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DOUBLE-TENSOR OPERATORS FOR CONFIGURATIONS 

OF DUIVALBNT ELECTRONS 

B. R. Judd 
I' 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

September 29, 1961 

ABSTRACT 

To every irreducible representation W of the rotation group in 21+l 

dimensions that is used to classify states of the.electronic configurations 

there correspond two couples (v,S), where v and S stand for the seniority 

number and total spin, respectively. . Determinantal product states are in-

troduced to examine this correspondence in detail. It is shown that for two 

double tensors W 1 and W 	the set of reduced matrix elements 

( n v 
 1 	l L ft w(k)  I! £ V1 1  w' gI  S1 t L'), 

for fixed n, v1 , v1  W, and W', is proportional to the set 

(.v2 	
2 L 

11 W 	 H P v2' 	2 Ll),,. 

where and V are additional labels that may be required to define the states 

uniquely, provided (a) the two couples (v 1 ,S1 ).and (v2 ,S2 ) are distinct, 

(b) the two couples .( v1 1,S1 1) and . ( v2 ,S2't) are distinct, and (c) the sum 

!C+K-i-k is odd. The amplitudes of the double tensors are chosen so that 

the constant of proportionality is equal to the ratio of two 3 - 'j symbols, 

I 

	

	
multiplied by.a phase factor. An explicit expression for this factor is 

given far f electrons, and a number of applications are discussed. 
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DOUBLE-TENSOR OPERATORS FOR COI'IFIGURATIONS 

- 	 OF EQUIVALENT ELECTRONS * 

B. R. Judd 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

September 29, 1961 

I. SYNMETRY 

n Conjugate electronic configurations of the ty -pe 2 and £ 	share 

many properties. Perhaps the most familiar is the occurrence of identical 

term schemes; as a consequence of this, a table of the terms occurring in the 

0 	1 	2... configurations 2 , 2 , £ , 	, £ 	exhibits a symmetry about the half- 

filled shell, t2l.  A glance at Table I of Condon and Shortley, 1  which 

lists the terms of all configurations of the type p " , d'1 , and f', makes it 

obvious that other kinds of symmetry exist. The most striking is the 

symmetry with respect to L (the quantum number of the total orbital angular 

momentum) of the terms of maximum multiplicity about the quarter- and three-

quarter—filled shells. For example, the terms of f 5  with S (the quantum 

number of the total spin angular momentum) equal to 5/2 are F, F, and H; 

while those of f 2  with S equal to 1 are 3P, 3F, and 3H. At first sight, it 

appears difficult to find similar types of symmetry for terms possessing 

less than the maximum value of S. However, this is because the quantum 

number that should be associated with a sequence of L values is not S. but M 5 . 

With this clue, we can uncover a large number of symmetries of a rather 

spectacular kind in Condon and Shortleyts table; for example, the L values of 
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the terms of f5 that can produce components with M=±3/2, namely 

sP3D3F5GHI3K2LM, 	 (i) 

are precisely the same as the L values of the terms of f that can produce 

components with M 5=±l. [The superscriptto a letter of the Sequence (i) 

indicates the number of times the corresponding L value occurs.] 

We can gain some understanding of the recurrence of a sequence of 

L values by listing the irreducible representations W of R 221, the rotation 

group in 22+1 dimensions, to which the representation of R 3  belong. From 

Table II of Elliott et al, 2  we find, for example, that Sequence (1) 

corresponds to the irreducible representations (iio), (211), and(lll) of H 7 , 

both for f and f 5  . The problem of explaining why certain sequences of 

L values recur in different configurations can thus be made equivalent to 

the problem of explaining why certain sequences of W values recur. In the 

latter form, the problem is seen to be closely connected to an observation of 

Racah, 3  namely, that to every representation W of the type used in classify-

ing states of 2', there correspond two values of the couple (v,S), where v 

stands for the seniority. If we denote two such couples by (v1 ,S1 ) and 

(v2 ,S2 ), then, according to Eq. (54) of Racah, 3  

v1+2S2  = v2+2S1  = 22-1-1. 
	 (2) 

For the representations (110), (211), and (lii) of our example, we find, from 

Table 2. of Elliott et al., 2  that the couples (v,S) are (5,5/2), (5,3/2), 

and (3,3/2) for f5 , and (2,1), (,l), and (,2) for f. 

In themselves, the symmetries with respect to L possess little more 

than a curiosity value. Our reason for introducing them lies in the hope 

that they will lead to symmetries with respect to matrix elements. It is 

well known that the matrix elements of most operators exhibit simple 
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symmetry properties about thehalf-filled shell, and for states of maximum 

multiplicity it is.. usually.not iffiult to derive reati.ons between matrix 

elements in setrical positions on e.ither side of the quarter- or three-

quarterfilled shell [see, for example, Eq (15 .) of Judd] . It therefore 

seems reasonable to anticipate analogous relations for other ty -pes of 

etry. This expectation is strenthenèd by Eq 	 , (73) of Racah 3  which 

relates matrix elements of the parte 2  of the Coulomb interaction between 

states defined by one couple (v 1 ,S1 ) to those between states defined by the 

corresponding couple (v 2 ,S2 ), Furthermore, Wybourne 5  has shon that many 

matrix elements of the spin-orbit interact.ion between states belong.ing to 

the two representations .W and W' of R 7 	 an are proportional to si1ar matrix 

elements in other configurations Some of his results are examples of 

Eqs. (6) and (69b) of Racah, 6  and are of no interest here; of the others, 

in each case the pair of couples (v 1 ,S1 ) and (v2 ,S2 ) corresponding to W, and 

also the pair.(v,S' ).. and(.r' ,s') corresponding .to Wt, separately satisfy 

Eqs 	(2). 	 . 

The first aim of this paper is to explore the symmetries within 

configurations of the type LII. . Most single-particle interactions of atomic 

spectroscopy can be concisely expressed as the components of double tensors, 

and the second objective is .to derive relations between the matrix elements 

of such operators Since the spin-orbit .interaction is the scalar part of a 

double tensor of rank one with respect to spin, and of similar rank with 

respect to brbit, the second part of the program can be regarded as a 

generalization of WybournetsS  work to arbitrary double tenors. 

N 
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II. DOUBLE TENSORS 

In order to define theoperators-with which we shall be concerned, 

we first introduce the tensors t 	and 	that act in thespin and orbital 

spaces respectively of -a single electron, and for which 

(s 11 t 	II s) = (21C11)1/2 

and 

2) = (2k+l)
1/2 .  

The (2,c+l)(2k+l) products 

(Kk) =t 00 v (k) 
	K; -k < q < k) 

TICL 	 it 	Cl 

form the components of the double tensor w 	for which 

(s 2 	w 	s 2) = (2K+l)1/2(k+l)1/2. 	() 

Many-electron tensor operators for the confiration 
2n  can be easily constructed 

by summing the operators for the n individual electrons; thus 

(ick) = 7-( (/(k) )  

and 

(k) = 	((k)) 

We note 

The sei of quantum numbers WSLMSML is not always sufficient to specify 

a state of 
In  completely. We therefore include the additional symbol ; for 

f electrons this can often be replaced by an irreducible representation 
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U of the group G 2 . 3  All reduced matrix elementsof W (Ick)  can be calculated 

by means of the formula 

( 	 W 	S L 11 W(! 	in W, 	St L) 

n[2S+1)(2K+1)(2St +l)(2 +1)(ak +l)(21 +1)1 1/2  

x 	) (t 	) ( 1)S+5+S+K+L+2+L+k 

'-SicS'- 	LkL' 
(4)

x  
Lssf  ~ I -L I ) 

where 	Ji' and j are abbreviations for WSL, WTStLt, and WSL, respectively. 

However the construction of the fractional parentage coefficients (?jJtkl/) and 

and the summation over the parent terms ?IJ, are often extremely tedius 

to perform. In seeking to establish relations between different reduced matrix 

elements, we aim to circunwent this procedure as much as possible. 

III. DETEENINANTAL PRODUCT STATES 

In Section I we mentioned the correspondence between the states f 5  

with M5=±3/2, and those of f with M 5 =±l. For both configurations, the state 

for which ML=L=9  can be expressed as a single determinantal product state. 

However, without examining the phases of our states in detail, we cannot be 

sure whether, for example, we should identify 

If5 , M, M5 =-3/2, 	=9) 

with 

3,3, 2 ,l,OI 

or with 

- (3,3,2,l,O). 

We shall return to questions of phase later for the moment, we avoid the 

difficulty by introducing the new states 
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W S L Ms M1) 

characterized by angular brackets, whose phases are at our disposal. We can 

therefore write 

If5, M, M5=-3/2, 	9) 	t3, 0, 1,2,3) 

and 

If, 3M,  Ms_l 	9) 	(3,1,2,3). 	 (6) 

Operating on Eq. (5) with 	and using Eq. (3), we find 

If5, M, M5=-3/2, M=9) 

	

(5/8)1/2 (l, O, 1, 2, 3) + (5/2)1/2(3+) -2 	l, 2, 3) 

+ (/7)1/2 (3 
	-1, 0, 2, 3). 	 (1) 

Similarly, from Eq. (6), we get 

W(02) I f1 , 3M, M5=-1, ML=9) 
0-2 

(5/8/ ti, 1, 2, 3) + (5/42)1/2 (3 +  1, 0, 3) 

+ (1/7)1/2 (3k , -1, 2 - ; 31. (8) 

The striking similarity between Eqs. (7) and (8) prompts us to ask the 

following questions: 

Can the determinantal product states of f 5  for which Ms=_3/2 be 

put into a one-to-one correspondence with the determinatal product states of 

1 	
-\ 

f for which 

If (i) is true, what is its generalization? 

If it can be established that the determinantal product state 

(a1) of La corresponds to the unique determinantal product state (b 1) of 

and vice versa, what are the conditions on K. k, q, IC', k', and q' if 

and d in the expansions 
I_p 
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(a) = 	c(a) 	 (9) 

and 

d 	(b ) 	 ( ic) 
Oq' 	I p  Ip p 

are to satisfy 

C 	= 	 ( 11) 
Ip 	Ip 

for all I  and p? 

Qustions (i) and (ii) can be taken together. Suppose that the g 

integers m.(i= 1, 2, 	,g), constituting the set a'  satisfy the inequalities 

2> m 
l 	2 
> m > 	> in 

1  
.> •.. > m > -2 	 (12) 

—  

and that the h integers rn.' (j=l, 2, 	.,h), constituting the set P p ', satisfy 

the inequalities 

2 >m1 7 >m2 T> ... >m.T> ... >m>-2. 	(13) 

We denote the combined set of gl-h integers by Q. We can construct two 

determinantal product states, corresponding to any such set Q 1, according to 

the following rules: 

Delete from 

(, (2i)°• 	() 	£, (2-l),•, (2)), 

the state corresponding to a completely filled shell, those entries (m 2 Y for 

which in2  coincides with a member of P, and also those entries (m 2  for which 

in2  coincides with a member of P. 

Delete from 

the state corresponding to a half-filled shell with maximum M, those entries 

(m2)+ for which m2  is a member of P.,  and insert the sequence 

( -m'Y ,  (-m2, 
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between (_2) and the final bracket. 

The resulting quantities, which we denote by 1a) and Cb 1), respective- 

ly, are 

	

(a1 ) 	(2k ,..., (m.+l), (m.-l),. 	(m.'+l), 

(i) 

and 

	

(b) 	 (m.+l), (m.-i), •, 

(mt ), (-m2' 	'' (-m. ),..., ( ' )) 	(15) 

The first, Ca 1), is a determinantal product state of 22+2-g-h3 the 

second (b1), of £2 2+1 -g+h . The values of M 5  for these two states, which we 

write as M Sa Sb 
and M , are given by 

M 
Sa 2 

and 

MSb = (22+l-g-h). 

Upon writing 

n. a 

and 

22+l-g+h = 

we see 

M 	= - (22+1-nb) Sa 

and 

MSb = - (22+1-n). 	 (rT) 

If two entries of a determinantal product state are interchanged, the 

state becomes multiplied by -1. Two determinantal product states, whose 

entries can be perfectly matched by a process of rearrangement, are equivalent. 

(16) 
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The inequalities (12) and (13) impose a standard ordering on the entries of 

the states (14) and (15), and guarantee that no two detenninantal product 

states (a1) and (a), deriving from two distinct setsQ 1  and Q )  are equivalent. 

Similar remarks apply to states of the type ( ID) . If we suppose 2, g, and h 

to be fixed, it follows that to each state (a 1) of £ a there corresponds a 

ique state (b1) of 2, and vice versa. 	From Inequalities (12) and (13), 

g and h are nonnegative integers, not exceeding 22+1. Provided we restrict 

our attention to configurations £n 
 for which n< 22+1— and, in view of the 

familiar symmetry with respect to the half-filled shell, nothing is gained 

by considering configurations in the second half of the shell— these conditions 

imply only that 	must be an odd integer greater than or equal to 22+1. 

Given, then, two configurations 2 a  and 2 comprising an odd and an even 

number of electrons, the total number being at least 22+1, the states of 2a 

for which Ms  is determined by Eq. (16) can be put into a one-to-one 

correspondence with those of £, for which M 5  is determined by Eq. (17). 

This statement answers Questions (i) and (ii) above. 

Having established a method for drawing correspondences between states 

of the types Ja1 ) and (b) , it is straigitforward to construct the right-hand 

sides of Eqs. (9) and (io) in detail, and to pick out corresponding coefficients 

and d1 . For Eq. (11) to be valid for arbitrary 2, the conditions on 

k, q, ic kt, and qt  turn out to be 

ci t  = 

kt = 
	

(18) 

(_1 )I1C +k 

The last equation holds if i+,c t +k is odd. These equations provide the answers 

to Question (iii). 
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IV. 14ATRIX ELEMENTS 

The infinitesimal operators of the group R 	 can be taken to be 

where k is odd. 3  Any one of these operators, acting on a member 

(a1) of the collection of determinantal product states of I with M5 = 

generates a linear combination of states of the collection. It follows that 

the collection of states (a1) for all possible Q, forms a basis for a 

representation of R221 . Now for every operation with W 	 on a state 

(a1) of £ a, we can construct a corresponding operation on the state (b 1) of 

£ . According to Eqs. (18) , the appropriate operator is again the in- 

(Ok) 
finitesimal operator W 	of R2 ~1.  Hence the transformation properties of 

the basis functions (a1) are identical to those of the basis functions (b). 

We conclude that the irreducible representations W, into. which the two 

representations with these bases decompose, are also identical. This accounts 

for the recurrence of sequences of W values, the existence of which was 

mentioned in Section I. 

The correspondence between the transformation properties of the two 

sets of basis functions (a) and (b1) holds not only for R21, but also 

for any of its subgroups, since the infinitesimal operators of the latter can 

be chosen from those operators W (0  for which k is odd. The labels L and 
Oq 

ML can be interpreted as irreducible representations of R3  and R 2 ; hence, 

given a particular expansion 

	

i £11a v1  W 	S1  L MSa ML 	= 	
(a) 	 (19) 

na   
for £, ,we can be sure that the linear combination 	 op 

	

x (b 
) 	 (20) 

pP 	p. 
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corresponds to the same set of quantum numbers W, L, and M1 . The symbol 

can also be carried over if its choice influences the properties of the 

linear combination of determinantal product states with respect to the 

tensors w 	for which k is odd. However, since either n or n is odd 

	

Oq 	 a 

and the other even, the couple (v 2 ,S2 ) associated with the Expression (20) 

cannot be the same as (v1 ,S1 ). We may therefore write 

v2  W 	2 L MSb ML ) 	(b) 	 (21) 

with the understanding the v 1 , v2 , S1, and S satisfy Eqs. (2). 

The construction of the matrix elements follows easily. If we 

operate on the right-hand sides of Eqs. (19) and (20) with Wand 

respectiveiy,where ic+ic'+k is odd, the resultant linear combinations of determi-

nantal product states correspond perfectly. The matrix elements are readily 

completed in a quite general fashion, and we obtain the result 

n 
v1 ' W' e ,  S1 ' L' MSa  MLt 	Wj £ a v1 	5 L M Sa ML Oq 

	

= 	v2 ' W' 
' 2 L' 
	ML 	Wk 	2 v W 	L 

	

Oq 	 2 	
2  

To bring the notation into line with that of Eq. (Li),  we reverse the labelings 

of the states, and replace the angular brackets by regular ones. The latter 

operation introduces a phase factor (-i, where x is independent of IC,IC,  and 

k. Passing to reduced matrix elements, we obtain 

n 
a v1  W 	

S  L 
	

n v
1 ' W' 	S' L' ) 

(iv 2  W E S2  L 	W 	i 	v2 ' Wt 	2' L') 

I 

S 2- 
S 
  1 Sb Sa 
-M +M + x( 2 
	

jt 	
2' I l 

	

_MSb 	0 	MSb) -M Sa 	0 	M ) Sa 
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= (i)x+(+v2_vi_n)/2(2 (22+l-v
1 ) 	' 	(241_v1 ) 

	

- (22+1_n) 	o 	- ( 22+1-n) 

(22+i-v2 ) 	(22+1-v2) -1 

(22+1-) 	o - (2a-) 

The last line of the above equation follows from Eqs. (2), (11), and (18). 

To complete the program outlined in the last paragraph of Section I we have 

but to determine x. 

V. PHASE 

Racah3  has shom that the fractional parentage coefficients can be 

factorized according to 

in vW 	S L (I1 	) 
= (n 	[I2 fl 	S+ ) (w e L 	 ). 

If the fractional parentage coefficients are always constructed as a product 

of these two parts, we can be sure that the second factor does not contain 

any hidden phase factors dependent on n. Under these conditions, we can 

often use Eci. ()+) to gain information about x. 

Suppose, for example, that we make the substitutions 

and 	=l'- in the reduced matrix elements of Eq. (22). Equations (2) must be 

satisfied by the primed quantities, and we deduce that v 2 t=v2+2, S2 T =S2+1. The 

ratio of the reduced matrix elements can be related by Eq. (67) of Racah6  to a 

ratio for which na  and n assume the special values v 1  and v2+2, respectively. 

The couple (, ) for the matrix element of the numerator can now be only 
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(v1 -1, S1 _l/2); that for the matrix element of the denominator, only 

(v2+l, 52+1/2).  Both of these couples correspond to the same W; hence, if 

Eq. (Ii-) is used to compute the ratio, the sum 

(w 	L I 	£) (w' 	' L' I 	2) 

L 

- 	' -L 1 L' 
x ( 

1 )L+2+L+l I 

	

- 	 2L2} 	
(23) 

occurs in both numerator and denominator, and therefore cancels. Equations 

(52) of Racah3  give the magnitudes of the coefficients of the type 

(fl 
vS (I £v S + 2). 

The phase of such a quantity is independent of n, 3  and, following Racah, we 

denote it by(v S (I v s). The result of the calculation is 

(2 a v  
1 	

l L W 	2a v
1-2 W! t  S1+l L') 

(2 	v2  W 	S 2  L W 	
2 	v2+2 W' ' S2 -1 L') 

	

(v1S l 
	v1-1, S

1-l/2)(v1 -2, S1+i CI v1-1, s1 1/2) 

	

= - £(v2  S2  C] v2+1, S2+1/2)(v2+2, S2 -1 CT v2±1, S2+1/2) 	() 

where 

(n a 
 +2-v

1  )(2+-n -v 	1 	1 
)(2S -l)2S ( 281+1 ) 1 1/2  al  

(nb  

So much for the left-hand side of Eq. (22). The right-hand side, involving 

the ratio of two 3-j symbols, evaluates to 

(25) 

The immediate conclusion, independent of the choice made for the phases 
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(v S ( v s), is that x is independent of 	L, and L', and depends 

solely on the spins and seniorities of the states involved in the matrix 

elements. Equations (2) permit us to narrow down the dependence simply to 

the seniorities. 

The above analysis can be repeated for other special cases. There 

are not many to consider, since the seniorities and spins with common 

subscripts can differ by, at most, 2 and 1, respectively, if the matrix 

elements are not to vanish. If S 1 t=S1, however,S can sometimes assume two 

values, and we cannot be sure that the simple factorization that allowed us 

to cancel the summations (23) still prevails. This difficulty can be 

ircumvented, if the matrix elements are not ciipletely diagonal with 

respect to v, W, , and L, by making use of the fact that the corresponding 

reduced matrix elements of W 
(Di),  being proportional to those of L, must vanish. 

The sum over L and T for S=S1-l/2 can now be related to the similar sum for 

S=S1-i-l/2, and, with a little manipulation, the dependence of the ratio of the 

reduced matrix elements on , L, 	and Lt  can again be removed. This method, 

2 
which has been previously used by Elliott et al., breaks down if one of the 

matrix elements is completely diagonal in all quantum numbers; but in this 

case it is easy to see that the other matrixelement must also be completely 

diagonal, and hence (_1)x1  The result of working through the various special 

cases is that the conclusions of the preceding paragraph are true in general: 

x is always independent of , ',L, and Lt, and depends only on the 

seniorities. 

Thus 

x = x(v1, v2 , v1 , v2 !). 	 (26) 

The precise form of x depends on the phases c(v S ( vS). 	If 
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these are still at our disposal, then we can go no further in our determination 

of x. However, for some values of £ a particular choice has been made; for 

example, Eqs. (56) of Racah3  determine the phases of E(vS (j v s) for f 

electrons. We may therefore compare expressions, such as (24) and (25), 

for all the various types of couples (v,S); the resulting values of x 

required to lead to agreement as to phase for f electrons can be summarized 

in the equation 

x = v1ö( v1 , v1 t) + v2 b(v2 ,v2 ') +1. 

Upon putting this value of x into Eq. . (22) the ratio of the two reduced matrix 

elements is made unambiguous. 
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Vt. APELICATI ONS 

We may specialize Eq. (22) in several ways. Aprudent step is to 

check that it reproduces those special cases that are already known. Wybourne 5  

expresses his results for the matrices of the spin-orbit coupling in terms 

of the matrix elements of a quantity A defined by 

( 	W 	S L J Mj  I E (s.. 2) J £' W' 	t  s L.' J M) 
1 

=L 
I 

J I (2n W 
	S L JAI on wt 	S' L'), 

where y = 0 or -1/2 according as n is even or odd. From Eq. (25)  of Racah, 6  

we may easily prove 

	

Al*1) 
	
S1t-S21+y2-y1 	

l 

	

(*2 JAJ *2) 	 2 11 W(ll) 
(27) 

where 

*1 	
£avWSL 

*1 	
2a 	W' 	' S tL', 

*2 	2v2WS2L, 

and 	 *2 	v2  W' V 
S2  L' 

By combining Eqs. (22) and (27), the ratio of the matrix elements of A 

for any set of states 4r, *l '  *2 and  *2 can readily be found. Of the 31 

entries in Table III of Wybourne, 5  20 are special cases of this kind; the 
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remainder are examples of Eqs. (6) and (69b) of Racah. 6  We obtain complete 

agreement with Wybourne for 16 of the 20, but the signs of the right hand 

sides of the sixth, ninth, tenth, and eleventh equations of his Table Ilib 

are incorrect, and should be reversed. In a private communication, Wybourne 

has confirmed these four corrections. 7  

Although we have distinguished between Eq. (22) (for which v1 v2  and 

v1 'v2 ') and Eqs. (6) and (69b)  of Racah (for which v1=v2  and v1 ' =v2 ' ), it 

should be pointed out that Racab's equations can be derived from Eq. (22). 

It is only necessary to compare Eq. (22), as it stands, to a similar equation 

in which n possesses its minimum value, namely the larger of v 1  and 

Suppose, for example, we take v1=v1T=v  and choose +k to be even. For Eq. (22) 

	

to be valid, we must have ic'=l We set n a 
	 a 
=v in Eq. (22) and then n zn. The 

matrix elements 

( 2 t  

can be easily eliminated, and we get 

(L v W 	S L 	Wj L v Wt et St L') 
(Lv v W 	S L W k 
	

iv  v W' e I 
5t  L') 

	

= ( 1)(v-n)/2(2 (21-v) 	
1 	(2L+1 v 

	

(22+1-n) 	0 - (2L+l-n 

x 	21  

(22+l-v) 0 - (22+lv)J 

= (22+1-n)/(22-i-1-v), 

\ 	 0 which agrees witi Eq. (69oì  o Racan. 
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The applications of Eq. (22) that have been considered so fax simply 

reproduce established results. However, it is only necessary to take k to be 

even to obtain a large number of new equations. This is because K+/( must be 

odd, and so ic cannot equal jc. We may therefore relate the matrix elements of 

(12) i 
	 (02) n one configuration to those of W 	in another; in fact, for any 

(02) ma 	
(12) 

trix element of W 	, a matrix element of W 	in another configuration 

can be found to which it is related by Eq. (22), Since tensors of the type 

w(12) and w(02) are used in the study of hyperfine structure and crystalline 

field effects, respectively, a considerable amount of labor can be saved 

by taking advantage of this relation. For example, on setting v1=v1 t, 
S =' 

v2=v2 1 , and 22 in Eq. (22), we obtain, for the even k, 

n 
, a 

x, v1  W 
S1 

 L 11 W 	 v1  W 	S1  L) 

(2b v2  W 	
2 L 
	 v2  W ! S 

2 
 L 

+1-v2)+v2)(+v2 	

1/2 

- 	 2(2 +l)2  
(28) 

This result is independent of v1 'and S2 , and relates, for example, the matrix 

elements of part of the hyperfine interaction for the quartets of f 5  to the 

matrix elements of v(2) for the tes of f with a seniority of 4. Matrix 

elements of the latter kind are the easier to evaluate, since fewer parents 

are involved. Equation (28) should therefore be useful in calculating, for 

example, the contribution to the hyperfine structure of PmI +f5 6H coming 

from admixtares of quartet states. 

-h 
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Table III of Wybourne contains other errors that are more obviously typo-

graphical. Of these, three possess a mathematical significance: In the 

second equation of Table III a, the representation (110) on the extreme 

right should be (111); in the fifth equation of this Table, the seniority 

number 4 should be replaced by 3; and in the last equation of Table III c, 

the factor _[2(2)/3]1/2 should read 42(2)11'2/31. 

& 
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