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Abstract
Environmental mercury (Hg) contamination of the global tropics outpaces our understanding of its consequences for
biodiversity. Knowledge gaps of pollution exposure could obscure conservation threats in the Neotropics: a region that
supports over half of the world’s species, but faces ongoing land-use change and Hg emission via artisanal and small-scale
gold mining (ASGM). Due to their global distribution and sensitivity to pollution, birds provide a valuable opportunity as
bioindicators to assess how accelerating Hg emissions impact an ecosystem’s ability to support biodiversity, and ultimately,
global health. We present the largest database on Neotropical bird Hg concentrations (n= 2316) and establish exposure
baselines for 322 bird species spanning nine countries across Central America, South America, and the West Indies. Patterns
of avian Hg exposure in the Neotropics broadly align with those in temperate regions: consistent bioaccumulation across
functional groups and high spatiotemporal variation. Bird species occupying higher trophic positions and aquatic habitats
exhibited elevated Hg concentrations that have been previously associated with reductions in reproductive success. Notably,
bird Hg concentrations were over four times higher at sites impacted by ASGM activities and differed by season for certain
trophic niches. We developed this synthesis via a collaborative research network, the Tropical Research for Avian
Conservation and Ecotoxicology (TRACE) Initiative, which exemplifies inclusive, equitable, and international data-sharing.
While our findings signal an urgent need to assess sampling biases, mechanisms, and consequences of Hg exposure to
tropical avian communities, the TRACE Initiative provides a meaningful framework to achieve such goals. Ultimately, our
collective efforts support and inform local, scientific, and government entities, including Parties of the United Nations
Minamata Convention on Mercury, as we continue working together to understand how Hg pollution impacts biodiversity
conservation, ecosystem function, and public health in the tropics.
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Resúmen
La contaminación ambiental por mercurio (Hg) en los trópicos supera nuestra comprensión de sus consecuencias para la
biodiversidad. Los vacíos de conocimiento que existen sobre la exposición a la contaminación podrían ocultar las amenazas
para la conservación en el Neotrópico: una región que alberga a más de la mitad de las especies del mundo, pero que enfrenta
una continua intensificación de las emisiones de Hg y del cambio de uso del suelo por el avance de la minería de oro
artesanal y de pequeña escala (MAPE). Debido a su distribución global y su sensibilidad a la contaminación, las aves
brindan una oportunidad valiosa como bioindicadores para evaluar cómo las emisiones de Hg afectan la capacidad de un
ecosistema para sustentar la biodiversidad y, en última instancia, la salud global. Presentamos la más grande base de datos
sobre concentraciones de Hg en aves Neotropicales (n = 2,316) para establecer una línea base para los niveles de exposición
a Hg en 322 especies de aves de nueve países de América Central, América del Sur, y el Caribe. Encontramos patrones de las
concentraciones de Hg en aves de los trópicos que se asemejan a los de las regiones templadas: mostrando una
bioacumulación consistente a través de grupos funcionales y una alta variación espaciotemporal. Las especies de aves que
ocupan posiciones más altas en la cadena trófica y en hábitats acuáticos registraron concentraciones elevadas de Hg que
podrían tener efectos negativos en su éxito reproductivo. Es importante resaltar que las concentraciones de Hg en las aves de
los sitios afectados por la MAPE fueron cuatro veces más altas que las de los sitios control y además difirió por temporada
para ciertos nichos tróficos. Desarrollamos esta síntesis a través de una red de investigación colaborativa, la Iniciativa de
Investigación Tropical para la Conservación y Ecotoxicología Aviar (TRACE), que ejemplifica un intercambio de datos
inclusivo, equitativo e internacional. Si bien nuestros hallazgos sugieren una necesidad urgente de evaluar los sesgos en el
muestreo, los mecanismos, y las consecuencias de la exposición al Hg en las comunidades de aves tropicales, la Iniciativa
TRACE proporciona un marco para abordar estos objetivos. Nuestro esfuerzo colectivo tiene como propósito respaldar y
brindar información a las entidades locales, científicas, y gubernamentales, incluyendo las Partes de la Convención de
Minamata de las Naciones Unidas sobre el Mercurio, mientras continuamos trabajando juntos para comprender cómo la
contaminación por Hg en los trópicos puede afectar la salud pública, el funcionamiento de los ecosistemas, y la conservación
de la biodiversidad.

Graphical Abstract
Total mercury (THg) concentrations (µg/g) and sample sizes of birds across Central America, South America, and the West
Indies from 2007–2023. Point size and color are arranged in order of increasing THg concentration and hexagonal grid cells
are colored in terms of increasing sample size.

Highlights
● We summarized the largest database on Neotropical bird Hg concentrations to identify major patterns of pollution

exposure to terrestrial biodiversity in the tropics.
● We detected the highest Hg concentrations in carnivorous bird species, aquatic habitats, and gold mining sites.
● We showcase among the highest published Hg concentrations for songbirds (Passeriformes) in the world.
● Madre de Dios, Peru, central Belize, and Ayapel, Colombia are biological Hg hotspots, but widespread sampling is

necessary throughout the Neotropics.
● Inclusive collaboration will excel the field of tropical ecotoxicology by improving the efficiency and comparability of

future monitoring efforts.

Keywords Mercury ● Birds ● Neotropics ● Artisanal and small-scale gold mining ● Bioaccumulation
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Introduction

Environmental pollutants, including pesticides, micro-
plastics, nutrients, and heavy metals, present profound
threats to global biodiversity and health—creating a suite
of unresolved challenges for health professionals, con-
servation biologists, landscape managers, and policy-
makers (Mueller et al. 2022). Mercury (Hg) is one exam-
ple of a persistent pollutant that adversely impacts envir-
onmental, animal, and public health on a global scale.
Though Hg exists naturally in the environment, anthro-
pogenic emissions from activities including resource
extraction, fossil fuel combustion, metal and cement pro-
duction, and waste incineration amplify environmental Hg
loads (UNEP 2019). These activities can emit or release Hg
directly into soils, waterways, or the atmosphere, where Hg
can be mobilized around the globe and impact ecosystems
far from original sources. At the local scale, microbes can
convert inorganic Hg into organic methylmercury (MeHg),
which is a more bioavailable form that readily biomagnifies
in aquatic and terrestrial food webs (Evers et al. 2005;
Cristol et al. 2008; Ackerman et al. 2016a) and can
bioaccumulate to detrimental concentrations in longer-lived
organisms (Evers et al. 2008; Hill et al. 2008; Scheu-
hammer et al. 2008; Rutkiewicz et al. 2011). For example,
MeHg exposure in mammals, birds, and fish can cause
behavioral, immunological, neurological, physiological,
and reproductive impairment (Depew et al. 2012; Dietz
et al. 2013; Scheuhammer et al. 2015; Ackerman et al.
2016a; Whitney and Cristol 2017; Evers 2018).

The World Health Organization’s “One Health” concept
—an interdisciplinary approach to improve public health by
mitigating threats to humans, animals, and the environment
—requires robust data on global Hg emission, deposition,
and exposure (WHO 2022). However, other international
efforts seeking to mitigate health threats by curtailing
anthropogenic Hg emissions typically have environmental
data that better reflect nations in temperate, developed
regions. The United Nations Minamata Convention on
Mercury follows this pattern for North America (Seewagen
2010; Ackerman et al. 2016a; Cristol and Evers 2020) and
Europe (Sun et al. 2019; Dietz et al. 2021), and lacks
information on exposure throughout tropical regions of
Africa, Asia, and Latin America (UNEP 2019). This sam-
pling bias could undermine the goals of UN agencies, as the
tropics play a crucial role in climate regulation (Sullivan
et al. 2020), contribute to advances in modern medicine and
biochemistry (Skirycz et al. 2016), support more than 75%
of all species (Barlow et al. 2018), and will support more
than half of the world’s human population by mid-century
(Edelman et al. 2014). Therefore, investing in the under-
standing and preservation of tropical system health should
be a global priority.

Human and wildlife Hg exposure in the tropics remains
poorly quantified and potentially difficult to interpret due to
the physical, chemical, and biological differences between
Holarctic and Pantropical realms (Burger 1997; Lacher and
Goldstein 1997). Many tropical regions feature three of the
largest natural and anthropogenic sources of environmental
Hg: geogenic (e.g., volcanism), artisanal & small-scale gold
mining (ASGM), and biomass burning (Nriagu and Becker
2003; Saginor et al. 2013; Shi et al. 2019; UNEP 2019).
Thus, the combination of these emissions and re-emissions
has the potential to obscure source attribution and mitiga-
tion priorities to reduce organismal exposure. Relative to
Holarctic forests, which have comparatively lower total leaf
area, intact tropical wet forests have exceptional capacity to
scavenge particulate and gaseous elemental Hg out of the
atmosphere and direct it to forest floors via throughfall and
litterfall (Gerson et al. 2022). Concurrently, the elevated
precipitation, seasonal river fluctuations, and high wetland
prevalence in tropical systems may enhance methylation
rates (Burger 1997; Lacher and Goldstein 1997), as reflec-
ted by elevated “ecosystem sensitivity” for MeHg
throughout the Pantropical realm (Evers and Sunderland
2019). However, some tropical regions may have enhanced
demethylation rates (Shanley et al. 2020). From a commu-
nity perspective, the high species richness and narrow niche
breadth create more complex food webs, which are expec-
ted to increase the biomagnification potential of tropical
systems (Burger 1997; Lacher and Goldstein 1997). Due to
these collective factors, the ecotoxicological methods and
analyses that have been developed and refined in the
Holarctic realm might lack applicability in the tropics
(Lacher and Goldstein 1997)—thereby limiting our capacity
to assess the drivers, distribution, and impacts of Hg at these
latitudes. These fundamental gaps in understanding have
been repeatedly identified in past decades (Burger 1997;
Lacher and Goldstein 1997; Seewagen 2010) and are par-
ticularly concerning given accelerating anthropogenic Hg
emissions in many equatorial developing countries (UNEP
2019).

Artisanal and small-scale gold mining is the largest
polluting sector of environmental Hg in the world, and
accounts for almost 38% of global anthropogenic Hg
emissions (UNEP 2019). As a major source of income for
local and national economies (Wilson et al. 2015; Schwartz
et al. 2021), ASGM has expanded with increasing gold
demand, price, and road connectivity (Swenson et al. 2011;
Alvarez-Berríos and Aide 2015; Caballero-Espejo et al.
2018), leading to further encroachment into intact tropical
forests. Following forest removal, miners use high-pressure
hydraulic jets to dislodge alluvial gold deposits in riparian
sediments, and then add liquid elemental Hg to amalgamate
gold particles (Damonte et al. 2013). Up to 60% of Hg
inputs are discarded in sediments or washed downstream
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via mining tailings (Maurice-Bourgoin et al. 1999, 2000),
while the remainder is released into the atmosphere fol-
lowing amalgam burning or re-emission (AMAP/UNEP
2019). Concurrently, ASGM’s alterations to hydrological
landscapes drastically amplify MeHg production (Gerson
et al. 2020). The Neotropics, collectively Central America,
South America, and the West Indies, produce 42% of global
ASGM Hg emissions (UNEP 2019) while also supporting
around 60% of all terrestrial biodiversity (UNEP-WCMC
2016) and 8.2% of the world’s human population (World
Bank 2022). This problematic overlap presents a potential
conservation threat that deserves urgent attention.

Due to their global ubiquity, reliable association to spe-
cific habitats, and relative ease of detection, capture, track-
ing, and identification compared to other taxa, birds stand
apart as the most well-studied and cost-effective taxonomic
group for monitoring terrestrial biodiversity health and
ecosystem function in the tropics (Bierregaard and Lovejoy
1989; Furness and Greenwood 1993; Remsen 1994; Stotz
et al. 1996; Gardner et al. 2008; Lees et al. 2014). These
collective factors position birds as ideal bioindicators for
both local and regional ecotoxicological monitoring efforts
(Furness and Greenwood 1993; Evers et al. 2008; Ackerman
et al. 2016a; Egwumah et al. 2017; Sayers et al. 2021), and
appropriate foci for monitoring global threats to One Health.
The diversity of trophic niche and habitat specialization
within the avian clade also allows species to be strategically
sampled to understand exposure pathways and biogeo-
chemical dynamics for different spatial and temporal scales
(Furness and Greenwood 1993; Evers et al. 2008; Ackerman
et al. 2016a; Cristol and Evers 2020). As environmental
toxicant emissions continue to increase worldwide across
almost all polluting industries (UNEP 2019), the associated
exposure impacts could contribute to resident and migratory
bird declines throughout the Americas (Robinson
1999, 2001; Sigel et al. 2006; Latta et al. 2011; Blake and
Loiselle 2015, Boyle and Sigel 2015; Stanton et al. 2018;
Rosenberg et al. 2019; Stouffer et al. 2020; Sherry 2021;
Pollock et al. 2022). However, as only about 5% of bird
species are represented in published literature on avian Hg
exposure in the Neotropics (n= 171; Table S1), we cur-
rently have limited capacity to assess toxicological risk
throughout the most species-rich region on Earth.

This synthesis builds from decades of research on the
importance of Hg monitoring throughout the Global North,
which has identified persistent gaps in our understanding of
how Hg impacts biodiversity throughout the Global South
(Burger 1997; Lacher and Goldstein 1997; Seewagen 2010;
Elliott et al. 2015; Jackson et al. 2015; Ackerman et al.
2016a; Canham et al. 2020; Cristol and Evers 2020). Here,
we present and summarize the largest database on Hg
exposure to Neotropical birds. Our primary goals are (1) to
begin quantifying the prevalence, variation, and distribution

of Hg across the Neotropics by establishing exposure
baselines for representative avian taxonomy and functional
traits, and (2) to develop a series of recommendations,
methodologies, and research priorities for avian Hg mon-
itoring. In undertaking these goals, we hope to support
future monitoring efforts in maximizing efficiency and
comparability with existing research and augment our col-
lective understanding of how Hg impacts biodiversity
conservation, ecosystem function, and ultimately, public
health.

Methods

Sample collection

We obtained samples of Neotropical resident and migratory
bird Hg concentrations from published and unpublished
datasets provided by the Biodiversity Research Institute,
USA; Foundation for Wildlife Conservation, Belize; USDA
Forest Service, Puerto Rico; Centro de Innovación Cientí-
fica Amazónica, Peru; World Wildlife Fund, Peru; Uni-
versidad Centroamericana, Nicaragua; San Diego Zoo
Wildlife Alliance, USA; Field Projects International, USA;
Clemson University, USA; Belize Foundation for Research
& Environmental Education, Belize; Toucan Ridge Ecology
& Education Society, Belize; Universidad Nacional de
Colombia, Colombia; and University of California, Santa
Cruz, USA. Organizations are listed in descending order of
samples contributed.

To collect these samples, we conducted ground-level
mist-net or Bal-Chatri trap surveys at 41 sampling sites in
nine countries across Central America, South America, and
the West Indies during wet and dry seasons from 2007 to
2023. We selected study locations in a variety of habitats
ranging from flooded tropical evergreen forest, to arid
lowland scrub, to elfin forest. A total of five sampling sites
in Ayapel, Colombia and Madre de Dios, Peru were located
within a 7 km radius of artisanal gold mines that were either
active at the time of sampling or had last been active in the
preceding 5 years. Following thorough in-person explora-
tion and inspection of present satellite imagery, we propose
that ASGM emissions had a negligible direct influence on
avian Hg exposure at all remaining sites, which were
located upstream and at least 25 km from the closest mine.
Site-specific capture and habitat information are featured in
Table S2.

Whenever possible, we fitted all taxa, excluding hum-
mingbirds (Trochilidae), with a uniquely-numbered alumi-
num leg band from the US Fish and Wildlife Service,
CORBIDI (Center for Ornithology and Biodiversity, Lima,
Peru), or the National Band & Tag Company (Newport,
Kentucky, USA) to prevent resampling. In unique
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circumstances when we did not possess the proper leg
bands, we assigned captured individuals and corresponding
samples a unique identification number and clipped interior
tail feathers to prevent short-term recapture. We then
identified individuals to an appropriate species, sex, age,
and molt cycle using a local bird field guide (Schulenberg
et al. 2010; Garrigues and Dean 2014; Fagan and Komar
2016; Quiñones 2018) and either a calendar-based, or pre-
ferably, Wolfe-Ryder-Pyle (WRP) cycle-based age-classi-
fication system (Wolfe et al. 2010; Johnson et al. 2011;
Tórrez and Arendt 2012, 2017; Pyle et al. 2016) described
for Neotropical bird families in Johnson and Wolfe (2017).
Depending on the priorities of each research effort, we
measured and assessed birds for feather molt and wear,
skull ossification, fat stores, muscle mass, wing chord, tar-
sometatarsus length, bill dimensions, tail length, body mass,
and reproductive stage via cloacal protuberance and
brood patch.

We followed tissue collection, preparation, and storage
methods provided by the Biodiversity Research Institute
(Evers et al. 2021). Whenever possible, we collected
30–60 µL of blood from the cutaneous ulnar vein using
75 µL heparinized capillary tubes, sealed tubes at both ends
using Critocaps™ or Critoseal™, placed tubes into a plastic
vacutainer, and stored samples in a cooler with ice packs.
We transferred blood samples into a freezer within 8 h of
collection, where they were stored below −4 ºC until
laboratory analysis. For feather sampling, we collected the
two outermost tail feathers, six “body” feathers (flank,
breast, or back feathers, depending on project objectives)
and stored feathers at ambient temperatures in paper coin
envelopes or plastic Ziploc™ bags.

Laboratory analysis

We analyzed avian tissue samples for total Hg (THg) at the
Biodiversity Research Institute Toxicology Lab (Portland,
Maine, USA; 81% of the cumulative samples), Laboratorio
de Mercurio y Química Ambiental of Centro de Innovación
Científica Amazónica (Puerto Maldonado, Madre de Dios,
Peru; 15%), and Texas A&M University Trace Element
Research Laboratory (College Station, Texas, USA; 4%)
using a thermal decomposition and atomic absorption
spectrophotometry technique with either a Milestone DMA-
80 or Nippon MA-3000 direct Hg analyzer. Based on pre-
vious studies, we assumed that nearly all THg (>95%) in
whole blood (Rimmer et al. 2005; Edmonds et al. 2010) and
feathers (Thompson and Furness 1989) were in the MeHg
form. Therefore, all tissue concentrations should approx-
imate MeHg contamination of Neotropical avifauna. We
followed United States Environmental Protection Agency
(EPA) SW-846 Method 7473, “Mercury in solids and
solutions by thermal decomposition, amalgamation, and

atomic absorption spectrophotometry” (USEPA 1998). To
ensure consistent precision and accuracy, we used quality
control methods, including certified reference materials
DORM-3, DORM-4, DOLT-4, DOLT-5, ERM-CE464,
CRM-13, and NIST2710, which had recovery averages
above 95% for both blood and feather tissues. We supplied
an artificial concentration of 0.001 µg/g THg to any sample
that registered below the analyzer’s lower detection limit
(0.05 ng, 0.001 µg/g THg) rather than excluding data from
statistical analyses (Shoari and Dubé 2018).

Assigning functional traits

To explain variation in THg concentrations across bird
individuals, we obtained information on species’ functional
traits, which can be powerful tools to understand species’
extinction risks (Purvis et al. 2000), responses to land-use
change (Hamer et al. 2015; Socolar and Wilcove 2019), as
well as Hg bioaccumulation (Jackson et al. 2015; Ackerman
et al. 2016a). We assigned species to an appropriate tax-
onomy, trophic niche, primary habitat association, and
migratory status in R (v. 4.2.0; R Core Team 2022; R
package “tidyverse”; Wickham et al. 2019). We standar-
dized taxonomy based on the eBird/Clements Checklist of
Birds of the World: v2022 (Clements et al. 2022). We
assigned species to a trophic niche following Pigot et al.
(2020), which was expanded from the EltonTraits 1.0
database (Wilman et al. 2014). We also assigned species to
a primary habitat association and migratory status following
Parker et al. (1996), which was adopted in Socolar and
Wilcove (2019) to incorporate updated taxonomy. For
modeling simplicity and ease of interpretation, we lumped
habitat classifications into six representative categories for
the Neotropical realm (see Statistical analysis). We refer to
a “resident” as any species that occurs in the Neotropics
throughout the full annual cycle and makes no seasonal
migratory movements, a “partial migrant” as any species
that breeds partly or fully within the Neotropical realm and
changes their distribution in the nonbreeding season, and a
“full migrant” as any species that occurs regularly in the
Neotropics, but only as a nonbreeder (Parker et al. 1996;
Stotz et al. 1996). Habitat classifications for migrant species
represent primary nonbreeding habitat associations. Com-
prehensive habitat and migratory status descriptions are
available in Stotz et al. (1996). In cases of taxonomic
changes when there was no accompanying entry in Parker
et al. (1996) or Pigot et al. (2020), we created a new entry in
the databases using life history information present in Birds
of the World (BOW 2022). If life history information was
unclear or absent in Birds of the World, we deferred to the
life history information present for the outdated species in
Parker et al. (1996) and Pigot et al. (2020). We provide the
updated Parker et al. (1996) and Pigot et al. (2020)
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databases for species included in this synthesis at https://
github.com/csayers2/Neotropical-Bird-Hg-Synthesis. We
summarize functional traits for all avian taxa sampled in this
study in Table S3.

Data transformation and filtering

For ease of interpretation, we pooled flank, breast, and back
feather samples together as “body” feathers in subsequent
models, summaries, and visualizations. Low et al. (2020)
documented low THg variation among these feather tracks
in North American resident and Neotropical migrant song-
birds. However, researchers have not yet tested the
assumption that body feather samples represent similar
signals of MeHg body burden in Neotropical resident spe-
cies. We lack the ability to attempt this comparison here
because we did not sample sufficient individuals for mul-
tiple body feather categories.

In comparison to whole blood, which represents days to
weeks of dietary Hg exposure, feathers from migratory
species can represent Hg exposure from the capture loca-
tion, previous migratory stopover sites, or their original
breeding or wintering location before beginning migration
depending on the sampling date and species’ molting pat-
terns (see section Tissue selection). To increase our con-
fidence that bird Hg concentrations represented dietary
exposure at each sampling location, we excluded feather
samples from migratory taxa in all models, summaries, and
visualizations. Likewise, we excluded feather samples from
all taxa in models and visualizations examining within-year
temporal trends (see sections Statistical analysis, Tissue
selection).

Statistical analysis

Building from decades of research that have established the
ecology of avian Hg exposure and bioaccumulation within
the Holarctic realm, we constructed two candidate sets of
linear mixed-effects models fit with maximum likelihood
estimations to identify biotic and abiotic factors that best
explained variation in Neotropical bird THg concentrations
(R package “glmmTMB”; Brooks et al. 2017). We per-
formed a natural-log transformation on THg concentrations
so that the response variable approximated a Gaussian
distribution. For the global functional trait model, we
included tissue type (three types: whole blood, body feather,
tail feather), trophic niche (seven niches: terrestrial verti-
vore, aquatic predator, invertivore, omnivore, nectarivore,
frugivore, granivore), primary habitat association (six
habitats: aquatic, lowland evergreen forest, lowland decid-
uous forest, montane evergreen forest, secondary forest,
grassland/scrub), migratory status (three statuses: resident,
partial migrant, full migrant), and ASGM presence at each

sampling location within a 7 km radius (two levels: present
or absent) as fixed effects, and included a nested sampling
site/station term (41 sites, 57 sampling stations), a nested
family/species/individual term (51 families, 322 species,
1856 individuals), and year (13 years represented from 2007
to 2023) as random effect intercepts. For the global temporal
model of avian blood THg concentrations, we included a
season (two seasons: wet and dry) by trophic niche interac-
tion term as a fixed effect and kept the same random effects
structure as the functional trait model. We performed model
selection on all reduced model combinations for both the
functional trait and temporal models based on second-order
Akaike’s Information Criterion for small-sample sizes (AICC;
Burnham and Anderson 2002; R package “MuMIn”; Bartoń
2022). Using the models of best fit, we then performed an
analysis of variance based on type II Wald chi-square tests (R
package “car”; Fox and Weisberg 2019) and conducted
Tukey pairwise comparisons to assess the relative importance
of modeled factors (R package “emmeans”; Lenth 2022). We
present all model-generated results as back-transformed
predicted means and 95% confidence intervals from the
model of best fit (R package “ggeffects”; Lüdecke 2018).

Results and discussion

We present a collective database containing 2,316 THg
samples collected from 17 orders, 51 families, and 322 bird
species from 41 sites in nine countries across Central
America, South America, and the West Indies from
2007–2023. Whole blood (n= 963) was the most well-
represented sampling tissue, followed by tail feathers
(n= 690) and body feathers (n= 663). Samples were dis-
tributed across Belize (n= 946; 5 sites), Peru (n= 676;
6 sites), Nicaragua (n= 261; 12 sites), Costa Rica (n= 136;
6 sites), Dominican Republic (n= 134; 4 sites), Colombia
(n= 63; 1 site), Puerto Rico (n= 59; 1 site), Mexico
(n= 24; 5 sites), and Panama (n= 17; 1 site). The seven
most well-sampled bird families were Parulidae (New World
warblers; n= 299), Thraupidae (tanagers; n= 240), Tyr-
annidae (tyrant flycatchers; n= 222), Furnariidae (ovenbirds;
n= 216), Pipridae (manakins; n= 206), Thamnophilidae
(antbirds; n= 154), and Troglodytidae (wrens; n= 107).

Following natural log-transformation of the response
variable and visual inspection of plotted residuals, we
detected a lack of residual normality via skewness in
quantile-quantile plots for both global models (Zuur et al.
2009). Evidence of a poor distributional assumption signals
that our models may conservatively overestimate the var-
iance around predicted means. These modeling shortcomings
could arise from haphazard sampling or high variance in Hg
exposure among sites. Therefore, we advocate that future
biomonitoring efforts pursue standardized and thorough
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sampling designs to better model avian Hg exposure (see
Spatial variation, Temporal variation). Despite these short-
comings, other evidence suggests that our models remain
statistically robust. Our top-performing functional trait and
temporal model accounted for ≥92% of variation in the data,
≥68% of total model weight, and were statistically distin-
guishable (ΔAICC > 2) from all other models within their
respective candidate sets (Table S4). Therefore, we chose to
forgo model averaging and base inferences and predictions
off the models of best fit. Tables S4–5 summarize linear
mixed-effects model selection and analysis of variance
results, and Tables S8, S6–8, and Figs. S1–6 summarize
arithmetic mean THg concentrations by country, site, trophic
niche, primary habitat association, and taxonomy.

Trophic niche, habitat association, and taxonomy

Neotropical bird THg concentrations differed among trophic
niches (χ2= 85.59, p < 0.001; Figs. 1, S1; Tables S5, S6),
primary habitat associations (χ2= 14.47, p= 0.013; Figs. 2,
S2; Tables S5, S7), and taxonomy (χ2= 639.34, p < 0.001;
Figs. 3, S3–5; Tables S5, S8). Terrestrial vertivores, aquatic
predators, and invertivores exhibited the highest predicted
and mean THg concentrations, while omnivores, frugivores,
and granivores exhibited the lowest (Figs. 1, S1; Table S6).
Taxonomic groups that occupy carnivorous trophic levels,
especially families Parulidae (New World warblers), Fur-
nariidae (ovenbirds), Thamnophilidae (antbirds), Troglody-
tidae (wrens), and Alcedinidae (kingfishers), also ranked
highest in predicted and mean THg concentrations (Figs. 3,
S4; Table S8). Species that prefer aquatic habitats exhibited
the highest predicted and mean THg concentrations and
were significantly higher than those that prefer secondary
and montane evergreen forests (Figs. 2, S2; Tables S5, S7).
In terms of data variability, coefficients of THg variation
(CVs) were high (≥50%) in blood and feather samples for

most trophic niches, primary habitat associations, orders,
families, and species (Tables S6–8).

These results are consistent with avian Hg dynamics and
regional syntheses within the Holarctic realm (Evers et al.
2005; Evers et al. 2011; Mallory and Braune 2012; Jackson
et al. 2015, 2016; Ackerman et al. 2016a). Birds feeding at
higher trophic levels and in aquatic habitats typically
bioaccumulate higher THg concentrations due to MeHg
biomagnification up food webs (Evers et al. 2005; Jackson
et al. 2015; Ackerman et al. 2016a) and because of bio-
geochemical conditions that facilitate microbial methylation
in aquatic environments (Ullrich et al. 2001). The high
variation present within these data is also not surprising
given the high spatial heterogeneity of avian Hg exposure
(Evers et al. 2005; Lane et al. 2011, 2020; Ackerman et al.
2016a; Tsui et al. 2018; Brasso et al. 2020; Sayers et al.
2021), and similarly high coefficients of Hg variation when
sampling over large geographic areas (Ackerman et al.
2016a; Dzielski et al. 2019).

Trophic niche pairwise comparisons indicated that
invertivores, aquatic predators, and terrestrial vertivores
were not significantly different in predicted THg (Fig. 1;
Table S5). Avian invertivores often bioaccumulate Hg
concentrations that match or exceed those in taxa occupying
higher trophic positions, especially avian piscivores (Evers
et al. 2005; Cristol et al. 2008; Jackson et al. 2015; Ack-
erman et al. 2016a; Abeysinghe et al. 2017; Adams et al.
2020). This is one of the first studies based in the Neo-
tropical realm to support this relationship and identify a
variety of invertivorous taxa that experience Hg exposure
comparable to taxa that predate fish and other vertebrates.
We showcase repeated instances of species in Parulidae
(New World warblers), Furnariidae (ovenbirds), Thamno-
philidae (antbirds), Formicariidae (antthrushes), and Tro-
glodytidae (wrens) that exceeded terrestrial vertivores in
Falconidae (falcons and caracaras), Accipitridae (hawks,

Fig. 1 Total mercury (THg) concentrations (µg/g) overlaid with back-
transformed predicted means ± 95% confidence intervals among
Neotropical bird trophic niches and artisanal and small-scale gold
mining (ASGM) presence. Bird THg concentrations were nearly four

times higher at ASGM sites on average (p < 0.001). Non-overlapping
letters indicate statistically significant differences (p < 0.05) among
groups based on Tukey pairwise comparisons across tissue types
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eagles, and kites), and Strigidae (owls), as well as aquatic
predators in Alcedinidae (kingfishers), Ardeidae (herons),
and Sulidae (boobies and gannets), in predicted and mean
THg concentrations (Fig. S5; Table S8). These observations
may be attributable to a rich diet of arachnids for some
species, in which the predatory behavior and elevated bio-
magnification potential of spiders can increase avian Hg
bioaccumulation (Cristol et al. 2008; Chumchal et al. 2022).

Our findings have potentially large implications for the
Pantropical realm considering that invertivores constitute
more than 60% of all tropical bird species (Sherry 2021).
However, we must also acknowledge that aquatic predators
including Chloroceryle americana (green kingfisher;
35.75 ± 27.92 µg/g fw body feather), Chloroceryle amazona
(Amazon kingfisher; 23.90 ± 5.85 µg/g fw body feather),
and Chloroceryle aenea (American pygmy kingfisher;

Fig. 2 Total mercury (THg) concentrations (µg/g) overlaid with back-
transformed predicted means ± 95% confidence intervals among
Neotropical bird primary habitat associations and artisanal and small-
scale gold mining (ASGM) presence. Bird THg concentrations were

nearly four times higher at ASGM sites on average (p < 0.001). Non-
overlapping letters indicate statistically significant differences
(p < 0.05) among groups based on Tukey pairwise comparisons across
tissue types

Fig. 3 Total mercury (THg) concentrations (µg/g) overlaid with back-
transformed predicted means ± 95% confidence intervals among
Neotropical bird families and artisanal and small-scale gold mining

(ASGM) presence. Bird THg concentrations were nearly four times
higher at ASGM sites on average (p < 0.001). Families with fewer than
25 samples are excluded
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10.31 ± 7.73 µg/g fw tail feather; 0.54 ± 0.40 µg/g ww
whole blood) exhibited the highest mean THg concentra-
tions across all tissue types due to a combination of high
trophic position and ASGM emissions (see Artisanal and
Small-scale Gold Mining (ASGM); Fig. S5; Table S8).

Notably, nectarivores were not statistically different from
all higher trophic niches in predicted THg, in which Tro-
chilidae (hummingbirds) ranked seventh highest among
families with 25 or more samples (Figs. 1, 3; Table S5). This
is likely a biased signal because all hummingbird samples
were collected from ASGM sites in Madre de Dios, Peru.
However, this comparison does illuminate the high bioac-
cumulation potential of hummingbirds and how invertivor-
ous diets (e.g., predating spider webs) may influence their
Hg exposure (Remsen et al. 1986; Stiles 1995; Guevara and
Stiles 2005; Hardesty 2008; Mikoni et al. 2017).

Overall, our findings showcase consistent patterns in
avian Hg exposure between Holarctic and Neotropical
realms. Further, they assert that Neotropical invertivores
regularly match or even exceed THg concentrations in taxa
occupying higher trophic positions and identify regions and
taxonomic groups that deserve additional focus (see Spatial
variation, Sentinel species selection).

Spatial variation

Neotropical bird THg concentrations also differed among
sampling sites (χ2= 321.52, p < 0.001; Figs. S6, 7; Tables
S2, S5), which aligns well with previous predictions about
the high spatial heterogeneity of the Neotropics (Burger
1997; Lacher and Goldstein 1997), as well as with site-
specific Hg variation across the Holarctic realm (Evers et al.
2005; Lane et al. 2011, 2020; Ackerman et al. 2016a;
Sayers et al. 2021). When comparing among the most well-
sampled sites (n ≥ 25), central Belize, Ayapel, Colombia,
and Madre de Dios, Peru exhibited consistently high pre-
dicted and mean THg concentrations—signaling that these
regions are biological Hg hotspots (Figs. S6–7; Table S2).
While there is still much to investigate here, bird commu-
nities in Belize may have elevated THg concentrations
because of gaseous elemental Hg emissions from local
landfill incineration, coal combustion in central Mexico
(UNEP 2019), or industrial and artisanal gold mining in the
Chiquibul/Maya Mountains (Cornec 2010; Briggs et al.
2013; Manzanero 2014; Rath 2016). In addition, there is an
abundance of Hg methylating habitats at some Belize
sampling sites, including seasonal wetlands, that may con-
vert inorganic emissions to a more bioavailable form. We
principally attribute elevated bird THg concentrations in
Ayapel, Colombia, and Madre de Dios, Peru to ASGM
activities. All three of our sampling stations in Ayapel
feature freshwater wetlands directly downstream from
active gold mining operations. This situation creates

theoretically ideal conditions for high MeHg production:
elevated volumes of aqueous inorganic Hg that interact with
organic sediment via periodic inundation. Madre de Dios is
now recognized as a global hotspot for ASGM, where this
often-illicit industry consumes up to 10,000 ha of primary
rainforest and releases up to 185 Mg of inorganic Hg into
local waterways per year (Andina 2015; Asner and
Tupayachi 2017; Collyns 2019; Caballero-Espejo et al.
2018). Although the Peruvian government augmented their
enforcement of illegal gold mining in certain areas of Madre
de Dios in 2019–2020 (e.g., Operación Mercurio 2019;
Leas 2019), ASGM continues unrestrained in other parts of
the region. Further, legacy Hg released from over five
decades of ASGM activity in Madre de Dios persists in
aquatic and terrestrial systems (Diringer et al. 2015).

Artisanal and Small-scale Gold Mining (ASGM)

Perhaps the most important finding of this study is that
bird THg concentrations were over four times higher at
sites within 7 km of artisanal gold mining activities than at
other sites across the Neotropics (χ2= 20.54, p < 0.001;
Figs. 1–3; Tables S2, S5). These ASGM-impacted sites
not only featured among the highest Hg concentrations
ever published for songbirds (Passeriformes; Abeysinghe
et al. 2017; Evers et al. 2023) but also kingfisher samples
that set a new record for the highest mean feather Hg
concentration ever reported for a bird species in South
America (Chloroceryle americana: 35.75 ± 27.92 µg/g fw
body feather; Balza et al. 2021).

These results represent a wake-up call for tropical bird
conservation, and signal an urgent need to assess the
community-level consequences of this industry by further
clarifying the scale and endpoints of impact, as well as the
biomagnification mechanisms at play. Our model estimates
should neutralize much of the doubt surrounding the role of
ASGM in contributing to elevated Hg exposure for tropical
biodiversity. As many tropical regions are geochemically
active and face a surge of biomass burning via agricultural
expansion, there has been perpetual uncertainty and scrutiny
about whether natural Hg emissions and re-emissions are
responsible for high organismal exposure. While we cannot
adequately determine source attribution without the use of
stable Hg isotopes, an evolving methodology for birds
(Kumar et al. 2018; Tsui et al. 2018; Li et al. 2022), we assert
that it is negligent to disregard ASGM as one of the principal
drivers of Hg exposure in the Neotropics given that (1) global
anthropogenic emissions vastly exceed natural ones, and (2)
ASGM contributes the majority of Hg emissions across all
anthropogenic sectors (UNEP 2019). Regardless of the the-
oretical presence of naturally-sourced Hg at ASGM sites, our
model estimates demonstrate a clear additive effect of ASGM
emissions compared to background concentrations.
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Temporal variation

Neotropical bird THg concentrations tended to be higher in
dry seasons for many trophic niches, but there was not a
significant seasonal difference at the community level in our
top-performing model (χ2= 3.65, p= 0.056; Table S5).
Including a season by trophic niche interaction term vastly
improved model fit, indicating that certain trophic niches
experienced significant differences in exposure between dry
and wet seasons (χ2= 41.19, p < 0.001; Fig. S8; Table S5).
Hg concentrations also differed among years (χ2= 103.67,
p < 0.001; Table S5), but due to our inconsistent sampling
across locations throughout the full annual cycle, we are
unable to determine the directionality of these trends. Intra-
and inter-annual temporal patterns are likely to be most
biologically meaningful for taxonomic groups occupying
higher trophic niches and populations occupying Hg
hotspots.

Intra-annual mechanisms, such as seasonal re-emission
and methylation rates or even dietary shifts throughout the
annual cycle, could contribute to seasonal differences in
avian Hg exposure. Tropical precipitation rates change
dramatically throughout the annual cycle, leading to distinct
dry and wet seasons, often with accompanying pulses in
biomass burning and flooding, respectively. These intra-
annual changes likely contribute to strong seasonal atmo-
spheric Hg trends in tropical South America, though further
research is valuable (Koenig et al. 2021; Gerson et al.
2022). Due to the substantial sequestration of gaseous ele-
mental Hg by forests, leaf litter, and soil organic matter
(Obrist 2007; Jiskra et al. 2015, 2018; Obrist et al. 2018;
Gerson et al. 2022), during months of relatively little pre-
cipitation, biomass burning events can re-emit large quan-
tities of Hg to the atmosphere (Webster et al. 2016; Fraser
et al. 2018; Shi et al. 2019; Koenig et al. 2021). Changing
sediment moisture conditions, such as those following
rainfall and flooding events, produce conditions that
amplify MeHg production and bioavailability (Snodgrass
et al. 2000; Hall et al. 2008). Therefore, we expect avian Hg
exposure acquired through food web biomagnification to
track well with seasonal atmospheric trends—peaking dur-
ing the dry-wet seasonal transition following biomass
burnings in the dry season (Shi et al. 2019; Koenig et al.
2021) and the release of MeHg into aquatic systems during
inundation (Devito and Hill 1999; Snodgrass et al. 2000;
Eimers et al. 2003; Hall et al. 2008). Concurrently, many
species within omnivorous, frugivorous, and granivorous
trophic niches shift to a more invertivorous diet during the
breeding cycle to match the protein needs of their offspring
(Moermond and Denslow 1985). Therefore, due to elevated
Hg biomagnification in carnivorous food webs, we should
expect bird Hg concentrations to increase during breeding
seasons, which vary by taxonomy and geography.

These proximate, intra-annual mechanisms operate
amidst ultimate, inter-annual mechanisms pertaining to
emission, methylation, land-use, and climate changes.
Anthropogenic Hg emissions have steadily increased
throughout the Neotropical realm since at least 1980 (UNEP
2013, 2019; Streets et al. 2017). These trends are largely a
result of ASGM emissions, which have almost doubled at
5-year increments since 2005 in South America (UNEP
2013, 2019). Artisanal and industrial Hg emissions may be
compounded by (1) the increased methylation capacity of
ASGM landscapes (Gerson et al. 2020), and (2) increasing
biomass burning re-emissions via agricultural expansion
and evapotranspiration feedback loops (Nature 2019;
Escobar 2020). ASGM activities convert forests to aquatic
habitats, especially ponds, which can dramatically increase
MeHg production (Gerson et al. 2020). Cattle ranching and
soybean production, which regularly utilize slash-and-burn
land clearing methods, are the principal drivers of defor-
estation and biomass burning in the Neotropics (Sampaio
et al. 2007; Nature 2019; Lapola et al. 2023). Specifically in
Amazonia, there is now mounting evidence that forest cover
loss reduces evapotranspiration and precipitation recycling,
leads to an altered hydrological cycle with an extended dry
season, increases the frequency and intensity of biomass
burnings and subsequent re-emissions of gaseous elemental
Hg, and further reduces forest cover (Sampaio et al. 2007;
Gloor et al. 2015; Lovejoy and Nobre 2018; Peña-Claros
and Nobre 2023)—a positive feedback loop known as
savannification. Anecdotally, the management actions
necessary to bring the Amazon back from this tipping point
(Lovejoy and Nobre 2018; Peña-Claros and Nobre 2023),
such as implementing sustainable agriculture practices to
curb deforestation and increase soil carbon stocks (Loker
1994; zu Ermgassen et al. 2018; Ogle et al. 2019), and
mending fragmented habitats through ecosystem restoration
(Aide et al. 2000; Strassburg et al. 2020), all have the
potential to greatly decrease Hg re-emissions, while pro-
tecting the health and longevity of humans and biodiversity
—a win-win-win situation.

Migratory strategy

Migratory status as a fixed effect was excluded from the
top-performing model during model selection and Neo-
tropical bird Hg concentrations did not differ among
migratory statuses in the global model (χ2= 1.77,
p= 0.412; Table S2). However, Hg biomonitoring efforts
should continue to sample Neotropical migrants in parallel
with resident species since there are several toxic mechan-
isms that could influence their migratory success (Seewagen
2020).

New World warblers and tyrant flycatchers are among
the highest-ranking Neotropical families in predicted and
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mean THg concentrations and have declined over 25% and
20% in North America, respectively (Rosenberg et al.
2019). As these species must overcome immense physical
challenges to complete a successful migration, this life
history stage is commonly associated with high mortality
(Sillett and Holmes 2002; Paxton et al. 2017; Rushing et al.
2017). Hg exposure throughout the full annual cycle (Evers
2018; Cristol and Evers 2020) is widely expected to intro-
duce additional complications for navigation, flight endur-
ance, stopover refueling, cell oxidation, and predator
avoidance along the migratory route (Ma et al. 2018a, b;
Adams et al. 2020; Seewagen 2020), which could contribute
to seasonal carry-over effects and regional population
declines (Ma et al. 2018a).

Methylmercury has the potential to influence migratory
success via acute and chronic mechanisms of toxicity. Ma
et al. (2018b) showed that Setophaga coronata (yellow-
rumped warblers) rapidly accumulated dietary MeHg into
the bloodstream and incurred more frequent strikes and
decreased flight endurance during wind tunnel experiments
as a consequence of acute neurotoxicity. One chronic toxi-
city mechanism that can impact migratory success is fluc-
tuating asymmetry, in which feather growth departs from
bilateral symmetry on the wings and tail. In Sterna forsteri
(Forster’s terns) and Gavia immer (common loons), fluctu-
ating asymmetry was positively correlated with blood and
feather Hg concentrations (Evers et al. 2008; Herring et al.
2017) and has been shown to reduce take off speed, aerial
maneuverability, and flight performance in Sturnus vulgaris
(European starlings; Swaddle et al. 1996). Birds accom-
modating for imperfections in drag, wing shape, and weight
distribution due to clipped or naturally molting feathers,
generate less mechanical power, have slower flight speeds,
and exert more energy during flight (Thomas 1993; Chai
1997; Chai and Dudley 1999; Hambly et al. 2004). This
increased energy expenditure has profound implications for
migratory success. Over long distances, and especially trans-
oceanic flights, Hg-driven asymmetry could therefore result
in shorter flight durations, lengthened stopover time, delayed
arrival to favored breeding territories (Seewagen 2020),
reduced predator avoidance abilities (Lind et al. 2010), or
even distance misjudgments, starvation, and fatigue.

Considering these potential mechanisms, Ma et al.
(2018a) introduced and supported a fundamental hypothesis
in which long-distance Neotropical migrant songbirds
departing from the breeding grounds during autumn
migration with high Hg exposure are less likely to return in
the following spring. As a result, scientists would observe a
higher frequency of migrants with lower Hg concentrations
during spring migration—with the main implication being
that, due to a Hg-driven reduction in migration success,
there are fewer breeding migrants as time progresses.
However, this hypothesis ignores Hg exposure present on

the nonbreeding grounds. Framing Hg-migration dynamics
only in terms of breeding ground exposure is problematic
because it removes any culpability that migrant wintering
grounds can contribute to reductions in spring migration
success, and reduces the impetus for ecotoxicological bio-
monitoring in tropical regions. Using the Ma et al. (2018a)
hypothesis, we would also predict that Neotropical migrants
sampled on the wintering grounds with the highest Hg
concentrations would be the least likely to complete a
successful spring migration. And if this prediction is valid,
we would also observe a higher frequency of migrants with
lower Hg concentrations during spring in North America.
To elucidate the effects of Hg on Neotropical migrants and
the role that Hg may have in regional migratory bird
declines (Rosenberg et al. 2019), ecotoxicologists should
implement strategic tissue sampling of this clade during all
life stages (Jackson et al. 2015).

Risk assessment

Using established effect concentrations featured in Jackson
et al. (2011), 9.5% (221/2316) of individuals across 26%
(85/322) of species and 45% (23/51) of families within our
sampled community may experience a 10% or greater
reduction in reproductive success. At the species level, we
estimate that a total of five terrestrial vertivore, three aquatic
predators, 19 invertivores, and four omnivore species with
more than five samples in a given tissue category fall above
this risk threshold (Fig. 4). Most at-risk species were among
the highest-ranking families in predicted and mean THg
concentrations: Alcedinidae (kingfishers), Thamnophilidae
(antbirds), Furnariidae (ovenbirds), Parulidae (New World
warblers), and Troglodytidae (wrens; Figs. 3, S4). In addi-
tion, most at-risk individuals were sampled from Hg hot-
spots that we identified: central Belize, Ayapel, Colombia,
and Madre de Dios, Peru.

Because we collected over 95% of bird tissue samples
via ground-level mist-net surveys, our results and sub-
sequent risk assessments are applicable to strata generalists
and understory species. This is particularly valuable con-
sidering the declines of understory invertivores within
protected Neotropical forest tracts (Robinson 1999, 2001;
Sigel et al. 2006; Latta et al. 2011; Blake and Loiselle 2015;
Boyle and Sigel 2015; Stouffer et al. 2020; Sherry 2021;
Pollock et al. 2022). Several species with mean THg con-
centrations that exceeded sublethal effect thresholds,
including Formicarius analis (black-faced antthrush),
Willisornis poecilinotus (common scale-backed antbird),
Dendrocincla fuliginosa (plain-brown woodcreeper), Den-
drocincla homochroa (ruddy woodcreeper), and Myr-
motherula axillaris (white-flanked antwren), also suffered
significant abundance declines in recent studies on Neo-
tropical avifaunal collapse (Stouffer et al. 2020; Pollock
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et al. 2022; Table S8). Given these risk estimates and
overall elevated concentrations for these taxa, we posit that
ASGM and other Hg-polluting industries throughout Latin
America may play a role in shaping the understory

invertivore community. However, we acknowledge that
toxicity reference values developed for Holarctic species
may be limiting when assessing risk for Neotropical resi-
dent avifauna (Canham et al. 2020).

Fig. 4 Proportion of Neotropical
bird species sampled for (a)
whole blood, (b) body feathers,
and (c) tail feathers that may be
subject to reductions in
reproductive success via MeHg
exposure, as defined by Jackson
et al. (2011). Species with fewer
than five samples are excluded.
Whole blood risk categories are:
< 0.7 µg/g ww (gray, ≤10%
decline in reproductive success),
≥0.7 µg/g ww (yellow, ≥10%),
≥1.2 µg/g ww (orange, ≥20%),
≥1.7 µg/g ww (red, ≥30%), and
≥2.2 µg/g ww (black, ≥40%).
Body feather risk categories are:
< 2.4 µg/g ww (gray, ≤10%),
≥2.4 µg/g ww (yellow, ≥10%),
≥3.4 µg/g ww (orange, ≥20%),
≥4.5 µg/g ww (red, ≥30%), and
≥5.3 µg/g ww (black, ≥40%).
Tail feather risk categories are:
<3 µg/g ww (gray, ≤10%),
≥3 µg/g ww (yellow, ≥10%),
≥4.7 µg/g ww (orange, ≥20%),
≥6.4 µg/g ww (red, ≥30%), and
≥7.7 µg/g ww (black, ≥40%)
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Selecting Hg effect thresholds that can be applied to the
322 bird species included in this synthesis is a difficult task.
While toxicity reference values have been defined for a
variety of endpoints, relatively few bird species have been
studied, and none exist for tropical biomes (Fuchsman et al.
2017; Cristol and Evers 2020). Researchers have often
relied on extrapolation across species, families, or even
orders of similar diet or body size when reference values
have not been defined for a species of interest (Warner et al.
2010; Lane et al. 2011, 2020; Winder 2012; Sayers et al.
2021). Because species vary widely in their respective
sensitivities to Hg (Fuchsman et al. 2017; Cristol and Evers
2020), extrapolation has the potential to be inaccurate
(USEPA 2007), and to ignore interspecific differences in
size, trophic position, and evolved Hg tolerance (Thompson
and Furness 1989; Eagles-Smith et al. 2009; Fuchsman
et al. 2017).

Neotropical species may have higher or lower toler-
ance to Hg exposure than Holarctic species due to a
variety of environmental and evolutionary factors. As the
Neotropics are a geochemically-active region, resident
bird communities could exhibit elevated tolerance to
MeHg bioaccumulation via generations of natural expo-
sure from volcanism and leaching of volcanic rock
(Nriagu and Becker 2003; Saginor et al. 2013). Neo-
tropical birds tend to have longer molt cycles than
Holarctic species (Moreno-Palacios et al. 2018), which
provides more time to depurate Hg into developing
feathers and reduce their body burden. Neotropical birds
also tend to be larger, longer-lived, and have lower
metabolic rates than Holarctic species; which, in addition
to differentiated cellular properties, appears to increase
their resistance to oxidative stress (Jimenez et al. 2014).
Therefore, Neotropical bird species may be able to tol-
erate higher concentrations of Hg (Canham et al. 2020).
On the contrary, the slower “pace of life” and metabolism
of Neotropical species (Wikelski et al. 2003; Jimenez
et al. 2014) could reduce their capacity to eliminate Hg
through excretion, depuration, or demethylation. Neo-
tropical species tend to have longer breeding periods with
smaller clutch sizes, sometimes lasting all year, have a
lower annual reproductive output, and exist at lower
densities than Holarctic species (Jetz et al. 2008; Jimenez
et al. 2014; but see Arendt 2004, 2006). Therefore, Hg
exposure may have a disproportionately negative impact
on Neotropical bird population growth, stability, and
recovery (Burger 1997). Despite these broad-scale dif-
ferences between Neotropical and Holarctic taxa, it is
important to attempt to provide context for our results.
Therefore, as we lack any evidence of how Hg may
influence Neotropical bird species, we cautiously extra-
polate from frequently-cited toxicity reference values for
songbirds in North America.

Jackson et al. (2011) monitored Thryothorus ludovicia-
nus (Carolina wrens), a non-migratory invertivorous song-
bird, breeding along two contaminated rivers in Virginia,
USA, to develop effect concentrations based on percent
reductions in nesting success. Females with blood, body
feather, and tail feather THg concentrations of 0.7, 2.4, and
3.0 µg/g, respectively, were projected to experience a 10%
reduction in nesting success. These toxicity reference values
have since been routinely used to provide context for a
variety of invertivorous passerine species (Winder 2012;
Evers 2018; Lane et al. 2020; Sayers et al. 2021). While
non-passerine species, including members of Alcedinidae
(kingfishers), Falconidae (falcons), Strigidae (owls), and
Momotidae (motmots), tend to be larger and consume
higher trophic level prey items than invertivorous song-
birds, McNab (1988) notes that vertebrate-eating birds
weighing less than a kilogram, including small raptors
(Order Accipitriformes and Falconiformes), seabirds (Order
Procellariiformes), and members of family Alcedinidae
(kingfishers), have high basal metabolic rates similar to
invertivorous passerines. Because avian Hg exposure and
toxicokinetics are related to body mass, birds of similar size
and metabolic rate should have similar sensitivities to Hg
(Fuchsman et al. 2017). Therefore, we have increased
confidence in applying toxicity reference values from
Jackson et al. (2011) to non-passerine species present in our
database.

Research priorities & recommendations for
future biomonitoring

A plethora of additional research is necessary to address
important and persistent gaps in our understanding of Hg
exposure to Neotropical birds. We assert that the most
immediate priority for the field of Neotropical ecotoxicol-
ogy is to clarify how Hg exposure and risk changes over
time and space, which not only requires interdisciplinary
expertize and coordination, but also systematic sampling of
sites, habitats, taxonomy, and tissues.

A critical, albeit challenging, task to overcome the pre-
sent limitations of interpreting Hg exposure to Neotropical
birds is to develop effect concentrations for reproductive
endpoints using field-based approaches. These toxicity
thresholds should reflect the most abundant and widespread
sentinel species to broaden their taxonomic and geographic
applicability (see Sentinel species selection; Table S9).
Metrics of reproductive success (e.g., nesting attempts,
clutch size, nestling survival, proportion of chicks fledged)
are the most useful interpretive endpoints for ecological Hg
effects because they can be relatively easy to measure in
cavity-nesting species and have direct population-level
consequences (Brasso and Cristol 2008; Evers et al. 2008;
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Jackson et al. 2011). In controlled laboratory-based, or
ex situ, studies that rely on the dosing of captive indivi-
duals, reproductive success is easily isolated and quantifi-
able without the influence of stochastic environmental
stressors, including food abundance, weather, predation, or
human interference. However, the lack of stochasticity
creates a potentially large limitation in applying ex situ
adverse-effect thresholds to in situ free-living populations,
which must compensate for Hg contamination in the face of
environmental stress. Therefore, laboratory-based studies
should supplement empirical field-based studies to char-
acterize the role of environmental stochasticity, define
toxicokinetic relationships, and better explain in situ
responses. By integrating these efforts, we can begin to
provide more-accurate estimations of Hg risk in past, pre-
sent, and future avian populations.

A robust way to examine temporal patterns in avian Hg
exposure is through the simultaneous monitoring and com-
parison of contemporary and historical bird communities. To
better understand proximate, intra-annual mechanisms, we
recommend the consistent collection of avian blood samples
—a tissue representative of recent dietary Hg exposure (see
Tissue selection)—across sites throughout the full annual
cycle. To define ultimate, inter-annual mechanisms, how-
ever, museum collections provide enormous power to
understand past, present, and future Hg emissions scenarios
for biodiversity (Vo et al. 2011; Evers et al. 2014; Perkins
et al. 2020). By leveraging the chemical stability of MeHg in
feathers (Applequist et al. 1984) and evolving methods to
quantify stable Hg isotope ratios (Kumar et al. 2018; Tsui
et al. 2018; Li et al. 2022), we can analyze preserved bird
specimens in natural history museums to understand how
emission sources, biogeochemical cycling, and biological
risk of Hg pollution have changed over time.

Ecotoxicologists should continue to monitor the Hg
hotspots we identify here, as they provide the opportunity
to: (1) further understand inherent differences between
Holarctic and tropical Hg dynamics, (2) inform government
agencies about the ecological impacts of gold mining
activities, (3) refine the selection of sentinel species for
Neotropical habitats and regions, (4) examine temporal
changes in Hg emission and methylation rates, and (5) serve
as reference sites for future comparisons. In particular,
weighing the rapid expansion of ASGM in Neotropical
lowland ecosystems with the global significance and gen-
eral lack of Hg exposure data for these regions, the Amazon
River Basin should be one of the top sampling priorities for
Neotropical ecotoxicologists throughout the next decade
(Canham et al. 2020). Coupled with immense inorganic Hg
emissions at small-scale operations, mining can contribute
9–70% of local annual deforestation in Amazonia (Sonter
et al. 2017; Caballero-Espejo et al. 2018). As such, there are
not only ecotoxicological concerns but also significant

fragmentation, biogeography, carbon sequestration, climate
change, and savannification implications associated with
ASGM—placing further strain on conservation efforts in
the face of mining pressure (Sonter et al. 2018). Given its
staggering biodiversity, relatively small size, high density of
ASGM activity, and robust network of biological stations
and ecolodges, we propose Madre de Dios, Peru as a
meaningful starting point for long-term Hg biomonitoring
efforts in Amazonia.

We must also stress, however, that the Neotropics are in
great need of widespread Hg sampling beyond these hot-
spots, and that reducing the spatial coverage of biomoni-
toring efforts would be counterproductive to articulating Hg
exposure and risk on a multi-continental scale. Historical
and present sampling efforts have largely been confined to
accessible locations with adequate infrastructure, often near
tourist destinations within politically-stable countries. As
such, we still consider the Neotropical realm to be poorly
assessed in terms of avian Hg exposure. We urge
researchers to consider venturing outside of our established
sampling sites (Fig. 5; Table S2), and highlight that inclu-
sive collaboration provides a viable solution to mitigate
current geographic sampling biases (see The Tropical
Research for Avian Conservation & Ecotoxicology
(TRACE) Initiative).

Finally, following the recommendations of Jackson et al.
(2015), conservation ornithologists should consider incor-
porating Hg exposure metrics into mark-recapture and full-
annual-cycle population models to isolate the impacts of
pollution from a plethora of other stressors, including land-
use and climate changes. Such models would be most
appropriate for resident and migratory species that have the
highest biomagnification potential, the highest probability
to interact with ASGM-polluted landscapes, or the highest
conservation concern (see Sentinel species selection).

Tissue selection

Neotropical bird THg concentrations differed among tissue
types across individuals (χ2= 3358.75, p < 0.001; Table S5),
which highlights the importance of selecting sampling tissues
appropriately when organizing Hg biomonitoring efforts.
Funding and logistical constraints can often influence tissue
selection decisions, since there are different equipment, ana-
lysis, or storage requirements. While both internal and
external tissues are appropriate for monitoring MeHg expo-
sure in birds (Ackerman et al. 2016a; Fuchsman et al. 2017;
Evers 2018), we present economical, nonlethal, and
minimally-invasive options suitable for conservation research:
blood and feather collection from mature birds. Non-viable
eggs are another popular, non-invasive sampling option, and
are particularly useful for estimating a laying female’s MeHg
exposure during egg development (Ackerman et al. 2016b;
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Espín et al. 2016). However, in tropical moist forest habitats
where nests are difficult to find and access, eggs may not be
appropriate for rapid assessments. Tissue selection should
ultimately be informed by the desired research endpoint, as
different tissues represent different temporal or geographic

scales of MeHg exposure. To help guide tissue sampling
selections for avian Hg assessments, we provide a procedural
and inferential flowchart in Table S9.

Whole blood is perhaps the most favorable and com-
monly sampled tissue for Hg biomonitoring, and is the most

Fig. 5 Total mercury (THg) concentrations (µg/g) and sample sizes of
birds sampled for (a, b) whole blood, (c, d) body feathers, and (e, f)
tail feathers across Central America, South America, and the West

Indies from 2007–2023. Point size and color are arranged in order of
increasing THg concentration and hexagonal grid cells are colored in
terms of increasing sample size

1110 C. J. SayersII et al.



reliable proxy for determining MeHg body burden in birds
(Ackerman et al. 2016a, b; Low et al. 2020). Whole blood
Hg concentrations are strongly correlated with those in
other internal tissues, such as eggs (Ackerman et al. 2016b),
as well as in tissues that can only be assessed through
euthanasia, such as muscle and liver (Eagles-Smith et al.
2008; Ackerman et al. 2016b). This strong correlation
facilitates both the confident conversion of Hg concentra-
tions and the comparison of toxicity reference values among
tissue types when necessary (Ackerman et al. 2016a).
Whole blood samples represent short-term dietary MeHg
exposure from days to weeks (Evers 2018); which, for taxa
not in active migration, also reliably represents site-specific
MeHg exposure. Therefore, whole blood can be considered
a spatiotemporal “snapshot” of MeHg exposure, and is the
ideal sampling matrix when seeking to quantify the spatial
distribution of MeHg sources across a landscape or region
(Evers et al. 2005; Sayers et al. 2021).

Whole blood sampling is complicated by bulky,
expensive equipment and challenging storage requirements
relative to other nonlethal sampling options, including
feathers. Accepted whole blood sampling procedures
require the use of coolers, ice packs, and plastic vacutainers
to temporarily insulate and protect blood-collection recep-
tacles, especially glass microhematrocirit capillary tubes.
These materials can be cumbersome in the field and require
careful handling to avoid breakage. Blood-collection
receptacles also need to be sealed and stored below freez-
ing with minimal freeze-thaw cycles to prevent changes in
Hg concentrations due to contamination, moisture loss, and
interconversions of Hg species (Horvat and Byrne 1992;
Varian-Ramos et al. 2011; Sommer et al. 2016; Evers et al.
2021). At remote tropical field sites, resources to transport
and store samples may be difficult to organize or access,
which precludes the use of whole blood as a sampling
tissue. However, the collection of dried blood spots on
filter paper cards may present a convenient alternative in
remote tropical environments since samples do not need to
be refrigerated (Chaudhuri et al. 2009; Basu et al. 2017;
Perkins and Basu 2018; Nyanza et al. 2019; Santa-Rios
et al. 2021)—all while representing the same spatio-
temporal scale of MeHg exposure.

Feathers are another preferred tissue for avian Hg mon-
itoring efforts in both temperate (Cristol et al. 2008; Evers
et al. 2008; Jackson et al. 2011; Lane et al. 2020) and
tropical biomes (Burger and Gochfeld 1991; Anbazhagan
et al. 2021; Parolini et al. 2021) due to their unique spa-
tiotemporal Hg signal and convenient sampling, transpor-
tation, and storage requirements (Furness et al. 1986;
Burger 1993; Bortolotti 2010; Espín et al. 2016). During
molting periods, when feathers are connected to the
bloodstream, birds can mitigate their body burden by
depurating toxicants from internal tissues into growing

feathers (Furness et al. 1986; Braune and Gaskin 1987;
Burger 1993; Markowski et al. 2013). Following feather
maturation, the MeHg bound to feather keratin structures is
chemically stable and becomes isolated from the rest of the
body (Applequist et al. 1984). The amount of Hg detected
in a single feather thus represents a bird’s dietary MeHg
exposure and endogenous accumulation throughout the time
of feather growth (Burger et al. 1992; Evers et al. 2005;
Markowski et al. 2013; but see Furness et al. 1986).

Depending on a species’ molt strategy and movement
behavior during molt, feather Hg concentrations can repre-
sent a much wider spatiotemporal scale of MeHg exposure
than whole blood (Evers 2018). This may complement
certain research goals and even allow for ex situ Hg mon-
itoring, but is a strong disadvantage when trying to pinpoint
MeHg sources in a landscape. Feather sampling is also
complicated by high Hg variation among feathers within or
between tracts from the same individual (Bond and Diamond
2008; Carravieri et al. 2014; Ackerman et al. 2019; Peterson
et al. 2019; Low et al. 2020) and poor prediction of Hg
concentrations in internal tissues, especially for migratory
species (Eagles-Smith et al. 2008; Ackerman et al. 2019;
Low et al. 2020). As such, blood sampling may be the only
approach for gathering a precise spatiotemporal estimate of
MeHg exposure for birds that make large seasonal move-
ments (Bildstein 2004; Hobson et al. 2003; Hsiung et al.
2018). In contrast, feather sampling can be more appropriate
for species with limited movements, where feather molt
occurs near the sampling location (Ackerman et al. 2012).
Additional exceptions exist for species with well-
documented molt cycles and individuals with accompany-
ing telemetry or isotope data, where we can accurately
estimate the geographic origin of Hg detected in a feather
(Fort et al. 2014; Ma et al. 2021). Because many Neotropical
resident species maintain small territories (generally < 64 ha,
Terborgh et al. 1990; Jirinec et al. 2018), feathers from
nonmigratory taxa may closely resemble the geographic
MeHg signal of blood, while integrating MeHg exposure
over a longer time period. Considering these dynamics,
researchers should obtain a robust understanding of the molt
and movement ecology of their focal species before select-
ing appropriate sampling tissues.

External contamination is yet another necessary variable
to consider when analyzing feathers for Hg. As a general
rule, MeHg constitutes approximately 95% of the total Hg
detected in biological tissues, including blood (Rimmer et al.
2005), eggs (Ackerman et al. 2013), and feathers (Thompson
and Furness 1989). Analyzing tissue samples for total Hg
(THg), a much cheaper alternative to MeHg, allows
researchers to substantially reduce laboratory costs. How-
ever, in unique circumstances, such as museum specimens
preserved with mercuric chloride (HgCl2) (Goldberg 1996)
or feathers sampled near ASGM zones with high inorganic
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Hg emissions and re-emissions, researchers should analyze
feathers for MeHg. This practice avoids the potential bias
from exogenous contamination from the adsorption of
inorganic Hg on the feather surface (Vo et al. 2011; Mar-
kowski et al. 2013; Evers et al. 2014; Dzielski et al. 2019;
Perkins et al. 2020). Nevertheless, the convenience of
feather sampling outweighs some of the shortcomings.

Logistical advantages of sampling feathers include that
they can be plucked without causing permanent damage,
sampled repeatedly in the same individual to illustrate
temporal bioaccumulation trends, have a much lower risk of
disease transmission than blood, are resistant to environ-
mental degradation, and are accessible via natural history
collections (Evers et al. 2008; Bortolotti 2010; Espín et al.
2016; Dzielski et al. 2019; Perkins et al. 2020). As with
dried blood spots, the chemical stability of MeHg within
keratin-based tissues precludes the need to store and trans-
port feather samples below freezing (Applequist et al. 1984;
Espín et al. 2016; Evers et al. 2021), which profoundly
simplifies field planning in remote tropical locations. In
addition, feather sampling circumvents the logistical com-
plications surrounding the transmission of Exotic Newcastle
Disease and the H5N1 subtype of Highly Pathogenic Avian
Influenza when importing and exporting samples inter-
nationally (Paul 2005), since MeHg in fully-grown feathers
remains stable when exposed to extreme treatments
(Applequist et al. 1984; Goede and de Bruin 1984).

Once familiarizing themselves with the life history of
their focal species, researchers interested in sampling
feathers for Hg analysis should consider tail and flank
feathers as useful standards. The sampling of two symme-
trical outer tail feathers (rectrices, typically R6) is less
invasive compared to flight feathers of the wing (remiges)—
which have greater implications for flight efficiency, pre-
dator avoidance, and migratory success (Swaddle et al.
1996; Lind et al. 2010; McDonald and Griffith 2011)—
allows for consistent comparisons among individuals
(Varela et al. 2016), and also allows for the measurement of
Hg-related fluctuating asymmetry (Espín et al. 2016).
Additionally, many species have well-documented and
predictable tail feather molt cycles, which reduces the
temporal uncertainty of Hg exposure (Bortolotti 2010).
Flank feathers can be easily plucked and analyzed whole,
are typically larger and provide more mass than adjacent
breast or belly feathers—which is useful for the minimum
mass requirement in direct Hg analysis—and tend to have
lower Hg variation relative to other feather tracts (Furness
et al. 1986; Low et al. 2020). Since museum curators aim to
minimize destructive sampling, flank feathers offer a unique
opportunity to conduct retrospective analyses using pre-
served specimens in natural history collections (Applequist
et al. 1984; Vo et al. 2011; Evers et al. 2014; Dzielski et al.
2019; Perkins et al. 2020). In Neotropical migratory

songbirds, while flight feathers may only be molted once a
year during the postbreeding phase prior to autumn migra-
tion, body feathers can be molted twice a year, and repre-
sent two distinct spatiotemporal periods of MeHg exposure
(Pyle 1997; Rohwer et al. 2005). These combined traits
make flank feathers one of the most favorable sampling
matrices for avian Hg monitoring (Furness et al. 1986).
Despite the inherent complications and advanced con-
siderations necessary when sampling feathers, their ease of
collection and storage, especially in regions with limited-
resources, and the chemical stability of MeHg within
keratin-based complexes, make feathers a desirable tissue
choice for some Hg monitoring situations.

Sentinel species selection

Sentinel species provide a convenient and efficient proxy
for quantifying contaminant risk at various temporal and
spatial scales. Distilling the writing of Beeby (2001) and
Jackson et al. (2015), in general, sentinel species should be
abundant and widespread to facilitate extensive sampling
and geographic comparisons, live long enough and occupy
a home range that matches the spatiotemporal scale in
question, and have a relatively well-documented life history
that can provide context for how contaminants affect their
behavior, physiology, and reproduction. More simply, an
effective sentinel species is one that best complements the
research question or system of interest. With over 3500 bird
species native to the Neotropics, the selection of sentinel
species is much more challenging than for studies based in
temperate biomes. Due to the high diversity and low density
of Neotropical species, broader taxonomic or functional
groups may even be more useful sentinels than individual
species (Lacher and Goldstein 1997). Because our cumu-
lative sampling efforts are not exhaustive, and the vast
majority of Neotropical species remain unsampled (i.e., this
synthesis provides THg exposure profiles for only about 9%
of Neotropical species), we cannot produce a definitive list
of all relevant and thus, irrelevant species. Here, we present
a conservative list of species that have good potential to act
as sentinels for various Neotropical habitats and regions
given our current understanding (Table S10).

Piscivorous birds have particular advantages as sentinel
species. Both small and large piscivores, including species in
Alcedinidae (kingfishers) and Ardeidae (herons), respec-
tively, are at a high risk of Hg exposure due to their high
trophic position and association with aquatic environments.
Alcedinidae and Ardeidae feather THg concentrations have
exceeded 6 µg/g fw in previous studies (Herring et al. 2009;
Zamani-Ahmadmahmoodi et al. 2009), and ascend to 72 µg/
g fw in this study (Table S8)—highlighting their bioaccu-
mulation potential. Due to the global distribution of these
families, ecotoxicologists have the opportunity to compare
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Hg concentrations in Neotropical species of Alcedinidae and
Ardeidae to those observed in species elsewhere around the
world. Concurrent logistical advantages include that species
in Alcedinidae can be captured using passive ground-level
mist-net arrays and, due to their aggressive territoriality, can
also be lured with auditory playback tools. Additionally,
species in Ardeidae nest in large colonies—meaning that
samples can be collected more efficiently once a nesting site
is identified. Due to their relative trophic position, habitat
occupancy, logistical advantages, and previous Hg research
focused on these families, members of Alcedinidae and
Ardeidae, such as Chloroceryle amazona (Amazon king-
fisher), Chloroceryle americana (green kingfisher), Chlor-
oceryle aenea (American pygmy-kingfisher), and Ardea
alba (great egret), are well-suited as sentinel piscivores for
Neotropical aquatic habitats.

Due to their high bioaccumulation potential and con-
venience of sampling, invertivorous songbirds are ideal
avian sentinels to assess Hg contamination across terrestrial
habitats (Jackson et al. 2015; Cristol and Evers 2020)—
especially in unison with established mist-netting surveys.
Two avian invertivore clades of particular interest to Neo-
tropical regions are ant-following birds and Neotropical
migrants, both of which exhibit elevated THg concentra-
tions relative to other invertivores (Figs. 3, S4; Table S7).

An estimated 465 Neotropical bird species engage in
obligate, facultative, or opportunistic ant-following behavior
—one of the most conspicuous and captivating foraging
spectacles native to wet forest biomes of Central and South
America—by targeting invertebrate or vertebrate prey items
that attempt to escape foraging army ant swarms (Oniki and
Willis 1972; Stotz et al. 1996; Roberts et al. 2000; Wrege
et al. 2005; Tórrez et al. 2009). New World army ants,
particularly Eciton burchellii and Labidus praedator, are
obligate nomadic group predators that roam the forest floor
in large raids while searching for their preferred prey items:
mainly pupae of other ant species (Willis and Oniki 1978;
Powell 2011). Army ants will also consume virtually any
organism that they can immobilize, including frogs, lizards,
snakes, spiders, and nestling birds (Breed and Moore 2016).
Several bird families that regularly attend swarms, such as
Thamnophilidae (antbirds), Furnariidae (ovenbirds),
Momotidae (motmots), Tyrannidae (tyrant flycatchers),
Cuculidae (cuckoos), Troglodytidae (wrens), and Parulidae
(New World warblers), are among the highest-ranking
families in predicted and mean THg concentrations
(Figs. 3, S4). While ant-following species are not thought to
target the ants themselves when foraging, individuals may
consume ants infrequently as bycatch (Willis and Oniki
1978). Thus, ant-followers may experience elevated Hg
exposure due to both increased access to higher trophic level
prey items, such as spiders and lizards, or the accidental
consumption of predatory ants. Given their invertivorous

trophic niche and widespread distribution throughout Latin
America, within the ant-following clade, several species that
standout as potential sentinels include Formicarius analis
(black-faced antthrush), Taraba major (great antshrike),
Sittasomus griseicapillus (olivaceous woodcreeper), and
Eucometis penicillata (gray-headed tanager). These species
all present ideal opportunities for continental-scale com-
parative analyses throughout the Neotropical realm.

Ant-following birds present a model system with unique
conservation significance for Neotropical wet forests (Martínez
et al. 2021). Further, ant-following food web dynamics have
yet to be described by the ecotoxicological community. Given
the placement of army ants as keystone species (Martínez et al.
2021), the presence and impacts of Hg in the ant-following
system should be further scrutinized. In sampling ant-following
taxa, which are among the most frequently-captured individuals
in passive ground-level mist-net surveys, we can (1) better
understand how Hg migrates and biomagnifies through Neo-
tropical terrestrial systems, (2) quantify the toxicological
impacts of ASGM on declining biota, and (3) articulate the
presence and influence of Hg throughout the full annual-cycle
for resident and migratory species.

Birds of prey are perhaps the most charismatic taxo-
nomic group worth considering as avian Hg sentinels.
Because raptors occupy apex trophic positions of tropical
terrestrial food webs, they provide a unique biomagnifica-
tion profile relative to avian piscivores and invertivores.
Raptors often bioaccumulate elevated Hg concentrations in
both temperate and tropical biomes (DeSorbo et al. 2018;
Bourbour et al. 2016; Keyel et al. 2020), and have
repeatedly served as focal organisms for Hg assessments in
Latin America (Shrum 2009; Elliott et al. 2015; Canham
et al. 2020; Balza et al. 2021). Following the relationships
illustrated for temperate raptors (Bourbour et al. 2016;
Keyel et al. 2020), larger Neotropical raptors in Accipi-
tridae (hawks, eagles, and kites) that hunt primarily gran-
ivorous or frugivorous prey groups such as rodents,
primates, and sloths, would not be expected to bioaccu-
mulate elevated Hg concentrations due to the low trophic
positions of their preferred prey items. However, members
of Falconidae (falcons and caracaras) that scavenge marine
carrion (Balza et al. 2021), or hunt birds, bats, lizards, or
insects are more likely to experience increased biomagni-
fication. For example, the opportunistic ant-following, and
primarily bird- and insect-eating, Micrastur ruficollis and
Micrastur gilvicollis (barred and lined forest-falcons; Oniki
and Willis 1972) exhibited the highest feather THg con-
centrations among raptor species sampled in Madre de
Dios, Peru (Shrum 2009; Figs. 4, S5). While raptors are
generally sparsely-populated, difficult to capture, and
maintain much larger home ranges than songbirds, baited
traps can be an effective way of assessing apex bio-
magnification and intra-taxonomic variation within this
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clade across large spatial scales of interest (Bloom et al.
2007; Shrum 2009).

Deriving Hg effect concentrations in wild bird popula-
tions is most feasible for species that can be efficiently
accessed and sampled relative to more cryptic nesters.
These can include cavity-nesting species that utilize man-
made nest boxes (Brasso and Cristol 2008; Jackson et al.
2011), colonial-nesting species (King et al. 1991; Henny
et al. 2002; Hill et al. 2008), or species that are easily
observed and tracked over time (Evers et al. 2008).
Therefore, obligate or opportunistic cavity-nesting pisci-
vores and invertivores, including members of Alcedinidae
(kingfishers), Momotidae (motmots), Hirundinidae (swal-
lows), Furnariidae (ovenbirds), and Troglodytidae (wrens)
—as well as colonial-nesting piscivores, including members
of Ardeidae (herons)—could make ideal candidate species
for monitoring Hg impacts to avian health in the Neotropics.

The Tropical Research for Avian Conservation &
Ecotoxicology (TRACE) Initiative

Mercury biomonitoring efforts over the past century have
pursued divergent sampling strategies and focal species
(including this study), while neglecting the most
biologically-rich regions on the planet. These decisions
have limited our ability to make meaningful comparisons
across respective datasets and biological realms. Therefore,
the field of ecotoxicology stands to benefit greatly from a
coordinated effort that aims to resolve current uncertainties
by overcoming previous methodological inconsistencies.
We offer potential solutions in the form of (1) a con-
solidated bird sampling protocol for Hg analysis (Evers
et al. 2021), and (2) an international, collaborative data-
sharing platform known as the Tropical Research for Avian
Conservation and Ecotoxicology (TRACE) Initiative
(https://www.briwildlife.org/TRACE). TRACE builds upon
the international collaborations responsible for generating
the data we showcase in this manuscript, and offers a fra-
mework for a variety of researchers and stakeholders to
interact (e.g., local, state, and federal governmental agen-
cies, nongovernmental conservation organizations, aca-
demic institutions, natural history museums, trace element
laboratories, and local communities). Our bird Hg sampling
protocol provides a meaningful complement to this platform
and a set of instructions to standardize focal species and
sampling tissue selection, as well as data management
practices, among adjacent ecotoxicological research efforts
(Evers et al. 2021). By synchronizing these efforts, we can
effectively maximize the comparability of data across time
and space, and minimize the redundant use of resources to
achieve intended research goals.

Notably, TRACE also provides an opportunity to dis-
mantle systemic barriers and colonialist precedents within

the field of Neotropical ornithology (van Deelen 2022;
Ruelas Inzunza et al. 2023; Soares et al. 2023). Fundamental
to the TRACE Initiative is to distance ourselves from
“parachute science,” where researchers from the Global
North exploit local knowledge in the Global South to collect
data, and return to Western societies to disseminate their
findings via inaccessible communication outlets (e.g., for-
profit journals)—all without involving local stakeholders in
the scientific process (Asase et al. 2022). Therefore, through
an equitable exchange of expertise, funding, resources, data,
and authorship among collaborators, TRACE can: (1) gen-
erate crucial research capacity and leadership opportunities
in tropical nations, which are disproportionately impacted by
environmental crises, and (2) produce standardized infor-
mation on the prevalence, distribution, toxicokinetics, and
biogeochemistry of Hg—using birds as a convenient, eco-
logically-important, and charismatic proxy. Ultimately, we
aim to broadly disseminate this standardized information to
empower local communities and inform national and inter-
national policies, including those coordinated by Parties of
the United Nations Minamata Convention on Mercury.

Conclusion

This synthesis provides unprecedented baseline knowledge
of Neotropical bird Hg exposure and is a valuable first step
in improving our understanding of how Hg could poten-
tially impact avian health and productivity throughout
Central America, South America, and the West Indies.
Given the limited spatial density and extent of these data,
we cannot expect our findings to be representative of the
entire Neotropical realm. However, we highlight that Hg
exposure to avian communities extends well beyond pol-
lution hotspots and illustrate the general ubiquity of this
heavy metal across Neotropical regions. Due to the pre-
viously mounting uncertainty surrounding avian Hg expo-
sure in the Neotropics, recent, and otherwise
comprehensive, publications on Neotropical bird declines
have not acknowledged Hg as a potential stressor (Robinson
1999, 2001; Sigel et al. 2006; Latta et al. 2011; Blake and
Loiselle 2015; Boyle and Sigel 2015; Powell et al. 2015;
Stouffer et al. 2020; Sherry 2021; Pollock et al. 2022). We
believe that our findings merit the consideration of Hg
emission, deposition, methylation, and biomagnification
when setting priorities for tropical avian conservation and
management, and more broadly, defining global biodi-
versity targets (Mueller et al. 2022; Sigmund et al. 2022).

With the exception of Barbados, Belize, French Guiana,
Guatemala, Grenada, Haiti, Saint Vincent and the Grenadines,
and Trinidad and Tobago, all Neotropical nations have acceded
or ratified both the UN Convention on Biological Diversity and
the Minamata Convention on Mercury (CBD Secretariat 2021;
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MCM 2021). As such, there is overwhelming support to
understand how Hg impacts public health, ecosystem function,
and biodiversity conservation. While international agreements
provide the framework and capacity to implement solutions,
birds—as indicators of ecosystem health—offer the ideal
sampling foci to generate crucial information on this accel-
erating issue across the Pantropical realm.

Appendix 1. Supplementary materials

Supplementary materials include figures displaying mean
THg concentrations among avian trophic niches, primary
habitat associations, orders, families, species, and sampling
sites (Figs. S1–6); predicted THg concentrations among
sites (Fig. S7); and predicted seasonal THg concentrations
among trophic niches (Fig. S8); tables displaying publica-
tions that report Hg exposure to birds in the Neotropics
(Table S1); mean THg concentrations among countries,
sites, trophic niches, primary habitat associations, and tax-
onomy (Tables S2, S6–8); taxonomic, foraging guild, pri-
mary habitat, and migratory classifications assigned to
sampled bird species (Table S3); model selection and ana-
lysis of variance results (Tables S4–5); an inferential
flowchart for tissue selection (Table S9); and potential avian
sentinel species (Table S10).

Data availability

All data and software curated for this research are archived
and available at https://github.com/csayers2/Neotropical-
Bird-Hg-Synthesis.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10646-023-02706-y.
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