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Abstract

Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation
energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However,
RA imaging signal often suffers from poor signal-to-noise ratios (SNRs), thus requiring measuring
hundreds or even thousands of frames for averaging to achieve satisfactory quality. This repetitive
measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging,
limiting its clinical utility. In this study, we developed a general deep inception convolutional neural
network (GDI-CNN) to denoise RA signals to substantially reduce the number of frames needed for
averaging. The network employs convolutions with multiple dilations in each inception block, allowing it
to encode and decode signal features with varying temporal characteristics. This design generalizes GDI-
CNN to denoise acoustic signals resulting from different radiation sources. The performance of the
proposed method was evaluated using experimental data of x-ray-induced acoustic, protoacoustic, and
electroacoustic signals both qualitatively and quantitatively. Results demonstrated the effectiveness of
GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results
using only 10-frame-averaged measurements, reducing the imaging dose of x-ray-acoustic computed
tomography (XACT) by 98.7%; it realized proton range accuracy parallel to 1500-frame-averaged results
using only 20-frame-averaged measurements, improving the range verification frequency in proton
therapy from 0.5 to 37.5 Hz; it reached electroacoustic image quality comparable to 750-frame-averaged
results using only a single frame signal, increasing the electric field monitoring frequency from 1 fps to 1k
fps. Compared to lowpass filter-based denoising, the proposed method demonstrated considerably lower
mean-squared-errors, higher peak-SNR, and higher structural similarities with respect to the corresp-
onding high-frame-averaged measurements. The proposed deep learning-based denoising framework is a
generalized method for few-frame-averaged acoustic signal denoising, which significantly improves the
RA imaging’s clinical utilities for low-dose imaging and real-time therapy monitoring,

1. Introduction

Radiation deposits energy when it travels through human bodies and interacts with tissue atoms through
various mechanisms, which enables numerous medical applications. Radiation has been widely used for

© 2023 Institute of Physics and Engineering in Medicine


https://doi.org/10.1088/1361-6560/ad0283
mailto:lren@som.umaryland.edu
mailto:liangzhx@hs.uci.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad0283&domain=pdf&date_stamp=2023-11-29
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad0283&domain=pdf&date_stamp=2023-11-29

10P Publishing

Phys. Med. Biol. 68 (2023) 235010 ZJianget al

diagnostic imaging. For example, low-energy (kV) x-ray has been widely used in mammography or computed
tomography (CT) for tissue characterization and disease diagnosis. Radiation has also been widely used for
cancer treatment. For example, ionizing radiation has been extensively developed in radiation therapy using
photon, electron, or proton beams to kill cancer cells. Such radiation particles damage the DNA structures in
living cells directly or indirectly with free radicals and ions, preventing them from dividing and growing.
Non-ionizing radiation has also been developed for cancer treatments, such as radiofrequency ablation and
electroporation.

Despite the success of employing radiation in medical applications, the efficacy of using radiation for
imaging and treatment remains to be improved. One critical issue is the lack of visibility of radiation energy
deposition in tissues. For imaging, x-ray-based imaging modalities have historically relied on detecting
penetrating radiation to visualize the internal tissues. This mechanism necessitates higher dose for imaging and
full-view acquisition for three-dimensional (3D) reconstruction. For treatment, the efficacy of radiation
depends on the energy deposition accuracy, which can be affected by many factors such as patient positioning,
anatomy changes, and dose calculation uncertainties. Currently, there is a lack of effective tools to verify the
treatment accuracy in real time to ensure the efficacy for tumor control and normal tissue sparing. For example,
in radiation therapy, portal imaging can provide some 2D in vivo dose deposition, but it cannot provide 3D dose
verification in real time.

Various techniques are being investigated to address the challenges above for radiation-based imaging and
treatment. One promising direction is the radiation-induced acoustic (RA) imaging (Hickling et al 2014, 2018),
which involves detecting acoustic signals generated from pulsed radiation beams and can be detected by
ultrasound transducers. The pressure distribution reconstructed from these acoustic signals linearly correlates
to the radiation energy deposition, making RA imaging a valuable tool for diagnostic imaging and therapy
monitoring. For example, x-ray-induced acoustic computed tomography (XACT) is a novel imaging technique
that excites the tissues with pulsed kV x-ray beams to induce acoustic signals (Xiang et al 2016, Li et al 2020,
Robertson et al 2020, Samant et al 2020, Pandey et al 2021, Pogue et al 2021, Wang et al 2021a). It leverages the
high contrast of tissue’s radiation absorption properties to reveal fine structures deep within the body.
Compared to x-ray imaging and CT, XACT features much lower imaging dose and can reconstruct 3D images
from a single-view acquisition. Similar to XACT, proton pencil beams in proton therapy can also induce
detectable acoustic signals, giving rise to the protoacoustic imaging technique for real-time proton dose
verification (Hayakawa et al 1995, Jones et al 2014, Ahmad et al 2015, Kipergil et al 2017, Jones et al 2018, Nie et al
2018, Van Dongen et al 2019, Deurvorst et al 2022). Mast et al (2023) demonstrated the feasibility of measuring
and reconstructing the proton irradiation-induced thermoacoustic source distribution using ultrasound arrays.
Kalunga et al (2023) found that the ultrasound sensor arrangement can affect the localization accuracy of proton
Bragg peak, and reported the in-silico localization errors within 2% when the sensors are optimally positioned
and the experimental localization errors between 0.4 and 1.0 mm depending on the sensor arrangement and
beam energy. Samant et al (2022) performed a simulation study to demonstrate the feasibility of the 3D
protoacoustic imaging using a planar ultrasound array for proton dose verification.

In addition, studies have found that electric fields used in the electroporation for tumor ablation can also
induce acoustic signals due to the electrical energy deposition (Neal et al 2014, Zarafshani et al 2019a, 2019,
Wangetal 2019, 2021a). This phenomenon led to the development of the electroacoustic tomography (EAT)
technique, allowing the electroporation process to be monitored in real time.

Despite the promise of these novel RA techniques, a significant challenge with RA imaging is its low signal-
to-noise ratio (SNR) in the acoustic signal. The detected acoustic signals are usually contaminated with
background noises, such as electronic and system thermal noises, resulting in poor SNR and limiting the
techniques’ utility. Averaging is the most common way to improve the signal SNR by eliminating uncorrelated
random noise (You and Choi 2020). Typically, hundreds to thousands of frames are required to be averaged to
achieve satisfactory SNR (Jones et al 2015, Tang et al 2017), which significantly prolongs the imaging time and
degrades the temporal resolution for therapy monitoring and moving-target imaging. In the case of ionizing
radiation-based techniques such as XACT, the use of averaging requires the acquisition of a large number of
frames, leading to a considerable increase in the imaging dose. Filtering is another widely used technique to
denoise acoustic signals. It involves decomposing signals in different domains (e.g. frequencies and wavelet
coefficients) and ruling out noises with thresholds (Kruger et al 1995, Wang et al 2004, Patil and Chavan 2012,
Ngui et al 2013, Najafzadeh et al 2020). The main limitation of this method lies in the tradeoff between reducing
the residual noises and preserving the true acoustic signals.

In the recent decade, deep learning has demonstrated excellent performance in various medical imaging
tasks (Balakrishnan et al 2018, Wiirfl et al 2018, Zhu et al 2018, Hesamian et al 2019, Jiang et al 2020, Chang et al
2021, Jiang et al 2022a). Its applications have also been explored in acoustic imaging. Antholzer et al (2019)
developed a deep convolutional neural network (CNN) to reconstruct accurate photoacoustic images from
sparsely sampled data. Hariri et al (2020) used a multi-level wavelet CNN to improve the low-fluence
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photoacoustic image quality. Jiang et al (2022b) developed a cascaded CNN to correct the limited-view artifacts
in the matrix array-based proton acoustic imaging. In these studies, deep learning models were used as a post-
processing technique, which reduced the artifacts and enhanced the quality of the images reconstructed by
conventional algorithms. Earlier research (Jiang et al 2019a, 2021, 2022a) has indicated that the models can
achieve better performance by utilizing advanced signal preprocessing methods to improve the input quality.
Several studies have explored this preprocessing area for acoustic imaging. Gutta et al (2017) used a fully-
connected network to map the limited bandwidth to the full bandwidth photoacoustic signals. Awasthi et al
(2020) employed a CNN to remove the gaussian noise in photoacoustic signals in a simulation study. Yao et al
(2020) proposed a recurrent neural network to verify proton range in one-dimension (1D), and later, proposed a
different deep learning model with wavelet decomposition (Yao et al 2021) to reconstruct 3D proton range with
high accuracy. Both studies used the acoustic signals measured by sparsely-distributed ultrasound sensors in a
simulation study. And for the few-average signal denoising, Wang et al (2021b) proposed a dictionary learning-
based workflow for both signal denoising and image enhancement in the photoacoustic microscopy (PAM),
which reduced the laser fluence by 5 times without compromising the image quality. However, the proposed
method used the K-SVD algorithm for sparse coding, assuming that the structures in the underlying signals have
sparse representations. This assumption may not be true for images with complex structures and thus limits its
applications. Wang et al (2023) performed a preliminary study to demonstrate the feasibility of deep learning to
verify proton Bragg peak using few-averaged protoacoustic signals. However, the experimental data involved in
this study is limited and they are measured using accelerometers at individual points in 1D. No images are
available.

In this study, we developed a general deep-learning model to generate accurate and high-SNR acoustic
signals from few-frame-averaged measurements. Compared to the previous dictionary learning-based method
(Wanget al 2021b), the proposed deep learning-based method does not assume the properties of underlying
signals and images, making it more generalizable for different tasks. To handle signals with diverse time
windows, convolutions with multiple dilations are used in each inception block in the proposed model. This
design allows for the encoding and decoding of signal features at different temporal scales. The model’s
performance was evaluated using the experimental data of kV x-ray-induced acoustic, protoacoustic, and
electroacoustic signals, which have potential applications in (1) low-dose imaging with XACT, (2) real-time
range verification in proton therapy using protoacoustic imaging, and (3) real-time therapy monitoring for
electroporation using EAT. Results showed that the proposed model realized high-SNR signals from extremely
few-frame acquisitions for all modalities, demonstrating the model’s excellent generalizing ability across various
RA techniques using different radiation sources. This major advance can greatly improve the clinical utilities of
these novel radiation-induced acoustic techniques for low-dose diagnostic imaging and real-time treatment
verification.

2. Methods

2.1. Problem formulation

Letx € R*T be the real-valued RF signals acquired with a transducer having C channels in T timesteps, and y
€ R“*T be the corresponding ground truth signals. Then the problem can be formulated as finding a denoising
pattern between xand y so that

arg min Ilf(x)—ylli
f

where f denotes the denoising function estimated by a deep learning model in this study.

2.2.Deep learning-based RF acoustic signal denoising

In this study, a general deep inception CNN (GDI-CNN) was used for the RF acoustic signal denoising.
The few-averaged noisy signals are used as the input to the model, which generates the high-SNR denoised
signals.

The proposed GDI-CNN utilizes the encoder-decoder architecture. In the encoder branch, seven inception
blocks are stacked to extract high-dimensional hidden features from the noisy input signals. In the decoder
branch, seven inception blocks are stacked to decode the features to generate the final denoised signals. In each
inception block, seven convolutional layers with increasing dilation rates are used to capture features at different
temporal resolutions. More details of the inception block can be found in the following figure A1 in the
appendix A. Following the last inception block, a convolutional layer (filter size: 1 X 1, filter number: 1) with an
activation function (‘relu’ for x-ray-induced and electroacoustic, and ‘leaky relu’ with 0.3 leaky rate for
protoacoustic) is used to generate the final output denoised signals.
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Figure 1. Structure of the proposed general deep inception convolutional neural network (GDI-CNN). It takes few-averaged signal as
input, extracts and decodes hidden features with stacked inception convolutions (purple arrows —) and residual connections (green
arrows — ), and generates denoised signal in the end.

Compared to the original inception network (Szegedy et al 2015), this study uses convolutions with different
dilations, rather than different filter sizes, to further enlarge the inception fields while significantly reducing the
computational assumptions. Besides, residual connections bridge the inception blocks in the decoder with the
mirrored ones in the encoder to facilitate the training of deep networks. Figure 1 shows the structure of the
proposed general deep inception convolutional neural network (GDI-CNN). Source codes of the model
implementation will be available publicly upon the acceptance of the manuscript.

3. Experiment design

3.1. Data acquisition

In this study, radiation-induced acoustic data of various modalities were collected to verify the proposed
method’s performance in few-frame-averaged signal denoising. For each modality, data were collected with
different target geometries; and for each datum, RF signals from N repeated pulses (N = 750 for x-ray-induced
acoustic and electroacoustic, and N = 1500 for protoacoustic) were collected, and were averaged to yield the N-
frame-averaged signal, or fully-averaged signal, as the reference signal for model training and performance
evaluation. The experiment setup of the x-ray-induced acoustic, protoacoustic, and electroacoustic data
collection is illustrated in figure 2. Details are described in sections 3.1.1-3.1.3.

3.1.1. X-ray-induced acoustic data

X-ray acoustic signals were generated by irradiating agar phantoms using a portable x-ray source as shown in
figure 2(a). Specifically, a battery-powered pulsed x-ray source (XR200, Golden Engineering, IN, USA) operated
at 150 kVp was used to generate 50-nanosecond x-ray pulses (2.6 mR, cone angle: 40°) at a repetition rate of

20 Hz. X-ray beams were projected from the bottom of a water tank at a distance of 30 cm, in which a target-
holding phantom was placed along the beam trail. The phantoms were made of 3% agar-water solution
(BactoTM, Becton, Dickinson and Company, NJ, USA), containing various targets made of 1 /16 inch and 1/8
inch thick lead wires.

The acoustic signals were collected by a ring-shaped 128-channel ultrasound transducer array (PA probe,
Doppler Co. Limited, Guangzhou, China; central frequency: 5 MHz, bandwidth: >>60%). The detector was
placed in the water tank, surrounding the phantom. To trigger the data acquisition, a Ce:Lu,SiOs crystal (MTI
Corporation, CA, USA) was used to scintillate at a wavelength of 418 nm upon incident with stray x-rays. The
scintillator was connected to a photodetector (PDA100A, Thorlabs, NJ, USA) for light-to-volt conversion and
followed with a waveform generator (33600A, Keysight, CA, USA) to relay the trigger signal to the 128-channel
data acquisition system (SonixDAQ, DK Medical, Canada). Raw acoustic signals were conditioned by a low-
noise preamplifier (TomoWave Laboratories, Inc., TX,USA). For each trigger, acoustic signals were collected for
67.5 ps (sampling rate: 40 MHz), forming a frame. For each x-ray acoustic data acquisition, 750 frames were
collected to ensure the SNR.

In this experiment, 58 x-ray-induced acoustic data with different target sizes and locations were collected for
model training and testing.
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Figure 2. [llustration (left) and photos (right) of the experiment setup of (a) x-ray-induced acoustic data collection, (b) protoacoustic
data collection, and (c) electroacoustic data collection.

3.1.2. Protoacoustic data
Protoacoustic signals were generated by irradiating a water tank using a clinical synchrocyclotron as shown in
figure 2(b). Specifically, a clinical synchrocyclotron Mevion s250i (Mevion Medical Systems, MA, USA) was used
to deliver proton beams (energy: 107.6 MeV, proton range: 8.69 cm, beam pulse width: 4 us, uncollimated Bragg
Peak) at a repetition rate of 750 Hz. The charge of each proton beam was set to 8 pC, resulting in a dose of
about 1 cGy.

The water tank has a dimension of 32 cm x 32 cm X 40 cm and was placed on the treatment couch.

The acoustic signals were collected by a custom planar 16 x 16-channel ultrasound transducer array (Matrix
probe, Doppler Co. Limited, Guangzhou, China; central frequency: 1 MHz, bandwidth: >>60%, element size:
3 x 3 mm®). The detector was placed in the water tank at a depth of 12.7 cm with respect to the proton beam
entrance. To trigger the data acquisition, a scintillation crystal (BC408, Epic-Crystal, Guangzhou, China) was
attached to the beam entrance window to detect the proton beam passage. The scintillator output was connected
to a function generator (SDG-2122X, SIGLENT, OH, USA) to relay the trigger signal to the data acquisition
system (Legion ADC, Photosound Technologies, USA), which was housed in a Borated Polyethylene (BPE)
shielded box for neutron shielding. For each trigger, acoustic signals were collected for 67.5 s (sampling rate:
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40 MHz), forming a frame. For each protoacoustic data acquisition, 1500 frames were collected to ensure
the SNR.

In this experiment, 5 protoacoustic data with various proton beam coordinates were collected for the model
training and testing.

3.1.3. Electroacoustic data

Electroacoustic signals were generated by irradiating agar phantoms using an electrical pulse generator as shown
in figure 2(c). Specifically, a custom nanosecond electrical pulse generator (VilniusTECH, Lithuania) was used to
deliver 100-nanosecond electrical pulses (repetition rate: 1000 Hz) via several tungsten electrodes (573400,
A&M Systems, Carlsborg, USA) to an agar phantom in a water tank. The voltage on the electrodes was set to

100 Volt, resulting in an electric field of hundreds of volts per centimeter. A multi-electrode holder was
3D-printed to enable different electrode arrangements. Distances between electrodes varied between 5

and 15 mm.

The acoustic signals were collected using the same 128-channel ring array mentioned in section 3.1.1. The
detector was placed in the water tank, surrounding the phantom. A polyethylene film was used to isolate the
electrodes from the ultrasound transducer to reduce the direct impact of the high-voltage pulsed electric field on
the piezoelectric ultrasound probe surface. To trigger the data acquisition, a parallelly connected high-voltage
probe (P4250, Keysight Technologies, USA) was used to detect the pulse generation directly from the output.
The other ends of the probes were connected to a function generator to relay the trigger signal to the 128-channel
data acquisition system (SonixDAQ, DK Medical, Canada). Raw electroacoustic signals were boosted by a
custom low-noise preamplifier. For each trigger, acoustic signals were collected for 67.5 us (sampling rate:

40 MHz), forming a frame. For each electroacoustic data acquisition, 750 frames were collected to ensure
the SNR.

In this experiment, 52 electroacoustic data from various electrode arrangements and locations were
collected for model training and testing.

3.2. Model training

The proposed model was trained in a modality-specific method. For each imaging technique, a model was
trained and tested using the corresponding dataset. Specifically, for the XACT, 58 data were acquired, of which
47,5, and 6 data were used for model training, validation, and testing, respectively. For each datum, 10 frames
were averaged to generate a sample, which was used as the input to the model; and the 750-frame-averaged
signals were used as the ‘ground truth’ signals. As a result, 3525 samples were used for model training, 375
samples were used for validation, and 450 samples were used for testing. For the protoacoustic, five data were
acquired. Due to the limited dataset, four of the five data were used for model training, and the other one data
was used for model validation. For each datum, 20 frames were averaged to generate a sample, which was used as
the input to the model; and the 1500-frame-averaged signals were used as ground truth. As a result, 300 samples
were used for model training and 75 samples were used for validation. For the EAT, 52 data were acquired, of
which 43 data were used for model training, 3 for validation, and 6 for testing. For each datum, a single frame was
asample, which was used as the model input; and the 750-frame-averaged signals were used as the ground truth.
To balance the computing time and model performance, one frame out of every ten was used for denoising. As a
result, 3225 samples were used for model training, 225 samples were used for validation, and 450 samples were
used for testing.

To address the negativity caused by the limited bandwidth (Shen et al 2020), for the x-ray-induced acoustic
and electroacoustic signals, envelope was performed on the 750-frame-averaged signals; for the protoacoustic
signals, we keep the original signals as the negativity is still under investigation and there is no consensus in
addressing this issue.

To improve the learning target (‘ground truth’ signal) quality for the protoacoustic data, the discrete wavelet
transform (DWT) was used to further improve the SNR of the 1500-frame-averaged signals, which uses a scaled
and predefined wavelet and scaling functions to convolute with signals. For DWT, we implemented the ‘Coiflets’
wavelet filter (order = 5) (Ngui et al 2013) and the ‘sqtwolog’ threshold selection (Donoho and Johnstone 1994)
using the MATLAB wavelet toolbox. The SNRs of the fully-averaged (750-frame-averaged) signals were already
good and thus no wavelet denoising was performed for these two modalities.

During the model training, the few-frame-averaged signal was used as input to the model, whose weights
were optimized by minimizing the mean squared errors (MSE) between the denoised signal and the
corresponding ground truth signal. The optimizer was set to ‘Adam’ (Kingma and Ba 2014) with alearning rate
0f0.001. The batch size was set to 1 to account for the memory.

An overall workflow for the model training is shown in figure 3.
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Figure 3. Model training workflow of (a) x-ray-induced acoustic data, (b) protoacoustic data, and (c) electroacoustic data.

3.3.Model evaluation

The signals denoised by the proposed model were compared to the ‘ground truth’ signals. Meanwhile, the widely used
lowpass filtering was also included in this study as a comparison baseline. The cutoff frequency for the lowpass filter
was set to 6 MHz, 200 kHz, and 6 MHz for x-ray-induced acoustic, protoacoustic, and electroacoustic signals,
respectively. The lowpass filter was implemented using the MATLAB signal processing toolbox.

To further demonstrate the values of the denoising, acoustic images were reconstructed using the back-
projection algorithm from the denoised signals, and were then compared to those reconstructed from the
ground truth signals. An overall workflow for the model evaluation is shown in figure 4.

There are some slight differences in the preprocessing of RA signals for different modalities before
reconstruction. The differences are due to the different characteristics of the acoustic data and correspondingly
the variations in the routine preprocessing methods used for different data. For the x-ray-induced acoustic and
electroacoustic data, envelope was performed to address the negative values caused by the limited bandwidth;
the negativity issue was not addressed for the protoacoustic data in this study as this issue is still under
investigation and no consensus is established. For the protoacoustic data, the fully-averaged signals still have
poor SNR, and thus wavelet was used for denoising before reconstruction; the fully-averaged signals for the
x-ray-induced and electroacoustic signals have good SNRs, and thus no wavelet was performed.

The results were evaluated both qualitatively and quantitatively using metrics of MSE, peak signal-to-noise
ratio (PSNR), and structural similarity index (SSIM).

The performance of the proposed GDI-CNN was compared to the U-Net for all three involved modalities. For
U-Net, we implemented two versions: the original U-Net (Ronneberger et al 2015) (hereafter referred to as U-Net), and
the lite U-Net (hereafter referred to as U-Net-Lite). U-Net-Lite has the same architecture (e.g. scale levels and skip
connections) as U-Net but has fewer convolutional layers and fewer filter numbers in each scale level, which makes it
have a similar order of trainable parameters to the proposed GDI-CNN. The number of the model’s parameters is
shown in tables 1 and 2. U-Net and U-Net-Lite were trained and tested following the same process as the proposed
GDI-CNN.
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Figure 4 Evaluation workflow of (a) x-ray-induced acoustic data, (b) protoacoustic data, and (c) electroacoustic data. Reference
signals/images are used as the ground truth for result evaluation.

Table 1. Quantitative analysis of radio-frequency acoustic signals.

Values”
Imaging techniques Metrics
Filtered U-Net (34 539 585)”  U-Net-Lite (1 180 081)"  Proposed (1 476 609)"
X-ray acoustic MSE 0.0099 + 0.0053 0.0021 + 0.0033 0.0033 = 0.0076 0.0031 = 0.0068
PSNR 20.934 + 3.2003 29.394 + 4.6138 28.645 + 4.9885 28.930 +5.1021
SSIM 0.5851 +0.0961 0.8193 £ 0.1094 0.7993 +0.1399 0.8063 +0.1324
Protoacoustic MSE 0.0346 = 0.0202 0.0056 == 0.0017 0.0074 = 0.0020 0.0041 + 0.0024
PSNR 15.269 4 2.3976 22.678 +1.3303 21.477 +1.1673 24.305 + 1.9456
SSIM 0.3690 + 0.0368 0.6306 +0.0519 0.5957 +0.0478 0.7521 £ 0.0443
Electroacoustic MSE 0.0068 = 0.0014 0.0004 = 0.0001 0.0004 = 0.0001 0.0003 + 0.0001
PSNR 21.754+0.9117 34.38241.8914 34.490 4 1.9424 35.243 £ 1.8811
SSIM 0.5934 + 0.0491 0.8816+0.0178 0.8926 +0.0134 0.9018 £ 0.0122

* Values are calculated with data normalized to [0, 1], and expressed as mean = std.

® Number in brackets indicate the total parameters of the model.

4. Results

4.1. Radiation-induced acoustic signal denoising
Figure 5 shows a representative 10-frame-averaged x-ray-induced acoustic data in the testing dataset. It is the
image in the ring array plane shown in figure 2(a). The images (h1-m1) can be understood as a combination of
dose distribution and target shapes. The three high-intensity dots (orange to red) indicate the lead wires. Outside
the lead wires is the uniform agar phantom. The intensity falloff indicates the deposited dose falloff. It is caused
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Table 2. Quantitative analysis of reconstructed images.

Values®
Imaging techniques Metrics
Filtered U-Net (34 539 585)"  U-Net-Lite (1 180 081)>  Proposed (1 476 609)"
X-ray acoustic MSE 0.0114+0.0133 0.0069 =+ 0.0158 0.0075 £0.0173 0.0093 = 0.0204
PSNR 21.822 + 4.7896 28.773 £ 7.5435 28.458 + 7.4704 26.430 =+ 6.7062
SSIM 0.7769 4 0.1046 0.9317 £ 0.0797 0.9310 4 0.0798 0.9204 4 0.0861
Protoacoustic MSE 0.0178 £0.0148 0.0036 == 0.0014 0.0024 = 0.0014 0.0011 + 0.0003
PSNR 18.655 4 3.0915 24.809 = 2.0970 27.072 +2.900 29.604 + 1.2060
SSIM 0.8313 4 0.0602 0.9843 4+ 0.0031 0.9821 4 0.0034 0.9905 + 0.0014
Electroacoustic MSE 0.0321 £0.0218 0.0002 == 0.0002 0.0003 = 0.0004 0.0001 + 0.0001
PSNR 16.385 4 4.0832 39.965 + 4.0093 37.645 + 5.5664 40.804 £ 3.5220
SSIM 0.6307 4 0.1661 0.9859 4 0.0057 0.9804 + 0.0107 0.9878 = 0.0045

* Values are calculated with data normalized to [0, 1], and expressed as mean =+ std.
® Number in brackets indicate the total parameters of the model.

by the uneven exposure of x-ray radiation, which is inherited from the x-ray source used in this study. Artifacts
indicated by the red arrows are caused by the channel cross talk in the DAQ device used in this study. Due to the
few-frame average, the RF signals are severely contaminated by background noises. The lowpass filter partially
removes the noises but still yields poor SNR. Overall, the deep learning models, including U-Net, U-Net-Lite,
and the proposed GDI-CNN, all effectively remove the noises while accurately preserving the signals, showing
very good agreement with the reference 750-frame-averaged signals. The acoustic image reconstruction further
demonstrates the effectiveness of the deep learning methods. The targets in the agar phantom are completely
diminished in the few-frame-averaged reconstruction, and can be hardly distinguished in the lowpassed
reconstruction. In contrast, the image reconstructed from the deep learning denoised signals has clear and
accurate structures (as shown in figures 5(j)—(1)), which has high similarity to the reference image reconstructed
from the 750-frame-averaged signals.

Figure 6 shows a representative 20-frame-averaged protoacoustic data in the validation dataset (the one data
left out from the model training dataset). Figures 6(h)—(m) shows the 3D pressure in three orthogonal planes.
Specifically, referred to the experimental setup shown in figure 2(b), the first row is the plane orthogonal to the
proton beam, and the second and the third rows are the planes along the proton beam. Since the proton beams
are delivered to a homogenous acoustic medium, water, the results can be understood as pure dose distribution.
The high-intensity region (red) corresponds to the proton Bragg peak. The low-intensity region (blue) can be
ignored when interpreting the image. It corresponds to the negative acoustic signals in figures 6(A), (d). Noted
that the protoacoustic imaging technique is still under development, and the image interpretation is an ongoing
research subject. Artifacts indicated by the red arrows are caused by the channel cross talk in the DAQ device
used in this study. Signals cannot be distinguished from the few-frame-averaged signals. The lowpass filter
partially removes the noises but the signals are still highly contaminated. The deep learning models, including
U-Net, U-Net-Lite, and the proposed GDI-CNN, all effectively remove the noises while preserving the signals.
The acoustic image reconstructed from the few-frame-averaged signals has poor image quality with severe
artifact contamination, and the one from lowpass-filtered signals shows obvious artifacts and errors. In contrast,
the image reconstructed from the deep learning denoised signals shows a clear and accurate proton range,
agreeing well with the 1500-frame-averaged results. Furthermore, despite the lower intensity, the proposed
GDI-CNN demonstrates a more accurate shape than the U-Net and the U-Net-Lite, as indicated by
figures 6(j)—(m). In addition, GDI-CNN better removes the artifacts caused by the DAQ channel cross talk, as
indicated by the red arrows.

Figure 7 shows representative single-frame electroacoustic data in the testing dataset. Figures 7(h1)—(m1)
shows the image in the ring array plane shown in figure 2(c). The three high-intensity dots indicate the areas of
strong electrical energy deposition around the electrodes in the agar phantom. The intensity falloff indicates the
deposited energy falloff, which is caused by the electric field falloff. Artifacts indicated by the red arrows are
caused by the channel cross talk in the DAQ device used in this study. Similar to the x-ray-induced acoustic
results, the deep learning-based denoising method considerably improved the SNR of the electroacoustic
signals. The reconstructed acoustic images further confirm the effectiveness of the deep learning models.
However, as indicated by the black arrows in figures 7(c)—(f), the U-Net and the U-Net-Lite tend to smooth
out the low-intensity signals, which leads to a more severe limited-angle response in their denoised signals. In
contrast, the proposed GDI-CNN well preserve the low-intensity signals. Therefore, the cylinder
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Figure 5. X-ray-induced acoustic signals of (a) 10-frame-averaged data, and the data denoised by (b) lowpassed filter, (c) U-Net, (d)
U-Net-Lite, and (e) the proposed deep learning framework, and (f) is the 750-frame-averaged data. (g) shows the signal from an
example channel of transducer. (h1)—(m1) are the images reconstructed from (a)—(f), respectively. (h2)—(m2) are the zoom-in view
around the targets in (h1)-(m1). (h3)—(13) are the absolute difference between (h2)—(12) and (m2), respectively. Colorbar for images is
shown on the right side of (h1)—(m1), and colorbar for difference images is shown on the right side of (h3)—(13).

electrode distorts less in the proposed image than in the U-Net and U-Net-Lite images, as shown in
figures 7(j)—(m).

Tables 1 and 2 show the quantitative results in both acoustic signal and image domains. Compared to the
lowpass-filtered few-frame-averaged results, the signals/images denoised by the deep learning models showed
substantially improved quality. The proposed GDI-CNN shows the best performance for the protoacoustic and
electroacoustic denoising. For the x-ray-induced acoustic denoising, the U-Net demonstrates better quantitative
metrics on average among all samples than GDI-CNN. Note that the reference x-ray-induced acoustic images
reconstructed using 750-frame-averaged signals still showed considerable noises with limited SNR (shown in
figure 5(m)), possibly affecting the metric calculation based on the reference images. Quantitative evaluation
within regions of interest (ROIs) (targets in the x-ray-induced acoustic images, and electrodes in the
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Figure 6. Protoacoustic signals of (a) 20-frame-averaged data, and the data denoised by (b) lowpassed filter, (c) U-Net, (d) U-Net-Lite,
and (e) the proposed deep learning framework, and (f) is the 1500-frame-averaged data. (g) shows the signal from an example channel
of transducer. (h)—(m) are the images reconstructed from (a)—(f), respectively.

electroacoustic images) is consistent with the whole-image evaluation results. More details of the ROI evaluation
can be found in the appendix C.

4.2. Runtime
The proposed deep learning framework was implemented using the Keras framework with the TensorFlow
backend. The model training and testing were performed on a computer equipped with a CPU of Intel Xeon
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Figure 7. Electroacoustic signals of (a) single frame data, and the data denoised by (b) lowpassed filter, (c) U-Net, (d) U-Net-Lite, and
(e) the proposed deep learning framework, and (f) is the 750-frame-averaged data. (g) shows the signal from an example channel of
transducer. (h1)—(m1) are the images reconstructed from (a)—(f), respectively. (h2)-(m2) are the zoom-in view around the electrodes
in (h1)-(m1). (h3)-(13) are the absolute difference between (h2)—(12) and (m2), respectively. Colorbar for images is shown on the right
side of (h1)—(m1), and colorbar for difference images is shown on the right side of (h3)—(13).

and 32GB memory and a GPU of NVIDIA Titan RTX (24GB memory). The denoising process is fully
automated, which takes about 0.25 s for 128-channel x-ray-induced acoustic and electroacoustic data, and
about 1.4 s for 16 x 16-channel protoacoustic data. Parallel computing can be used to achieve real-time
denoising.

5. Discussion

Radiation-induced acoustic imaging is a novel modality to reveal the in vivo radiation energy deposition. It gives
rise to various techniques, such as the XACT for diagnostic imaging, the protoacoustic imaging for real-time
proton range verification in proton therapy, and the EAT for electroporation monitoring. To improve their
clinical utilities, it is highly desirable to reconstruct acoustic images from few-frame-averaged signals for (1)
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better temporal resolution with less dynamic blurriness, and (2) lower imaging dose. However, conventional
averaging method or filter-based algorithms can hardly achieve satisfactory SNR from few-frame-averaged
signals. In this study, we presented a deep learning-based framework to denoise few-frame-averaged acoustic
signals. Results demonstrated the effectiveness and efficiency of the proposed method in achieving accurate and
high-SNR signals from few-frame-averaged measurements. The acoustic image quality is considerably
improved using the signals denoised by the proposed method. Both the denoised few-frame-averaged signals
and the corresponding reconstructed images show very high agreement with the reference high-frame-
averaged ones.

The proposed deep learning-based framework can be generalized to denoise various kinds of acoustic
signals. The radiation pulse width can vary among different applications, resulting in acoustic signals of
different frequencies. As a result, signal features can be presented at various temporal scales, for which
inception blocks with multiple dilation rates are used in our proposed GDI-CNN. This inception-style
architecture enables multi-scale feature extraction, allowing the model to capture and process temporal
dependencies at diverse scales concurrently. This multi-scale representation improves the model’s sensitivity
to both rapid and slow time-varying signals, and thus generalizes the model for denoising acoustic signals
from various sources. In addition, these inception blocks offer an exponential expansion of the receptive field
while maintaining parameter efficiency compared to larger kernels. And without pooling operation, the
temporal and spatial resolutions are potentially better preserved by the model. In this study, x-ray acoustic
and electroacoustic signals are of mega-hertz, while protoacoustic signals are of tens of kilo-hertz due to the
different beam pulse durations. As shown in the results, the proposed model achieved excellent denoising
performance for all these modalities, indicating its generalizing ability for acoustic signals with large temporal
characteristic variations.

Results demonstrated GDI-CNN’s capabilities of reducing crosstalk artifacts in the involved acoustic
imaging. Crosstalk is primarily caused by inadequate insulation between channels. It can lead to unwanted
signals appearing in multiple channels simultaneously when background noises or interferences occur, which is
random. The proposed model can perceive the random noise as inconsistencies across the dataset.
Consequently, during the training phase, the model learns to ignore this noise to better approximate the
underlying denoising patterns. In addition, L2 regularization was used in the model training, which discouraged
the model from overfitting to the training data, particularly the random noise present in the reference fully-
averaged signals. This strategy can make the model generalize better and produce cleaner outputs during testing.
We also observe this ‘student beats the teacher’ phenomenon in previous studies (Ghafoorian et al 2018, Jiang
etal2019b), wherein the deep learning models can predict results of better quality than the training ground
truth.

The proposed method makes the radiation-induced acoustic imaging a valuable tool for both imaging and
therapy monitoring. In the context of ionizing imaging, ‘as low as reasonably achievable (ALARA)’ principle
suggests that reasonable efforts should be made to minimize the radiation exposure to patients to reduce the
risk of adverse effects. As shown in results, the proposed method achieves comparable XACT image quality to
750-frame-averaged results using only 10-frame-averaged signals, considerably reducing the imaging dose by
98.7%. For the therapy monitoring, temporal resolution is an important performance metric besides
accuracy. High temporal resolution not only ensures the real-time efficiency but also reduces dynamic
blurriness induced by temporal averaging. Results showed that the proposed method realized proton range
accuracy comparable to 1500-frame-averaged results using only 20-frame-averaged signals, which greatly
improves the proton range verification frequency from 0.5 to 37.5 Hz. And the method reached EAT image
quality comparable to 750-frame-averaged results using only a single frame signal, substantially increasing the
electric field monitoring frequency from 1 Hz to 1 kHz. Although the temporal frequency can be higher than
the clinical requirement, it pushes the temporal averaging to the minimum and provides a possibility to
visualize the energy deposition process with ultra-high temporal speed. These significant improvements can
substantially expand the clinical utilities of these novel imaging techniques for various applications in
diagnosis and treatment.

There are some limitations of this study. First, the datasets used in this study are relatively small due to the
laborious data collection. Additionally, experimental data were collected from agar phantoms (containing
targets) or water tanks for feasibility demonstration. In the future, more acoustic data from more complex
tissues and patients are warranted to further evaluate the clinical utility of the proposed denoising method.
Second, we focused on three kinds of RA signal denoising in this study due to the data availability of our labs. In
the future, more imaging modalities, such as photoacoustic and MV x-ray-induced acoustic data, can be
collected to further test the performance and generalizing ability of the proposed method. Third, we evaluated
the results using general metrics such as element-wise errors (MSE), peak SNR (PSNR), and structural
similarities (SSIM) in this study. In the future, task-specific metrics can be developed to make the evaluation
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more practical, which provides a more targeted assessment of the denoising performance. Furthermore, it is
noted that the proposed deep learning model can experience degraded performance when further reducing the
averaging frame number. Task-specific metrics can be used to explore the minimum averaging number required
by the model. Fourth, it is note that, in this study, we focused on the signal denoising which is a preprocessing
step for the RA imaging. The final RA image quality can be additionally improved by the advances in
reconstruction and postprocessing techniques. In the future, the efficacy of the proposed denoising technique
can be further evaluated in the entire chain of RA imaging. Fifth, we did not perform thorough ablation tests to
clarify the contribution of each component in the proposed GDI-CNN in this study. More careful examination
of the network structure can be conducted in future studies, which could further optimize the model’s
performance.

6. Conclusion

The proposed deep learning-based denoising framework is a generalized method for few-frame-averaged
acoustic signal denoising, which significantly improves the radiation-induced acoustic imaging’s clinical utilities
including low-dose XACT, real-time protoacoustic-based proton range verification, and real-time
electroacoustic-based electroporation monitoring.
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Appendix A. Detailed structure of the inception block in the proposed GDI-CNN

Figure A1 Shows the detailed structure of the inception block in the proposed GDI-CNN.
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Figure Al. Structure of the inception block. CONV is a dilation convolutional layer (filter size: 3 x 3, filter number: 16, dilation rate is
indicated in the box); BN is a batch normalization layer; L_RELU is the activation function (‘relu’ for x-ray-induced and
electroacoustic, and ‘leaky relu’ with 0.3 leaky rate for protoacoustic); CONCAT is a concatenation layer in the channel dimension.

Appendix B. Datasets involved in this study

For x-ray-induced acoustic, 58 data were acquired with different target sizes and locations (as shown in
figure B1). The dataset was randomly split into 47, 5, and 6 data for training, validation, and testing, respectively.
Asaresult, the testing data are not seen during the model training nor validation.

For protoacoustic, five data were acquired with different proton beam coordinates (as shown in figure B2).
Due to the limited dataset, one datum was randomly selected for validation while the other four data were used
for training. As aresult, the validation data are not seen during the model training. Figure B2 shows the
reconstruction of the protoacoustic dataset involved in this study.

For electroacoustic, 52 data were acquired with different electrode arrangements and locations (as shown in
figure B3). The dataset was randomly splitinto 43, 3, and 6 data for training, validation, and testing, respectively.
As aresult, the testing data are not seen during the model training nor validation. Figure B3 shows the
reconstruction of the XACT dataset involved in this study.

Due to the limited experimental resources in our lab, imaging targets have simple structures. To increase the
diversity among data, targets were designed with different sizes/shapes and at different positions relative to the
transducer, resulting in markedly different response in the acquired signals. In addition, noises in the acquired
acoustic signals are random. Therefore, the testing data can be considerably distinct from the training and
validation data. In future studies, evaluation of more complex structures and materials is warranted.
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b

(a) training data

Figure B1. The reconstruction of the x-ray-induced acoustic data in the (a) training, (b) validation, and (c) testing dataset. Each
subfigure in (a)—(c) shows the 2D image reconstructed from the fully-averaged signals of one datum. Different data were acquired with
different target sizes and locations. Hotspots indicate the targets (lead wires) in the phantom. Images are shown in the ‘jet’ colormap
(dynamic range is set to [0, max(image) “1.1]). (d) shows some example phantoms used in this study. The phantom size is about 5 cm
wide, 7 cmlong, and 4.5 cm high.
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(b) validation data

(c) testing data

Lead wires

(d) example phantoms

Figure B1. (Continued.)
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Figure B2. Three orthogonal views of the reconstruction of the protoacoustic data in the (a) training and (b) validation dataset. Each
column in (a) and (b) shows the axial, sagittal, and coronal views of the 3D image reconstructed from the fully-averaged signals of one
datum. Different data were acquired with different proton beam spot positions. Hotspots indicate the Bragg peaks of the proton
beams. Images are shown in the jet” colormap (dynamic range is set to [min(image)*0.7, max(image) “0.7]). (c) blue dots show the
separate spot positions (distance between spots of 1.0 cm) of proton beams in (a—b).
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(a) training data

Figure B3. The reconstruction of the electroacoustic data in the (a) training, (b) validation, and (c) testing dataset. Each subfigure in
(a)—(c) shows the 2D image reconstructed from the fully-averaged signals of one datum. Different data were acquired with different
electrode arrangements and locations. Hotspots indicate the targets (lead wires) in the phantom. Images are shown in the jet’
colormap (dynamic range is set to [0, max(image)“1.1]). (d) shows some example electrode arrangements. Electrodes were held by a
3D-printed multi-electrode holder (holes are arranged ina 3 x 3 layout and distance between adjacent holes is 5 mm). Experiment
device for (d) can be referred to the figure 2(c) in the manuscript.
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(d) example electrode arrangements

Figure B3. (Continued.)

Appendix C. Quantitative evaluation for ROIs in x-ray-induced and electroacoustic
imaging

For x-ray-induced acoustic images, ROIs were defined using a threshold of 55% of the maximum values of the
ground truth images. An example of the ROIs is shown in the following figure C1 in black solid lines.
Quantitative results are shown in the following table C1, which are consistent with the whole-image evaluation.

For electroacoustic images, ROIs were defined using a threshold of 45% of the maximum values of the
ground truth images. An example of the ROIs is shown in the following figure C2 in black solid lines.

Figure C1. Regions of interest (ROIs) defined in the x-ray-induced acoustic images. ROIs are indicated by the black solid lines.
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Figure C2. Regions of interest (ROIs) defined in the Electroacoustic images. ROIs are indicated by the black solid lines.

Table C1. Quantitative analysis of regions of interest (ROIs) in the x-ray-induced acoustic images.

Values®
Imaging techniques Metrics
Filtered U-Net (34 539 585)®  U-Net-Lite (1 180 081)°  Proposed (1 476 609)°
X-ray acoustic MSE 0.0182 +0.0244 0.0126 + 0.0283 0.0139 + 0.0305 0.0165 + 0.0355
PSNR 20.498 + 5.5069 25.308 + 6.4666 25.104 + 6.7423 23.733 + 6.4593
SSIM 0.8210 +0.1512 0.9360 + 0.0775 0.9322 +0.0791 0.9310 + 0.0845

* Values are calculated with data normalized to [0, 1], and expressed as mean =+ std.
 Numbers in brackets indicate the total parameters of the model.

Table C2. Quantitative analysis of regions of interest (ROIs) in the Electroacoustic images.

Values”
Imaging Techniques Metrics
Filtered U-Net (34 539 585)°  U-Net-Lite (1 180 081)°  Proposed (1 476 609)"
Electroacoustic MSE 0.0300 + 0.0337 0.0014 +0.0012 0.0018 +0.0017 0.0011 = 0.0008
PSNR 17.185 + 3.9856 30.196 + 3.6893 29.022 4+ 3.6921 30.341 4= 2.8499
SSIM 0.8555 + 0.1468 0.9897 + 0.0095 0.9871 4+ 0.0125 0.9920 4 0.0061

* Values are calculated with data normalized to [0, 1], and expressed as mean =+ std.
® Numbers in brackets indicate the total parameters of the model.

Quantitative results are shown in the following table C2, which are consistent with the whole-image evaluation.
These results confirm GDI-CNN’s superior performance to U-Net in terms of electrode shape accuracy.
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