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Abstract

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening
complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA
genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein
only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150
interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus
type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we
determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution.
Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected
by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps
the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the
capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of
SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by
10,000 fold. By cryoEM reconstruction of the resulting ‘‘SCP-deficient’’ viral particles, we further demonstrate that SCP is
required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a
mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV
virion.
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Introduction

Human cytomegalovirus (HCMV), the prototype of betaher-

pesvirus subfamily of the Herpesviridae, is a leading viral cause of

birth abnormalities and a major life-threatening pathogen in AIDS

and organ transplant patients [1]. HCMV virion shares a common

architecture with other herpesviruses and consists of a polymor-

phic envelope, a tegument compartment and an icosahedral

nucleocapsid enclosing a linear dsDNA genome. The HCMV

genome is the largest amongst that of all human herpesviruses, and

encodes a remarkable number of conserved proteins, as well as

unique envelope and tegument proteins that lack homologs in

alpha- or gammaherpesviruses [2]. The HCMV capsid shell,

similar to those of herpes simplex virus type 1 (HSV-1) and

Kaposi’s sarcoma-associated herpesvirus (KSHV), is composed of

four major proteins: the major capsid protein (MCP; encoded by

UL86) [3], the minor capsid protein (mCP; encoded by UL85), the

mCP binding protein (mC-BP; encoded by UL46) [4], and the

smallest capsid protein (SCP; encoded by UL48.5) [5,6]. All

herpesvirus capsids studied to date share a T = 16 icosahedral

assembly with pentons (MCP pentomers), hexons (hexamers of

MCP), connecting triplexes (heterotrimers of two mCP and one

mC-BP), and SCP attached to the tip of each MCP [7,8,9,10,11].

While the other three capsid structural proteins are conserved,

SCP is very divergent in size, amino acid sequence and function

among different herpesviruses. In HCMV, SCP was shown to be

essential for virus growth [12], but its function is still unknown.

CryoEM reconstruction also revealed different patterns of

association between capsid and overlying tegument proteins in

CMV and HSV. In HCMV, a layer of highly organized

filamentous density of tegument proteins is attached to the

pentons, hexons and triplexes of the underlying nucleocapsid

[13]. The three-dimensional (3D) reconstruction of the simian

cytomegalovirus (SCMV) capsid isolated from the cytoplasm of
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infected cells also revealed tegument proteins attached to the

capsid [8], similar to HCMV. In contrast, HSV-1 ordered

tegument proteins only bind pentons and those triplexes

surrounding pentons [14,15,16]. These observations indicate that

viral proteins overlying the conserved capsid, such as tegument

and envelope proteins, have evolved to have virus-specific

structural and functional roles. Recently, biochemical and

structural studies have assigned pp150 to the ordered filamentous

tegument densities of CMV virion and suggested its function in

stabilizing the dsDNA-filled C capsid [17,18], but more structural

details are needed to fully understand the molecular interactions

between pp150 and capsid proteins.

Here, we report the 3D structures of HCMV capsid and intact

HCMV virion at 6 Å and 9 Å resolution, respectively (Figure S1).

Comparison of the capsid and virion structures reveals, at a

secondary-structure level, that SCP mediates interactions between

the capsid and tegument protein pp150. By constructing a

ribozyme that inhibits SCP expression in HCMV-infected cells,

and cryoEM reconstruction of the resulting ‘‘SCP-deficient’’ viral

particles, we further demonstrate that SCP is required for pp150

binding to capsid and its absence results in only viral particles

devoid of the DNA genome, thus revealing why SCP is essential

for HCMV infection.

Results

CryoEM structural determination
Due to the large size of CMV particles and the difficulties to

purify them, resolutions of previous cryoEM reconstructions were

limited [8,10,13,19]. In this study, highly purified HCMV capsid

(no tegument, Figure 1A) and the intact virion (containing

tegument proteins, Figure 1B) were obtained and imaged in a

300 kV Titan Krios high-resolution electron microscope. 3D

reconstructions of HCMV capsid and virion were obtained at 6 Å

and 9 Å resolution, respectively (Figure S1). The improved

structures are a result of an exhaustive effort of processing more

than 37,000 capsid images and 56,000 virion images. At these

sub-nanometer resolutions, secondary structural elements, partic-

ularly a-helices, can be identified, as exemplified by the close-up

views of a hexon in the capsid reconstruction (Figure 1C–E).

Molecular boundaries can be established, allowing us to describe

the interactions between the ordered tegument proteins and capsid

proteins at secondary-structure level for the first time.

Comparisons of 3D reconstructions of the capsid and the
virion

The 6 Å reconstruction of the HCMV capsid reveals the

molecular boundaries among the 150 hexons, 12 pentons and 320

triplexes in the T = 16 icosahedral particle (Figure 1C), allowing

identification of individual molecules. In particular, the upper

domain of an MCP monomer was extracted from a central hexon

(Figure 1F) and superimposed with the crystal structure of the

HSV-1 MCP upper domain (MCPud) (PDB accession code 1N07)

(Figure 1G) [20]. Except for very minor differences at the tip and

the outer surface of the subunits (arrow and arrowhead in

Figure 1G), excellent match of all the a-helices between HCMV

and HSV-1 MCPuds is observed, indicating that the bulk of

MCPud structure is conserved between the two viruses. This

match also demonstrates the high quality of the map.

In addition, the fitting reveals that SCP molecules were lost in

this highly purified capsid sample, probably due to the use of

detergent during all purification steps (see Experimental Proce-

dures). In gently prepared capsid preparations, SCP binds MCP at

the upper domain as shown in previous capsid reconstructions we

obtained [10,19]. The absence of SCP in the capsid reconstruction

provides the advantage to identify the molecular boundary

between SCP and MCP in the virion reconstruction (see below).

The 9 Å reconstruction of HCMV virion shows a layer of

filamentous tegument proteins bound to the capsid in an

icosahedrally ordered fashion, like a net enclosing the entire

capsid (Figure 1H). Three of these tegument densities sit on top of

each triplex, forming a ‘group-of-three’, and extend to the top of

the nearest subunits in the three surrounding capsomers. The

location and appearance of these tegument densities are similar to

those decorated by anti-pp150-antibodies [17,18]. In each

asymmetric unit of the herpesvirus capsid, there are six quasi-

equivalent triplexes, Ta, Tb, Tc, Td, Te and Tf (Figure 1I),

following the nomenclature of [21]. The group-of-three tegument

densities on triplexes Tb, Td and Te are the most similar in

structure. We averaged the densities within three cubes, each of

which contains one of these group-of-three tegument densities

(e.g., the region encompassing Te is outlined by the dashed square

in Figure 1I) to improve the signal/noise ratio (Figure 2A). Helices

in the tegument proteins can be resolved in the averaged density

(as illustrated in Figure 2E). The same cubic regions from the

capsid reconstruction were averaged for comparison (Figure 2B).

This comparison allowed us to differentiate densities of MCP and

triplexes from densities attributable to SCP and tegument proteins,

and subsequently to segment out SCP and the tegument densities.

The boundary between SCP and pp150 was established by

referring to our pervious SCP-containing capsid reconstruction

[19].

Structure of the capsid-interacting tegument protein,
pp150

The three tegument densities in the averaged group-of-three

exhibit a high level of similarity and appear nearly identical when

displayed side by side (Figure 2D). This structural similarity among

Author Summary

Human cytomegalovirus (HCMV) causes birth defects in
newborns and life-threatening complications in immuno-
compromised individuals, such as AIDS patients and organ
transplant recipients. The smallest capsid protein (SCP) –
only 8 kDa molecular mass as compared to the 155 kDa
major capsid protein – has been demonstrated to be
essential for HCMV growth, but is dispensable in herpes
simplex virus type 1. These seemingly contradictory
observations have been a paradox. Here, we solve this
paradox by high resolution cryo electron microscopy
(cryoEM), in conjunction with functional studies using
ribozyme inhibition. Our structural comparisons of HCMV
virion and capsid reveal molecular interactions at the
secondary structure level and suggest that SCP might
contribute to capsid binding of pp150, an essential,
cytomegalovirus-specific tegument protein. SCP-deficient
particles generated by ribozyme inhibition of SCP-expres-
sion in HCMV-infected cells show no pp150 tegument
density, demonstrating that SCP is required for the
functional binding of pp150 to the capsid. Our results
suggest that SCP recruits pp150 to stabilize the HCMV
nucleocapsid to enable encapsidation of the genome,
which is more densely packaged in HCMV than in other
herpesviruses. Overall, this study not only resolves the
above paradox, but also illustrates the passive acquisition
of a new, essential function by SCP in the production of
infectious HCMV virions.

SCP Mediates pp150 Binding in Cytomegalovirus
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the three tegument densities suggests that three copies of the same

tegument protein or protein complex associate with each triplex,

which differs from the situation in SCMV, where only two copies

of tegument densities were interpreted to bind to each triplex [8].

In each tegument density of HCMV, we resolved two helix

bundles, an upper one and a lower one, joined by a long central

helix (,67 Å in length). The upper helix bundle (UHB) is

composed of the central helix and five shorter surrounding helices.

The lower helix bundle (LHB) only has three short helices

surrounding the central helix (Figure 2E).

Previous studies of HCMV and SCMV particles have suggested

pp150 as one of the candidates for the capsid-interacting tegument

densities [8,13,18]. Secondary structure prediction indicates that

the C terminal half of pp150 is almost entirely coils, in contrast to

the N terminal half, which contains many helices (Figure 2F).

Among these predicted helices, the longest one has 47 residues

from a.a.195 to a.a.241 (Figure 2F), which would span ,70 Å as

each amino acid in an a-helix gives an axial distance of 1.5 Å.

This ,70 Å length of the longest predicted helix and the

measured ,67 Å length of the central helix resolved in the

cryoEM density correlate well with each other, and both are more

than twice the length of any other predicted or resolved helices.

Moreover, there are eight other predicted major helices with more

than 3 helical turns (each turn = 3.6 a.a.) and their lengths (12–22

a.a.) also correlate with those of the eight shorter helices resolved

in the tegument density. Therefore, we conclude that the resolved

tegument density is contributed only by the N-terminal half of

pp150 molecule, while the C-terminal half of pp150 may be

disordered or flexible. This conclusion is consistent with previous

biochemical data showing that N-terminal segment of SCMV

pp150 was both necessary and sufficient to bind either SCMV or

HCMV capsid in vitro [22].

SCP mediates interactions between pp150 and the
capsid

We further identified the interface between the tegument

density and the capsid. At one end of pp150, its LHB has direct

contacts with the triplex (Figure 3A–C). At the other end, pp150

UHB interacts with the capsomer through one of its five short

helices (arrowhead in Figure 3D and 3E). This interaction appears

to be mediated by the 8 kDa SCP molecule, which is situated in

the cleft formed by the pp150 UHB and the upper domain of

MCP (Figure 3D–E). The direct contact between the densities

assigned to pp150 and SCP suggests direct binding of the two

molecules, although at this resolution, one can’t rule out the

unlikely possibility that binding of SCP to MCPud can in theory

change conformation of MCPud, causing it to bind to pp150

directly.

Confirmation of the role of SCP by ribozyme inhibition
To assess the functional significance of SCP in mediating pp150

binding to the capsid, we constructed a cell line expressing a

ribozyme that inhibits the expression of SCP when the cell line is

infected by HCMV. Then, we determined the consequence of this

inhibition on pp150-binding to the capsid by cryoEM analyses of

viral particles harvested from this cell line.

We constructed a ribozyme, called SCP1, by covalently linking

the 39 terminus of a previously established M1GS ribozyme

variant (V482) [23] to an 18-nt guide sequence complementary to

the targeted HCMV SCP mRNA sequence. Two other ribozymes,

SCP2 and TK1, were also designed and used as controls. SCP2

contains the same guide sequence as SCP1 but has multiple point

mutations at the catalytic P4 domain that abolish its catalytic

activity [24], thus serving as a control for the antisense effect in our

experiments. TK1 targets the mRNA of thymidine kinase (TK) of

HSV-1 and serves as a control to determine whether M1GS RNA

with an incorrect guide sequence could target SCP mRNA in

tissue culture. We subsequently constructed cell lines expressing

each of these three M1GS ribozymes and carried out the following

three experiments.

First, we analyzed SCP mRNA expression in HCMV-infected

cells by Northern blotting, using the level of viral immediate-early

(IE) 5-kb mRNA as an internal control (Figure 4A). Based on

radioactivity of 32P-labeled probes, we estimated that target

mRNA expression level was reduced by 9868%, 764%, and

363% (average of three experiments) in cells expressing SCP1,

SCP2 and TK1, respectively. Furthermore, the protein level of

SCP, as determined by Western analyses with the MCP protein

level as the internal and loading control, was reduced by 9769%,

865%, and 261% in cells expressing SCP1, SCP2, and TK1,

respectively (Figure 4C, lanes 9–12). Thus, targeted cleavage of

SCP mRNA by ribozyme SCP1 significantly reduced SCP

expression in cells expressing SCP1, but not in cell lines expressing

both control ribozymes. The low level of inhibition observed in

SCP2-expressing cells was probably due to an antisense effect, as

SCP2 has a target-binding affinity similar to that of SCP1 but is

catalytically inactive.

Second, we assessed the effect of SCP-inhibition in viral yield by

measuring viral titers of stocks from HCMV-infected cells that

express the ribozymes. At 5 days post-infection, viral yields were

reduced by at least 10,000-fold in cells expressing SCP1, whereas

no significant reduction was observed in cells expressing SCP2 or

TK1 (Figure 4B).

Third, to uncover the structural basis of the reduction of viral

yield due to SCP inhibition, we imaged viral particles isolated from

SCP1-expressing cells by cryoEM and compared its 3D structure

with that of the wild-type HCMV virion. Using MCP as the

internal and loading control, Western analyses showed that SCP

was hardly detected in HCMV particles isolated from SCP1-

expression cells but was readily found in viral particles isolated

from cells that did not express any ribozymes or expressed control

ribozymes SCP2 or TK1 (Figure 4C, lanes 13–15). CryoEM

images of wild-type HCMV virion have the characteristic

‘‘fingerprint’’ appearance (Figure 1B), which is a hallmark of

Figure 1. Comparison of 3D reconstructions of the HCMV capsid and virion. (A, B) CryoEM images of HCMV capsid (A) and virion (B). (C)
Radially colored surface representation of the 3D reconstruction of the capsid at 6 Å resolution viewed along a 3-fold axis. Capsomers in an
asymmetric unit, including a penton and three hexons, are labeled as ‘‘5’’, ‘‘C’’, ‘‘P’’ and ‘‘E’’, respectively, as in the nomenclature of [39]. (D, E) Close-up
views of the C hexon demarked in the capsid reconstruction, viewed from outside (D) or inside (E) of the capsid. An a-helix with typical sausage shape
is denoted in (E). (F, G) MCPud. The density map of the MCPud denoted by the square in (D) was extracted and radially colored (F). In (G), the same
MCPud is shown in semi-transparent yellow and superimposed with the HSV-1 MCPud atomic model (magenta ribbon). Note all helices match in the
two structures but the loops at the tip (arrow) and at the outer surface (arrowhead) of HSV-1 MCPud do not fit the cryoEM density map of HCMV
MCPud, suggesting possible structural differences. (H) Radially colored surface representation of the 3D reconstruction of the HCMV virion viewed
along a 3-fold axis. (I) Zoom-in view of the area denoted in (H). Structural components in an asymmetric unit are labeled, including a penton (‘‘5’’),
three hexons (‘‘C’’, ‘‘P’’ and ‘‘E’’), and six triplexes (‘‘Ta’’, ‘‘Tb’’, ‘‘Tc’’, ‘‘Td’’, ‘‘Te’’ and ‘‘Tf’’). Dashed square demarcates a region encompassing Te that is
segmented out for averaging with similar regions around Tb and Td (see text and Figure 2).
doi:10.1371/journal.ppat.1003525.g001

SCP Mediates pp150 Binding in Cytomegalovirus
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Figure 2. Structure of the capsid-interacting pp150 tegument protein. (A, B) Averaged density of the regions surrounding triplexes Tb, Td
and Te (as marked by the dashed square in Figure 1I) from the virion (A) or capsid (B) reconstructions. The two density maps are colored the same as
in Figure 1H or 1C. (C) SCP (light blue) and tegument (green, magenta and cyan) densities segmented from the virion densities of (A) superimposed
on the capsid densities (yellow) of (B). (D) Views of the three tegument densities of (C) after alignment to each other. The most prominent feature is
the sausage-shaped densities due to helices. The dashed line denotes the boundary of the upper helix bundle (UHB) and the lower helix bundle
(LHB). (E) The cyan tegument density in (D) is shown semi-transparently and superimposed with cylinders representing helices. Helices in the upper
helix bundle (magenta) and lower helix bundle (cyan) are connected by a 67 Å-long central helix (CH, red). (F) Secondary structure prediction of
pp150 based on its amino acid sequence. The putative location for the long central helix identified in (E) is indicated by the red line.
doi:10.1371/journal.ppat.1003525.g002
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encapsidated genomic dsDNA [14,25]. In contrast, none of the

cryoEM images of particles harvested from the SCP1-expressing

cell culture media shows a fingerprint pattern (Figure 5A),

indicating that they do not contain viral DNA genome and are

thus non-infectious. The existence of non-infectious enveloped

particles (NIEPs) in this preparation indicates that the inhibition of

SCP expression does not prevent capsid assembly and envelop-

ment. Furthermore, 3D reconstruction at 20 Å resolution of these

SCP-deficient particles shows a structure with no visible tegument

densities bound to the capsid (Figure 5C). In contrast, reconstruc-

tion of wild-type virion at the same resolution clearly shows

tegument densities interacting with the underlying capsid

(Figure 5B). This result clearly demonstrates that SCP is required

for the functional binding of pp150 to capsid. Considering that

pp150 may function in stabilizing the dsDNA-filled C capsid

[17,18], we reason that, in the absence of SCP, pp150 can no

longer form the stabilizing network of density surrounding the

capsid, thus preventing the formation of DNA-containing virion

(Fig. 5A). However, we cannot rule out the possibility that the lack

of DNA in the SCP-deficient particle and failure to bind pp150

are two unrelated, downstream consequences of lacking SCP. It is

also noteworthy that, although the absence of SCP prevents pp150

from binding to the capsid with icosahedral symmetry, it does not

necessarily eliminate binding of pp150 to the capsid triplex in a

non-icosahedrally ordered fashion, which could have also

produced a cryoEM map without visible pp150 densities.

Discussion

As mentioned above, among all human herpesviruses, HCMV

has the largest dsDNA genome contained within a capsid of

similar size. As a result, the distance between adjacent dsDNA

duplex in HCMV capsid is 23 Å [26], as compared to 26 Å and

25 Å for those in alphaherpesvirus [14] and gammaherpesvirus

[27], respectively. It is conceivable that the electrostatic repulsion

of the more densely packed genome in HCMV would exert higher

Figure 3. SCP mediates pp150 binding to the capsid. (A–C) Density slices showing that pp150 tegument protein binds to the capsid triplex
with its LHB (lower helix bundle). The binding sites on the triplex are labeled with ‘‘*’’. The LHB of one molecule in the group-of-three tegument
densities also has contact with MCP. It is labeled with ‘‘#’’. (D) A close-up, top view of the region demarcated by the dashed square in the inset,
revealing the interactions between pp150 (cyan), SCP (light blue) and MCPud (yellow). (E) Same as in (D) but viewed from the direction indicated by
the eye symbol in (D). Arrow in both (D) and (E) points to the a-helix in pp150 UHB (upper helix bundle) that interacts with SCP.
doi:10.1371/journal.ppat.1003525.g003
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pressure to the capsid shell, possibly rendering the DNA-

containing capsid (i.e., ‘‘C capsid’’) unstable. Indeed, throughout

our cryoEM imaging of the HCMV capsid preparation, not a

single intact DNA-containing capsid was observed among the over

30,000 particle images we examined (Figure 1A), in stark contrast

to the situations of alphaherpesvirus [25] and gammaherpesvirus

[27] where C capsids can be readily purified from the nuclei of

infected cells. Upon tegumentation, including the addition of

pp150, DNA-containing nucleocapsids are stabilized and thus are

routinely found in HCMV virion preparations (Figure 1B).

Of the capsid structural proteins, SCP is the least conserved

across different herpesviruses in size, amino acid sequence, and

function. For example, the HSV-1 SCP has a molecular weight of

12 kDa and is dispensable for virus growth in cell culture [28].

The 16 kDa KSHV SCP is the largest and is essential for capsid

assembly [29,30]. The 8 kDa HCMV SCP is the smallest and is

essential for virus growth [12], but its functional role is a long-

standing mystery. Here, by using SCP-targeting ribozyme and

cryoEM reconstruction, we provide the first evidence that SCP is

required to stabilize DNA-containing HCMV capsids, and that it

may do so by directly or indirectly mediating pp150 binding to the

capsid. To our best knowledge, this role is the only function of

HCMV SCP identified to date. This result, when considered

together with the absence of a pp150 homolog in both alpha- and

gammaherpesviruses, indicates that SCP of herpesviruses has

diverged in function though its location in different herpesviruses is

conserved. Perhaps, SCP has a yet unknown, non-essential

function conserved across all herpesviruses, but in HCMV, it is

re-utilized by pp150 as a partner to stabilize DNA-containing

capsid, an essential process for HCMV infection.

Taken into consideration the relatively small size and essential

function, HCMV SCP clearly provides a potential target for

intervention against HCMV infection. One possible way is to

design SCP-mimicking peptides that act as competitive inhibitors

of pp150 binding and functioning, thus preventing infectious viral

particle formation.

Materials and Methods

HCMV virion preparation
Human fibroblast MRC-5 cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM) plus 10% fetal bovine serum

(FBS). 20 flasks (175 cm2) of cells were grown to 90% confluence

and infected with HCMV strain AD169 at a multiplicity of

infection (MOI) of 0.1–1. At 6 days post infection, when half of the

cells were lysed, the media were collected and centrifuged at 10,

000 g for 15 min to remove cell debris. The clarified supernatant

was collected and centrifuged at 80, 000 g for 1 hr to pellet

HCMV virions. Pellets were resuspended in a total volume of 2 ml

phosphate buffered saline (PBS, pH 7.4) and loaded on a 15%–

50% (w/v) sucrose density gradient and sedimented at 100,000 g

for 1 hr. Usually we observe three light-scattering bands – top,

middle and bottom – containing mainly NIEPs, virions and dense

bodies, respectively. The middle band was collected and diluted in

PBS to a total volume of 13 ml. Virion particles were pelleted

again at 80,000 g for 1 hr and resuspended in 30 ml PBS for

cryoEM sample preparation.

HCMV capsid preparation
To obtain HCMV capsids, we infected 90% confluent MRC-5

cells at MOI = 5. At 3 days post infection, when cytopathic effect

reached 100%, cells were collected, pelleted by low-speed

centrifuge at 1000 g for 10 min, and washed with PBS. The

pellet was then resuspended in PBS containing 0.5% NP-40 (w/v)

and incubated on ice for 5 min. The mixture was centrifuged at

1000 g for 10 min to pellet cell nuclei. To break nuclear

membrane, the pellet was then resuspended in PBS, subjected to

three cycles of freezing (280uC, 10 min), thawing (37uC, 3 min)

and vortexing, passed through a 23 gauge hypodermic needle for

20 times, and incubated in PBS with 2% NP-40 overnight at 4uC.

The lysate was centrifuged at 1500 g for 5 min to remove large

debris and then sedimented through a 30% sucrose cushion at

100,000 g for 1 hr. The pellet was resuspended in PBS containing

2% NP-40, diluted to a final volume of 13 ml, and centrifuged

again at 70,000 g for 1 hr. The pelleted capsids were resuspended

in 30 ml PBS and used for cryoEM sample preparation.

Construction and in vitro characterization of SCP-
targeting and control ribozymes

Plasmids V482, pFL117 and pC102 contain the DNA

sequences coding for variant V482 RNA, M1 RNA and mutant

C102, respectively, driven by the T7 RNA polymerase promoter

[19,24,31]. Mutant ribozyme C102 contains several point

mutations at the catalytic domain (P4 helix). The DNA sequence

coding for ribozyme TK1, which targets the mRNA of thymi-

dine kinase of HSV-1, has been described [31]. The DNA

sequence encoding ribozyme SCP1 was constructed by PCR

with V482 as the template. The 59 and 39 PCR primers

were AF25 (59-GGAATTCTAATACGACTCACTATAG-39)

and M1SCP1 (59-CCCGCTCGAGAAAAAATGGTGCTGAG-

CAAGTATACGCGTGTGGAATTGTG-39), respectively. The

DNA sequence coding for ribozyme SCP2 was constructed

by introducing into the DNA sequence coding ribozyme

SCP1 with the point mutations (A347C348RC347U348 and

C353C354C355G356RG353G354A355U356) that were found in

C102 and were shown to abolish the ribozyme activity

[19,24,31]. The procedures for in vitro cleavage and binding

analyses were carried out as described previously [24].

Construction of ribozyme-expressing cells
The DNA sequences encoding the ribozymes were subcloned

into retroviral vector LXSN and placed under the control of the

U6 RNA promoter. The retroviral DNA containing the ribozyme

sequence was transfected into human U373MG cells, using

protocols modified from Miller and Rosman [32]. After 48–72 h

Figure 4. Ribozyme-mediated inhibition of HCMV SCP expression and viral growth. (A) Northern analysis of HCMV mRNAs in infected
cells. RNA samples were isolated from parental U373MG cells (lanes 1, 2, 5 and 6) or M1GS-expressing cells (lanes 3, 4, 7 and 8) that were either mock-
infected (lanes 1 and 5) or infected with HCMV (MOI = 0.5–1; all other lanes) for 48 h, separated by denaturing gels, and transferred to membranes.
Membranes were hybridized with radiolabled probes containing the sequence of HCMV SCP mRNA (lanes 1–4) or IE 5 kb RNA (lanes 5–8). SCP1,
ribozyme targeting HCMV SCP mRNA for degradation; SCP2, control ribozyme that binds but cannot degrade HCMV SCP mRNA. (B) Growth of HCMV
in U373MG cells and cell lines expressing M1GS RNA. Cells (56105) were infected with HCMV at MOI = 3. Values are means derived from triplicate
experiments. Standard deviation is indicated by error bars. TK1, control ribozyme targeting HSV-1 thymidine kinase mRNA. (C) Western analysis of
HCMV SCP and MCP proteins. Protein samples were either isolated from the parental U373MG cells or ribozyme-expressing cells (Infected cells, lanes
9–12) or from viral particle preparations purified from these cells (HCMV particles, lanes 13–15), separated in SDS-polyacrylamide gels, transferred to
membranes, and reacted with antibodies against HCMV SCP (anti-SCP) and MCP (anti-MCP) [24].
doi:10.1371/journal.ppat.1003525.g004
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of transfection, cells were incubated in culture medium containing

600 mg/ml neomycin. Cells were subsequently selected in the

presence of neomycin for 2 weeks, and neomycin-resistant cells

were cloned [24].

Northern and Western analyses of viral gene expression
Cells (n = 16106) were either mock-infected or infected with

HCMV at an MOI of 0.05–5 in 1.5 ml DMEM supplemented

with 1% FBS. After 2 h incubation, the inoculum was replaced

with DMEM supplemented with 10% (v/v) FBS. The infected

cells were incubated for 4–72 h and total cellular RNA or protein

was isolated from the cells as described previously [24]. Protein

samples were also prepared from HCMV particles purified from

the infected cells. The RNA fractions were separated in

formaldehyde-containing 1% agarose gels, transferred to a

nitrocellulose membrane, hybridized with 32P-radiolabeled RNA

probes containing the HCMV sequences, and analyzed with a

STORM840 PhosphorImager. The RNA probes used to detect

M1GS RNA, HCMV IE 5-kb RNA transcript, and SCP mRNA

were synthesized from plasmids pFL117, Cig27, and pSCP,

respectively [24,33]. RNA probes were in vitro synthesized and

radiolabeled using an in vitro RNA synthesis kit (Promega, Inc,

Madison, IN).

In Western analysis experiments, protein samples were sepa-

rated on SDS/7.5% polyacrylamide gels cross-linked with

N,N0methylenebisacylamide, and then transferred electrically to

nitrocellulose membranes. We stained the membranes using the

antibodies against HCMV proteins in the presence of a

chemiluminescent substrate (GE Healthcare), and analyzed the

stained membranes with a STORM840 phosphorimager [24].

Quantitation was performed in the linear range of RNA and

protein detection.

Assays for inhibition of viral replication
Cells (n = 16105) were infected with HCMV at MOI values

specified in the Results section. The cells and medium were

harvested at 1-day intervals throughout the 7 days after infection.

Viral stocks were prepared by adding an equal volume of 10%

(v/v) skim milk, followed by sonication. The titers of the viral

stocks were determined by infecting 16105 human foreskin

fibroblasts and counting the number of plaques 10–14 days after

infection [24]. The values obtained were averages from triplicate

experiments.

Purification of SCP-deficient viral particles
Ribozyme SCP1-expressing U373MG cells were infected with

wild type HCMV at MOI = 1–5. After 2 hr incubation, the

medium was replaced with fresh DMEM plus 10% FBS to remove

any free, extracellular viral particles. At 4 days post infection, viral

particles were purified using the same procedure as described

above for the wild type HCMV virion. Due to the significantly

lower viral yield in SCP1-expressing cells, no clear light-scattering

bands were visible in the density gradient. We therefore collected

the fraction of the gradient corresponding to the range encom-

passing the three bands visible in the wild type virion purification.

This fraction was diluted in PBS and centrifuged at 80,000 g for

1 hr to pellet SCP-deficient viral particles. The pellet was then

resuspended in 10 ml PBS, verified by negative staining electron

microscopy to contain viral particles, and used for cryoEM sample

preparation. The remainder gradient was also collected in

fractions of 3 ml each. Each fraction was diluted with PBS,

pelleted, resuspended in 10 ml PBS, and checked individually with

negative staining electron microscopy to confirm the absence of

viral particles.

CryoEM imaging and data processing
An aliquot of 2.5 ml purified sample was applied to a 300 mesh

Quantifoil R1.2/1.3 grid, blotted with filter paper, and plunge-

frozen in liquid ethane. CryoEM images were collected at liquid

nitrogen temperature in an FEI Titan Krios cryo electron

microscope operated at 300 kV with parallel illumination. The

wild type HCMV virion and SCP-deficient HCMV particle

images were recorded on a Gatan 4k64k charge-coupled

device (CCD) camera at an effective magnification of 97, 4986
(nominal magnification 59, 0006 on film plane), corresponding

to an effective pixel size of 1.538 Å/pixel at the specimen

level. The HCMV capsid images were recorded on Kodak

SO-163 films at a magnification of 59,0006 and micrographs

were digitized with Nikon Coolscan 9000ED scanner at a step size

of 6.35 mm/pixel, giving a pixel size of 1.076 Å/pixel on

specimen. In all cases, the electron dosage used in cryoEM

imaging was ,25e2/Å2. The defocus values were determined

with CTFFIND [34] and are in the range of 0.5 mm to 3 mm

underfocus.

Data processing and 3D reconstructions were accomplished

with IMIRS [35,36]. Orientation and center parameters of each

particle were refined against projections computed from 3D

reconstructions in an iterative procedure until no further

improvement in the reconstruction was obtained. Particles were

selected based on the phase residues between the images and the

projections. 3D reconstruction was obtained using the symmetry-

adapted spherical harmonics method [36]. The final capsid and

virion reconstructions were obtained by averaging 20,502 particles

(selected from 37,460 capsid images) and 11,863 particles (selected

from 56,297 virion images), respectively.

Visualization and averaging of density maps were carried out

with UCSF Chimera [37]. Density regions to be averaged were

segmented out as density cubes of similar size. These density cubes

were then first manually aligned and subsequently computation-

ally aligned by the ‘‘fit in map’’ function of Chimera. Averaged

density was produced by executing the ‘‘vop add’’ command on

the above aligned density cubes.

Secondary structure prediction of pp150 was performed with

PSIPRED using the Protein Structure Prediction Server [38].

Data deposition
The cryoEM density maps of the capsid, the virion, and the

SCP-deficient particles have been deposited in the Electron

Figure 5. Confirmation of the role of SCP by structural comparison of SCP-deficient and wild-type viral particles. (A) Representative
cryoEM images of SCP-deficient viral particles showing enveloped particles without the dsDNA genome. (B, C) Radially colored surface
representations of 3D reconstructions of wild type (B) and SCP-deficient (C) HCMV viral particles at 20 Å resolution. Lower panels are zoom-in views of
the region containing a triplex, revealing that pp150 is present in the wild-type structure but absent in the SCP-deficient viral particles. (D, E) 15 Å-
thick central slices extracted from reconstructions of wild type (D) and SCP-deficient (E) particles respectively. Concentric shells of density inside the
capsid in (D) are attributable to the viral dsDNA genome, and they are uniformly spaced (23 Å). A ring of scaffold densities are identified in (E), but
there is no DNA density. Small bulge on tip of MCP in (D) corresponds to the density of SCP. There is no such bulge at the corresponding position in
the SCP-deficient reconstruction.
doi:10.1371/journal.ppat.1003525.g005
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Microscopy Data Bank (EMDB) (accession code 5695, 5696 and

5697, respectively).

Supporting Information

Figure S1 FSC plots of HCMV capsid and virion
reconstructions. Based on the FSC = 0.143 criterion, the

resolution for the capsid reconstruction is measured to be 6.0 Å

and that for the virion reconstruction is 8.3 Å.

(TIF)
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