,
12,
12,

S,

char buf[80J;
while (gets (buf))

struct months *p
printf ("%s is%s a moilth\n", p ? p->name : buf, p ? "" " not");

}

#endif

Figure 8: Minimal Perfect Hash Function Generated by gperf

18

12, 12, 12,
12, 12, 12,
12, 12, 12,
12, 12, 12,

2, 9, 5,
0, 0, 12,

References [15] Michael D. Tiemann. User's Guide to GNU
C++. Free Software Foundation, 1991.

[1] R. Sprugnoli. Perfect Hashing Functions:
A Single Probe Retrieving Method for Static [16] Richard M. Stallman. Using and Porting GNU
Sets. Communications of the ACM, 11:841-850, CC. Free Software Foundation, 1991.
November 1977.

[2] M. D. Brain and A. L. Tharp. Near-Perfect hash­
ing of large word sets. Software - Practice and
Experience, 19:967-978, 1989.

[3] C.C. Chang and T. Wu. A Letter-oriented Per­
fect Hashing Scheme Based upon Sparse Table
Compre~sion. Software Practice and Experi­
ence, 21.35-49, 1991.

[17] Donald Knuth. The Art of Computer Program­
ming, VOL 3: Sorting and Searching. Addison­
Wesley, 1973.

[18] Richard J. Cichelli. Minimal Perfect Hash Func­
tions Made Simple. Communications of the
ACM, 23:17-19, January 1980.

[19] Bjarne Stroustrup and Margret Ellis. The Anno­
tated C ++Reference Manual. Addison-Wesley,
1986. [4] G.V. Cormack, R.N.S. Horspool, and M. Kaiser­

werth. Practical Perfect Hashing. Computer
Journal, 28:54-58, January 1985. [20] Bjarne Stroustrup. The C ++Programming Lan-

guage (Second Edition). Addison-Wesley, 1986.
[5] M. Dietzfelbinger, A. Karlin, K. Mehlhorn,

F. Meyer auf der Heide, H. Rohnert, and R.E.
Tarjan. Dynamic Perfect Hashing: Upper and
Lower Bounds. In 29th Focus on Computer Sci­
ence, pages 524-531.

[6] Richard J. Cichelli. Author's Response to
"On Cichelli's Minimal Perfect Hash Functions
Method". Communications of the ACM, 23:729,
December 1980.

[7] G. Jaeschke. Reciprocal Hashing: A Method for
Generating Minimal Perfect Hashing Functions.
Communications of the ACM, 24:829-833, De­
cember 1981.

[8] C.R. Cook and R.R. Oldehoeft. A Letter Ori­

[21] BjarneStroustrup. WhatisObject-OrientedPro­
gramming? IEEE Software, pages 10-20, May
1988.

[22] G. Jaeschke and G. Osterburg. On Cichelli's
Minimal Perfect Hash Functions Method. Com­
munications of the ACM, 22:728-729, Decem­
ber 1980.

[23] Doug Lea. libg++, The GNU C++ Library. In
USENIX C + + Conference Proceedings, pages
243-256. USENIX Association, October 1988.

[24] Doug Lea. User's Guide to GNU C++ Class Li­
brary. Free Software Foundation, 1991.

ented Minimal Perfect Hashing Function. SIG- [25] Jeffrey Kegler. A Polynomial Time Generator
PLAN Notices, 17:18-27, September 1982. for Minimal Perfect Hash Functions. Communi­

cations of the ACM, 29:556-557, June 1986.
[9] Thomas J. Sager. A Polynomial Time Generator

for Minimal Perfect Hash Functions. Commu- [26] Robert Sedgewick.
nications of the ACM, 28:523-532, December Wesley, 1983.

Algorithms. Addison-

1986.

[10] E. A. Fox, Q. F. Shen, L. S. Heath, and S. Datta.
A more cost effective algorithm for finding min­
imal perfect hashing functions. ACM Confer­
ence Proceedings, pages 114-122, 1989.

[11] C.C. Chang. A Scheme for Constructing Or­
dered Minimal Perfect Hashing Functions. In­
formation Sciences, 39:187-195, 1986.

[12] Douglas C. Schmidt. GPERF: A Perfect Hash
Function Generator. In USENIX C++ Confer­
ence Proceedings, pages 87-102. USENIX As­
sociation, April 1990.

[13] M. Lest and E. Schmidt. Lex - A Lexical Ana­
lyzer Generator. UNIX Programmer's Manual:
Supplementary Documents 1., 1986.

[14] Steven Johnson. Yacc: Yet Another Compiler
Compiler. UNIX Programmer's Manual: Sup­
plementary Documents 1., 1986.

19

[27] M.L. Fredman, J. Komlos, and E. Szemeredi.
Storing a Sparse Table with 0(1) Worst Case
Access Time. Journal of the ACM, pages 538-
544, July 1984.

[28] R.W. Sebesta and M.A. Taylor. Minimal Perfect
Hash Functions for Reserved Word Lists. SIG­
PLAN Notices, 20:47-53, September 1985.

[29] C.C. Chang. The Study of an Ordered Minimal
Perfect Hashing Scheme. CACM, 27:384-387,
1984.

