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Abstract
Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation
energydeposition in tissues, enablingnew imagingmodalities and real-time therapymonitoring.However,
RA imaging signal often suffers frompoor signal-to-noise ratios (SNRs), thus requiringmeasuring
hundreds or even thousandsof frames for averaging to achieve satisfactory quality. This repetitive
measurement increases ionizing radiationdose anddegrades the temporal resolutionofRA imaging,
limiting its clinical utility. In this study,wedeveloped a general deep inception convolutional neural
network (GDI-CNN) to denoiseRA signals to substantially reduce thenumberof framesneeded for
averaging.Thenetwork employs convolutionswithmultiple dilations in each inceptionblock, allowing it
to encode anddecode signal featureswith varying temporal characteristics. This design generalizesGDI-
CNNtodenoise acoustic signals resulting fromdifferent radiation sources. Theperformanceof the
proposedmethodwas evaluatedusing experimental data of x-ray-induced acoustic, protoacoustic, and
electroacoustic signals bothqualitatively andquantitatively. Results demonstrated the effectiveness of
GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results
using only 10-frame-averagedmeasurements, reducing the imagingdose of x-ray-acoustic computed
tomography (XACT)by98.7%; it realizedproton range accuracyparallel to 1500-frame-averaged results
using only 20-frame-averagedmeasurements, improving the range verification frequency inproton
therapy from0.5 to 37.5Hz; it reached electroacoustic imagequality comparable to 750-frame-averaged
results usingonly a single frame signal, increasing the electricfieldmonitoring frequency from1 fps to 1k
fps.Compared to lowpassfilter-baseddenoising, the proposedmethoddemonstrated considerably lower
mean-squared-errors, higher peak-SNR, andhigher structural similaritieswith respect to the corresp-
ondinghigh-frame-averagedmeasurements. Theproposeddeep learning-baseddenoising framework is a
generalizedmethod for few-frame-averaged acoustic signal denoising,which significantly improves the
RA imaging’s clinical utilities for low-dose imaging and real-time therapymonitoring.

1. Introduction

Radiation deposits energy when it travels through humanbodies and interacts with tissue atoms through
variousmechanisms, which enables numerousmedical applications. Radiation has beenwidely used for
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diagnostic imaging. For example, low-energy (kV) x-ray has beenwidely used inmammography or computed
tomography (CT) for tissue characterization and disease diagnosis. Radiation has also beenwidely used for
cancer treatment. For example, ionizing radiation has been extensively developed in radiation therapy using
photon, electron, or proton beams to kill cancer cells. Such radiation particles damage theDNA structures in
living cells directly or indirectly with free radicals and ions, preventing them fromdividing and growing.
Non-ionizing radiation has also been developed for cancer treatments, such as radiofrequency ablation and
electroporation.

Despite the success of employing radiation inmedical applications, the efficacy of using radiation for
imaging and treatment remains to be improved. One critical issue is the lack of visibility of radiation energy
deposition in tissues. For imaging, x-ray-based imagingmodalities have historically relied on detecting
penetrating radiation to visualize the internal tissues. Thismechanismnecessitates higher dose for imaging and
full-view acquisition for three-dimensional (3D) reconstruction. For treatment, the efficacy of radiation
depends on the energy deposition accuracy, which can be affected bymany factors such as patient positioning,
anatomy changes, and dose calculation uncertainties. Currently, there is a lack of effective tools to verify the
treatment accuracy in real time to ensure the efficacy for tumor control and normal tissue sparing. For example,
in radiation therapy, portal imaging can provide some 2D in vivo dose deposition, but it cannot provide 3Ddose
verification in real time.

Various techniques are being investigated to address the challenges above for radiation-based imaging and
treatment. One promising direction is the radiation-induced acoustic (RA) imaging (Hickling et al 2014, 2018),
which involves detecting acoustic signals generated frompulsed radiation beams and can be detected by
ultrasound transducers. The pressure distribution reconstructed from these acoustic signals linearly correlates
to the radiation energy deposition,making RA imaging a valuable tool for diagnostic imaging and therapy
monitoring. For example, x-ray-induced acoustic computed tomography (XACT) is a novel imaging technique
that excites the tissues with pulsed kV x-ray beams to induce acoustic signals (Xiang et al 2016, Li et al 2020,
Robertson et al 2020, Samant et al 2020, Pandey et al 2021, Pogue et al 2021,Wang et al 2021a). It leverages the
high contrast of tissue’s radiation absorption properties to revealfine structures deepwithin the body.
Compared to x-ray imaging andCT, XACT featuresmuch lower imaging dose and can reconstruct 3D images
from a single-view acquisition. Similar to XACT, proton pencil beams in proton therapy can also induce
detectable acoustic signals, giving rise to the protoacoustic imaging technique for real-time proton dose
verification (Hayakawa et al 1995, Jones et al 2014, Ahmad et al 2015, Kipergil et al 2017, Jones et al 2018,Nie et al
2018, VanDongen et al 2019, Deurvorst et al 2022).Mast et al (2023)demonstrated the feasibility ofmeasuring
and reconstructing the proton irradiation-induced thermoacoustic source distribution using ultrasound arrays.
Kalunga et al (2023) found that the ultrasound sensor arrangement can affect the localization accuracy of proton
Bragg peak, and reported the in-silico localization errors within 2%when the sensors are optimally positioned
and the experimental localization errors between 0.4 and 1.0 mmdepending on the sensor arrangement and
beam energy. Samant et al (2022) performed a simulation study to demonstrate the feasibility of the 3D
protoacoustic imaging using a planar ultrasound array for proton dose verification.

In addition, studies have found that electric fields used in the electroporation for tumor ablation can also
induce acoustic signals due to the electrical energy deposition (Neal et al 2014, Zarafshani et al 2019a, 2019b,
Wang et al 2019, 2021a). This phenomenon led to the development of the electroacoustic tomography (EAT)
technique, allowing the electroporation process to bemonitored in real time.

Despite the promise of these novel RA techniques, a significant challengewith RA imaging is its low signal-
to-noise ratio (SNR) in the acoustic signal. The detected acoustic signals are usually contaminatedwith
background noises, such as electronic and system thermal noises, resulting in poor SNR and limiting the
techniques’utility. Averaging is themost commonway to improve the signal SNRby eliminating uncorrelated
randomnoise (You andChoi 2020). Typically, hundreds to thousands of frames are required to be averaged to
achieve satisfactory SNR (Jones et al 2015, Tang et al 2017), which significantly prolongs the imaging time and
degrades the temporal resolution for therapymonitoring andmoving-target imaging. In the case of ionizing
radiation-based techniques such as XACT, the use of averaging requires the acquisition of a large number of
frames, leading to a considerable increase in the imaging dose. Filtering is another widely used technique to
denoise acoustic signals. It involves decomposing signals in different domains (e.g. frequencies andwavelet
coefficients) and ruling out noises with thresholds (Kruger et al 1995,Wang et al 2004, Patil andChavan 2012,
Ngui et al 2013, Najafzadeh et al 2020). Themain limitation of thismethod lies in the tradeoff between reducing
the residual noises and preserving the true acoustic signals.

In the recent decade, deep learning has demonstrated excellent performance in variousmedical imaging
tasks (Balakrishnan et al 2018,Würfl et al 2018, Zhu et al 2018,Hesamian et al 2019, Jiang et al 2020, Chang et al
2021, Jiang et al 2022a). Its applications have also been explored in acoustic imaging. Antholzer et al (2019)
developed a deep convolutional neural network (CNN) to reconstruct accurate photoacoustic images from
sparsely sampled data.Hariri et al (2020) used amulti-level wavelet CNN to improve the low-fluence
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photoacoustic image quality. Jiang et al (2022b) developed a cascadedCNN to correct the limited-view artifacts
in thematrix array-based proton acoustic imaging. In these studies, deep learningmodels were used as a post-
processing technique, which reduced the artifacts and enhanced the quality of the images reconstructed by
conventional algorithms. Earlier research (Jiang et al 2019a, 2021, 2022a) has indicated that themodels can
achieve better performance by utilizing advanced signal preprocessingmethods to improve the input quality.
Several studies have explored this preprocessing area for acoustic imaging. Gutta et al (2017)used a fully-
connected network tomap the limited bandwidth to the full bandwidth photoacoustic signals. Awasthi et al
(2020) employed aCNN to remove the gaussian noise in photoacoustic signals in a simulation study. Yao et al
(2020) proposed a recurrent neural network to verify proton range in one-dimension (1D), and later, proposed a
different deep learningmodel withwavelet decomposition (Yao et al 2021) to reconstruct 3Dproton rangewith
high accuracy. Both studies used the acoustic signalsmeasured by sparsely-distributed ultrasound sensors in a
simulation study. And for the few-average signal denoising,Wang et al (2021b) proposed a dictionary learning-
basedworkflow for both signal denoising and image enhancement in the photoacousticmicroscopy (PAM),
which reduced the laserfluence by 5 timeswithout compromising the image quality. However, the proposed
method used theK-SVD algorithm for sparse coding, assuming that the structures in the underlying signals have
sparse representations. This assumptionmay not be true for imageswith complex structures and thus limits its
applications.Wang et al (2023) performed a preliminary study to demonstrate the feasibility of deep learning to
verify protonBragg peak using few-averaged protoacoustic signals. However, the experimental data involved in
this study is limited and they aremeasured using accelerometers at individual points in 1D.No images are
available.

In this study, we developed a general deep-learningmodel to generate accurate and high-SNR acoustic
signals from few-frame-averagedmeasurements. Compared to the previous dictionary learning-basedmethod
(Wang et al 2021b), the proposed deep learning-basedmethod does not assume the properties of underlying
signals and images,making itmore generalizable for different tasks. To handle signals with diverse time
windows, convolutions withmultiple dilations are used in each inception block in the proposedmodel. This
design allows for the encoding and decoding of signal features at different temporal scales. Themodel’s
performancewas evaluated using the experimental data of kV x-ray-induced acoustic, protoacoustic, and
electroacoustic signals, which have potential applications in (1) low-dose imagingwithXACT, (2) real-time
range verification in proton therapy using protoacoustic imaging, and (3) real-time therapymonitoring for
electroporation using EAT. Results showed that the proposedmodel realized high-SNR signals from extremely
few-frame acquisitions for allmodalities, demonstrating themodel’s excellent generalizing ability across various
RA techniques using different radiation sources. Thismajor advance can greatly improve the clinical utilities of
these novel radiation-induced acoustic techniques for low-dose diagnostic imaging and real-time treatment
verification.

2.Methods

2.1. Problem formulation
Let xäRC T´ be the real-valued RF signals acquiredwith a transducer havingC channels inT timesteps, and y
äRC T´ be the corresponding ground truth signals. Then the problem can be formulated as finding a denoising
pattern between x and y so that

f x yarg min
f 2

2|| ( )– ||

where f denotes the denoising function estimated by a deep learningmodel in this study.

2.2.Deep learning-based RF acoustic signal denoising
In this study, a general deep inceptionCNN (GDI-CNN)was used for the RF acoustic signal denoising.
The few-averaged noisy signals are used as the input to themodel, which generates the high-SNRdenoised
signals.

The proposedGDI-CNNutilizes the encoder-decoder architecture. In the encoder branch, seven inception
blocks are stacked to extract high-dimensional hidden features from the noisy input signals. In the decoder
branch, seven inception blocks are stacked to decode the features to generate the final denoised signals. In each
inception block, seven convolutional layers with increasing dilation rates are used to capture features at different
temporal resolutions.More details of the inception block can be found in the following figure A1 in the
appendix A. Following the last inception block, a convolutional layer (filter size: 1× 1,filter number: 1)with an
activation function (‘relu’ for x-ray-induced and electroacoustic, and ‘leaky relu’with 0.3 leaky rate for
protoacoustic) is used to generate thefinal output denoised signals.
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Compared to the original inception network (Szegedy et al 2015), this study uses convolutions with different
dilations, rather than different filter sizes, to further enlarge the inception fields while significantly reducing the
computational assumptions. Besides, residual connections bridge the inception blocks in the decoderwith the
mirrored ones in the encoder to facilitate the training of deep networks. Figure 1 shows the structure of the
proposed general deep inception convolutional neural network (GDI-CNN). Source codes of themodel
implementationwill be available publicly upon the acceptance of themanuscript.

3. Experiment design

3.1.Data acquisition
In this study, radiation-induced acoustic data of variousmodalities were collected to verify the proposed
method’s performance in few-frame-averaged signal denoising. For eachmodality, data were collectedwith
different target geometries; and for each datum, RF signals fromN repeated pulses (N= 750 for x-ray-induced
acoustic and electroacoustic, andN= 1500 for protoacoustic)were collected, andwere averaged to yield theN-
frame-averaged signal, or fully-averaged signal, as the reference signal formodel training and performance
evaluation. The experiment setup of the x-ray-induced acoustic, protoacoustic, and electroacoustic data
collection is illustrated infigure 2.Details are described in sections 3.1.1–3.1.3.

3.1.1. X-ray-induced acoustic data
X-ray acoustic signals were generated by irradiating agar phantoms using a portable x-ray source as shown in
figure 2(a). Specifically, a battery-powered pulsed x-ray source (XR200, Golden Engineering, IN,USA) operated
at 150 kVpwas used to generate 50-nanosecond x-ray pulses (2.6 mR, cone angle: 40°) at a repetition rate of
20 Hz. X-ray beamswere projected from the bottomof awater tank at a distance of 30 cm, inwhich a target-
holding phantomwas placed along the beam trail. The phantomsweremade of 3%agar-water solution
(BactoTM, Becton, Dickinson andCompany,NJ, USA), containing various targetsmade of 1/16 inch and 1/8
inch thick leadwires.

The acoustic signals were collected by a ring-shaped 128-channel ultrasound transducer array (PAprobe,
Doppler Co. Limited, Guangzhou, China; central frequency: 5 MHz, bandwidth:�60%). The detector was
placed in thewater tank, surrounding the phantom. To trigger the data acquisition, a Ce:Lu2SiO5 crystal (MTI
Corporation, CA,USA)was used to scintillate at awavelength of 418 nmupon incident with stray x-rays. The
scintillator was connected to a photodetector (PDA100A, Thorlabs, NJ, USA) for light-to-volt conversion and
followedwith awaveform generator (33600A, Keysight, CA,USA) to relay the trigger signal to the 128-channel
data acquisition system (SonixDAQ,DKMedical, Canada). Raw acoustic signals were conditioned by a low-
noise preamplifier (TomoWave Laboratories, Inc., TX,USA). For each trigger, acoustic signals were collected for
67.5 μs (sampling rate: 40MHz), forming a frame. For each x-ray acoustic data acquisition, 750 frameswere
collected to ensure the SNR.

In this experiment, 58 x-ray-induced acoustic data with different target sizes and locationswere collected for
model training and testing.

Figure 1. Structure of the proposed general deep inception convolutional neural network (GDI-CNN). It takes few-averaged signal as
input, extracts and decodes hidden features with stacked inception convolutions (purple arrows ) and residual connections (green
arrows ), and generates denoised signal in the end.
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3.1.2. Protoacoustic data
Protoacoustic signals were generated by irradiating awater tank using a clinical synchrocyclotron as shown in
figure 2(b). Specifically, a clinical synchrocyclotronMevion s250i (MevionMedical Systems,MA,USA)was used
to deliver proton beams (energy: 107.6 MeV, proton range: 8.69 cm, beampulse width: 4 μs, uncollimated Bragg
Peak) at a repetition rate of 750 Hz. The charge of each proton beamwas set to 8 pC, resulting in a dose of
about 1 cGy.

Thewater tank has a dimension of 32 cm× 32 cm× 40 cm andwas placed on the treatment couch.
The acoustic signals were collected by a customplanar 16× 16-channel ultrasound transducer array (Matrix

probe, Doppler Co. Limited, Guangzhou, China; central frequency: 1 MHz, bandwidth:�60%, element size:
3× 3 mm2). The detector was placed in thewater tank at a depth of 12.7 cmwith respect to the proton beam
entrance. To trigger the data acquisition, a scintillation crystal (BC408, Epic-Crystal, Guangzhou, China)was
attached to the beam entrancewindow to detect the proton beampassage. The scintillator outputwas connected
to a function generator (SDG-2122X, SIGLENT,OH,USA) to relay the trigger signal to the data acquisition
system (LegionADC, PhotosoundTechnologies, USA), whichwas housed in a Borated Polyethylene (BPE)
shielded box for neutron shielding. For each trigger, acoustic signals were collected for 67.5 μs (sampling rate:

Figure 2. Illustration (left) and photos (right) of the experiment setup of (a) x-ray-induced acoustic data collection, (b) protoacoustic
data collection, and (c) electroacoustic data collection.
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40MHz), forming a frame. For each protoacoustic data acquisition, 1500 frameswere collected to ensure
the SNR.

In this experiment, 5 protoacoustic data with various proton beam coordinates were collected for themodel
training and testing.

3.1.3. Electroacoustic data
Electroacoustic signals were generated by irradiating agar phantoms using an electrical pulse generator as shown
infigure 2(c). Specifically, a customnanosecond electrical pulse generator (VilniusTECH, Lithuania)was used to
deliver 100-nanosecond electrical pulses (repetition rate: 1000 Hz) via several tungsten electrodes (573400,
A&MSystems, Carlsborg, USA) to an agar phantom in awater tank. The voltage on the electrodes was set to
100Volt, resulting in an electricfield of hundreds of volts per centimeter. Amulti-electrode holder was
3D-printed to enable different electrode arrangements. Distances between electrodes varied between 5
and 15 mm.

The acoustic signals were collected using the same 128-channel ring arraymentioned in section 3.1.1. The
detector was placed in thewater tank, surrounding the phantom. Apolyethylene filmwas used to isolate the
electrodes from the ultrasound transducer to reduce the direct impact of the high-voltage pulsed electric field on
the piezoelectric ultrasound probe surface. To trigger the data acquisition, a parallelly connected high-voltage
probe (P4250, Keysight Technologies, USA)was used to detect the pulse generation directly from the output.
The other ends of the probes were connected to a function generator to relay the trigger signal to the 128-channel
data acquisition system (SonixDAQ,DKMedical, Canada). Raw electroacoustic signals were boosted by a
custom low-noise preamplifier. For each trigger, acoustic signals were collected for 67.5 μs (sampling rate:
40MHz), forming a frame. For each electroacoustic data acquisition, 750 frameswere collected to ensure
the SNR.

In this experiment, 52 electroacoustic data from various electrode arrangements and locationswere
collected formodel training and testing.

3.2.Model training
The proposedmodel was trained in amodality-specificmethod. For each imaging technique, amodel was
trained and tested using the corresponding dataset. Specifically, for theXACT, 58 datawere acquired, of which
47, 5, and 6 datawere used formodel training, validation, and testing, respectively. For each datum, 10 frames
were averaged to generate a sample, whichwas used as the input to themodel; and the 750-frame-averaged
signals were used as the ‘ground truth’ signals. As a result, 3525 samples were used formodel training, 375
samples were used for validation, and 450 samples were used for testing. For the protoacoustic, five datawere
acquired. Due to the limited dataset, four of thefive datawere used formodel training, and the other one data
was used formodel validation. For each datum, 20 frameswere averaged to generate a sample, whichwas used as
the input to themodel; and the 1500-frame-averaged signals were used as ground truth. As a result, 300 samples
were used formodel training and 75 samples were used for validation. For the EAT, 52 datawere acquired, of
which 43 datawere used formodel training, 3 for validation, and 6 for testing. For each datum, a single framewas
a sample, whichwas used as themodel input; and the 750-frame-averaged signals were used as the ground truth.
To balance the computing time andmodel performance, one frame out of every tenwas used for denoising. As a
result, 3225 samples were used formodel training, 225 samples were used for validation, and 450 sampleswere
used for testing.

To address the negativity caused by the limited bandwidth (Shen et al 2020), for the x-ray-induced acoustic
and electroacoustic signals, envelopewas performed on the 750-frame-averaged signals; for the protoacoustic
signals, we keep the original signals as the negativity is still under investigation and there is no consensus in
addressing this issue.

To improve the learning target (‘ground truth’ signal) quality for the protoacoustic data, the discrete wavelet
transform (DWT)was used to further improve the SNRof the 1500-frame-averaged signals, which uses a scaled
and predefinedwavelet and scaling functions to convolute with signals. ForDWT,we implemented the ‘Coiflets’
waveletfilter (order= 5) (Ngui et al 2013) and the ‘sqtwolog’ threshold selection (Donoho and Johnstone 1994)
using theMATLABwavelet toolbox. The SNRs of the fully-averaged (750-frame-averaged) signals were already
good and thus nowavelet denoisingwas performed for these twomodalities.

During themodel training, the few-frame-averaged signal was used as input to themodel, whoseweights
were optimized byminimizing themean squared errors (MSE) between the denoised signal and the
corresponding ground truth signal. The optimizer was set to ‘Adam’ (Kingma andBa 2014)with a learning rate
of 0.001. The batch size was set to 1 to account for thememory.

An overall workflow for themodel training is shown infigure 3.
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3.3.Model evaluation
The signals denoisedby theproposedmodelwere compared to the ‘ground truth’ signals.Meanwhile, thewidelyused
lowpassfilteringwas also included in this study as a comparisonbaseline. The cutoff frequency for the lowpassfilter
was set to 6MHz, 200 kHz, and6MHz for x-ray-induced acoustic, protoacoustic, and electroacoustic signals,
respectively.The lowpassfilterwas implementedusing theMATLAB signal processing toolbox.

To further demonstrate the values of the denoising, acoustic images were reconstructed using the back-
projection algorithm from the denoised signals, andwere then compared to those reconstructed from the
ground truth signals. An overall workflow for themodel evaluation is shown infigure 4.

There are some slight differences in the preprocessing of RA signals for differentmodalities before
reconstruction. The differences are due to the different characteristics of the acoustic data and correspondingly
the variations in the routine preprocessingmethods used for different data. For the x-ray-induced acoustic and
electroacoustic data, envelopewas performed to address the negative values caused by the limited bandwidth;
the negativity issuewas not addressed for the protoacoustic data in this study as this issue is still under
investigation and no consensus is established. For the protoacoustic data, the fully-averaged signals still have
poor SNR, and thuswavelet was used for denoising before reconstruction; the fully-averaged signals for the
x-ray-induced and electroacoustic signals have good SNRs, and thus nowavelet was performed.

The results were evaluated both qualitatively and quantitatively usingmetrics ofMSE, peak signal-to-noise
ratio (PSNR), and structural similarity index (SSIM).

Theperformanceof theproposedGDI-CNNwas compared to theU-Net for all three involvedmodalities. For
U-Net,we implemented twoversions: theoriginalU-Net (Ronneberger et al2015) (hereafter referred to asU-Net), and
the liteU-Net (hereafter referred to asU-Net-Lite).U-Net-Lite has the samearchitecture (e.g. scale levels and skip
connections) asU-Netbuthas fewer convolutional layers and fewerfilter numbers in each scale level,whichmakes it
have a similar order of trainableparameters to theproposedGDI-CNN.Thenumberof themodel’s parameters is
shown in tables 1 and2.U-Net andU-Net-Litewere trainedand tested following the sameprocess as theproposed
GDI-CNN.

Figure 3.Model trainingworkflowof (a) x-ray-induced acoustic data, (b) protoacoustic data, and (c) electroacoustic data.
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4. Results

4.1. Radiation-induced acoustic signal denoising
Figure 5 shows a representative 10-frame-averaged x-ray-induced acoustic data in the testing dataset. It is the
image in the ring array plane shown infigure 2(a). The images (h1–m1) can be understood as a combination of
dose distribution and target shapes. The three high-intensity dots (orange to red) indicate the leadwires. Outside
the leadwires is the uniform agar phantom. The intensity falloff indicates the deposited dose falloff. It is caused

Figure 4Evaluationworkflowof (a) x-ray-induced acoustic data, (b) protoacoustic data, and (c) electroacoustic data. Reference
signals/images are used as the ground truth for result evaluation.

Table 1.Quantitative analysis of radio-frequency acoustic signals.

Imaging techniques Metrics
Valuesa

Filtered U-Net (34 539 585) b U-Net-Lite (1 180 081) b Proposed (1 476 609) b

X-ray acoustic MSE 0.0099± 0.0053 0.0021± 0.0033 0.0033± 0.0076 0.0031± 0.0068

PSNR 20.934± 3.2003 29.394± 4.6138 28.645± 4.9885 28.930± 5.1021

SSIM 0.5851± 0.0961 0.8193± 0.1094 0.7993± 0.1399 0.8063± 0.1324

Protoacoustic MSE 0.0346± 0.0202 0.0056± 0.0017 0.0074± 0.0020 0.0041± 0.0024

PSNR 15.269± 2.3976 22.678± 1.3303 21.477± 1.1673 24.305± 1.9456

SSIM 0.3690± 0.0368 0.6306± 0.0519 0.5957± 0.0478 0.7521± 0.0443

Electroacoustic MSE 0.0068± 0.0014 0.0004± 0.0001 0.0004± 0.0001 0.0003± 0.0001

PSNR 21.754± 0.9117 34.382± 1.8914 34.490± 1.9424 35.243± 1.8811

SSIM 0.5934± 0.0491 0.8816± 0.0178 0.8926± 0.0134 0.9018± 0.0122

a Values are calculatedwith data normalized to [0, 1], and expressed asmean± std.
b Number in brackets indicate the total parameters of themodel.
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by the uneven exposure of x-ray radiation, which is inherited from the x-ray source used in this study. Artifacts
indicated by the red arrows are caused by the channel cross talk in theDAQdevice used in this study. Due to the
few-frame average, the RF signals are severely contaminated by background noises. The lowpass filter partially
removes the noises but still yields poor SNR.Overall, the deep learningmodels, includingU-Net, U-Net-Lite,
and the proposedGDI-CNN, all effectively remove the noises while accurately preserving the signals, showing
very good agreement with the reference 750-frame-averaged signals. The acoustic image reconstruction further
demonstrates the effectiveness of the deep learningmethods. The targets in the agar phantomare completely
diminished in the few-frame-averaged reconstruction, and can be hardly distinguished in the lowpassed
reconstruction. In contrast, the image reconstructed from the deep learning denoised signals has clear and
accurate structures (as shown infigures 5(j)–(l)), which has high similarity to the reference image reconstructed
from the 750-frame-averaged signals.

Figure 6 shows a representative 20-frame-averaged protoacoustic data in the validation dataset (the one data
left out from themodel training dataset). Figures 6(h)–(m) shows the 3Dpressure in three orthogonal planes.
Specifically, referred to the experimental setup shown infigure 2(b), thefirst row is the plane orthogonal to the
proton beam, and the second and the third rows are the planes along the proton beam. Since the proton beams
are delivered to a homogenous acousticmedium,water, the results can be understood as pure dose distribution.
The high-intensity region (red) corresponds to the protonBragg peak. The low-intensity region (blue) can be
ignoredwhen interpreting the image. It corresponds to the negative acoustic signals infigures 6(A), (d). Noted
that the protoacoustic imaging technique is still under development, and the image interpretation is an ongoing
research subject. Artifacts indicated by the red arrows are caused by the channel cross talk in theDAQdevice
used in this study. Signals cannot be distinguished from the few-frame-averaged signals. The lowpass filter
partially removes the noises but the signals are still highly contaminated. The deep learningmodels, including
U-Net, U-Net-Lite, and the proposedGDI-CNN, all effectively remove the noises while preserving the signals.
The acoustic image reconstructed from the few-frame-averaged signals has poor image quality with severe
artifact contamination, and the one from lowpass-filtered signals shows obvious artifacts and errors. In contrast,
the image reconstructed from the deep learning denoised signals shows a clear and accurate proton range,
agreeingwell with the 1500-frame-averaged results. Furthermore, despite the lower intensity, the proposed
GDI-CNNdemonstrates amore accurate shape than theU-Net and theU-Net-Lite, as indicated by
figures 6(j)–(m). In addition, GDI-CNNbetter removes the artifacts caused by theDAQchannel cross talk, as
indicated by the red arrows.

Figure 7 shows representative single-frame electroacoustic data in the testing dataset. Figures 7(h1)–(m1)
shows the image in the ring array plane shown infigure 2(c). The three high-intensity dots indicate the areas of
strong electrical energy deposition around the electrodes in the agar phantom. The intensity falloff indicates the
deposited energy falloff, which is caused by the electric field falloff. Artifacts indicated by the red arrows are
caused by the channel cross talk in theDAQdevice used in this study. Similar to the x-ray-induced acoustic
results, the deep learning-based denoisingmethod considerably improved the SNRof the electroacoustic
signals. The reconstructed acoustic images further confirm the effectiveness of the deep learningmodels.
However, as indicated by the black arrows infigures 7(c)–(f), theU-Net and theU-Net-Lite tend to smooth
out the low-intensity signals, which leads to amore severe limited-angle response in their denoised signals. In
contrast, the proposedGDI-CNNwell preserve the low-intensity signals. Therefore, the cylinder

Table 2.Quantitative analysis of reconstructed images.

Imaging techniques Metrics
Valuesa

Filtered U-Net (34 539 585)b U-Net-Lite (1 180 081) b Proposed (1 476 609) b

X-ray acoustic MSE 0.0114± 0.0133 0.0069± 0.0158 0.0075± 0.0173 0.0093± 0.0204

PSNR 21.822± 4.7896 28.773± 7.5435 28.458± 7.4704 26.430± 6.7062

SSIM 0.7769± 0.1046 0.9317± 0.0797 0.9310± 0.0798 0.9204± 0.0861

Protoacoustic MSE 0.0178± 0.0148 0.0036± 0.0014 0.0024± 0.0014 0.0011± 0.0003

PSNR 18.655± 3.0915 24.809± 2.0970 27.072± 2.900 29.604± 1.2060

SSIM 0.8313± 0.0602 0.9843± 0.0031 0.9821± 0.0034 0.9905± 0.0014

Electroacoustic MSE 0.0321± 0.0218 0.0002± 0.0002 0.0003± 0.0004 0.0001± 0.0001

PSNR 16.385± 4.0832 39.965± 4.0093 37.645± 5.5664 40.804± 3.5220

SSIM 0.6307± 0.1661 0.9859± 0.0057 0.9804± 0.0107 0.9878± 0.0045

a Values are calculatedwith data normalized to [0, 1], and expressed asmean± std.
b Number in brackets indicate the total parameters of themodel.
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electrode distorts less in the proposed image than in theU-Net andU-Net-Lite images, as shown in
figures 7(j)–(m).

Tables 1 and 2 show the quantitative results in both acoustic signal and image domains. Compared to the
lowpass-filtered few-frame-averaged results, the signals/images denoised by the deep learningmodels showed
substantially improved quality. The proposedGDI-CNN shows the best performance for the protoacoustic and
electroacoustic denoising. For the x-ray-induced acoustic denoising, theU-Net demonstrates better quantitative
metrics on average among all samples thanGDI-CNN.Note that the reference x-ray-induced acoustic images
reconstructed using 750-frame-averaged signals still showed considerable noises with limited SNR (shown in
figure 5(m)), possibly affecting themetric calculation based on the reference images. Quantitative evaluation
within regions of interest (ROIs) (targets in the x-ray-induced acoustic images, and electrodes in the

Figure 5.X-ray-induced acoustic signals of (a) 10-frame-averaged data, and the data denoised by (b) lowpassedfilter, (c)U-Net, (d)
U-Net-Lite, and (e) the proposed deep learning framework, and (f) is the 750-frame-averaged data. (g) shows the signal from an
example channel of transducer. (h1)–(m1) are the images reconstructed from (a)–(f), respectively. (h2)–(m2) are the zoom-in view
around the targets in (h1)–(m1). (h3)–(l3) are the absolute difference between (h2)–(l2) and (m2), respectively. Colorbar for images is
shown on the right side of (h1)–(m1), and colorbar for difference images is shown on the right side of (h3)–(l3).
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electroacoustic images) is consistent with thewhole-image evaluation results.More details of the ROI evaluation
can be found in the appendix C.

4.2. Runtime
The proposed deep learning framework was implemented using the Keras frameworkwith the TensorFlow
backend. Themodel training and testing were performed on a computer equippedwith a CPUof Intel Xeon

Figure 6.Protoacoustic signals of (a) 20-frame-averaged data, and the data denoised by (b) lowpassedfilter, (c)U-Net, (d)U-Net-Lite,
and (e) the proposed deep learning framework, and (f) is the 1500-frame-averaged data. (g) shows the signal from an example channel
of transducer. (h)–(m) are the images reconstructed from (a)–(f), respectively.
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and 32GBmemory and aGPUofNVIDIATitan RTX (24GBmemory). The denoising process is fully
automated, which takes about 0.25 s for 128-channel x-ray-induced acoustic and electroacoustic data, and
about 1.4 s for 16× 16-channel protoacoustic data. Parallel computing can be used to achieve real-time
denoising.

5.Discussion

Radiation-induced acoustic imaging is a novelmodality to reveal the in vivo radiation energy deposition. It gives
rise to various techniques, such as the XACT for diagnostic imaging, the protoacoustic imaging for real-time
proton range verification in proton therapy, and the EAT for electroporationmonitoring. To improve their
clinical utilities, it is highly desirable to reconstruct acoustic images from few-frame-averaged signals for (1)

Figure 7.Electroacoustic signals of (a) single frame data, and the data denoised by (b) lowpassedfilter, (c)U-Net, (d)U-Net-Lite, and
(e) the proposed deep learning framework, and (f) is the 750-frame-averaged data. (g) shows the signal from an example channel of
transducer. (h1)–(m1) are the images reconstructed from (a)–(f), respectively. (h2)–(m2) are the zoom-in view around the electrodes
in (h1)–(m1). (h3)–(l3) are the absolute difference between (h2)–(l2) and (m2), respectively. Colorbar for images is shown on the right
side of (h1)–(m1), and colorbar for difference images is shown on the right side of (h3)–(l3).
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better temporal resolutionwith less dynamic blurriness, and (2) lower imaging dose.However, conventional
averagingmethod orfilter-based algorithms can hardly achieve satisfactory SNR from few-frame-averaged
signals. In this study, we presented a deep learning-based framework to denoise few-frame-averaged acoustic
signals. Results demonstrated the effectiveness and efficiency of the proposedmethod in achieving accurate and
high-SNR signals from few-frame-averagedmeasurements. The acoustic image quality is considerably
improved using the signals denoised by the proposedmethod. Both the denoised few-frame-averaged signals
and the corresponding reconstructed images show very high agreement with the reference high-frame-
averaged ones.

The proposed deep learning-based framework can be generalized to denoise various kinds of acoustic
signals. The radiation pulse width can vary among different applications, resulting in acoustic signals of
different frequencies. As a result, signal features can be presented at various temporal scales, for which
inception blocks withmultiple dilation rates are used in our proposedGDI-CNN. This inception-style
architecture enablesmulti-scale feature extraction, allowing themodel to capture and process temporal
dependencies at diverse scales concurrently. Thismulti-scale representation improves themodel’s sensitivity
to both rapid and slow time-varying signals, and thus generalizes themodel for denoising acoustic signals
from various sources. In addition, these inception blocks offer an exponential expansion of the receptive field
whilemaintaining parameter efficiency compared to larger kernels. Andwithout pooling operation, the
temporal and spatial resolutions are potentially better preserved by themodel. In this study, x-ray acoustic
and electroacoustic signals are ofmega-hertz, while protoacoustic signals are of tens of kilo-hertz due to the
different beam pulse durations. As shown in the results, the proposedmodel achieved excellent denoising
performance for all thesemodalities, indicating its generalizing ability for acoustic signals with large temporal
characteristic variations.

Results demonstratedGDI-CNN’s capabilities of reducing crosstalk artifacts in the involved acoustic
imaging. Crosstalk is primarily caused by inadequate insulation between channels. It can lead to unwanted
signals appearing inmultiple channels simultaneously when background noises or interferences occur, which is
random. The proposedmodel can perceive the randomnoise as inconsistencies across the dataset.
Consequently, during the training phase, themodel learns to ignore this noise to better approximate the
underlying denoising patterns. In addition, L2 regularizationwas used in themodel training, which discouraged
themodel fromoverfitting to the training data, particularly the randomnoise present in the reference fully-
averaged signals. This strategy canmake themodel generalize better and produce cleaner outputs during testing.
We also observe this ‘student beats the teacher’ phenomenon in previous studies (Ghafoorian et al 2018, Jiang
et al 2019b), wherein the deep learningmodels can predict results of better quality than the training ground
truth.

The proposedmethodmakes the radiation-induced acoustic imaging a valuable tool for both imaging and
therapymonitoring. In the context of ionizing imaging, ‘as low as reasonably achievable (ALARA)’ principle
suggests that reasonable efforts should bemade tominimize the radiation exposure to patients to reduce the
risk of adverse effects. As shown in results, the proposedmethod achieves comparable XACT image quality to
750-frame-averaged results using only 10-frame-averaged signals, considerably reducing the imaging dose by
98.7%. For the therapymonitoring, temporal resolution is an important performancemetric besides
accuracy. High temporal resolution not only ensures the real-time efficiency but also reduces dynamic
blurriness induced by temporal averaging. Results showed that the proposedmethod realized proton range
accuracy comparable to 1500-frame-averaged results using only 20-frame-averaged signals, which greatly
improves the proton range verification frequency from 0.5 to 37.5 Hz. And themethod reached EAT image
quality comparable to 750-frame-averaged results using only a single frame signal, substantially increasing the
electric fieldmonitoring frequency from 1 Hz to 1 kHz. Although the temporal frequency can be higher than
the clinical requirement, it pushes the temporal averaging to theminimum and provides a possibility to
visualize the energy deposition process with ultra-high temporal speed. These significant improvements can
substantially expand the clinical utilities of these novel imaging techniques for various applications in
diagnosis and treatment.

There are some limitations of this study. First, the datasets used in this study are relatively small due to the
laborious data collection. Additionally, experimental data were collected fromagar phantoms (containing
targets) orwater tanks for feasibility demonstration. In the future,more acoustic data frommore complex
tissues and patients are warranted to further evaluate the clinical utility of the proposed denoisingmethod.
Second, we focused on three kinds of RA signal denoising in this study due to the data availability of our labs. In
the future,more imagingmodalities, such as photoacoustic andMVx-ray-induced acoustic data, can be
collected to further test the performance and generalizing ability of the proposedmethod. Third, we evaluated
the results using generalmetrics such as element-wise errors (MSE), peak SNR (PSNR), and structural
similarities (SSIM) in this study. In the future, task-specificmetrics can be developed tomake the evaluation
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more practical, which provides amore targeted assessment of the denoising performance. Furthermore, it is
noted that the proposed deep learningmodel can experience degraded performancewhen further reducing the
averaging frame number. Task-specificmetrics can be used to explore theminimumaveraging number required
by themodel. Fourth, it is note that, in this study, we focused on the signal denoisingwhich is a preprocessing
step for the RA imaging. Thefinal RA image quality can be additionally improved by the advances in
reconstruction and postprocessing techniques. In the future, the efficacy of the proposed denoising technique
can be further evaluated in the entire chain of RA imaging. Fifth, we did not perform thorough ablation tests to
clarify the contribution of each component in the proposedGDI-CNN in this study.More careful examination
of the network structure can be conducted in future studies, which could further optimize themodel’s
performance.

6. Conclusion

The proposed deep learning-based denoising framework is a generalizedmethod for few-frame-averaged
acoustic signal denoising, which significantly improves the radiation-induced acoustic imaging’s clinical utilities
including low-dose XACT, real-time protoacoustic-based proton range verification, and real-time
electroacoustic-based electroporationmonitoring.
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AppendixA.Detailed structure of the inception block in the proposedGDI-CNN

Figure A1 Shows the detailed structure of the inception block in the proposedGDI-CNN.
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Appendix B.Datasets involved in this study

For x-ray-induced acoustic, 58 data were acquiredwith different target sizes and locations (as shown in
figure B1). The dataset was randomly split into 47, 5, and 6 data for training, validation, and testing, respectively.
As a result, the testing data are not seen during themodel training nor validation.

For protoacoustic, five data were acquiredwith different proton beam coordinates (as shown infigure B2).
Due to the limited dataset, one datumwas randomly selected for validationwhile the other four data were used
for training. As a result, the validation data are not seen during themodel training. Figure B2 shows the
reconstruction of the protoacoustic dataset involved in this study.

For electroacoustic, 52 data were acquiredwith different electrode arrangements and locations (as shown in
figure B3). The dataset was randomly split into 43, 3, and 6 data for training, validation, and testing, respectively.
As a result, the testing data are not seen during themodel training nor validation. Figure B3 shows the
reconstruction of the XACTdataset involved in this study.

Due to the limited experimental resources in our lab, imaging targets have simple structures. To increase the
diversity among data, targets were designedwith different sizes/shapes and at different positions relative to the
transducer, resulting inmarkedly different response in the acquired signals. In addition, noises in the acquired
acoustic signals are random. Therefore, the testing data can be considerably distinct from the training and
validation data. In future studies, evaluation ofmore complex structures andmaterials is warranted.

Figure A1. Structure of the inception block. CONV is a dilation convolutional layer (filter size: 3× 3, filter number: 16, dilation rate is
indicated in the box); BN is a batch normalization layer; L_RELU is the activation function (‘relu’ for x-ray-induced and
electroacoustic, and ‘leaky relu’with 0.3 leaky rate for protoacoustic); CONCAT is a concatenation layer in the channel dimension.
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Figure B1.The reconstruction of the x-ray-induced acoustic data in the (a) training, (b) validation, and (c) testing dataset. Each
subfigure in (a)–(c) shows the 2D image reconstructed from the fully-averaged signals of one datum.Different datawere acquiredwith
different target sizes and locations. Hotspots indicate the targets (leadwires) in the phantom. Images are shown in the ‘jet’ colormap
(dynamic range is set to [0,max(image)*1.1]). (d) shows some example phantoms used in this study. The phantom size is about 5 cm
wide, 7 cm long, and 4.5 cmhigh.
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Figure B1. (Continued.)
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Figure B2.Three orthogonal views of the reconstruction of the protoacoustic data in the (a) training and (b) validation dataset. Each
column in (a) and (b) shows the axial, sagittal, and coronal views of the 3D image reconstructed from the fully-averaged signals of one
datum.Different datawere acquiredwith different proton beam spot positions.Hotspots indicate the Bragg peaks of the proton
beams. Images are shown in the ‘jet’ colormap (dynamic range is set to [min(image)*0.7,max(image)*0.7]). (c) blue dots show the
separate spot positions (distance between spots of 1.0 cm) of proton beams in (a–b).
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Figure B3.The reconstruction of the electroacoustic data in the (a) training, (b) validation, and (c) testing dataset. Each subfigure in
(a)–(c) shows the 2D image reconstructed from the fully-averaged signals of one datum.Different data were acquiredwith different
electrode arrangements and locations. Hotspots indicate the targets (leadwires) in the phantom. Images are shown in the ‘jet’
colormap (dynamic range is set to [0,max(image)*1.1]). (d) shows some example electrode arrangements. Electrodeswere held by a
3D-printedmulti-electrode holder (holes are arranged in a 3× 3 layout and distance between adjacent holes is 5 mm). Experiment
device for (d) can be referred to the figure 2(c) in themanuscript.
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AppendixC.Quantitative evaluation for ROIs in x-ray-induced and electroacoustic
imaging

For x-ray-induced acoustic images, ROIswere defined using a threshold of 55%of themaximumvalues of the
ground truth images. An example of the ROIs is shown in the followingfigureC1 in black solid lines.
Quantitative results are shown in the following table C1, which are consistent with thewhole-image evaluation.

For electroacoustic images, ROIswere defined using a threshold of 45%of themaximumvalues of the
ground truth images. An example of the ROIs is shown in the followingfigureC2 in black solid lines.

Figure B3. (Continued.)

FigureC1.Regions of interest (ROIs) defined in the x-ray-induced acoustic images. ROIs are indicated by the black solid lines.
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Quantitative results are shown in the following table C2, which are consistent with thewhole-image evaluation.
These results confirmGDI-CNN’s superior performance toU-Net in terms of electrode shape accuracy.
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