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ABSTRACT 

Formal analyses in biology, ecology and economics typically bypass the intuitive interpretation 

of ‘fit-ness’ as environmental ‘fit’ and hastily equate fitness with the resulting rate of 

reproduction, economic pay-off, etc.. But evolutionary growth also has a direct interpretation 

as environmental ‘fit’, as it can be expressed in terms of Shannon’s mutual information. This 

presents evolutionary change as a communication channel between the population and its 

environment. Optimal growth quantifies the amount of structure in the updated population 

that unequivocally comes from the environment. Turning this finding around, fitness can be 

optimized by searching for non-confusable signals between both. Full channel capacity is 

achieved with specialized types for each environmental state (noiseless channel). Just like 

technological communication channels thrive on source knowledge, fitness can be increased 

with environmental knowledge. This establishes a formal link between evolution in biological 

and social populations, and long-standing engineering efforts in the optimization of 

communication channels. 
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“What do we mean when we say that A communicates with B? We mean that the … acts of A have induced 

a … state in B”1. Evolution can be understood as communication between the environment and the 

evolving population. The environment induces structure in the population through the process of 

evolutionary change. The better the ‘fit’ between the environment and the evolving population, the 

higher the ‘fit-ness’. The result is the growth of the population that exploits this fit. Going back to the 

initial “mathematical theory of natural and artificial selection”2 from 1924, it is this resulting growth factor 

(or its normalized equivalent) that is traditionally taken to represent ‘fitness’ in the mathematical models 

of ecology, social evolution, and economic evolution (rate of reproduction, game pay-off, economic 

returns, etc.)3,4,5. It turns out that evolutionary growth can also directly be equated with one of the most 

fundamental metrics of ‘fit’, which is informational fit. This can be formalized with information theory1,,6,7. 

Information theory is a branch of mathematics that goes back to Shannon’s seminal work6 from 1948. It 

provides formal concepts and metrics to deal with fundamental questions of communication processes, 

such the question about the ultimate limit of data compression (the elimination of redundant data to 

obtain pure information), and the ultimate transmission rate (the channel capacity). Recent studies have 

shown that aspects and parts of the evolutionary process can be expressed in information theoretic 

terms8,9,10,11,12,13,14,15,16,17. Information theory seems to be useful to explore evolutionary dynamics. Existing 

contributions work with partial aspects of evolutionary dynamics (such as natural selection)8,9,16; adopt 

limiting modeling assumptions (such as a diagonal fitness matrix) 13-15; or work with a mix of analytical 

tools and metrics from economic decision theory, matrix algebra, and information theory10,11 that provide 

a picture that is both incomplete and somewhat involved, but at the same time very promising.  The 

following shows how the complete expression of evolutionary fitness can be represented purely in 

information theoretic terms. The result is a decomposition of fitness’ growth factor using information 

metrics. The interpretation turns out to be quite intuitive and provides a natural interpretation of the 

concept of evolutionary ‘fit-ness’ as informational ‘fit’.  
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Results 

Basic multilevel decomposition. 

Following existing conventions, we define fitness’ factor of reproduction as 𝑤 =
𝑢𝑛𝑖𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡+1

𝑢𝑛𝑖𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
, whereas 

the units of the evolving population can represent number of parents and offspring, game bets and payoff 

in $, portfolio investments and returns, etc. The different population types and environmental states are 

represented by random variables with distributions 𝑃(𝐺) and 𝑃(𝐸), respectively. Their interaction can be 

represented by a traditional fitness matrix18, such as the one illustrated in Figure 3b. The updating of the 

population due to evolutionary change in a specific environment is given by the so-called replicator 

equation4,16: 𝑝′(𝑔|𝑒) = 𝑝(𝑔|𝑒)
𝑤(𝑔,𝑒)

𝑊̅(𝑒)
, whereas 𝑝(𝑔|𝑒) refers to the share of type 𝑔 conditioned on the 

environmental state 𝑒; the apostrophe ′ indicates the updated generation after reproduction (a commonly 

used short-hand for the long-hand notation 𝑡 + 1); 𝑤(𝑔, 𝑒) refers to the fitness of a specific type in a 

specific environmental state; and the single overbar represents the average over all types in a specific 

environment: 𝑊̅(𝑒) = ∑ 𝑝(𝑔|𝑒) ∗ 𝑤(𝑔, 𝑒)𝑔 . The long-term average population fitness in space and time, 

𝑊̿, is the weighted geometric mean of the population fitness over all environmental states: 𝑊̿ =

∏ 𝑊̅(𝑒)𝑝(𝑒)
𝑒 .  

As outlined in Methods, we can represent this long-term average fitness as: 

𝑊̿  =  ∏𝑤(𝑔, 𝑒)𝑝
′
 ∗  2−𝐷𝐾𝐿(𝑃′(𝑔,𝑒)‖𝑃(𝑔,𝑒))

𝑔,𝑒

               (1) 

log 𝑊̿  =  𝐸𝑝′[log𝑤(𝑔, 𝑒)]  − 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒))          (2)  

The only difference between both equations is that the logarithm is taken in equation (2). This represents 

growth factors on a logarithmic scale (what is traditionally referred to as Malthusian fitness19,20). The 

logarithms of base 2 gives an intuitive information-theoretic interpretation in bits and represents fitness 

in terms of the number of population doublings at each time step. The structure of the equations is two-

fold and involves some kind of aggregate of type fitness (a product in equation (1), which becomes an 
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expected value in equation (2)), and an information theoretic second term 𝐷𝐾𝐿. 𝐷𝐾𝐿 is the relative 

entropy, or Kullback-Leibler divergence, one of the most fundamental metrics of information theory21. It 

is an unsymmetrical measure of divergence, in this case between the distribution of the original and the 

updated population. In our case, 𝐷𝐾𝐿 quantifies the divergence that occurs during updating. This agrees 

with the interpretation of recent research that shows that 𝐷𝐾𝐿 that it is logarithmically related to the 

variance in fitness, and as such to Fisher’s fundamental theorem of natural selection19 (a traditional way 

to quantify the ‘speed/magnitude’ of evolutionary change during updating)8,9. 

A formal interpretation of 𝐷𝐾𝐿 stems from large deviation theoryError! Bookmark not defined.. 𝐷𝐾𝐿 quantifies the 

probability that a population ends up with an updated population 𝑃′ when originating from an original 

population 𝑃. Imagine an ecosystem with two types of finches (long and short peaked) represented by 

the random variable 𝐺, which are distributed according to 𝑃(𝐺), with 𝑝(𝑔 = 𝑙𝑜𝑛𝑔) = 0.4 and 

𝑝(𝑔 = 𝑠ℎ𝑜𝑟𝑡) = 0.6. The law of large numbers tell us that with many observations the probability of 

observing 40 %  long-peaked finches in this ecosystem is on average close to 1. The probabilistic version 

of the law of large numbers (the so-called asymptotic equipartition property) tells us that with 𝑛 

observations, there are about 2𝑛𝐻(𝐺) such sequences, each with probability 
1

2𝑛𝐻(𝐺), whereas 𝐻 is 

Shannon’s absolute entropy, a metric that quantifies the uncertainty of the distribution6. What is the 

probability that we would observe (for example) 20 % of long-peaked and 80 % of short-peaked finches? 

This can also occur, even so it is exponentially unlikely (since such sequences are outside of the typical 

set). It would however be very likely if the real distribution were 𝑃′(𝐺), with 𝑝′(𝑔 = 𝑙𝑜𝑛𝑔) = 0.2 and 

𝑝′(𝑔 = 𝑠ℎ𝑜𝑟𝑡) = 0.8. The probability that such largely deviated observations occur therefore depends 

on the distance between both distributions, which is quantified by the Kullback-Leibler relative entropy. 

Sanov’s theorem22 tells us that this occurs on average 2𝑛𝐷𝐾𝐿(𝑃′(𝑔)‖𝑃(𝑔)) number of times, each with 

probability 2−𝑛𝐷𝐾𝐿(𝑃′(𝑔)‖𝑃(𝑔)), whereas 𝑃 is the true distribution, while 𝑃′ is the observed distributionError! 

Bookmark not defined.. 
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Note that the setup of both equations is recursive, as the same decomposition that is applied to the 

average higher population level fitness on the left-hand side 𝑊, can be applied to the lower level fitness 

of specific types on the right hand side 𝑤(𝑔, 𝑒). This would imply to decompose the fitness of each specific 

type into more fine-grained subtypes on a lower taxonomic level. In this case the chain rule for relative 

entropyError! Bookmark not defined. sums the conditional 𝐷𝐾𝐿 terms of each level to the relative entropy on the 

lowest registered level of fine-graining. Also note that the average logarithmic population fitness can be 

completely decomposed into relative entropy 𝐷𝐾𝐿 if the weighted geometric mean fitness of the updated 

types is equal to 1: ∏ 𝑤(𝑔, 𝑒)𝑝
′(𝑔,𝑒)

𝑔,𝑒 = 1. 

 

A generalization of Kelly’s result from 1956. 
Equation (2) is a generalization of Kelly23 interpretation of information rate from 1956. Kelly’s criteria 

criteria shows the long-term superiority of bet-hedging strategies (also known as stochastic switching) 

and has become an important building block in portfolio theory, evolutionary finance and ecological 

thinking 10,11,13-15,24,25,26,27,28,29. However, its setup is restricted to a diagonal fitness matrix. Only the fittest 

type survives in each environment, growing with diagonal fitness values 𝑊.
𝑑 . From the descriptive 

approach of the previous equations, this implies that only one type exists after updating 

(𝑝′(𝑔 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡, 𝑒) = 1), and equation (2) simplifies Kelly’s result30:  

log 𝑊̿ = 𝐸𝑒[log 𝑊.
𝑑 ] − 𝐻(𝑒, 𝑔) = 𝐸𝑒[log𝑤] − 𝐻(𝐸) − 𝐷𝐾𝐿(𝑃(𝑒)||𝑃(𝑔))          (3)  

𝐻(𝑒, 𝑔) is the cross-entropy between the environment and the population. It consists of the absolute 

entropy of the environment 𝐻(𝑒), and the divergence between the distribution of the environment and 

the original population before updating. Kelly used this result to show that in his setup with a diagonal 

fitness matrix, the optimal growth factor can be achieved through a proportional bet-hedging strategy 

that assures that the distribution of the population exactly matches the environmental distribution 

𝑃(𝐸) = 𝑃(𝐺). This is the only case for which the non-negative metric 𝐷𝐾𝐿(𝑃(𝑒)||𝑃(𝑔)) becomes zero. 
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This way, the achievable fitness in equation (3) is only compromised by the inherent uncertainty of the 

environment 𝐻(𝐸), which is also a non-negative metric. If the entire dynamic of the future environment 

is known, the highest achievable growth rate consists of the expected value of the diagonal fitness values 

per environment log 𝑊̿ = 𝐸𝑒[log 𝑊.
𝑑 ].30  

 

Optimal Fitness. 
Equations (1) and (2) are generalizations of Kelly’s result, because they do not require a diagonal fitness 

matrix. However, they are merely descriptive of the updating process and, and unlike Kelly’s result, not 

say anything normative about the optimality of updating. We now ask about the optimal population 

fitness in mixed fitness landscapes with more than one non-fatal type per environmental state (thereafter 

referred to as mixed fitness landscapes, in contrast to Kelly’s diagonal fitness matrix setup). It turns out 

that optimality is achieved in mixed fitness landscapes if the joint average population before updating is 

equal to the independent state between updated population and environment, 𝑝(𝑔, 𝑒) = 𝑝′(𝑔) ∗ 𝑝(𝑒). 

In this case, 𝐷𝐾𝐿 from equations (1) and (2) turns into Shannon’s much celebrated metric of mutual 

information1,6,7 (see Methods). 

log 𝑊̿  =  𝐸𝑝′[log𝑤(𝑔, 𝑒)]  −  𝐼(𝐺′; 𝐸)          (4)  

The mutual information 𝐼(𝐺′; 𝐸) measures the shared information between the environment and the 

average updated population. It quantifies the amount of structure in the updated population 𝐺′ that is 

assured to come from the environment 𝐸. This is because of the nature of joint typicality of both sets (see 

Fig. 1). The likelihood of finding a non-confusable, non-overlapping input signal from the environment in 

the updated population is the conditional uncertainty of the updated population given the environment, 

divided by the uncertainty of the population: 
2𝑛𝐻(𝐺′|𝐸)

2𝑛𝐻(𝐺′)
= 2−𝑛𝐼(𝐺′;𝐸) (Fig. 1). Because mutual information is 

symmetric, one can equivalently say that the probability that a randomly chosen environmental signal is 

jointly typical with the updated future generation of the evolving population is about 
2𝑛𝐻(𝐸|𝐺′)

2𝑛𝐻(𝐸) = 2−𝑛𝐼(𝐺′;𝐸) 
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(the uncertainty of the environment, given an updated population type, divided by the uncertainty of the 

environment). The chance of capturing such signal is small, but might be found through purely blind (neo-

Darwinian) evolution through random mutations.  

The outline described in Methods shows that it is always true that growth optimization implies the 

condition 𝐷𝐾𝐿 = 𝐼. However, the revers requires that the types and environmental states are defined in 

a way that makes them linearly independent. This seems to be a reasonable demand, as redundant types 

or environmental states should be merged.  

This shows that optimal growth is achieved by assuring that the structure in the updated population 𝐺′ 

stems from unequivocal signals of the environment 𝐸. The setup as a communication channel in Fig.1 also 

 

Figure 1 | Channel after t uses. The left presents the typical set of the environmental states 𝐸 and the 

right the typical set of the average updated future generation 𝐺′, both over a large number of periods 𝑡. 

The transmission over a noisy channel induces uncertainty to the identification of each environmental 

state during reception by the population. For example, the uncertainty that the environmental state 𝑒1 is 

sent over the channel is the conditional entropy of 𝐺′ given that 𝑒1 was sent: 𝐻(𝐺′𝑡|𝑒1
𝑡). According to 

the asymptotic equipartition property, there are approximately 2
𝐻(𝐺′𝑡|𝑒1

𝑡)
 of those. The total number of 

typical 𝐺′ sequences is ≈ 2𝑡𝐻(𝐺′). Restricting ourselves to the subset of channel input such that the 

corresponding typical output sets do not overlap, we can bound the number of non-confusable inputs by 

dividing the size of the typical output set by the size of each typical-output-given-typical-input set: 

2𝑡𝐻(𝐺′|𝐸). The result shows that the total number of disjoint and non-confusable sets is less than or equal 

to: 2𝑡(𝐻(𝐺′)−𝐻(𝐺′|𝐸)) = 2𝑡 𝐼(𝐺′;𝐸). For a detailed proof see any standard textbook on information theory, 

such as references 1 or 7.  
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gives a natural assignment of which side is the environment and which side the affected population. The 

environment is the sender, and the population the receiver. As in any communication process, roles may 

be switched (which will switch the conditionality of entropies in our interpretation). 

 

The more you know, the more you can grow. 
A complementary interpretation of the foregoing equations can be obtained by asking how the 

information theoretic decomposition changes if we obtain additional side information. The two possible 

sources of additional side information are observations of the past that influence current and future 

dynamics (‘memory’) and observations of third events that correlate with current and future dynamics 

(‘cues’). This introduces a new conditioning variable 𝐶. Conditioned on the realization of this side 

information, the joined distributions can change and we end up with fine-tuned strategies for each 

conditioned case. It is a fundamental theorem in information theory that conditioning reduces entropy1. 

In Kelly’s setup it reduces environmental uncertainty through 𝐻(𝐸) ≥ 𝐻(𝐸|𝐶), and therefore increases 

the achievable fitness in equation (3). The increase is equal to the mutual information between the cue 

and the environment: 𝐻(𝐸) − 𝐻(𝐸|𝐶) = 𝐼(𝐸; 𝐶) (which has been termed the ‘fitness value of 

information’ 11,15,23). This can also be visually represented as the overlapping intersection in the form of 

the Venn diagram shown in Fig. 2a (also called I-diagrams1,7,31,32). 

Our generalized case of Kelly’s result reveals an important third variable in this interaction: the average 

updated population 𝐺′. The importance of this variable arises for mixed fitness landscapes. As shown in 

Fig. 2, this is not obvious in Kelly’s special case, because in this case 𝐻(𝐸) = 𝐻(𝐺′). However, in the case 

of optimal growth in mixed fitness landscapes it turns out that the three variables form a Markov chain 

𝐸 ↔ 𝐺′ ↔ 𝐶, whereas the cue and the environment are conditionally independent given the average 

updated population (see Fig. 2b). In information theoretic terms, this means that there is no mutual 
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information between the cue and the environment given the updated population: 𝐼(𝐸; 𝐶  |𝐺′) = 0. In 

other words, optimal growth implies that all structure is absorbed by the updating during optimal growth.  

This leads to a conditional version of equation (4):  

log 𝑊̿|𝑐  =  𝐸𝑝′(𝑔,𝑒 |𝑐)[log𝑤(𝑔, 𝑒 |𝑐)]  −  𝐼(𝐺′; 𝐸  |𝐶)          (5)  

The fitness value of the cue is obtained by the difference between the fitness without cue (equation (4)) 

and with cue (equation (5)). The expected value term cancels and we obtain the three-way mutual 

information between all three variables: log 𝑊̿|𝑐 − log 𝑊̿ = − 𝐼(𝐺′; 𝐸  |𝐶) + 𝐼(𝐺′; 𝐸) = 𝐼(𝐺′; 𝐸; 𝐶). It is 

important to notice that three-way information can in principle be negative1,7,31,32. However, in our case 

Markovity assures that it is positive, since 𝐼(𝐺′; 𝐸; 𝐶) = 𝐼(𝐸; 𝐶) and two-way mutual information is 

always positive (this is visualized by Fig. 2 and can formally be shown with the data processing 

inequality1,7). Therefore, any cue must increase fitness on average. By how much? By the mutual 

information between the environment, the average updated population, and the cue. This three-way 

mutual information quantifies the generalized fitness value of information. 
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The complete decomposition with constraints. 
Recent research has proposed to extend Kelly’s result for diagonal fitness matrices to more general mixed 

fitness landscapes by introducing a “hypothetical weighting matrix”10,11. This weighting matrix represents 

any non-fatal fitness as a combination of optimized fitness values from a hypothetical diagonal fitness 

matrix that only contains one optimal type per environment while all others are fatal: 𝑊ℎ𝑦𝑝
𝑑 . In other 

words, it assumes a hypothetical world with one perfectly specialized type per environment and proposes 

that any existing type is a combination of those pure states. This way, any mixed fitness landscape can be 

represented as a weighted mix of a purely diagonal matrix. This proposes to rewrite the long-term growth 

a)     b)  

Figure 2 | Venn diagram / I-diagram representation of mutual information. Mutual information is 

defined as any intersection of the represented entropies. (a) In the two-variable case, it can be calculated 

as 𝐻(𝐸) − 𝐻(𝐸|𝐶) = 𝐼(𝐸; 𝐶). For example, the environmental random variable 𝐸 could have the 

realizations sun and rain, while the side information 𝐶 consists of past patterns of sun and rain, or of 

correlated cues like wind. 𝐻(𝐸) is the uncertainty of the random variable sun/rain, while 𝐻(𝐸|𝐶) could 

be the uncertainty of sun/rain conditioned on the presence and absence of wind. The mutual information 

is the difference between both uncertainties. It is always positive in the two-variable case, as conditioning 

reduces uncertainty.  (b) A similar logic holds for the three variable case. One way to calculate the joint 

intersection of all three variables would be: 𝐼(𝐺′; 𝐸; 𝐶) = 𝐻(𝐸) − 𝐻(𝐸|𝐺′) −  𝐼(𝐺′; 𝐸  |𝐶). In our case, 

the three involved variables form a Markov chain 𝐸 ↔ 𝐺′ ↔ 𝐶. This implies that 𝐸 and 𝐶 do not have 

any mutual information outside of 𝐺′ (𝐺′ absorbs all common structure through optimal growth), or 

𝐼(𝐸; 𝐶  |𝐺′) = 0. This can be shown by the reformulation 𝐼(𝐸; 𝐶  |𝐺′) = 𝐻(𝐸|𝐺′) − 𝐻(𝐸  |𝐶, 𝐺′) (which 

holds in general). In our case 𝐻(𝐸|𝐺′) = 𝐻(𝐸  |𝐶, 𝐺′), since the addition of some cue does not affect the 

distribution of environmental states (the mere observation of wind does not change an existing sun/rain 

pattern). 
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rate of type 𝑔𝑖 as: ∏ {𝑤(𝑔𝑖 , 𝑒)}
𝑝(𝑒)

𝑒 = ∏ {∑ 𝑝(𝑒|𝑚𝑖) ∗ 𝑊(𝑒)ℎ𝑦𝑝
𝑑

𝑒 }
𝑝(𝑒)

𝑒 , whereas the “hypothetical 

weighting matrix” 𝑃(𝐸|𝑀) is a stochastic matrix that weighs each type over all different environmental 

states in such a way that achieves this theorized equivalence.  

Using this approach, Donaldson‐Matasci et al.10,11 have found that proportional bet-hedging also works 

for mixed fitness landscapes. However, the proportionality is not in one-to-one correspondence with the 

environmental distribution (but has to adjust for the distortion of a mixed fitness landscape). They also 

found that it only works within a certain range of population constellation. They termed this region the 

“region of bet-hedging”. Outside this region the achievable optimal growth rate is diminished by the 

constraints of the existing mixed fitness landscape.  

This important insight can naturally be incorporated into our generalized framework. The arising 

constraints can be expressed purely in information theoretic terms (see Methods).  

log 𝑊̿  = 𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] − 𝐻(𝐸|𝐺′) − 𝐷𝐾𝐿(𝑃

′(𝑒|𝑔)‖𝑃(𝑒|𝑚)) − 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒))         (6)  

It is important to notice that absolute and relative entropies 𝐻 and 𝐷𝐾𝐿 are non-negative metrics. This 

reconfirms that the highest achievable fitness of all optimal strategies is only achieved with a fitness 

matrix that is equivalent to Kelly’s original diagonal matrix with one surviving type per environmental 

state. Equation (6) shows the three factors that can reduce this overall optimum. One is the remaining 

uncertainty of the environment after average updating 𝐻(𝐸|𝐺′). The second one is a divergence between 

the hypothetical weighting matrix 𝑃(𝐸|𝑀) that intermediates between the real- and a theorized purely 

diagonal fitness matrix. It turns out that inside the region of bet-hedging the hypothesized weighting 

matrix 𝑃(𝐸|𝑀) is equal to the stochastic matrix 𝑃′(𝐸|𝐺), and therefore 𝐷𝐾𝐿(𝑃
′(𝑒|𝑔)‖𝑃(𝑒|𝑚)) is equal 

to zero inside the region of bet-hedging. The last constrain remains the force of evolutionary updating 

from our previous equations. We know that the local optima is achieved if this last term is equal to 

𝐼(𝐺′; 𝐸). This allows us to create a coherent picture that shows the relation between all of the previous 

cases. 
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Bringing it all together: the big picture. 
Table 1 provides a comparative summary of the previously treated cases, plus two additional cases.  

Kelly’s result is the special case of a noiseless communication channel between the population and the 

environment. With only one specialized type per environmental state, there is no cross-over noise in the 

communication channel between the environment and the updating population (𝐻(𝐸) = 𝐻(𝐺′), see Fig 

2b). With a proportional bet-hedging strategy, the last term of our decomposition reduces to the 

environmental uncertainty 𝐻(𝐸) and the divergence 𝐷𝐾𝐿(𝑃(𝑒)||𝑃(𝑔)), which Kelly proposed to set to 

zero through proportional bet-hedging30. From an information theoretic perspective, this is the maximal 

value of the mutual information that appears in equation (4): 𝐻(𝐸) ≥ 𝐼(𝐺′; 𝐸). Shannon6 termed the 

maximum of the mutual information 𝐼 the “channel capacity”, the upper bound on the rate at which 

information can be reliably transmitted over a communications channel. With this finding he had set off 

a long search for coding schemes to achieve this channel capacity. While it is usually extremely difficult to 

calculate the channel capacity in practice through numerical algorithms or nonlinear optimization 

methods, it is in our case revealed by Kelly’s criteria with a purely diagonal fitness matrix with 𝐻(𝐸) =

𝐼(𝐺′; 𝐸).  

With more than one non-fatal type fitness per environmental state, the shape of this mixed fitness 

landscape introduces constraints that manifest themselves as a noisy communication channel between 

the environment and the updated population, 𝐻(𝐸|𝐺′), and in the divergence from this specialized 

diagonal fitness matrix, 𝐷𝐾𝐿(𝑃
′(𝑒|𝑔)‖𝑃(𝑒|𝑚)). Inside the region of bet-hedging it is possible to adjust 

the bet-hedging strategy according to the distortion of the mixed fitness landscape, setting the latter 

constraint to zero. Table 1 reveals that there are two ways to think about the remaining terms. One follows 

Fig. 1 and is represented in equation (4). The other one decomposes the mutual information between 

the updated population and the environment and cancels out the conditional entropy 𝐻(𝐸|𝐺′). This 
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leaves us with the hypothetical diagonal fitness matrix 𝑊ℎ𝑦𝑝
𝑑 , minus the uncertainty of the environment, 

𝐻(𝐸), which is equivalent to the population fitness achieved in Kelly’s case33. 

Two newly introduced cases in Table 1 refer to cases where all bets are placed on one type. In the first 

case this is the result of optimization outside the bet-hedging region. In this case10,11 the best choice is to 

place all weights on types for which optimization suggests 𝑝(𝑔) ≥ 1, and no bets on the ones with 𝑝(𝑔) ≤

1 . The achievement of full channel capacity is compromised by both the mismatch with the optimal 

diagonal fitness matrix and the uncertainty about the environment 𝐻(𝐸). The second new case in Table 

1 shows that the latter goes to zero with a perfect cue that completely describes the dynamic of the 

unfolding environment. A perfect cue absorbs all environmental uncertainty: 𝐻(𝐸) = 𝐻(𝐶). In terms of 

a Venn diagram representation, this would imply a picture similar to the complete overlap shown in Fig. 

2a, with the difference that 𝐶 and 𝐺′ are switched. From Markovity it follows that in this case the 

uncertainty of the updated population cannot be smaller than the entropy of the cue, as it is completely 

absorbed through updating34: 𝐻(𝐺′) ≥ 𝐻(𝐸) = 𝐻(𝐶).  

The last case in Table 1 is the case shown we started with. It is a descriptive decomposition of evolutionary 

change that can be used to describe any kind of evolutionary dynamic. 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)) is an indicator 

for the force of evolutionary change on a given level of analysis. 
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Empirical proof of concept. 
We now calculate some of the above metrics for an empirical case to obtain a feeling for the orders of 

magnitude of each component and to show how the obtained results can be used normatively to optimize 

fitness. While the logic of bet-hedging strategies is a common phenomenon of biological evolution and 

has been identified in the evolution of bacteria28,35, plants28,36, insects37, crustaceans38, and 

amphibians39,40, a solid interpretation of bet-hedging requires the identification of the involved feedback 

loops that assure a stable share of the evolving population. In biological evolution, the identification of 

such mechanism for the continuous redistribution of resources is often tricky to find and not 

generalizable. On the contrary, the social evolution of populations made of conscious entities provides for 

a large variety of readily identifiable redistribution mechanisms to achieve bet-hedging. For example, 

redistribution mechanisms among evolving economic sectors include taxes and government 

Table 1 | Bringing it all together: the complete decomposition and its special cases.  

 
Long-term 
population 

fitness 
= 

time avg. of 
corresponding 

diagonal 
fitness 

landscape 

environmental 
uncertainty 
given avg. 
updating  

divergence between the 
environment given the 
mixing matrix and the 

environment given avg. 
updating   

divergence between the 
avg. original and avg. 
updated population   

equ. 
(𝟔) 

log 𝑊̿ = 𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] −𝐻(𝐸|𝐺′) − 𝐷𝐾𝐿(𝑃

′(𝑒|𝑔)‖𝑃(𝑒|𝑚)) − 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)) 

equ. 
(𝟑) 

Kelly’s case  𝐸𝑒[log 𝑊.
𝑑 ] 0 0 

−𝐻(𝐸)

− 𝐷𝐾𝐿(𝑃(𝑒)||𝑃(𝑔)) 

equ. 
(𝟒) 

bet-hedging 
inside region 

of bet-
hedging 

 

𝐸𝑝′(𝑔,𝑒)[log𝑤(𝑔, 𝑒)] 0 − 𝐼(𝐺′; 𝐸) 

𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] −H(E|G′) 0 −𝐻(𝐸) + H(E|G′) 

optimal outside bet-
hedging region 

 𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] −𝐻(𝐸) − 𝐷𝐾𝐿(𝑃

′(𝑒|𝑔)‖𝑃(𝑒|𝑚)) 0 

optimal with perfect 
cue  

 𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] 0 − 𝐷𝐾𝐿(𝑃

′(𝑒|𝑔)‖𝑃(𝑒|𝑚)) 0 

equ. 
(𝟐) 

descriptive 
aggregate 

 
𝐸𝑝′(𝑔,𝑒)[log𝑤(𝑔, 𝑒)] 

recursively decomposable multilevel term 
− 𝐷𝐾𝐿(𝑃

′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)) 
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expenditures, insurances, private sector cross-subsidies, trade and capital restrictions, and related kinds 

of regulation and incentives. For reasons of straightforward interpretability, and data availability, we will 

therefore work with the easily tractable example of the social evolution of the wood and textile sectors in 

the manufacturing and handicrafts population of the Swedish economy from 1800 to 198041. The 

mathematics would of course be analogous if the wood sector would be replaced with an example from 

biology or ecology, such as the share of woodpeckers in an ecological animal population, or types of trees 

in a forest population, etc. (evolving through changing shares, as presented in Fig. 3a). 

Over the period of 180 years, we obtain an empirical population fitness of 20.0698 ≈ 1.04957, or a 

compound annual growth rate of some 4.957 %. The application of the descriptive equations (6) and (2) 

reveal that the average evolutionary force of change through updating, 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)), is 

comparatively small, but incessantly transfers small pieces of valuable information through evolutionary 

change of the population structure. The environmental uncertainty faced by the evolving population is 

much larger. 

We can now optimize fitness by searching for the channel constellation for which each channel output 

can be assigned an unequivocally channel input (through mutual information). This is a well-known 

problem from the engineering of communication channels. In our case, we have seen that this is fulfilled 

if the following independence condition is fulfilled: 𝑝(𝑔, 𝑒) = 𝑝′(𝑔) ∗ 𝑝(𝑒); which implies that the time-

average of relative fitness is equal to 1: 𝐸𝑒 [
𝑤(𝑔,𝑒)

𝑊̅(𝑒)
] = 1 (see Methods). Solving for this condition and 

adjusting the population shares accordingly (Fig.2b) allows us to increase fitness to a compound annual 

growth of 20.07015 ≈ 1.04982. The increase in fitness represents the fitness value of the information 

revealed by the identification of the environmental pattern and its corresponding fitness landscapes. It is 

the information about the environmental patterns that allows us to obtain this increase. 

We now suppose that an observer starts to measure fitness as a function of the previous year’s weather42. 

Figure 3c reveals that this side information allows to increase fitness to 20.07334 ≈ 1.0521. In the case of 
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a perfect cue that would deterministically reveal the environmental state, fitness could even be increased 

to 20.11214 ≈ 1.08083, or a or a compound annual growth rate of 8.083 %, which is almost two thirds 

higher than the empirically detected population fitness. Comparing the constituents of these last two 

cases in Fig. 3c reveals that any attempt to get closer to the unattainable noiseless channel can confront 

a trade-off between environmental uncertainty and constraints due to the mixed fitness landscape. The 

case of perfect information does not count with any environmental uncertainty, but increasingly faces the 

constraints of the mixed fitness landscape.  
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a)   b)  

c) 

equ. (𝟔) 

Log of 

population 

fitness 

= 
noiseless 

channel 

environ. 

uncertainty 
fitness landscape constraint 

evolutionary 

force of change 

equ. (𝟔) 
descriptive  

0.06980 = 1.06694 - 0.99663 - 0.00009 - 0.00042 

equ. (𝟐) 
descriptive  

0.06980 = 0.07022 - 0.00042 

equ. (𝟒) optimal in 
bet-hedging region 

0.07015 = 
0.07069 - 0.00054 

1.06694 - 0.99625 0 - 0.00054 

Given the cue of the previous year’s temperature (outside of bet-hedging region): 

equ. (𝟓) optimal 
outside bet-
hedging region 

log 𝑊̿|𝑐   = 𝐸𝑒[log 𝑊ℎ𝑦𝑝
𝑑 ] −𝐻(𝐸|𝐶) − 𝐸𝑐[𝐷𝐾𝐿(𝑃

′(𝑒|𝑔)‖𝑃(𝑒|𝑚))] 0 

0.07334 = 1.06694 - 0.99066 - 0.00295 0 

optimal with 
perfect cue 

0.11214 = 1.06694 0 - 0.95480 0 

 

Figure 3 | Evolution of the Swedish economy from 1800 - 1980. 
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Discussion  
A typical dictionary definition of evolutionary fitness is twofold: “fitness (biology): (a) the degree of 

adaptation of an organism to its environment…; (b) the ability of an organism to produce viable 

offspring…”43. The decompositions presented here show that both intuitive definitions can be linked 

through an information theoretic logic. Fitness can be expressed in terms of the informational fit between 

environmental patterns in time, and population structures in space. This results in a communication 

process, whereas the role of the sender in a particular exchange defines the role of the environment (roles 

can be switched). 

 

Figure 3 | Evolution of the Swedish economy from 1800 - 1980. (a) Visualization of the corresponding 

evolution of population types from 1800 to 1980. (b) We distinguish between two environmental states: 

a wood & textile friendly environment, which occurs with p(e) = 0.467 during the 180 years of our 

sample, and an environment in which this type grows below average fitness. The resulting fitness matrix 

is shown. We now optimize fitness by setting the time-average of relative fitness for one type to 1, for 

example, for the wood & textile type: 𝐸𝑒 [
𝑤(𝑔,𝑒)

𝑊̅(𝑒)
] = 0.467 ∗

1.0848

𝑊̅(𝑒=𝑊&𝑇𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦)
+ 0.533 ∗

1.0185

𝑊̅(𝑒=𝑊&𝑇ℎ𝑜𝑠𝑡𝑖𝑙𝑒)
 = 1. A numerical (and/or visual) solution under the given constraints provides 

𝑊̅(𝑒 = 𝑊&𝑇𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦) = 1.0393 and 𝑊̅(𝑒 = 𝑊&𝑇ℎ𝑜𝑠𝑡𝑖𝑙𝑒) = 1.0592, which is fulfilled for a stable share 

of 𝑝(𝑔 = 𝑊&𝑇) ≈ 31 % and 𝑝(𝑔 = 𝑅𝑒𝑠𝑡) ≈ 69 %. For example:  0.31 ∗ 1.0848 + 0.69 ∗ 1.0188 =

1.0393. Maintaining this distribution of types assures optimal population fitness. We can now also 

calculate the hypothetical noiseless channel equivalent, with 𝑊(𝑒 = 𝑊&𝑇)ℎ𝑦𝑝
𝑑 = 2.227 and 

𝑊(𝑒 = 𝑅𝑒𝑠𝑡)ℎ𝑦𝑝
𝑑 = 1.986 (see Fig. 3b), which leads to a channel capacity of 𝐸𝑒[log 𝑊.

𝑑 ] = 1.06694. (c) 

Shows the quantities represented by the decomposition for various cases. For the case with side 

information (equation (5)), the observers distinguishes between an annual temperature above and 

below the Northern European average of 9.27 ℃ . Conditioned on higher or lower realizations of this 

random variable, two different fitness landscapes are recorded. This results in two different bet-hedging 

strategies. Unfortunately, for both cases, the optimal strategy falls outside the region of bet-hedging, 

which creates a constraint. The fitness is optimized when all resources are bet on the type of wood and 

textile in the years in which temperature is above average, and nothing on this type in other years. 
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As such, the presented decomposition are generalizations of an emerging body of recent literature that 

has suggested that information theory can be useful for describing evolutionary fitness3 - 17. Information 

theory is arguably the scientific theory with the most widespread practical impact on our daily lives. 

Shannon’s ideas of entropy (compression) and mutual information (channel capacity) led to all kinds of 

digital communication technology, which have become indispensable for humanity within only a couple 

of decades. This is an impressive achievement for a scientific theory. The application of these powerful 

ideas to evolutionary dynamics leads to an open research agenda. On the one hand, our explorations of 

fitness merely involved the question of simple description and optimization, leaving open a vast array of 

interesting questions yet to be explored. On the other hand, the information theoretic concepts that 

emerge from our reformulations are merely the most fundamental metrics, including absolute and 

relative entropies and mutual information. Information theory is a well-established scientific field that 

goes way beyond these basic metrics. For example, the current standard textbook on information theory1 

treats these fundamental metrics in the first substantive Chapter (p. 13-40), followed by 15 additional 

Chapters with additional 650 pages. Both of these facts combined gives a basic notion of the magnitude 

of the arising research agenda on the analysis of evolutionary dynamics from an information theoretic 

perspective. 

One of the aspects of this agenda relates to questions regarding the space-time nature of the 

informational definition of fitness, and, closely linked, to the omnipresent question of the adequate level 

of selection. The benchmark of Kelly’s diagonal fitness matrix suggests a logic of space-time requisite 

variety, whereas specialized types correspond to different environmental states. Additionally, the nature 

of equation (2) reveals a recursive multilevel logic over multiple levels of a taxonomy. This leads to a new 

look on the question of the adequate levels of selection and how space-time fine-graining defines a level.  

Another unanswered question refers to the fact that the derived results underline the importance of bet-

hedging as a benchmark in evolutionary fitness. Bet-hedging requires some kind of negative feedback 
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mechanisms that constantly redistributes resources in order to maintain the population distribution. In 

essence, bet-hedging ‘stops’ natural selection and leads to stable population shares44.  In the dynamics of 

blind neo-Darwinian selection, these redistributing feedback mechanisms have been discovered through 

random mutations, which obtained an evolutionary advantage at the higher level (based on the 

superiority of bet-hedging). In other words, given stable shares of types on the lower level, natural 

selection can thrive on the higher level and promote these kinds of mechanisms. Bet-hedging is common 

in a wide variety of plant and animal species35 - 40. Redistribution mechanisms are more straightforward 

and common in rather Lamarckian notion of social evolution with conscious foresight28 - 28, including 

portfolio management, tax and subsidies, counter-cyclical economic policy, and a wide variety of long-

term planning tools. The logic presented here formalizes the intuitive fact that the obtainable growth rate 

hinges on the amount of information available about the environment. Less uncertainty, more growth. 

Last but not least, it is important to note that most of currently existing information theory is based on 

the notions of ergodicity and stationarity. Applied to our case it is easy to see that the identification of an 

environmental pattern requires the existence of a stable pattern. It might turn out that these limitations 

are more severe in the evolution of biological and social systems in comparison to engineering problems, 

the main field of traditional applications of information theory. For example, we know that fitness 

landscapes are density dependent and change with the evolving population. Dealing with non-ergodic and 

non-stationary dynamics might require extensions to the existing tool box of information theory.  

Methods 

Basic decomposition. 
Two main steps are involved in the reformulations that result in equations (1) and (2). First, the 

expected value is taken on 𝑊̿ (or its log), which is justified by the fact that the expected value of a 

constant is the same constant (e.g. log 𝑊̿ = 𝐸[log 𝑊̿]). Second, we employ a revers form of the so-
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called replicator equation to decompose average population fitness per environment into lower level 

type fitness:   

log 𝑊̿ = 𝐸𝑝′(𝑔|𝑒)[log 𝑊̿] = ∑𝑝′(𝑔|𝑒)[log{𝑊̅(𝑒)}𝑝(𝑒)] = ∑𝑝′(𝑔|𝑒)𝑝(𝑒) [log {𝑤(𝑔, 𝑒)
𝑝(𝑔|𝑒)

𝑝′(𝑔|𝑒)
}]

= ∑𝑝′(𝑔, 𝑒)[log𝑤(𝑔, 𝑒)]

𝑔,𝑒

 −  ∑𝑝′(𝑔, 𝑒) log
𝑝′(𝑔, 𝑒)

𝑝(𝑔, 𝑒)
𝑔,𝑒

= equ. (2) 

Complete decomposition. 
The reformulation of equation (6) is obtained by replacing the true fitness values 𝑤(𝑔, 𝑒) in equation 

(2) with the weighted hypothetical diagonal fitness values, and then expanding with term with 𝑝′(𝑔, 𝑒).   

log 𝑊̿  =  𝐸𝑝′(𝑔,𝑒) [log ({ 𝑊(𝑒)ℎ𝑦𝑝
𝑑 ∗ 𝑝(𝑒|𝑚)} ∗

𝑝′(𝑔, 𝑒)

𝑝′(𝑔, 𝑒)
)]  − 𝐷𝐾𝐿(𝑃

′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)) = equ. (6)  

Optimality of 𝐷𝐾𝐿 = 𝐼. 

The condition that 𝐷𝐾𝐿(𝑃
′(𝑔, 𝑒)‖𝑃(𝑔, 𝑒)) = ∑ 𝑝′(𝑔, 𝑒) log

𝑝′(𝑔,𝑒)

𝑝(𝑔,𝑒)𝑔,𝑒  

= ∑ 𝑝′(𝑔, 𝑒) log
𝑝′(𝑔,𝑒)

𝑝′(𝑔)∗𝑝(𝑒)𝑔,𝑒 = 𝐼(𝐺′; 𝐸) is fulfilled for 𝑝(𝑔, 𝑒) = 𝑝′(𝑔) ∗ 𝑝(𝑒), since the mutual 

information is defined as the relative entropy between the joint distribution and the corresponding 

independent distribution. With the help of the replicator equation, this can be rewritten as 𝑝(𝑔|𝑒) =

𝑝′(𝑔) = ∑ 𝑝(𝑒) ∗ 𝑝′(𝑔|𝑒)𝑒 = ∑ 𝑝(𝑒) ∗ 𝑝(𝑔|𝑒)𝑒 ∗
𝑤(𝑔,𝑒)

𝑊̅(𝑒)
, whereas 𝑝(𝑔|𝑒) cancels out and we obtain the 

condition that the time-average of relative fitness is equal to 1: 

∑𝑝(𝑒)
𝑤(𝑔, 𝑒)

𝑊̅(𝑒)
𝑒

= 1                  (7) 

The two-way proof that this implies optimal growth and vice versa is easily shown when working with 

the hypothetical fitness matrix of the channel capacity from the section The complete decomposition 

with constraints. First we show that optimal fitness implies the existence of mutual information in our 

decomposition: 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 ⇒  𝐷𝐾𝐿 = 𝐼. We express both the numerator and denominator of equation 

(7) with their equivalent expressions from the full channel capacity fitness matrix:   
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∑𝑝(𝑒)
𝑤(𝑔, 𝑒)

𝑊̅(𝑒)
𝑒

= ∑𝑝(𝑒)
𝑝(𝑒|𝑚𝑖) ∗ 𝑊(𝑒)ℎ𝑦𝑝

𝑑

𝑝(𝑒) ∗ 𝑊(𝑒)ℎ𝑦𝑝
𝑑

𝑒

= ∑𝑝(𝑒) ∗ 𝑝(𝑒|𝑚𝑖)

𝑒

= 1 

Whereas the last step follows from stochasticity of the weighting matrix (in this case of optimal bet-

hedging in mixed fitness landscapes 𝑝(𝑒|𝑚𝑖) = 𝑝(𝑒|𝑔𝑖)).  

Two additional assumption are required for: 𝐷𝐾𝐿 = 𝐼 ⇒  𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦. The first one are stable shares of 

types (either through bet-hedging or through any other kind of stable equilibrium in the population 

shares), and the second one is that population types and environmental shares are linearly independent. 

We reformulate the stochastic matrix 1 = ∑ 𝑝(𝑒|𝑚𝑖)𝑒 = ∑
𝑤(𝑔𝑖,𝑒)

𝑊(𝑒)ℎ𝑦𝑝
𝑑𝑒 . At this point we include the 

restriction of the region of bet-hedging, which is 0 ≤ 𝑝′(𝑔|𝑒) ≤ 1, and replace 𝑤(𝑔𝑖, 𝑒) with the reverse 

form of the replicator equation. ∑
𝑝′(𝑔𝑖|𝑒)

𝑝(𝑔𝑖|𝑒)
𝑊̅(𝑒)

1

𝑊(𝑒)ℎ𝑦𝑝
𝑑𝑒 = ∑

𝑝′(𝑔𝑖,𝑒)

𝑝(𝑔𝑖|𝑒)
  

𝑊̅(𝑒)

𝑝(𝑒) 𝑊(𝑒)ℎ𝑦𝑝
𝑑𝑒 = 1. We assume that 

𝑝(𝑔𝑖|𝑒) is fixed for a specific type 𝑖 (e.g. through bet-hedging) (which allows us to bring it to the right 

hand side) and that 𝐷𝐾𝐿 = 𝐼, which implies 𝑝(𝑔𝑖, 𝑒) = 𝑝(𝑔𝑖|𝑒) ∗ 𝑝(𝑒) = 𝑝′(𝑔𝑖) ∗ 𝑝(𝑒), or 𝑝(𝑔𝑖|𝑒) =

𝑝′(𝑔𝑖). This leaves us with ∑ 𝑝′(𝑔𝑖, 𝑒)
𝑊̅(𝑒)

𝑝(𝑒) 𝑊(𝑒)ℎ𝑦𝑝
𝑑𝑒 = 𝑝′(𝑔𝑖) = ∑ 𝑝′(𝑔𝑖, 𝑒)𝑒 . We can rewrite this in 

matrix form for all types 𝑖 over all types and environmental states: 

𝐏 ∗ 𝑤⃗⃗ = 𝑝′⃗⃗  ⃗ 

[
𝑝′(𝑔 = 1, 𝑒 = 1) 𝑝′(𝑔 = 2, 𝑒 = 1) …

𝑝′(𝑔 = 1, 𝑒 = 2) … …
… ⋯ …

] [
𝑊̅(𝑒 = 1) (𝑝(𝑒 = 1) 𝑊(𝑒 = 1)ℎ𝑦𝑝

𝑑 )⁄

𝑊̅(𝑒 = 2) (𝑝(𝑒 = 2) 𝑊(𝑒 = 2)ℎ𝑦𝑝
𝑑 )⁄

…

] = [
∑ 𝑝′(𝑔𝑖 , 𝑒 = 1)𝑒

∑ 𝑝′(𝑔𝑖 , 𝑒 = 1)𝑒 …
]  

If the rank of the coefficient matrix 𝐏 is equal to the rank of the respective augmented matrix 𝐏#, the 

system is consistent and must have at least one solution (Rouché–Capelli theorem 45). This is the case 

here, since the last column of the augmented matrix, 𝑝′⃗⃗  ⃗,  can easily be set to 0s through column 

operations of 𝐏 (which do not affect the rank; i.e. subtracting each column once). So whatever the rank 

of 𝐏 will be the rank of 𝐏#. We furthermore know that the solution is unique if the rank is equal to the 

number of variables. Otherwise we have infinitely many solutions 45. The trivial case for the condition of 
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a unique solution is Kelly’s diagonal fitness matrix, with non-zero values only in the diagonal, which is 

already in reduced echelon form. In the case that either different types or different environments are 

linearly dependent we obtain infinitely many solutions (dependence refers to the concept from linear 

algebra here, not to random variables). If these redundant states and types are merged, the number or 

variables is equal to the rank. To identify the unique solution, we work with a method that works for 

many such problems: guess and verify. It is straightforward to show that the unique solution to the 

system is 
𝑊̅(𝑒)

𝑝(𝑒) 𝑊(𝑒)ℎ𝑦𝑝
𝑑  for all environments, which shows optimality.  
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