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Abstract
This study aimed to estimate the rates of biopsy undersampling and progression for 
four prostate cancer (PCa) active surveillance (AS) cohorts within the Movember 
Foundation's Global Action Plan Prostate Cancer Active Surveillance (GAP3) con-
sortium. We used a hidden Markov model (HMM) to estimate factors that define PCa 
dynamics for men on AS including biopsy under-sampling and progression that are 
implied by longitudinal data in four large cohorts included in the GAP3 database. 
The HMM was subsequently used as the basis for a simulation model to evaluate 
the biopsy strategies previously proposed for each of these cohorts. For the four AS 
cohorts, the estimated annual progression rate was between 6%–13%. The estimated 
probability of a biopsy successfully sampling undiagnosed non-favorable risk cancer 
(biopsy sensitivity) was between 71% and 80%. In the simulation study of patients 
diagnosed with favorable risk cancer at age 50, the mean number of biopsies per-
formed before age 75 was between 4.11 and 12.60, depending on the biopsy strategy. 
The mean delay time to detection of non-favorable risk cancer was between 0.38 
and 2.17 years. Biopsy undersampling and progression varied considerably across 
study cohorts. There was no single best biopsy protocol that is optimal for all co-
horts, because of the variation in biopsy under-sampling error and annual progression 
rates across cohorts. All strategies demonstrated diminishing benefits from additional 
biopsies.
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1  |   INTRODUCTION

Although early detection is key to preventing prostate can-
cer (PCa) death, many patients are diagnosed with low-risk 
cancer that is unlikely to cause harm.1 Prostatectomy and ra-
diation therapy are associated with potentially serious side 
effects, including incontinence, erectile dysfunction, and 
others.2 Therefore, definitive treatment of low-risk PCa may 
cause more harm than good. Active surveillance (AS) is a 
form of expectant management, in which a switch to curative 
treatment can be made as a result of tumor risk reclassifica-
tion at any time. AS strategies involve monitoring patients 
through a combination of digital rectal exams (DREs), pros-
tate-specific antigen (PSA) tests, selective use of imaging, 
and surveillance biopsies. AS defers or avoids definitive 
treatment until there is evidence of cancer misclassification 
or progression, thus reducing overtreatment of low-risk PCa. 
PSA tests and DREs are minimally invasive, but they have 
poor predictive performance. Biopsy is the gold standard, but 
it involves sampling tissue from the prostate with hollow-core 
needles, which can be painful, costly, and may result in infec-
tions. While PSA tests and DREs are routine elements of AS, 
they are far less informative than prostate biopsy for deter-
mining disease risk in this setting.

There are two main challenges when deciding the op-
timal biopsy plan for a given patient on AS. First, the true 
cancer state of each patient is not observable unless the pa-
tient is treated with radical prostatectomy, because biopsies 
are associated with under-sampling error. Second, patients 
who start AS may later progress from favorable to non-fa-
vorable risk over time due to cancer evolution. Moreover, the 
biopsy under-sampling errors and cancer progression rates 
are unknown and may vary among different cohorts. A re-
lated study estimated biopsy under-sampling error assuming 
no cancer progression during AS3 and another study that es-
timated progression rate assuming perfect prostate biopsy.4 
There is one study5 that considered biopsy under-sampling 
and PCa progression simultaneously, but it was based on a 
single very low-risk cohort and did not utilize PSA or treat-
ment outcomes for model estimation. There is no study we 
are aware of that considers cancer progression and biopsy 
misclassification across multiple cohorts.

In this study, we estimated and compared the misclassifi-
cation error of favorable risk cancer at diagnosis, subsequent 
cancer progression rate, biopsy sensitivity and specificity, 
and PSA distribution in four of the most well-known AS co-
horts using the dataset (version 3.1) created by the Movember 
Foundation Global Action Plan Prostate Cancer Active 
Surveillance (GAP3).6 We used a hidden Markov model 
(HMM) to estimate the stochastic model that best describes 
the longitudinal observational data for each of the four co-
horts. We further used the estimated models as the basis for 
a simulation model to compare previously published biopsy 

protocols across the four cohorts. We analyzed the differ-
ences in model estimates across the four cohorts and vali-
dated the results using bootstrapping. Finally, we compared 
the mean number of biopsies for patients on AS and the mean 
delay time to detection of non-favorable risk PCa for the bi-
opsy protocols previously proposed for each of these cohorts 
to assess variation in outcomes across cohorts.

2  |   MATERIALS AND METHODS

2.1  |  Data

In 2014, the Movember Foundation launched the GAP3 plan 
initiative to create a global database tracking the selection 
and monitoring of men with low-risk PCa on AS.6 The da-
tabase records the clinical and demographic characteristics 
of 20,652 patients on AS from 27 established cohorts world-
wide (v3.1). In this study, we chose four cohorts including 
the two largest AS study cohorts in the USA: Johns Hopkins 
(JH) hospital7 and University of California San Francisco 
(UCSF) medical center,8 the largest AS study in Canada: 
University of Toronto (U of T) medical center,9 and the larg-
est AS study outside North America: the Prostate Cancer 
Research International Active Surveillance (PRIAS) pro-
ject.10 These four cohorts not only include the greatest num-
ber of patients, but also have the most AS follow-up records 
over time. Importantly, these cohorts have different inclusion 
criteria and recommended surveillance strategies. Table 1 il-
lustrates inclusion criteria and biopsy protocols in the four 
cohorts. The research was approved by the Institutional 
Review Board at the University of Michigan.

2.2  |  Natural history models based 
on HMMs

We formulated an HMM to determine the misclassification 
error of favorable risk cancer at diagnosis due to diagnosis 
test error, annual progression rate to non-favorable risk can-
cer, and follow-up biopsy under-sampling error for patients 
on AS in each of the four studies. HMMs are well suited 
to this analysis because PCa progresses stochastically over 
time, and the true cancer state cannot be observed directly 
(it is hidden due to the imperfect accuracy of PSA testing 
and prostate biopsies) unless the patient is treated by radical 
prostatectomy. We defined the favorable risk cancer state 
as the cancer state that meets the inclusion criteria in each 
cohort (Table 1) and defined the non-favorable risk cancer 
state as any cancer state that does not meet the criteria, and 
thus represent cancer states for which patients may consider 
treatment rather than AS. Table 1 shows that the definitions 
of favorable and non-favorable risk cancer vary by cohort.
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By definition of these cohorts, all patients were diagnosed 
with favorable risk PCa and initiated AS as their initial man-
agement. However, due to the potential measurement error in 
DREs, PSA test, and biopsy, some patients starting AS were 
actually in the non-favorable risk cancer state at the time of 
diagnosis. We use the term misclassification at diagnosis to 
refer to instances where a patient with non-favorable risk PCa 
is incorrectly diagnosed with favorable risk PCa at the time 
of initiating AS. The probability of misclassification at diag-
nosis was estimated by the initial distribution of the HMM. 
Every year after initiating AS, patients may also progress 
from favorable risk cancer to non-favorable risk cancer with 
some annual progression rate, which determines the transition 
probability matrix in the proposed HMM. Figure 1 shows the 
state transition diagram of PCa in the context of AS.

The observations used to fit the HMM were PSA level and 
biopsy. We did not consider other covariates including clini-
cal stage, total positive cores in biopsy, single-core positivity 

in biopsy, and MRI scan because of the lack of data. In all 
four studies, PSA tests were routinely performed at office 
visits (every 3–6 months), while biopsies were performed at 
most once per year and often less frequently because of the 
design of biopsy protocols or other patient and clinical fac-
tors. Therefore, in our model, we set the frequency of test 
outcomes to be annual, which means we only used the most 
recent PSA test and one biopsy result at the end of each cal-
endar year as observations for this annual time period. We 
also defined a null observation for instances of a missing test 
result. Given that biopsies are not perfect, we use the term bi-
opsy under-sampling to denote the circumstance where there 
was a Gleason score 6 or lower biopsy result in a patient with 
(hidden) non-favorable risk cancer. The biopsy sensitivity 
(defined as rate of biopsy Gleason score 7 or higher while in 
the non-favorable risk cancer state) and specificity (defined 
as rate of biopsy Gleason score 6 or lower while in favorable 
risk cancer state), and the distribution of the PSA testing re-
sult were estimated by the observation probability distribu-
tions in the HMM. Finally, every year, the patient might leave 
AS with or without treatment. If the patient left AS and un-
derwent the radical prostatectomy, then his true cancer grade 
(Gleason score) was available based on post-radical prosta-
tectomy pathology. Otherwise, the patient was assumed to 
leave AS without knowledge of the true cancer grade. Given 
this context, we defined the leaving states of the HMM as 
follows: (a) leaving AS with true Gleason score 6 or lower 
based on prostatectomy pathology, (b) leaving AS with true 
Gleason score 7 or higher based on prostatectomy pathology, 
and (c) leaving AS without radical prostatectomy. The prob-
abilities of entering the leaving states were also elements of 
the transition probability matrix.

We used the Baum-Welch algorithm to fit the proposed 
HMM.11 The Baum-Welch algorithm is a special form of 
the standard EM (expectation-maximization) algorithm,12 
which iteratively updates the estimates of model parameters 

Cohort
Number of 
Patients Inclusion Criteria for AS Biopsy Protocol

JH 1,434 clinical stage ≤T1c, PSA density 
≤0.15, Gleason score ≤6, total 
positive core ≤2, single core 
positivity ≤50%

Biopsy every year

UCSF 1,644 clinical stage T1-T2, PSA ≤10, 
Gleason score ≤6, total positive 
core ≤1/3 of total cores, single 
core positivity ≤50%

Biopsy 1 year after 
diagnosis, then every 
1 to 2 years

U of T 1,243 clinical stage T1c/T2a, PSA ≤10, 
Gleason score ≤6

Biopsy 1 year after 
diagnosis, then every 
3 years

PRIAS 4,700 clinical stage T1c/T2, PSA ≤10, 
PSA density ≤0.2, Gleason 
score ≤6, total positive core ≤2

Biopsy 1 year after 
diagnosis, then every 
3 years

T A B L E  1   Inclusion criteria and biopsy 
protocols for four major active surveillance 
cohorts

F I G U R E  1   State transition diagram of PCa in the context of AS. 
There are two hidden states and three observable (leaving) states in the 
formulated HMM. Abbreviations: APR, annual progression rate; FR, 
favorable risk; NFR, non-favorable risk; RP, radical prostatectomy

FR, stay
in AS

NFR,
stay in
AS

Leave AS
without PR

APR

Leave AS
with RP,
Gleason
Score <= 6

Leave AS
with RP,
Gleason
Score >= 7

Leaving States

1- APR



9614  |      LI et al.

that locally maximize the likelihood function of given se-
quences of observations. To avoid local maxima, we ran-
domly chose different starting points of the parameters 
before running the iterations, and then picked the set of 
estimated parameters with the largest likelihood function 
as the final estimates. For different cohorts, we fitted dif-
ferent HMMs with the same model structure but different 
parameters.

2.3  |  Statistical analysis and validation

To estimate confidence intervals (CIs) of the estimated 
model parameters in different cohorts, we used the non-
parametric bootstrap method to compute the standard errors 
of estimated parameters.13 Specifically, for each cohort, 
we first randomly sampled patients with replacement. The 
number of sampled patients was equal to the sample size 
of the cohort. For each bootstrap sample, we then fitted 
an HMM using the observation sequences of the bootstrap 
sample. We drew 100 bootstrap samples and used the em-
pirical standard errors and confidence intervals as the esti-
mates of the standard errors and confidence intervals of the 
estimated parameters in this cohort. We repeated the same 
steps for all four cohorts.

We focused on internal validation in this study, because 
different cohorts had different study inclusion criteria. We 
validated the estimated models by comparing the observed 
and estimated distributions of the results of PSA test and 
biopsy. For PSA results, we compared the empirical and 
estimated distribution for both favorable risk cancer and 
non-favorable risk cancer patients. For biopsy results, we 
first simulated patients’ underlying cancer states and biopsy 
observations (if the biopsy protocol suggested a biopsy) in 
each cohort using a simulation model (described in next) 
with the estimated model parameters. Then, we compared the 
observed and simulated biopsy positive rates at each biopsy 
time.

2.4  |  Biopsy protocols comparison by 
simulation model

We used the estimated HMMs to create a simulation model 
for each cohort to compare the mean number of biopsies per-
formed while on AS and the mean delay in time to detection 
of non-favorable risk cancer by biopsy. Hypothetical patients 
in the simulation model were assumed to be diagnosed with 
favorable risk cancer at age 50 in different cohorts when using 
the different biopsy protocols described in Table 1. For each 
patient, we first sampled his initial cancer state when diagnosed 
with favorable risk cancer at age 50 according to the misclassi-
fication error at diagnosis as estimated by the HMM, and initi-
ating AS. Second, for the next annual time-point, we simulated 
his new cancer state based on the previous cancer state and the 
estimated annual cancer progression rate. With the simulated 
cancer state, we then sampled the patient's PSA result using the 
estimated PSA probability density distribution. If a biopsy was 
indicated according to the chosen protocol, we sampled the bi-
opsy result based on the estimated sensitivity and specificity of 
the biopsy obtained from the HMM for the cohort. If the sam-
pled biopsy Gleason score was greater or equal to 7 at that time 
point, then the patient left AS; otherwise, the patient continued 
on AS for another year. Patients reaching age 75 were assumed 
to stop AS and transit to watchful waiting. The details of the 
simulation process flow are shown in Figure 2.

With the simulated true cancer states and biopsy results 
for all patients at all time periods, the mean number of bi-
opsies performed while on AS was calculated as the aver-
age number of follow-up biopsies performed from initiating 
AS (age 50) to leaving AS (age 75 or a Gleason score 7 or 
higher biopsy), while the mean delay in time to detection of 
non-favorable risk cancer was calculated as the average dif-
ference between the time of the first sampled non-favorable 
risk cancer state and the time of a sampled Gleason score 
7 or higher biopsy results for all patients. The number of 
sampled patients was set to 10,000 for each cohort and each 
protocol.

F I G U R E  2   Simulation process flow for the proposed simulation model. The model parameters were determined by the estimates of the 
HMMs. Patients would leave the AS if they had a Gleason score 7 or higher biopsy, or they reached age 75

Initialize the patient’s age
and true (hidden) cancer
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Sample the PSA test
result

Determine biopsy or not
by the chosen protocol
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3  |   RESULTS

3.1  |  Data

Table 2 summarizes patient characteristics at the time of di-
agnosis for patients with at least one follow-up year on AS. 
The means of age at diagnosis were similar in all four co-
horts except UCSF, where patients were younger than com-
pared to the other three cohorts. In terms of PSA levels and 
biopsy results, JH enrolled patients with lower PSA, lower 
maximum percentage of cancer in biopsy cores, and lower 
Gleason score than other three cohorts. UCSF and University 
of Toronto medical centers enrolled patients with the highest 
PSA level and percentage of patients with Gleason 3 + 4 = 7 
or greater cancer. Additional information about patient char-
acteristics at the time of each biopsy in AS can be found in 
Table S1–S4 in Appendix B.

As we can see from Table 2, some patients with medium/
high-grade (non-favorable risk) cancer were also included 
in the AS. Those patients were generally older patients who 
continued on AS instead of moving on to treatment. For 
the purpose of our study, we removed those patients with 
medium/high-grade cancer at diagnosis when fitting the 
HMMs.

3.2  |  HMM analysis and validation

Table 3 and Figure 3 show the estimates of the most important 
HMM parameters for each cohort and the 95% confidence inter-
vals estimated via the bootstrap method. The differences in the 
estimated annual cancer progression rates and biopsy sensitivi-
ties for distinct cohorts were statistically significant (p < 0.05). 
The estimated annual progression rate from favorable risk 
cancer to non-favorable risk cancer was highest in UCSF and 
lowest in JH. Biopsy sensitivity was highest in PRIAS, with 
the highest proportion of non-favorable risk cancer patients cor-
rectly identified on biopsy; while JH had a slightly lower biopsy 
sensitivity than other three cohorts. In terms of misclassifica-
tion errors at diagnosis, the proportion of patients considered 
to have non-favorable risk cancer at diagnosis was highest in 
UCSF and lowest in JH. All estimated biopsy specificities were 
close to 100%. In addition, based on the estimated 95% confi-
dence intervals by bootstrapping, the estimated miss-classifi-
cation errors at diagnosis, annual cancer progression rates, and 
(1-biopsy sensitivity)’s in the four cohorts are all statistically 
significantly greater than zero.

For the estimates of the PSA distributions, we assumed 
that the logarithm of the PSA result follows a mixture of 
two Gaussian distributions. The details of the estimated 

Cohort JH UCSF U of T PRIAS

Patients, n 1434 1644 1243 4700

Age at biopsy, year, 
mean (SD)

66 (6.1) 63 (7.6) 66 (8.1) 66 (6.9)

Months since diagnosis, 
month, mean (SD)

0 (0) 0 (0) 0 (0) 0 (0)

PSA, ng/mL, mean (SD) 5.2 (2.9) 6.4 (4.1) 6.2 (3.1) 5.9 (2.1)

No. of biopsy cores 
used, median (range)

12 (6-58) 14 (1-50) 10 (1-190) 12 (3-25)

Maximum % of cancer 
in any one core (SD)

10 (14.8) 26 (20.8) 21 (20) NA (NA)

% of cores with cancer 12 (7.1) 17 (13.8) 23 (18.1) 13 (6.7)

ISUP grade group, # (%)

No cancer 0 (0) 0 (0) 0 (0) 0 (0)

1 (3 + 3) 1428 (99.6) 1437 (87.4) 1104 (88.8) 4657 
(99.1)

2 (3 + 4) 6 (0.4) 178 (10.8) 139 (11.2) 42 (0.9)

3 (4 + 3) 0 (0) 25 (1.5) 0 (0) 1 (0)

4 (4 + 4) 0 (0) 4 (0.2) 0 (0) 0 (0)

5 (9, 10) 0 (0) 0 (0) 0 (0) 0 (0)

NA 0 (0) 0 (0) 9 (0.7) 3 (0.1)

Medium/High-grade 
cancer (%)

6 (0.4) 207 (12.6) 139 (11.2) 43 (0.9)

Abbreviations: ISUP, International Society of Urologic Pathologists; NA, not available; SD, standard 
deviation.

T A B L E  2   Patient characteristics at the 
time of diagnosis
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parameters for the mixture distribution can be found in Table 
S5 and S6 in Appendix B.

We validated our models by comparing the biopsy pos-
itive rates and PSA probability density functions between 
observed and simulated data. Figure 4 shows the compari-
sons between observed and simulated biopsy positive rates 
for different cohorts, which were calculated as the number 
of patients with a positive biopsy (Gleason score 7 or higher 
biopsy) results divided by the total number of patients who 
underwent biopsy in the observed and simulated datasets, at 
each biopsy time point. The observed positive biopsy rates 
all fell into the 95% confidence intervals of the simulated 
biopsy positive rates. The comparisons of PSA distribu-
tions are shown in Figure S1–S4 in Appendix B.

3.3  |  Comparison of biopsy protocols

We simulated a population of 5000 patients for each cohort 
and each biopsy protocol using the simulation model described 

in Figure 2. Each patient was assumed to be diagnosed as fa-
vorable risk cancer and enter AS at age 50. We compared the 
frequency of biopsy and the mean delay in time to detection of 
non-favorable risk cancers between the time of diagnosis (age 
50) and the end of AS. Table 4 shows the simulation results 
for all protocols in fours cohorts. In each cohort, the protocol 
employing fewer biopsies was associated with a longer late de-
tection time on average. Also, if we compare the differences in 
the mean number of biopsies used and mean delay in detection 
by biopsy between different protocols, we can see the benefit 
from more frequent biopsies was diminishing.

4  |   DISCUSSION

We estimated the misclassification error at diagnosis, the an-
nual cancer progression rate, the sensitivity and specificity of 
biopsy, and the distribution of PSA in four PCa AS cohorts 
part of the GAP3 consortium: JH, UCSF, U of T, and PRIAS. 
With the estimated HMMs, we then compared the mean 

T A B L E  3   Estimated parameters by the HMMs for different cohorts

Center
Number of 
patients

Misclassification error at 
diagnosis

Annual progression 
rate

Biopsy 
sensitivity

Biopsy 
specificity

JH 1428 5.83% 6.91% 71.84% 99.72%

UCSF 1437 8.09% 12.17% 74.31% 99.25%

U of T 1104 7.74% 10.16% 79.49% 99.62%

PRIAS 4657 6.53% 8.41% 76.14% 99.20%

F I G U R E  3   Estimated standard errors and 95% confidence intervals for the parameters in HMMs by the bootstrap method. All misclassification 
errors at diagnosis, annual cancer progression rates, and (1- biopsy sensitivity)’s are statistically significantly greater than 0

5 6 7 8
Misclassification Error at Diagnosis (%)

JH

UCSF

U of T

PRIAS

7 8 9 10 11 12 13
Annual Progression Rate (%)

JH

UCSF

U of T

PRIAS

72 74 76 78 80
Biopsy Sensitivity (%)

JH

UCSF

U of T

PRIAS

98.5 99.0 99.5 100.0
Biopsy Specificity (%)

JH

UCSF

U of T

PRIAS
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number of biopsies performed versus late detection of cancer 
progression by biopsy when following different published bi-
opsy protocols in four cohorts using a series of simulations. 
As expected, in each cohort, the biopsy protocol that recom-
mended more frequent biopsies was associated with shorter 
time to reclassification. Our results show that because of the 
considerable variation in biopsy under-sampling error and 
annual progression rates across cohorts, there was no single 
best biopsy protocol that is optimal for all cohorts. Moreover, 
in each cohort, the biopsy protocol that recommended more 
frequent biopsies was associated with shorter time to reclas-
sification, while the benefit from additional biopsies was 
diminishing.

Other studies have also tried to quantify the most im-
portant factors associated with testing errors and cancer 

progression rate on AS. Coley et al.3 proposed a Bayesian 
hierarchical model that included PSA and biopsy as covari-
ates to predict the latent cancer state in the JH AS cohort. 
They estimated the misclassification error at diagnosis to be 
between 20% and 31%, and the biopsy sensitivity to be 62%. 
The reason why their measurement error was much higher 
than ours was that they assumed there was no cancer progres-
sion during AS for any patient. For our fitted HMMs, we do 
see that estimates of both cancer progression rate and biopsy 
under-sampling error are statistically significantly greater 
than 0, as the bootstrapping 95% confidence intervals do not 
include 0. Thus, if we apply the bootstrap-t hypothesis test 
method discussed in Efron and Tibshirani14 to the estimates 
of both cancer progression rate and biopsy under-sampling 
error, we can reject the null hypothesis that the estimated 

F I G U R E  4   Comparison of observed and simulated biopsy positive rates at each biopsy time for different cohorts. All observed biopsy 
detection rates fell into the 95% CIs of the simulated detection rates
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T A B L E  4   Comparisons of the mean number of biopsies used and average late detection time by biopsy between the time of diagnosis and the 
end of AS for different protocols in different cohorts by the proposed simulation model

Cohort JH UCSF U of T PRIAS

Biopsy protocol JH UCSF
U of 
T JH UCSF U of T JH UCSF

U of 
T JH UCSF

U of 
T

Mean number of biopsies 12.6 7.1 5.3 8.7 5.3 4.1 9.7 5.8 4.4 11.1 6.4 4.9

Average late detection 
time by biopsy (month)

4.5 13.9 22.9 5.0 15.2 26.0 3.8 12.7 21.7 4.0 13.2 22.3
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parameter is equal to 0 with the type I error less than 5%. 
Also, the definition of the biopsy sensitivity in our study, is 
defined with respect to the non-favorable risk cancer state as 
defined in each of the studies as opposed to Gleason score 
alone, used by Coley and colleagues.

Another study by Barnett et al.,5 fit an HMM to estimate 
the cancer grade progression rate and biopsy under-sam-
pling errors in the JH AS cohort only. They estimated the 
annual progression rate from Gleason score 6 cancer to 
Gleason score 7 or higher cancer to be 4.0%; then sensi-
tivity and specificity of biopsy to be 61.0% and 98.6%. 
There are a number differences in their approach compared 
to our study. For example, they did not incorporate PSA 
observations or observations of radical prostatectomy or 
alternative treatment options, which can reveal the true 
cancer states, for patients to leave AS. Moreover they 
considered only the JH cohort which was a very low risk 
patient cohort. Thus, we believe our model in this study 
was more informative than their model. A study by Inoue 
et al.,4 which compared the biopsy upgrading rates in four 
PCa AS cohorts including JH, UCSF, U of T, and Canary 
prostate cancer active surveillance study cohorts found a 
statistically significant difference in biopsy upgrading risk 
for different cohorts. However, they did not account for 
possible biopsy Gleason score false-negative result and 
misclassification error.

In our result of the HMMs for four different cohorts, 
based on the bootstrapped standard errors of the esti-
mated parameters, all the mis-classification errors at di-
agnosis, annual cancer grade progression rates, and biopsy 
false-negative rates were statistically significantly greater 
than zero. This validates our assumptions about the non-
zero progression rate in contrast to the above-referenced 
study by Coley et al.3 that assumes no progression, and 
the imperfect biopsy sensitivity in contrast to the study 
by Inoue et al.4 that assumes zero misclassification error 
and zero biopsy false-negative rate. All biopsy specifici-
ties were close to 100%, indicating it was very rare that a 
patient in favorable risk cancer state would have a biopsy 
Gleason sum 7 or higher. For mis-classification errors at 
the time of diagnosis and annual grade progression rates, 
we found that the estimates in the UCSF and U of T co-
horts were greater than the estimates in JH and PRIAS 
cohorts. This was consistent with the fact that the UCSF 
and U of T cohorts included higher-risk patients than other 
two cohorts, which can also be seen in the summary sta-
tistics of PSA density, maximum percentage of cancer in 
any one core, and percentage of cores with cancer at the 
time of diagnosis in Table 2. For the biopsy sensitivities, 
we saw that JH cohort had the lowest estimate while the U 
of T cohort had the highest one. Our conjecture was that 
patients with lower risk had smaller tumors in general, so 
that they were harder to detect by biopsy if they were in 

non-favorable risk cancer state. Other possible reasons for 
such differences might include the different definition of 
favorable and non-favorable risk states, and the difference 
in the urologist practice when performing the tests in dif-
ferent cohorts.

Our simulation study compared three published biopsy 
protocols in different cohorts. Within each cohort, the pro-
tocol that recommended more biopsies had less late detec-
tion years of non-favorable risk cancer by biopsy. However, 
we saw that the benefit in terms of early detection was di-
minishing along with the increasing number of biopsies. 
There was no single optimal protocol that recommended 
fewer biopsies but could detect non-favorable risk can-
cer earlier, in any cohort. Two main reasons are: first, the 
model parameters estimated by the HMMs and used in the 
simulation model were statistically significantly different 
for different cohorts; second, there were two competing ob-
jectives when comparing the protocols that are minimizing 
the number of biopsies and minimizing the late detection 
time by biopsy.

There were some notable limitations in our study. First, 
we reduced a complex disease (PCa) to a two-state (favorable 
and unfavorable risk) stochastic model with two outputs of 
the disease (results of PSA test and biopsy) as informative 
observations. However, although such models cannot cap-
ture all details about the disease, it consistently discriminates 
health states on the basis of the most significant factors de-
fining study inclusion for each cohort. Second, our proposed 
HMM included the null observation of biopsy as non-infor-
mative missingness. In other words, we assumed no differ-
ence between a missed biopsy by the design of the study, and 
a missed biopsy result for other reasons (e.g. patient pref-
erence, data lost to follow-up). However, by using the null 
observation to denote the biopsy missingness in the HMM, 
we mitigated bias in our estimates of the model parameters. 
Finally, another way to monitor PCa in recent AS protocols is 
by magnetic resonance imaging (MRI) scans, but it was not 
considered in this study due to the lack of sufficient longitu-
dinal data.

The above limitations notwithstanding, our study quan-
tified the most important factors in four PCa AS cohorts, 
providing a number of insights into the role of different 
study designs and populations on AS. We found there was 
no single optimal biopsy protocol across cohorts and we 
provided evidence that there may be considerable varia-
tion in characteristics of PCa across cohorts. This is likely 
explained by some combination of factors including: 1) 
differences in disease dynamics between the different co-
horts due to variations in the inclusion criteria, and thus 
different definitions of favorable vs. non-favorable risk 
PCa. and 2) variation in healthcare delivery across health 
systems resulting from different practices in urology and 
pathology.
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