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Abstract

Long-read sequencing technologies substantially overcome the limitations of short-reads but have 

not been considered a feasible replacement for population-scale projects, being a combination 

of too expensive, not scalable enough, or too error-prone. Here, we develop an efficient and 

scalable wet lab and computational protocol for Oxford Nanopore Technologies (ONT) long-read 

sequencing that seeks to address those limitations. We applied our protocol to cell lines and brain 

tissue samples as part of a pilot project for the NIH Center for Alzheimer’s and Related Dementias 

(CARD). Using a single PromethION flow cell, we can detect single nucleotide polymorphisms 

(SNPs) with F1-score comparable to Illumina short-read sequencing. Small indel calling remains 

difficult within homopolymers and tandem repeats, but achieves good concordance to Illumina 

indel calls elsewhere. Further, we can discover structural variants with F1-score on par with 

state-of-the-art de novo assembly methods. Our protocol phases small and structural variants at 

megabase scales and produces highly accurate, haplotype-specific methylation calls.

Introduction

Most current large-scale genomics projects rely on reference mapping of short-reads to 

detect and genotype variants, such as single nucleotide polymorphisms (SNPs), small 

insertions and deletions (indels), or structural variations (SVs) 1. For example, short-read 

whole genome sequencing is routinely used in population-scale studies to discover variation 

in human populations 2,3, or to perform disease associations studies 4, including in cancer 
5,6.

However, a substantial part of the variation in the human genome is not accessible to short 

reads 7. This is because it is difficult to detect structural variants that are comparable to 

or longer than an individual read length 8,9, resulting in missingness and error rates much 

higher than for small variant detection 10,11. In addition, variation inside the repetitive 

regions of the genome is difficult to profile with short-reads 12,13 due to reference mapping 

ambiguity and bias 14. Read-based phasing of heterozygous variants into long haplotypes is 

also limited by read length 15. Previous studies mostly relied on reference haplotype panels 

to phase known variants 16, but this method is not applicable to rare and de novo mutations.
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Long-read sequencing, such as those from Pacific Biosciences (PacBio) or Oxford Nanopore 

Technologies (ONT), can overcome the limitations of short-reads and has been shown to 

substantially improve structural variant calling performance 17,18 and small variant detection 

inside difficult-to-map parts of the genome 19. Long-read methods can also phase small and 

structural variants into megabase-scale phase blocks 19–21.

In addition to variant calling, several studies have used long-read sequencing to generate 

complete or nearly complete de novo genome assemblies 22,23. Notably, the Telomere-to-

Telomere (T2T) Consortium produced the complete de novo assembly of a human genome, 

including centromeres and long segmental duplications 24. Recently, the Human Pangenome 

Reference Consortium (HPRC) released 47 nearly-complete haplotype-resolved human 

genomes with diverse genetic backgrounds 25.

Despite these advances, cost and scalability have remained prohibitive barriers to the use 

of long-read sequencing in population-scale studies. For example, recent projects that 

generated high-quality genome assemblies, such as those from the Vertebrate Genomes 

Project (VGP), T2T, and HPRC, all used an expensive combination of multiple sequencing 

technologies at high coverage, including PacBio HiFi, ultra-long ONT, Hi-C, and parental 

sequencing 26.

Here, we show that it is possible to achieve state-of-the-art small and structural calling 

performance using only ONT reads produced by a single flow cell at high throughput. First, 

we developed specialized ONT sequencing protocols that balance read length and yield. 

Second, we complement the sequencing protocols with a computational pipeline called 

Napu (Nanopore Analysis Pipeline) that produces haplotype-resolved de novo assemblies, 

along with phased small variants, structural variants, and methylation calls. We make our 

sequencing and informatics pipelines openly available, the latter as a complete, easily 

runnable open-source software package.

Results

Scalable ONT sequencing of cell lines and brain tissue.

Several recent studies utilized ultra-long (100 kb+) ONT sequencing to produce high-quality 

de novo assemblies of human genomes 27–31. However, multiple flow cells were used to 

achieve sufficient genomic coverage, as ultra-long DNA preparation protocols typically 

see lower sequencing yields. In this work, we optimized a DNA processing and library 

preparation protocol to yield high data output (>100 Gb, corresponding to >33X coverage) 

in a scalable manner from a single PromethION flow-cell, while still maintaining read 

lengths sufficient for de novo assembly and long-range phasing.

The DNA processing and library preparation protocol (Methods) are publicly available 

through the protocols.io for the frontal cortex 32 and cell-lines 33. Overall, per sample, the 

DNA processing step yields ~10 ug of sheared DNA. Together, the DNA processing and 

library preparation take approximately 20 hours over two days to process up to 16 samples 

in a single batch, and the PromethION whole genome sequencing takes 72 hours (Figure 1).
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Using our optimized protocol, we sequenced 17 human genomes, including three cell lines 

(HG002, HG00733, HG02723) that have been extensively used in other benchmarking 

studies, and 14 brain tissue samples that were obtained as a part of NABEC cohort 34. Each 

dataset was sequenced using a single PromethION R9 flow cell, yielding on average 116 Gb 

of base-called reads (~37X coverage assuming 3.1Gb genome) with an estimated average 

across bases read quality above Q10 (Figure 1; Supplementary Table 1). The average read 

N50 was 31 kb (average maximum = 769 kb), which is overall lower than other long DNA 

preparation protocols. However, the libraries with longer DNA fragments require multiple 

flow cells to achieve sufficient read coverage (Shafin et al., 2020). Read N50 is a maximum 

number such that reads longer than the N50 cover at least half of the total read length. We 

used the R9.4.1 pore version and the Guppy version 6.1.2 in super accuracy mode for base 

and methylation calls, median read identity mapped to GRCh38 was 96%.

Napu variant and methylation calling pipeline overview.

We adapted existing tools and developed additional methods for high-quality variant calling, 

haplotype-specific methylation profiling, and diploid de novo assembly (Methods; Extended 

Data Figure 1). The pipeline begins by generating a diploid de novo assembly using a 

combination of Shasta, which produces a haploid assembly and Hapdup (https://github.com/

KolmogorovLab/hapdup), which generates locally phased diploid contigs. We then use the 

generated assemblies to call structural variants (at least 50 bp in size) against a given 

reference genome using an assembly-to-reference tool called hapdiff (https://github.com/

KolmogorovLab/hapdiff; Methods).

Ideally, small variants could also be recovered from diploid contigs, as has been successfully 

done for HiFi-based assemblies 12,25. Our Shasta-Hapdup assemblies had mean substitution 

error rates of ~8 per 100 kb, an improvement over the previous ONT-based assemblies 
19,29,30, but higher than current contig assemblies produced with PacBio HiFi (<1 per 

100kb) 25. Reference-based variant calling methods can abstain from making a call when the 

read alignment is ambiguous, which can reduce the false-positive error (Shafin et al., 2021). 

Thus, in Napu we used an updated version of the PEPPER-Margin-DeepVariant software 19 

to call small variants against a reference.

Given a set of structural variants produced with de novo assemblies, and reference-based 

small variant calls, Napu phases them into a harmonized variant call set using newly 

introduced functionality in the Margin tool. In addition, given the phased reference 

alignment with methylation tags (produced by Guppy), we produce haplotype-specific calls 

of hypo- and hyper-methylated regions of the genome.

We publish the complete Napu pipeline written in WDL in the Dockstore repository (https://

dockstore.org/organizations/NIHCARD; Methods) to encourage easy reuse. Our analysis 

was run on the cloud using the Terra compute environment 35. Analysis of a single 

ONT human sample at 30–40x coverage took 22–25 wall-clock hours if run on the Terra 

environment (2200–2500 CPU hours; estimated Google Cloud computing cost about 100$; 

Supplementary Table 2).
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Small variant calling and benchmarking.

We benchmarked the performance of small variant (substitutions and indels shorter than 

50 bp) calls produced by the updated PEPPER-Margin-DeepVariant and compared them to 

Illumina-based small variant calls produced by DeepVariant (Figure 2; Supplementary Table 

3). Comparisons are reported using false positives (FP) and false negative (FN) and F1 score 

(harmonic mean of precision and recall) metrics. First, we used the Genome in a Bottle 

(GIAB) small variant benchmark (v4.2.1) that provides a curated set of small variant calls 

for the HG002 genome. Inside the Tier1-confident regions, both ONT and Illumina-based 

SNP calls were highly concordant with the GIAB benchmark (F1-scores 0.997 and 0.996, 

respectively). The residual false-negative error was substantially lower for ONT SNP calls, 

compared to Illumina calls (9,993 and 20,281, respectively). On the other hand, ONT SNP 

calls had substantially more false-positive errors, compared to Illumina (5,923 and 2,922, 

respectively).

Since the GIAB benchmark is only available for the HG002 genome, we used small 

variant calls from HiFi reads (produced by DeepVariant) as ground truth for the HG00733 

and HG02723 genomes. The results were consistent with the GIAB benchmark analysis, 

confirming the reduced SNP error rate of ONT-based methods, compared to Illumina within 

the Tier1 benchmark regions (Figure 2; Supplementary Table 3).

The difference in recall and precision between ONT and Illumina SNP calls was dependent 

on the genomic context (Figure 2). The major source of error in Illumina SNP calls is due 

to false negatives within regions of known low mappability. Inside those regions, ONT SNP 

calls had noticeably higher SNP F1-score (0.987) compared to Illumina (0.944). Conversely, 

Illumina performance was better in homopolymers of size at least 7bp (SNP F1-score was 

0.999 for Illumina and 0.970 for ONT) and, to a lesser extent, within tandem repeats (SNP 

F1-score 0.997 for Illumina and 0.992 for ONT).

Small indels continue to be the major source of error for ONT small variant calls (indel 

F1 score of 0.789 for ONT vs. 0.997 for Illumina inside the Tier1 GIAB regions) (Figure 

2). The large majority of errors in ONT indel calls occur within homopolymers and tandem 

duplications (F1 score of 0.676 for ONT vs. 0.997 for Illumina). Outside of homopolymer 

runs and tandem repeats (approximately 35% of all indels), F1-scores for ONT improved 

substantially (F1-score 0.975 for ONT), although still lower than Illumina (0.996 F1). In 

exons (defined by the GIAB benchmark and representing <0.1% of all indels) F1-scores 

were 0.9230 for ONT and 0.9923 for Illumina (Supplementary Table 3).

De novo haplotype-resolved assembly using only ONT reads.

Recent studies utilized HiFi-based de novo assemblies to produce highly accurate and 

complete structural variant calls 12,25. To profile the full spectrum of heterozygous variants, 

diploid assembly is required; HiFi-based studies used either trio or Hi-C information to 

produce phased assemblies. Although Shasta has a somewhat experimental phased assembly 

mode designed to work with ultra-long (>= 100 kb) reads, the default modes of current ONT 

assembly methods (such as Shasta or Flye) only generate haploid assemblies, representing a 

random mosaic of the paternal and maternal haplotypes. We therefore developed a method 
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called Hapdup that takes a haploid assembly as input and produces a locally phased diploid 

assembly, sometimes also referred to as a dual assembly (Methods).

Using the Shasta + Hapdup combination, we generated de novo assemblies for 14 brain 

samples and three cell lines (Extended Data Figure 2; Supplementary Table 4). All assembly 

statistics were highly consistent among the samples, with the mean haploid assembly size 

of 2.88 Gb; mean NG50 = 22.0 Mb; mean NGA50 = 14.6 Mb (measured against the 

T2T-CHM13 2.0 reference). NG50 is the maximum number such that contigs longer than 

NG50 cover at least half of the genome length. NGA50 is defined similarly, but for reference 

alignment lengths. Mean QV (34.22) was estimated from k-mer frequencies using yak36. 

Mean NG50 of the phase blocks was ~2 Mb; switch error rate of cell line assemblies was 

0.07–0.19% (Supplementary Table 5).

Compared to the trio-binned ONT HG002 assemblies produced from a recent long-read 

benchmarking study 26, our assemblies had slightly reduced contiguity (due to lower 

read depth and length), but better QV and phasing accuracy (Extended Data Figure 3; 

Supplementary Table 5). Compared to trio-binned HiFi HG002 assemblies, our assemblies 

had lower QV due to the residual error in the ONT-based consensus.

Structural variant calling and benchmarking.

To produce assembly-based SV calls, we developed a package called hapdiff, which is a 

combination of minimap2 and a modified version of SVIM-asm (Methods). In particular, we 

added functionality to group multiple indels inside a single VNTR element.

We benchmarked Hapdup and HPRC assembly-based SV calls, as well as reference 

mapping-based SV calls produced with Sniffles2 37 and CuteSV 18. We also included a 

comparison with short-read-based SV calls using Manta, one of the top performers in the 

recent short-read SV studies 10,11. We benchmarked these sets of SV calls using Truvari 38 

against the recent manually curated structural variant benchmark produced by the Genome 

in a Bottle initiative for the HG002 genome 11.

Hapdup-based SV calls (F1-score 0.967) improved over Sniffles2 (0.953) and CuteSV 

(0.938) that were also generated using the ONT data. HPRC-based assembly concordance 

was only slightly higher (0.970), compared to Hapdup (Figure 3; Supplementary Table 6). 

Illumina-based SV calls had substantially lower performance (F1-score 0.402), in particular 

missing many insertions. In addition, long insertions are often misclassified as translocations 

by short-read methods 17.

The GIAB call set is limited to a set of high-confidence regions and lacks variant calls in 

many complex loci. To investigate the quality of our SV calls further, we used the assemblies 

generated by the HPRC as a benchmark on three cell lines and evaluated the concordance 

of SV calls inside various regions of the human genome (Supplementary Table 7). While 

the HPRC assemblies are not perfect, they do span nearly the entire genome. Using the T2T-

CHM13 assembly as a reference, we filtered out annotated centromere satellite repeats and 

segmental duplications. The remaining regions contain 15,588 SVs in HG002 HPRC-based 

calls, a ~50% increase compared to the GIAB SV (v0.6) Tier1 regions. Hapdup retained a 
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high agreement with HiFi assemblies on these regions (F1-score 0.95–0.97). In the regions 

with only satellite repeats filtered out, therefore keeping segmental duplications, Hapdup had 

a reduced F1-score of 0.93, and these regions contained 16,219 SVs total. Analysis with two 

other cell lines showed similar trends (Figure 3).

Analysis using the TT-Mars 39 tool that performs SV calls validation on the sequence level 

also confirmed the high quality of Hapdup-based SV calls relative to other tools (Extended 

Data Figure 4). Similarly, analysis using Flagger 25 confirmed high assembly accuracy 

(Supplementary Methods; Extended Data Figures 5–6). The assemblies also showed 

high concordance with the variants in challenging medically-relevant loci13 (Methods; 

Supplementary Tables 8 and 9).

Harmonization and phasing of small and structural variants.

Structural and small variant calls were harmonized and phased with Margin 2.3.1 to produce 

a complete representation of the sample variants (Methods). Mean phase block NG50 was 

1.08 Mb among the brain samples (Figure 4; Supplementary Table 10). HG002 and HG0073 

cell lines had similar statistics, but HG02723 had noticeably higher phase block length 

(NG50 2.83 Mb). This individual has a higher proportion of African ancestry, and as a 

result, fewer apparent blocks of autozygosity that prevent phasing.

A harmonized, phased view of all variants can facilitate the characterization of complex 

regions that contain multiple small and structural variants on both haplotypes. Figure 4 

presents an example of such a region in the HG002 genome; our variant representation 

of this region provides an integrated view of variation that is consistent with the HPRC 

assemblies.

Analysis of rare structural variants in brain genomes.

We next analyzed the distribution of structural variants in the 14 brain samples, which have 

not been previously sequenced with long-reads. The analyzed samples represent control 

cases from the NABEC cohort (age range, 68 – 95 years), which at the time of death did not 

show signs of neurodegenerative disorders. On average, 19,255 SVs were identified in the 

most confident regions of the genome (Figure 5A; Extended Data Figure 7; Supplementary 

Table 11). The SVs were matched to three SV catalogs to annotate their frequency in the 

population. In each sample, about 304 (1.6%) SVs were absent from the public SV catalogs 

or matched with rare variants. Among those rare variants, about 14 per sample are located 

around genes, including ~4 on average overlapping coding regions (Figure 5A, right).

Despite being control samples, we found 3 SVs in total amongst the SVs coinciding with 

coding regions of genes that are predicted to be intolerant to loss-of-function variants 

or to be haplo-insufficient. One such example is a 4.2 Kbp heterozygous deletion of a 

transcription start site and exon of RBFOX1, a gene that may be involved in spinocerebellar 

ataxia type 2, a rare neurological condition (Extended Data Figure 8).

Our brain genome assemblies contained contiguous sequences of highly polymorphic loci. 

To investigate such loci, we looked at the major histocompatibility complex (MHC) and 

immunoglobulin heavy chain (IGH) loci, which were both assembled in single haplotype-
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specific contigs in all our samples. Reference-based characterization of these regions 

is difficult because of high heterozygosity and repetitiveness. We instead constructed 

pangenome graphs (using minigraph) that represent all structural variants 25. The MHC 

pangenome graph was built from 28 brain and 6 cell line haplotypes and consists of 1,294 

nodes reflecting SVs larger than 50 bp; we also built a “lower resolution” graph with 640 

nodes containing SVs over 100 bp (Figure 5B). An IGH pangenome was built from 28 brain 

haplotypes and contained 268 nodes with SVs larger than 50 bp (Figure 5C). Cell lines are 

typically derived from B-cell lymphocytes and contain extensive somatic rearrangements in 

this locus and are therefore not suitable for the germline variant comparison.

Haplotype-resolved methylation calls.

ONT sequencing also allows the identification of base modifications. Here, we produced 

phased 5-methylcytosine calls aligned to the GRCh38 and T2T-CHM13 references. Initial 

methylation calls were produced de novo using Remora (https://github.com/nanoporetech/

remora).

For the HG002 genome, our methylation calls covered 28.83 million CpG sites (98.8% 

of total GRCh38 CpG sites) and had a high correlation to calls made using the standard 

whole genome bisulfite sequencing (WGBS) in regions covered by both technologies 

(R=0.949, RMSE=11.314; Figure 6a). We calculated correlations between all other samples 

and HG002 WGBS data to understand the level of ‘background’ methylation between all 

samples; these correlations ranged between 0.84–0.86 (Supplementary Table 12). HG002 

WGBS calls were collected from the ONT open data repository (https://labs.epi2me.io/

gm24385-5mc).

A unique feature of ONT-based methylation calls, compared to WGBS is haplotype-level 

resolution (Figure 6c). To explore this, we identified haplotype-specific differentially 

methylated regions in gene promoter regions and regions flanking structural variants. 

Here we consider gene promoters that have a difference in average methylation between 

haplotypes that are more than three deviations away from the absolute median difference.

Differential haplotype methylation patterns were found in 4.73% (690) of autosomal protein-

coding gene promoters in HG002. Similarly, HG00733 and HG02723 had 4.43% (662) and 

3.57% (519) of gene promoters differentially methylated, respectively. The brain samples 

had 2.8% - 3.8% of promoters differentially methylated. Differential haplotype methylation 

for the UCSC GRCh38 CpG islands track ranged from 6% - 7.6% (1651 – 2109) across 

brains and cell lines. Structural variants also showed differential haplotype methylation 

patterns in 5.7% - 6.2% (532 – 731) of deletions in cell lines and 4.6%-5.8% (454 −554) of 

deletions in brain samples. Figure 6D shows an example of gene DLG associated protein 2 

(DLGAP2) in the SH-04–08 sample with a 1,379 bp heterozygous insertion that coincides 

with haplotype-specific methylation (Supplementary Table 12).

Comparing ONT sequencing using R9 and R10 protocols.

During the preparation of this manuscript, an updated version of the nanopore sequencing 

protocol (R10.4.1 kit V14) became commercially available. To evaluate the benefits of the 

updated protocol, we re-sequenced HG002, HG00733 and HG02723 cell lines and compared 
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the results with the R9 protocol. We generated 110–121 Gb of reads with N50 ~29 kb 

using single flow cells (Extended Data Figure 9; Supplementary Table 13). The median read 

identity was 99%, compared to 96% using R9 sequencing.

As expected, the R10 protocol resulted in substantial improvements in reference-based 

indel calls. Inside GIAB Tier1 regions, F1-score improved from 0.79 to 0.87 (R9 and 

R10, respectively). Notably, outside of homoploymers and tandem repeats, R10 indel calls 

also improved substantially and were similar to Illumina calls (F1-scores 0.997 and 0.996, 

respectively). Similarly, indel F1-scores in exons improved from 0.923 to 0.985 (ONT R9 

and R10, respectively). Reference-based SNP calls were similar between R9 and R10.

Assemblies and variant calls using R10 showed better or similar performance in almost 

all benchmark categories (Extended Data Figure 9). Notably, Shasta+Hapdup assembly QV 

improved from 34.3 to 42.8. This opens the possibility for calling SNP variants directly from 

diploid assemblies (Methods).

Discussion

In this work, we designed an ONT sequencing protocol that produces over 100Gb of ONT 

reads using a single PromethION flow cell. We developed methods and adapted existing 

tools, combined into an end-to-end Napu pipeline implemented in WDL, which is freely 

available to use and adapt without restriction. Using the sequencing data from 3 human 

cell lines and 14 post-mortem brain tissue samples, we showed that Napu produces state-

of-the-art SNP, structural variant and methylation calls. This makes large-scale long-read 

sequencing projects feasible; the protocol is currently being used to sequence thousands of 

brain genomes as a part of the NIH CARD initiative.

Our SNP calls produced with PEPPER-Margin-DeepVariant were comparable to state-of-

the-art short-read-based methods. As expected, the most noticeable improvement was 

associated with the regions of low short-read mappability. We also added a new functionality 

to Margin that can phase small and structural variant calls into megabase-scale haplotypes 

and reduces phasing switch error. Our methylation calls were highly concordant with the 

standard bisulfite sequencing, but in addition had haplotype-specific resolution, highlighted 

by our analysis of differentially methylated promoters.

Although an improvement over the previous ONT benchmarks, small indels inside 

homopolymers and low-complexity repeats remain the major source of the residual errors. 

This constitutes approximately two-thirds of all small indels in a human genome, but a 

minor fraction of overall variation in protein-coding sequence. Our evaluation of the R10 

sequencing protocol showed substantial improvements in indel accuracy compared to the 

R9 protocol, in particular inside protein-coding regions. However, residual errors in long 

homopolymer and tandem repeat regions remain a challenge.

We developed a Hapdup method that generates de novo diploid assemblies from ONT 

sequencing only. Our assemblies had high structural quality through most of the human 

genome, but did not reconstruct many long segmental duplications. This is primarily due to 

the reduced read length, compared to standard ONT protocols (most unassembled segmental 
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duplications are longer than our read’s N50). However, it may be possible to reconstruct 

some of the missing duplications using a haplotype clustering approach 40.

Our analysis of structural variation calls highlighted that different methods may represent 

the same genomic variation differently, for example, by splitting or merging multiple 

indels in close proximity, or shifting alignment coordinates inside VNTRs. This results 

in difficulties in variant comparison across multiple samples or methods 38. De novo 
assemblies implicitly encode the genomic variation, and new pangenome graph methods 
25 aim to provide an alternative representation of small and structural variations. However, 

reference mapping is still required for matching the variant calls against the existing 

databases 41,42. Further improvements in structural variant representation and comparison 

models will be critical for the next large-scale, long-read genomic studies.

Overall, R9 and R10 benchmarks were highly concordant. Although an improvement, 

the R10 protocol has not been extensively evaluated on a wide range of human tissues. 

We expect that within the next few years other research groups will use both R9 and 

R10 chemistries, as it may be difficult to switch chemistry versions for an ongoing large 

sequencing project.

Methods

Ethics oversight.

The NABEC study has been originally approved by the Joint Addiction, Aging, and Mental 

Health Data Access Committee and more information can be found at the dbGaP website 

under the study accession id: phs001300.v4.p1. The National Institutes of Health (NIH) 

considers the research using post-mortem material as non-human subject research and 

therefore no additional Institutional Review Board (IRB) approval was required.

Sample collection.

For the NABEC brain samples, frozen tissue was sampled from the frontal cortex for 

14 neurologically normal individuals. All samples were obtained from the Banner Sun 

Health Research Institute (https://www.bannerhealth.com/services/research/ locations/sun-

health-institute/programs/body-donation/tissue). All individuals were of European ancestry 

and had no clinical history of neurological or cerebrovascular disease, or a diagnosis of 

cognitive impairment during life. Demographics, tissue source and cause of death for each 

subject are shown in Supplementary Table 14. Average age at time of death was 85.2 years 

of age (range, 68 – 95 years) and 8 were male and 6 were female.

For the cell lines, high molecular weight (HMW) DNA was extracted from the following 

cultured cell lines purchased from Coriell (https://www.coriell.org/): HG002 (Ashkenazi 

Jewish ancestry, cat. no. GM24385), HG02723 (African ancestry, cat. no. HG02723) and 

HG00733 (American ancestry, cat. no. HG00733). For these three cell-lines, cell culture 

was performed using Epstein–Barr virus (EBV)-transformed B lymphocyte culture from the 

cell-lines in RPMI-1640 media with 2 mM L-glutamine and 15 % fetal bovine serum at 37 

°C.
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DNA processing.

The frontal cortex 32 and cell-lines 33 protocols are explained in detail and are both publicly 

available on protocols.io. In brief, for the frontal cortex samples ~40 mg of frozen tissue 

was homogenized with a Tissueruptor instrument (Qiagen). HMW DNA was then extracted 

using a Kingfisher Apex instrument (Thermofisher) with a custom script and Nanobind 

Tissue Big DNA kit, which uses 3 mm Nanobind disks (Circulomics/ PacBio, US). The 

HMW DNA was sheared to a target size of 30kb with the DNA Fluid + needles at speed 45 

for two cycles on a Megaruptor3 instrument (Diagenode).

The cell-line HMW DNA was extracted manually from 4×106 of cells using a Nanobind 

Tissue Big DNA kit (Circulomics/PacBio, US). An enrichment of short DNA fragments 

was observed for the Coriell cell-lines post DNA extraction. Therefore, to yield data 

comparable to the brain sequencing, using the Short Read Eliminator kit (SS-100–101-01) 

from Circulomics/Pacbio, a size selection step was included to deplete DNA fragments up 

to 25kb. Finally, the HMW DNA was then sheared to a target size of 30kb with the DNA 

Fluid + needles at speed 45 for two cycles (Diagenode). For all samples, DNA length was 

assessed by running 1ul on a genomic screentape on the TapeStation 4200 (Agilent). DNA 

concentration was assessed using the dsDNA BR assay on a Qubit fluorometer (Thermo 

Fisher).

Library preparation.

Libraries were constructed using an SQK-LSK 110 kit (ONT). To ensure minimal DNA loss 

during library preparation, and to retain long DNA fragments, the following modifications 

were made to the standard SQK-LSK 110 (ONT) protocol; 1) 4.5 ug of DNA was used as 

starting input. This is higher than the recommended amount due to the fact that around 60–

75% of the starting material is lost during library preparation. Therefore, starting with 4.5ug 

DNA input ensured we could do three loads of 400 ng with the final library, 2) to reach 

the 4.5ug DNA input the starting DNA volume was usually higher than the recommended 

47ul. In this case, the volume of AMPure XP beads was modified to match the input DNA 

volume, i.e. if 58ul of DNA was added then 70ul was added of AMPure XP beads, 3) during 

DNA repair and end-prep, 75% ethanol was used for washing rather than 70% (per ONT, 

anything between 70–80% is acceptable), 4) at step 16 of DNA repair and end-prep, the 

original elution time was 2 minutes at room temperature. This was modified to 3 minutes 

at 37°C with light shaking on a Thermomixer instrument (Eppendorf) at 450 rpm, 5) during 

Adapter ligation and clean-up, 45uL of AMPure XP beads were used 6) SFB was used, and 

finally 7) in step 16 of the Adapter ligation and clean-up, the final elution conditions were 

changed to 20 minutes at 37°C.

For comparison, the cell lines (HG002, HG02723 and HG00733) were resequenced with 

R10. For this libraries were constructed using an SQK-LSK 114 kit (ONT), however the 

following modifications were made to the standard protocol; 1) 2.5ug of DNA was used as 

starting input and 2) in the Adapter ligation and clean-up step, the final elution conditions 

were changed to 20 minutes at 37°C.
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PromethION sequencing.

For R.9, PromethION sequencing was performed as per manufacturer’s guidelines (ONT, 

FLO-PRO002) with minor adjustments, such as 400 ng of the library was loaded onto each 

primed R9.4.1 flow cell to maximize data output. For R.10, PromethION sequencing was 

performed loading 180 ng of the library onto a primed R.10.4.1 flow cell. Over the three-day 

run, most samples only required one additional load (usually around 48 hours). However, 

some runs hit a pore occupancy of ~2000 earlier, which was usually due to the variability 

across PromethION flow cells. In these cases, two reloads were required, which usually 

meant one reload every 24 hours.

Small variant benchmarking.

We used the Genome in a Bottle (GIAB) small variant benchmark to evaluate the 

performance on the HG002 genome, using benchmark v4.2.1 inside the confident intervals 

defined in “HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed”. SNP recall and 

precision of ONT and Illumina variant calls were computed using hap.py v0.3.14 (https://

github.com/Illumina/hap.py). Since the GIAB benchmark is only available for HG002, 

we also used variant calls produced with DeepVariant using HiFi reads as ground truth 

for HG002, HG00733, and HG02723. On HG002, both GIAB and DeepVariant call sets 

resulted in very similar statistics (Supplementary Table 3). We used the confident regions 

defined for HG002 for the other cell lines, which explains the slight decreases in recall and 

precision for both ONT and Illumina for HG00733 and HG02723.

To benchmark phase switch and hamming error rates, we used small variant calls produced 

from HPRC assemblies using dipcall 43 v0.3 as ground truth. Error rates were then 

computed using “whatshap compare” v1.5 15 module.

Illumina data was obtained from NYGC 1000 genomes sequencing project, and was 

sequenced with Novaseq 6000 with a median insert size per sample of 433 bp, and 30x 

coverage, using the TruSeq DNA PCR-Free High Throughput Library Prep Kit 44.

Hapdup method and structural variant calling.

We developed a tool called Hapdup to generate diploid assemblies using only ONT reads. 

Hapdup takes as input (i) a set of haploid contigs produced by any long-read assembler, such 

as Shasta or Flye and (ii) alignment of the original long-reads against the assembly produced 

by minimap2 45. Such assembly only contains ~50% of the heterozygous variants, and our 

goal is to convert it into a locally phased diploid assembly that contains the complete set of 

structural variants in the genome.

Because de novo assemblies may leave some repetitive parts of the genome unassembled, 

reads originating from these unassembled repeat copies may misalign to their paralogs (if 

they happen to be assembled). Because the copies of long repeats often are not exact, 

misaligned reads may create artificial “haplotypes”, in addition to the (correctly mapped) 

paternal and maternal alleles. It is important to filter out misaligned reads to ensure that the 

subsequent diploid phasing is correct. Hapdup filters out reads with either (i) large unaligned 
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parts or (ii) high alignment error. Afterwards, PEPPER is used to call SNPs, SNPs are 

phased using Margin, and reads are haplotagged according to their phases.

Next, Hapdup runs two instances of the Flye polisher, using only the aligned reads from 

either first or second phase. The polisher algorithm separates the input alignment into small 

chunks, and each chunk is polished reference-free using the maximum likelihood approach 
46. To recover a large heterozygous variant, it is important that reads containing the variant 

are consistently aligned, which may be difficult in VNTR regions. To ensure the correct 

splitting of the original alignment, we added new functionality to the polishing algorithm 

that identifies regions with indels with inconsistent coordinates between reads, and ensures 

that the problematic regions are contained inside a single mini-alignment.

The polishing procedure can recover indels and substitution variants, but was not designed 

to detect structural variants that are created by genomic rearrangements (for example, 

inversions). Instead, Hapdup detects genomic rearrangement signatures from the read 

alignments, infers their phases, and applies the rearrangement to the corresponding set of 

contigs.

Hapdup outputs phased haplotypes in two different formats. First, it generates a “dual” 

assembly, that has the same contiguity as the original haploid set of contigs, but may contain 

occasional phase switches if phase blocks are shorter than contigs. Alternatively, Hapdup 

can split the contigs at the regions that lack proper phasing (indicated by Margin), so that 

every contig represents a contiguous paternal or maternal haplotype.

We used Shasta v0.10.0 with config “Nanopore-CARD-Jan2022.conf” and Hapdup 

v0.11 assemblies. Assemblies were also evaluated using QUAST v5.2.0 47, yak (https://

github.com/lh3/yak), asmgene (a part of paftools v2.24-r1152-dirty; 48,49. We called SNPs 

from assemblies using dipcall v0.3 and confirmed a low switch error rate of 0.07–0.18% 

using the “whatshap compare” v1.5 15 module. Pangenomes were constructed using 

minigraph 50 with default parameters and visualized using Bandage 51.

To evaluate Hapdup as a standalone tool rather than a part of Napu, we performed additional 

benchmarks against the alternative assembly approaches, using the R9 data from 3 cell 

lines. Since Hapdup is currently the only method for diploid de novo assembly using only 

ONT data, we compared it to the ONT + trio method combined with Shasta or Flye (the 

current state-of-the-art for haploid ONT assembly). Hapup produced assemblies with the 

best NG50 and QV, likely because using parental data to separate the reads effectively 

halves the read depth for a haploid assembler (Supplementary Table 15). SV F1-scores were 

similar for Hapdup and trio-Flye assemblies (0.9687 and 0.9755 for HG002, respectively). 

Hapdup was faster than trio-Flye and slower than trio-Shasta (but produced substantially 

better assemblies).

Hapdiff, structural variant calling and benchmarking.

To produce structural variant calls from diploid assemblies, we developed a tool called 

hapdiff, which is based on a modified version of SVIM-asm 52. The package incorporates 

minimap2 with predefined alignment parameters, which were optimized for alignment of 
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regions containing long structural variants (“-ax asm20 -B 2 -E 3,1 -O 6,100”). Having 

a fixed set of alignment parameters is also critical for reproducibility. Second, we added 

the functionality to group the variants inside the same VNTR together, if the annotation is 

provided. As illustrated in Extended Data Figure 10, VNTR grouping substantially improves 

the agreement between Hapdup and HPRC assemblies. This highlights the challenge of 

ensuring alignment consistency inside VNTR regions.

Sniffles v2.0.7 was run using default parameters, with a VNTR annotation file provided. 

CuteSV 2.0.2 was run with parameters recommended for ONT datasets by the developers. 

To benchmark HPRC SV calls against the GIAB callset, we changed genotypes of the 

HPRC chrX and chrY calls from heterozygous to homozygous to be consistent with the 

GIAB genotypes. We used hapdiff v.0.7. Multiple sets of structural variants were compared 

using Truvari v3.3.0 with added “-r 2000” parameter that controls the maximum linear 

distance between two variants. We also tested Truvari with default parameters and found that 

it has only a small effect on the resulting F1 scores and affected different tools similarly 

(Supplementary Table 16). In addition, we tested the effect of “--multimatch” option that 

allows to match multiple SVs in one set to one SV in another set. On the GIAB benchmark, 

it resulted in very minor increase in F1-scores for all tools (Supplementary Table 16). The 

difference was more noticeable in the comparison against HPRC SV calls, with Hapdup F1-

scores increasing by approximately 2%, and Sniffles2 by approximately 6%. This highlights 

the issue of inconsistent SV representation.

To illustrate the improvement, we compared hapdiff to dipcall and SVIM-asm methods 

using the GIAB HG002 benchmark (Supplementary Table 17). Hapdif had better F1-

score (0.9668), compared to dipcall (0.9174) and SVIM-asm (0.9427). All three tools 

had comparable running time. The hapdiff improvements are likely explained by VNTR 

grouping functionality and more conservative approach to alignment filtering in dipcall.

Extended Data Figure 10 Illustrates that using VNTR SV grouping improves the 

concordance between SV sets produced by Hapdup and HPRC assemblies. Sniffles2 

had similar F1-score against the HPRC-based SV calls inside GIAB Tier1 regions, but 

the concordance was substantially reduced for the extended genomic intervals relative 

to the Shasta+Hapdup calls (Supplementary Table 7). This may partly be explained 

by the ambiguities in SV representation rather than truly erroneous calls, in particular 

representation of indels inside VNTRs. These ambiguities may also result in genotyping 

errors.

Benchmarking variants in challenging medically-relevant loci.

We further assessed the ability of our assemblies to represent and cover medically 

challenging genes 12,13. Here we assessed 389 genes that we previously postulated as 

highly complex and repetitive (e.g., LPA, SMN1, SMN2). We first measured the number 

of contigs observed per region to identify the coverage, and we observed that 359 and 356 

genes are covered by at least one contig from the first haplotype and second haplotype, 

respectively (see Supplementary Table 8). Given that we cover these medically challenging 

genes, we next assessed the variant calling ability in these genes. For this, we used the recent 

benchmark from GIAB (CMRG v1.0) for SNPs and SVs. We were particularly interested in 
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the ability of our method to recover indels and SVs. For substitutions, our reference-based 

pipeline obtained a high accuracy (F1-score: 0.97). For smaller insertions and deletions 

(<50 bp), we obtained an accuracy of 0.68 in these repetitive challenging genes. Next, we 

assessed the SV performance. Given the limited set of genes in this benchmark, we only 

could assess the performance based on 252 SVs. Our assemblies achieved a high accuracy 

(F1-score: 0.91); notably, SV calling using hapdiff achieved higher F1-score compared to 

SV calls made using dipcall (F1-score: 0.88). Sniffles2 had a similar F1-score on this 

benchmark (0.91; Supplementary Table 9).

Harmonizing and phasing of small and structural variants.

Margin was originally described in (Shafin et al., 2021). Here we describe the modifications 

to Margin that were made to support joint phasing of small and structural variants. The 

underlying phasing algorithm remained the same: allele support from reads is modeled by 

(i) selecting a configurable number of basepairs up- and downstream from the variant site 

from the reference, modifying this sequence to reflect each proposed allele, (ii) selecting a 

read subsequence based on the pairwise alignment to the extracted reference subsequence, 

and (iii) aligning each read subsequence to all alleles at each locus to generate emission 

probabilities for the HMM.

Using our ONT sequencing data, we found that the proposed breakpoints for 

SVs would not always match the exact read alignment determined by the aligner. 

To account for this, we modified Margin to have two parameters for the 

distance up- and downstream from the variant for subsequence extraction: one for 

small variants (referenceExpansionForSmallVariants) and one for structural variants 

(referenceExpansionForStructuralVariants). A third parameter (indelSizeForSVHandling) 

was introduced to distinguish between small and structural variants with a configured 

value of 50bp. The small variant reference expansion value was left unchanged at 

12bp. After experimentation on HG002’s chr20, we found that the reference expansion 

for structural variants had the greatest effect on accuracy at 64bp. Larger expansions 

did not yield notable phasing improvements but had increased runtime, while smaller 

expansions reduced phasing accuracy. We used Margin (commit bb1e16a) with the config 

file “allParams.phase_vcf.ont.sv.json” to generate the final phased vcf files.

We evaluated phasing accuracy of the cell line small variant calls against the calls produced 

from HPRC-based assemblies using the Whatshap 15. Switch error (ratio of adjacent SNPs 

in a wrong phase) was 0.04–0.09%, comparable to assemblies produced with a combination 

of HiFi and Trio / Hi-C 48,49. Hamming error (ratio of all SNPs inside a phased block in a 

wrong phase) was also low (2.1–2.6%), albeit slightly higher compared to Trio / Hi-C-based 

assemblies.

Notably, the original phasing approach that only considers small variants had substantially 

higher switch error rates (0.17–0.21%; Supplementary Table 10). This highlights that 

considering SVs improves phasing quality, consistent with other recent studies 20. The 

switch error around SVs (within 100 bp from boundaries) was 1–1.26%, which was an 

improvement over 2–2.4% rate of the SV-unaware method (Figure 4; Supplementary Table 
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10), but nevertheless elevated compared to the rest of the genome. More than half of SVs 

coincide with difficult-to-map VNTR regions, which may explain the reduced performance.

Methylation calling.

We produced phased 5-methylcytosine calls aligned to GRCh38 and T2T-CHM13 references 

using Remora (https://github.com/nanoporetech/remora) incorporated in Guppy 6.1.2; 

afterward reads were aligned and phased using PEPPER-Margin-DeepVariant 19 and 

annotated with modbamtools v0.4.8 53 and modbam2bed v0.6.3 (https://github.com/epi2me-

labs/modbam2bed). Regional haplotype methylation in gene promoters and SVs were 

calculated using “modbamtools calcMeth”.

Evaluations using the T2T-CHM13 reference genome.

In our evaluations, we used both GRCh38 and T2T-CHM13 references to call small 

and structural variants. T2T-CHM13 contains approximately 200 Mb of sequence that is 

missing, misrepresented, or simulated in GRCh38, allowing the mapping and calling of 

more variants, particularly in sequences rich in repetitive content. Reflecting this, in three 

cell lines, PEPPER-Margin-DeepVariant called 1.19 – 1.29 million variants in T2T-CHM13 

sequence non-syntenic to GRCh38, compared to 0.26–0.28 million variants in GRCh38 

sequence non-syntenic to T2T-CHM13 (Supplementary Table 18).

To evaluate the small variant consistency, we lifted over GIAB confident regions from 

GRCh38 to T2T-CHM13. Our ONT-based SNP calls had high F1-score similarity (0.9951) 

with the calls produced using DeepVariant and HiFi data against the T2T-CHM13 reference. 

The F1 similarity was slightly below the concordance between ONT SNP calls and HiFi 

calls using the GRCh38 reference (F1-score 0.9976), which is likely explained by a few 

liftover artifacts (Supplementary Table 18).

Towards generating SNP calls from de novo assemblies.

We also explored if the improvements in the assembly QV allow for better SNP calling 

directly from the diploid contigs. The resulting SNP calls from R10 assemblies (produced 

by dipcall) had substantially better F1-scores (0.9853), compared to R9 assemblies (0.9735) 

inside the GIAB HG002 confident regions (Supplementary Table 19). Notably, most of 

the residual errors were overlapping with segmental duplication regions. Outside of those 

regions (“GRCh38_notinsegdups” stratification), the error was reduced by an order of 

magnitude, improving F1-score to 0.9943. In comparison, alignment-based SNP F1-score 

(using DeepVariant) within these regions was 0.9985. The same trend was observed in the 

comparison of SNP assembly-based calls against the variants produced from the HPRC 

assemblies (HG002, HG00733, HG02723), with F1-scores >0.99 (Supplementary Table 19).

The improved SNP concordance opens the possibility of high-quality SNP calls directly 

from Hapdup assemblies, and we implemented an option to perform it as a part of 

Napu (using dipcall). At the moment, mapping-based small variant calling remains 

the recommended option because of the small but noticeable advantage in accuracy. 

The remaining discrepancy between assembly- and mapping-based approaches is likely 

explained by the reduced number of segmental duplication copies in de novo assemblies, 
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compared to the reference, resulting in more read mismappings. We expect that better 

segmental duplication assembly methods will substantially reduce the remaining base errors 

in ONT assemblies.

Extended Data

Extended Data Fig. 1. Variant calling and methylation analysis using Napu.
Raw ONT sequencing reads are basecalled by Guppy 6.1.2, which simultaneously produces 

methylation tags. A diploid, de-novo phased assembly is produced using a combination of 
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Shasta and Hapdup. These assemblies are used to call SVs with Hapdiff. Small variants are 

called against a reference genome with Pepper-Margin-DeepVariant. The phased alignment 

file generated by Margin is used to produce haplotype-resolved methylation calls. Small 

variants and SVs are jointly phased by Margin, producing a single harmonized vcf.

Extended Data Fig. 2. Assemblies of 14 brain tissues and 3 cell lines generated by 
Shasta+Hapdup.
(A) NG50 and NGA50 contiguity measured using QUAST. Sample 06_66 had the 

lowest contiguity due to the decreased sequencing yield. (B) Assembly length. (C) Mean 

assemblies QV computed using yak. (D) Contiguity of phased blocks, broken at phase 

switches. An increased value for HG02723 suggests an increased heterozygosity rate. Cell 

lines marked with asterisks.
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Extended Data Fig. 3. Assembly metrics comparison against HG002 assemblies produced in 
Jarvis et. al (2022).
Our assemblies are highlighted in green. Flye (ONT+trio) were produced using standard 

ONT reads at 60x coverage and Illumina parental information; Flye (ONT UL + trio) is 

similar, but using ultra-long ONT extraction. HiCanu and hifiasm used 34x HiFi reads and 

Illumina parental sequencing. DipAsm used 34x HiFi reads and 60x Hi-C reads. Original 

evaluations from Jarvis et al. are shown. See Supplementary Table 5 for more detail.

Extended Data Fig. 4. TT-Mars evaluation of Hapdup and Sniffles2 calls.
SV calls from Hapdup and Sniffles2 were compared to the assemblies from the HPRC for 

HG002 (top), HG00733 (middle), and HG02723 (bottom) with TT-Mars. The calls were 

either validated by the alignment (green), not validated (orange), or couldn’t be annotated by 

TT-Mars (blue). We evaluated all SVs across the genome (left), as well as the subset of SVs 

that don’t overlap centromeres or segmental duplications larger than 10 Kbp (right)
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Extended Data Fig. 5. Flagger results based on HiFi alignments to cell line CARD and HPRC-Y1 
assemblies.
The y-axis of each panel indicates the unreliability percentages which are the total number 

of bases flagged as misassembly divided by the total assembly length and multiplied by one 

hundred.
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Extended Data Fig. 6. Flagger results based on ONT alignments to cell line CARD and HPRC-
Y1 assemblies.
The y-axis of each panel indicates the unreliability percentages which are the total number 

of bases flagged as misassembly divided by the total assembly length and multiplied by one 

hundred.
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Extended Data Fig. 7. Lenient SV catalog.
Similar to Fig. 5a but including SVs close to centromeres, telomeres, or within segmental 

duplications were removed. Number of SVs across samples. In the left panel, SVs were 

annotated with three SV catalogs (the gnomAD-SV database, a long-read-based SV catalog, 

and the HPRC v1.0 SV catalog). SVs are matched if they have at least 10% genomic 

overlap. The colors highlight the maximum frequency across these catalogs, the lighter blue 

showing ‘rare’ SVs (with an allele frequency below 1%) in the catalogs, or unmatched. SVs 

may be unmatched, either because they are novel or due to the difficulties in the database 

comparison. The right panel shows the number of rare SVs in protein-coding genes, grouped 

by their impact on the gene structure.
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Extended Data Fig. 8. IGV view of a 4.2 Kbp heterozygous deletion of a transcription start site 
and exon of RBFOX1.
The coverage histogram (dark grey) shows the drop in read coverage. The alignment of 

about half of the reads, labelled by strand (red/blue), support the deletion. The GENCODE 

track, ENCODE candidate cis-regulatory elements, and conservation tracks are shown at the 

bottom.
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Extended Data Fig. 9. Comparison of R9 and R10 sequencing runs using three cell lines.
Benchmarks were performed similarly to those described in Figs. 2–4. ‘Indel no HP/TD’ 

corresponds to indels outside of homopolymers and tandem repeats. Assembly SV F1 scores 

were computed outside of centromeres and segmental duplications. Additional statistics are 

given in Supplementary Table 13.
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Extended Data Fig. 10. F1-score for SV inside clusters of different sizes.
The HiFi calls for HG002 genome were used as reference, and calls within 2 kbp were 

clustered using single linkage clustering. The number of true positive calls in each category 

is shown as text. When VNTR grouping is enabled, all insertions and deletions within the 

same haplotype in a single VNTR are combined into a single call. A substantial portion of 

the reduced Sniffles2 concordance is explained by the differences in representation of SV 

clusters by the assembly-based and mapping-based approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability.

The cell line data (HG002, HG0073 and HG02723) and openly available 

through the AnVIL workspace: https://anvil.terra.bio/#workspaces/anvil-datastorage/
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ANVIL_NIA_CARD_Coriell_Cell_Lines_Open. Human brain sequencing datasets are 

under controlled access and require a dbGap application (phs001300.v4). Afterwards, 

the data will be available through the restricted AnVIL workspace: https://anvil.terra.bio/

#workspaces/anvil-datastorage/ANVIL_NIA_CARD_LR_WGS_NABEC_GRU. Matching 

Illumina data used for cell lines evaluations is available at: https://

www.internationalgenome.org/data-portal/data-collection/30x-grch38. HPRC assemblies are 

available at: https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0. GIAB 

benchmarks are available at: https://www.nist.gov/programs-projects/genome-bottle.
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Figure 1. Single flow cell Oxford Nanopore Technologies (ONT) sequencing protocol.
(Left) Overview of the sequencing protocol, indicating all processes from DNA extraction 

to sequencing. In brief, the DNA is extracted using a Kingfisher Apex instrument using the 

Nanobind Tissue Big DNA kit. The DNA is then sheared on a Megaruptor3 instrument, and 

libraries are constructed using an SQK-LSK 110 kit and sequenced on a PromethION for 72 

hours. Panel was created using BioRender.com. (Right) from left-to-right: total sequenced 

bases / haploid human genome coverage (assuming a 3.1GB genome) from PASS reads 

(with estimated QV>=10) for each sample. The vertical dotted line marks the average yield 

across samples. Read length N50 of PASS reads, i.e., the read length (y-axis) such that 

reads of this length or longer represent 50% of the total sequence. The vertical dotted line 

marks the average N50 across samples. Distribution of PASS read identities when aligned to 

T2T-CHM13 v2.0. The dots mark the median identity in each sample, and the vertical dotted 

line is the average across samples. Source data is available at Supplementary Table 1.
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Figure 2. Small variant calling performance evaluation.
Number of false positive, false negative, and true positive small variant calls made by 

PEPPER-Margin-DeepVariant (PMDV) using either ONT reads or DeepVariant using 

Illumina reads. (A) SNP performance, stratified by genomic regions mappability. (B) SNP 

performance, stratified by homopolymer context. (C) INDEL performance stratified by 

homopolymers and tandem repeats context. F1-scores are reported on top of the true positive 

bars. Statistics computed against the Genome in a Bottle v4.2.1 benchmark for HG002; for 
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other cell lines (HG00733, HG02723) small variant calls generated by DeepVariant with 

HiFi reads are used. Source data is available at Supplementary Table 3.
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Figure 3. Structural variant evaluations.
(A) Recall, precision and F1-scores computed for various tools and sequencing technologies 

with Genome in a Bottle Tier1 v0.6 benchmark as reference (defined on HG002). The gray 

histogram shows the distribution of SV sizes in the reference set. F1-scores computed for 

various SV size bins. (B) Structural variation call concordance with HiFi-based assemblies 

for various regions of the genome. Source data is available at Supplementary Tables 6–7.
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Figure 4. Combined, phased small and structural variants improve the profiling of complex 
genomic regions.
(A) Variant phasing evaluation. Left plot shows the phased block NGx, reported by Margin. 

HG02723 has an increased phase block length due to higher heterozygosity. (B) SNP 

hamming and switch error computed against the small variants in HiFi-based assemblies. 

Evaluations are also shown for a subset of SNPs that are within 100 bp of structural variants 

(C) An example of a Hapdup and hifiasm representations of complex clusters with small and 

structural variants at chr1:55,544,500–55,551,000 (in CHM13 reference), visualized using 

IGV. Top tracks show phased SNPs and SVs produced by Napu and derived from HPRC 

assemblies (using dipcall). A few inconsistencies between SNP positions are explained by 

ambiguities between read and contig alignments around SV sites. Source data is available at 

Supplementary Table 10.
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Figure 5. Structural variant landscape summary.
(A) The number of structural variants across samples. In the left panel, structural variants 

were annotated with three SV catalogs (the gnomAD-SV database, a long-read-based SV 

catalog, and the HPRC v1.0 SV catalog). SVs are matched if they have at least 10% 

genomic overlap. SVs close to centromeres, telomeres, or within segmental duplications 

were removed. The colors highlight the maximum frequency across these catalogs, the 

lighter blue showing “rare” SVs (with an allele frequency below 1%) in the catalogs, or 

unmatched. SVs may be unmatched, either because they are novel or due to the difficulties 

in the database comparison. The right panel shows the number of rare structural variants in 

protein-coding genes, grouped by their impact on the gene structure. (B) MHC pangenome 

built from 28 brain and 6 cell line haplotypes, containing 640 nodes, SVs over 100bp 

are shown. (C) IGH pangenome built from 28 brain haplotypes containing 268 nodes. 

Pangenome graphs were visualized using Bandage. Each graph node represents an allele, 

and two nodes are connected if the corresponding alleles are linked in at least one of the 
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haplotypes. Colors are assigned at random. Nodes are randomly laid out along the reference 

coordinates. Source data is available at Supplementary Table 11.
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Figure 6. Haplotype-specific methylation profiling.
(A) Heatmap of concordance between Bisulfite whole genome sequencing and ONT Remora 

Methylation calls in HG002 at sites shared by both technologies covered by at least 5 reads. 

The lower coverage of ONT data causes striping in the heatmap at specific frequencies. (B) 

Read depth of Bisulfite and ONT samples. CpG sites are one position apart in the sense and 

antisense DNA strands due to C-G base pairing. Since this read coverage is counted per CpG 

location the actual coverage was doubled to account for the neighboring strand locations and 

estimate actual genome wide coverage. (C) An example of differential methylation pattern 

in the SNRPN locus in the brain sample SH-04–08. Red CpG sites are methylated and 

blue sites are unmethylated. Above the reads is a plot of methylation frequency and gene 

locations, visualized using modbamtools (D) IGV visualization of phased methylated ONT 

reads and the phased assemblies of brain sample SH-04–08 at the DLGAP2 gene locus that 

shows a 1,379 base pair insertion that is differentially methylated across haplotypes. Source 

data is available at Supplementary Table 12.
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