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Catalysis using iron–sulfur clusters and transition metals can be
traced back to the last universal common ancestor. The dam-
age to metalloproteins caused by reactive oxygen species (ROS)
can prevent cell growth and survival when unmanaged, thus
eliciting an essential stress response that is universal and fun-
damental in biology. Here we develop a computable multiscale
description of the ROS stress response in Escherichia coli, called
OxidizeME. We use OxidizeME to explain four key responses to
oxidative stress: 1) ROS-induced auxotrophy for branched-chain,
aromatic, and sulfurous amino acids; 2) nutrient-dependent sen-
sitivity of growth rate to ROS; 3) ROS-specific differential gene
expression separate from global growth-associated differential
expression; and 4) coordinated expression of iron–sulfur cluster
(ISC) and sulfur assimilation (SUF) systems for iron–sulfur cluster
biosynthesis. These results show that we can now develop fun-
damental and quantitative genotype–phenotype relationships for
stress responses on a genome-wide basis.

reactive oxygen species | oxidative stress | metabolism | protein
expression | genome-scale model

Aerobic organisms have evolved cellular responses to oxida-
tive stress over 3 billion years since oxygenation of the

Earth’s atmosphere (1). Oxygen toxicity is manifested in dam-
age to cellular components by reactive oxygen species (ROS),
which are generated as a by-product of maintaining an aero-
bic lifestyle (2, 3). Specifically, cells generate ROS when flavin,
quinol, or iron cofactors are autoxidized (2). ROS damage
DNA, certain iron-containing metalloproteins, and other cellu-
lar processes (4). In addition to endogenously produced ROS,
microbes are exposed to exogenous sources of ROS in the
form of H2O2, superoxide, or redox-cycling compounds that
eukaryotes or other microbes generate as a means of inflict-
ing oxidative stress on competitors (5, 6). For example, the
human immune system employs macrophages that use ROS
to combat pathogens. While most microbes are weakened by
this oxidative stress, certain pathogens can grow inside the
phagosome (7).

Overall, microbes combat oxidative stress by reducing ROS
generation, increasing ROS detoxification capacity, and protect-
ing or repairing the targets of ROS that include metabolites
and macromolecules. Enzymes adapted against oxidative stress
have developed tolerance mechanisms that include shielding vul-
nerable metal centers by accessory domains, evolving of iron
cofactors into less oxidizable forms, and replacement of iron with
alternative metal ions. (8).

Despite the fundamental importance of ROS damage on
cellular functions, we lack a framework that connects known
and hypothesized individual molecular targets of ROS to sys-
temic physiological responses. Here, we address this gap using a
genome-scale computational systems biology approach focused

on the processes that determine homeostasis of iron, which is
essential for Eschericia coli’s growth, yet is vulnerable to ROS.

Results
Model Construction. Herein we describe the reconstruction of
our computable multiscale description of ROS damage to
metalloproteins. Here, multiscale means that we model reac-
tions involved in the processes of protein expression (slow)
and metabolism (fast), as described previously (9). These rates
can span 15 orders of magnitude, so we use specialized (quad-
precision) solvers to compute steady-state solutions (10). We
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begin with a published reconstruction of E. coli’s integrated
metabolic and macromolecular expression (ME) networks (11).
This ME model accounts for 1,678 genes, 7,031 metabolites, and
12,655 reactions. The model includes detailed pathway recon-
struction for transcription, translation, complex formation, and
prosthetic group engraftment (12–14). The model also maps
protein complex–metal stoichiometries, including 43 complexes
that incorporate mononuclear iron or iron–sulfur clusters. We
reconstruct ROS-based damage and cellular repair processes for
these metalloproteins, yielding the OxidizeME model (Fig. 1) as
described below.

First, we define mathematical expressions to quantita-
tively describe the damage of iron–sulfur (Fe–S) clusters by
superoxide and H2O2. The net reactions for Fe–S cluster
damage are (4)

[4Fe-4S]2+ +O·−2 +2 H+→ [3Fe-4S]1+ +Fe2+ +H2O2,

[4Fe-4S]2+ +H2O2 +2 H+→ [3Fe-4S]1+ +Fe3+ +2 H2O.

Assuming that the ROS concentration [ROS ]�KM, the rate of
Fe–S cluster damage vdmg depends on [ROS ], the rate constant
(kcat/KM)dmg, and the Fe–S protein concentration E ,

vdmg =

(
kcat

KM

)dmg

[ROS ] ·E =

(
kcat

KM

)dmg

[ROS ] · vdil/µ, [1]

where µ is the cell’s specific growth rate in h−1 and vdil is the
dilution rate of the protein.

Second, we describe Fe–S cluster repair. We assume that
yggX (15) or ytfE (16) repairs Fe–S clusters using NADH as the
electron donor and define the net repair reaction:

Fenton chemistry

DNA damage

Fe2+ + H
2
O

2
      HO• + OH- + Fe3+Fe2+

Dps Fe2+ Fe3+

Fe2+

Mn2+ Zn2+

Fe2+

Mn2+ Zn2+

Demetallation & mismetallation Iron-sulfur cluster damage

Unincorporated iron

IscUSuf

Fe3+ (H
2
O

2
)

Fe2+ (O
2

-)

Fe2+, e- (NADH)

mRNA

Protein

Fe2+

NTPs

AAs

M E

E

A

D

B

C

D
High RSA

Low RSA

Medium

RSARRRRRRR

Fig. 1. OxidizeME: a multiscale description of metabolism and macromolec-
ular expression that accounts for damage by ROS to macromolecules. (A)
Mononuclear Fe(II) proteins are demetallated by ROS and mismetallated
with alternative divalent metal ions. (B) Iron–sulfur clusters are oxidized
and repaired. (C) Unincorporated Fe(II) spontaneously reacts with H2O2 via
Fenton chemistry, generating hydroxyl radicals that damage DNA, while the
Dps protein stores unincorporated iron and protects DNA from damage.
(D) Protein structural properties are computed to estimate the probability
of metal cofactor damage by ROS (RSA: relative solvent accessibility). (E)
Processes in A–D are integrated into a multiscale oxidative model, named
OxidizeME. OxidizeME is used to compute the scope of macromolecular
damage and the cellular response for varying intracellular concentrations
of superoxide, hydrogen peroxide, and divalent metal ions (Fe(II), Mn(II),
Co(II), Zn(II)); see SI Appendix for details.

[3Fe-4S]1+ +Fe2+ +NADH→ [4Fe-4S]2+ +NAD+.

The repair rate v repair is constrained by the concentrations of the
set of repair proteinsR= {YggX, YtfE} and their rate constants
of Fe–S cluster repair krepair:

v repair≤
∑
j∈R

krepair,j ·Ej =
∑
j∈R

krepair,j · vdil
j /µ. [2]

Third, we describe the demetallation and mismetallation of
mononuclear iron metalloproteins. Assuming [ROS ]�KM,
the demetallation rate of protein j by the ROS k ∈O=
{O·−2 ,H2O2} is defined as

vdemet
jk = kdemet

jk [ROS ]vdil
j /µ, [3]

where kdemet
jk is the demetallation rate constant. Next, to describe

mismetallation by competing metals, we assume that metallation
occurs rapidly and is close to equilibrium (17). We use the metal–
protein stability constant of metal i (βi

j ) relative to βFe
j , along

with relative metal concentrations ([Metal i ]/[Fe(II)]). We then
define the rate that protein j is metallated with metal i as

vmetal,i
j =

βi
j [Metal i ]
βFe
j [Fe(II)]

(∑
k∈O

(
vdemet
jk

)
+ vdil

j

)
. [4]

We consider the set of alternative metalsM= {Mn(II),Co(II),
Zn(II)}. We then scale the catalytic efficiency keff of the alter-
natively metallated enzymes based on estimates from published
data (18, 19).

Finally, we formulate an optimization problem to compute the
metabolic and proteomic state of E. coli under ROS stress. In the
original ME model, the flux state (v)—for metabolic and macro-
molecular expression reactions—that maximizes growth rate is
computed by solving the problem (10, 11)

max
µ,v

µ subject to S(µ) · v =0, l ≤ v ≤ u, [5]

where S(µ) is a stoichiometric matrix that includes coefficients
that depend on µ, and l , u are lower and upper flux bounds. In
OxidizeME, the corresponding problem is the following:

max
µ,v

µ

subject to S(µ) · v =0,

l ≤ v ≤ u,

v
dmg
j − v

repair
j − vdil

j =0, ∀j ∈D,

v
dmg
j =

(
kcat

KM

)dmg

j

[ROS ]vdil
j /µ, ∀j ∈D,

vdil
j ≥

∑
i∈R

µ

krepairi

v
repair
ij , ∀j ∈D,

∑
j∈D

v
repair
ij ≤

∑
i∈R

krepair,i · vdil
i /µ,

vdemet
jk = kdemet

jk [ROS ]vdil
j /µ,

vmetal,i
j =

βi
j [Metal i ]
βFe
j [Fe(II)]

(∑
k∈O

(
vdemet
jk

)
+ vdil

j

)
,

∀i ∈M, ∀j ∈D. [6]

Comparing simulations with measured proteomics (20), we find
that OxidizeME computes up to 85% of the E. coli proteome by
mass (Dataset S1). Code and documentation for OxidizeME are
available at https://github.com/SBRG/oxidizeme.
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Amino Acid Auxotrophy under Oxidative Stress. A hallmark
response to ROS damage for E. coli is the deactivation of
branched-chain and aromatic amino acid biosynthesis pathways,
which is alleviated by supplementing these amino acids (4).
Compared with supplementing all 20 amino acids, OxidizeME
correctly predicted that excluding Ile and Val had a greater
impact on growth rate than did excluding Phe, Trp, and Tyr
(Fig. 2A). The reason that E. coli cannot grow under ROS
stress without supplementation of branched-chain amino acids
is that the iron–sulfur clusters of dihydroxy-acid dehydratase
and isopropylmalate isomerase are inactivated by ROS, thus
debilitating the branched-chain amino acid biosynthetic path-
way (21). The auxotrophy for aromatic amino acids was orig-
inally attributed to inactivation of the transketolase reaction
(22), but was recently traced to the mismetallation of the
mononuclear iron cofactor in 3-deoxy-D-arabinheptulosonate
7-phosphate (DAHP) synthase (19). OxidizeME correctly pre-
dicted these molecular mechanisms and their phenotypic
consequences (Fig. 2).

Meanwhile, the basis of sulfurous amino acid auxotrophy in E.
coli remains inconclusive despite multiple investigations (23, 24).
OxidizeME correctly predicted auxotrophy for sulfurous amino
acids (cysteine and methionine) under ROS stress (Fig. 2A). We
traced a plausible mechanism to damage of the iron–sulfur clus-
ter in CysI, which catalyzes the sulfite reductase step of Cys
biosynthesis. Sulfite reductase binds four cofactors: iron–sulfur,
FAD, FMN, and siroheme. Consistent with prior studies (25),

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

G
ro

w
th

 ra
te

 (1
/h

)

0 1 2 3 4 5
Superoxide (nM)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

G
ro

w
th

 ra
te

 (1
/h

)

Excluded
None
Met
Cys
Met;Cys

A D

B

C

E

F

+ All AAs
– Ile & Val

– Met & Cys
– Phe,
Trp, Tyr

0

20

40

60

80

100

R
el

at
iv

e 
gr

ow
th

 ra
te

 (%
)

Low stress High stress
(10 nM superoxide)(0.02 nM superoxide)

CysI deactivated

CysI not deactivated

0.0 50.0Shikimate (µM)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
ro

w
th

 ra
te

 (1
/h

)

PQ (µM)
0.0
0.2
0.4
0.6

P=0.0098*

P=0.012*

P=0.032*

D-Galactose

10−18 10−15 10−12 10−9 10−6 10−3

10−18

10−15

10−12

10−9

10−6

10−3

3-ISOPROPYLMALISOM

AROL

BIOTIN-SYN

CPLX0-7719

CPLX0-7760

CPLX0-782

DIHYDROXYACIDDEHYDRAT

Def
IscU:4fe4s

IscU:fe2

    RIBULP3-
           EPIM

SUCC-DEHASE

SULFITE-
REDUCT

UDPACYLGLCNACDEACETYL

Damage flux, D-Galactose (mmol/gDW/h)D
am

ag
e 

flu
x,

 G
ly

co
la

te
 (m

m
ol

/g
D

W
/h

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
ro

w
th

 ra
te

 (1
/h

)

PQ (µM)
0.0
0.2
0.4
0.6

Glycolate

P=0.00025*

P=0.0036*

P=0.0067*

P=0.095

P=0.0085*

Fig. 2. Systemic consequences of ROS stress. (A) Predicted optimal growth
rate under low and high superoxide concentrations with different supple-
mentation of amino acids (AAs). “All AAs” refers to all 20 common amino
acids, and “–Ile & Val” means all amino acids except Ile and Val were
supplemented. (B) Predicted optimal growth rate vs. superoxide concen-
tration in various sulfurous amino acid supplementation media. (C) Same
as B but simulated without damage to CysI by ROS. (D) Simulated dam-
age fluxes for growth on glycolate vs. D-galactose. AROL: shikimate kinase
II. (E) Growth rate of MG1655 on glycolate minimal medium with 0 to 0.6
µM PQ, with and without 50 µM shikimate supplementation. (F) Same as E
but for growth on D-galactose minimal medium. * denotes that the growth
rate changes significantly between two PQ concentrations (2-tailed Welch’s
t test, P < 0.01).

our structural model estimated the siroheme group of sulfite
reductase to be difficult to reach by ROS, mainly due to the
depth of the cofactor binding residue (Dataset S2). Previous
studies showed that the iron–sulfur cluster is likely not autoxi-
dized with molecular oxygen because it is not solvent exposed
(25). However, our structural model predicted that the iron–
sulfur cluster is reached by ROS when considering both solvent
exposure and depth of the cluster-binding residue from the
solvent-accessible surface (Dataset S2). Simulations confirmed
that alleviating damage to sulfite reductase was sufficient to
reverse the observed growth rate defect and enable growth at
higher ROS concentrations in the absence of Cys and Met (Fig. 2
B and C). Our hypothesis that sulfite reductase is deactivated
by ROS is consistent with studies in Salmonella enterica show-
ing that the activity of this enzyme is indeed reduced by elevated
superoxide (26). Furthermore, the deactivation of sulfite reduc-
tase is consistent with accumulation of its substrate, sulfite, and
explains the previously observed accumulation of sulfite (24).
We note that CysI inactivation does not exclude the possibil-
ity that superoxide additionally leads to cell envelope damage,
facilitating leakage of small molecules (27). Thus, OxidizeME
can be used to understand and predict the basis for amino acid
auxotrophies as a systemic response to specific macromolecular
vulnerabilities to ROS.

Computing and Explaining the Environment Dependency of ROS
Tolerance. To investigate how environmental context affects
ROS tolerance, we simulated growth under superoxide stress in
180 carbon sources (SI Appendix, Fig. S2). We then compared
pairs of carbon sources in terms of the complexes that are most
damaged by ROS. In particular, from simulations we predicted
that a key bottleneck to growth on D-galactose under ROS stress
is inactivation of shikimate kinase II, AroL (Fig. 2D). In con-
trast, AroL was predicted to not be a direct bottleneck to growth
on glycolate (Fig. 2D). To validate this prediction, we measured
growth of E. coli MG1655 on these two carbon sources in 0 to
0.6 µM paraquat (PQ). PQ is a divalent cation that is taken up
opportunistically, typically by polyamine transmembrane trans-
porters, and then undergoes reduction and autoxidation cycles
catalyzed by any of three E. coli PQ diaphorases to generate
superoxide (28). To directly test whether AroL is a bottleneck,
we also supplemented the cultures with 50 µM shikimate. As pre-
dicted, shikimate did not alleviate PQ-induced growth defects
during growth on glycolate (Fig. 2E). Meanwhile, shikimate
alleviated growth defects by PQ during growth on D-galactose
(Fig. 2F). These results confirm that OxidizeME is able to accu-
rately predict ROS-induced amino acid auxotrophies in different
environmental contexts. This predictive capability is rooted in its
ability to compute molecular and macromolecular mechanisms.

We then used OxidizeME to explain why growth on glycolate
and galactose exhibited different ROS tolerances. First, ROS
stress globally increases redox balancing and energy produc-
tion requirements to counter the lowered metabolic and protein
expression efficiencies resulting from metalloprotein damage.
Thus, the difference in E. coli’s capacity to replenish these
metabolic capacities under different carbon sources can explain
differences in ROS sensitivity.

During growth on D-galactose, the primary source of NADPH
was the oxidative pentose phosphate pathway (Gnd and Zwf),
with and without ROS stress. Under ROS stress with D-
galactose as the carbon source, simulations indicated increased
methylenetetrahydrofolate dehydrogenase (FolD) activity to
supplement NADPH production by the PPP (pentose phos-
phate pathway), although PPP was still the major source of
NADPH. Meanwhile, NADH production relied greatly on the
glycine cleavage system with ROS, whereas glyceraldehyde-3-
phosphate dehydrogenase was the primary source of NADH
without ROS. The increase in FolD and glycine cleavage
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system fluxes to replenish NADPH and NADH both increased
the requirement for tetrahydrofolate and its derivatives, which
created a new metabolic bottleneck under ROS stress. In con-
trast, with glycolate as the carbon source, optimal NADPH
production was predicted to switch from the TCA cycle (no
ROS) to malic enzyme (with ROS). Thus, the difference between
ROS tolerance capacities for galactose and glycolate as carbon
sources can be explained by flexible NADPH production during
growth on glycolate vs. rigid NADPH production during growth
on galactose.

OxidizeME Delineates Stress-Specific Differential Gene Expression
from Global Expression Changes. Next, we assessed the systemic
response of E. coli to ROS stress. We measured the transcrip-
tome of E. coli under superoxide stress using PQ treatment and
identified 914 differentially expressed genes (DEGs), of which
501 were accounted for in OxidizeME (Fig. 3 and SI Appendix,
Fig. S3). In particular, 87 genes were up-regulated. Using
OxidizeME, we determined that these 87 genes were more likely
activated due to damage that is specific to iron metallopro-
teins than to any other protein (P < 0.001). Furthermore, of
the DEGs that were correctly predicted, a large fraction (84%)
of the repressed genes changed due to decreased growth rate
from PQ treatment, while 95% of the activated genes were spe-
cific responses to stress (Fig. 3). Gene expression is expected
to respond to ROS stress directly—e.g., by up-regulating ROS
detoxification genes—and indirectly—in response to decreased
metabolic rates caused by ROS damage. The responses we iden-
tified as being specific to ROS, not to growth rate, spanned
eight cellular processes (Fig. 3): ROS detoxification, central
metabolism, anaerobic respiration, amino acid biosynthesis,
cofactor synthesis and repair, translation, iron homeostasis, and
transcriptional regulation by the rpoS sigma factor.
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Fig. 3. Validation of the consequences and responses to ROS stress. (A and
B) DEGs (|log2(fold change)|> 0.9, FDR [false discovery rate] < 0.01) that are
activated (A) and repressed (B). Correctly predicted DEGs are distinguished
from global growth-associated regulation using OxidizeME. (C) Cellular
processes involved in a systemic response to iron metalloprotein damage
by ROS.

ROS-evolved cells deregulate Fe–S cluster biosynthesis. E. coli pos-
sesses two alternative systems to synthesize Fe–S clusters: ISC
(iron–sulfur cluster) and SUF (sulfur assimilation). Each sys-
tem can synthesize Fe–S clusters in the absence of the other
(29). While ISC is predominant under normal growth condi-
tions, SUF is activated and can become the primary system under
oxidative or iron limitation stress (4, 30). One reason for this
switch to SUF is that ROS lowers the efficiency of ISC-based
Fe–S assembly by increasing mismetallation of labile iron–sulfur
clusters on the scaffold proteins IscU and SufA (31). In prin-
ciple, switching from ISC to SUF is not the only mechanism
for sustaining Fe–S assembly under ROS stress. For example,
Mycobacterium tuberculosis possesses only the ISC operon, yet
this pathogen is able to grow under oxidative stress including
inside macrophages, presumably by up-regulating its ISC operon
(32). A possible explanation is that M. tuberculosis’s ISC scaf-
fold proteins are less sensitive to ROS than those in E. coli or
are repaired. However, E. coli also possesses several putative
Fe–S cluster repair genes, including ygfZ (33), yggX (15), and
ytfE (16). Overall, gaps exist in our understanding of the cost–
benefit tradeoffs between ISC and SUF under ROS stress. Here,
we investigate this problem using OxidizeME and experimental
validation.

First, we detected DEGs in wild-type E. coli MG1655 in
response to 0.25 mM PQ, using RNA-Seq in glucose mini-
mal medium. We detected repression of iscRSUA (mean log2
(fold change) =− 1.53, FDR-adjusted P < 0.001). We then
repeated this experiment with an E. coli strain (called BOP1000)
that had been evolved to grow rapidly on glucose (34). As
with MG1655, strain BOP1000 repressed iscRSUA (mean log2
(fold change) =− 1.32, FDR-adjusted P < 0.053) (Dataset S3).

Finally, we obtained a laboratory-evolved strain of E. coli
(called PQ3), which was evolved to grow on 0.8 mM PQ (SI
Appendix, SI Materials and Methods). The starting strain for
PQ3 is the glucose-evolved BOP1000. We cultured PQ3 in
0.2 and 0.6 mM PQ and identified DEGs using RNA-Seq.
Under 0.6 mM PQ, strain PQ3 down-regulated the sufABCDSE
transcription unit (mean log2 (fold change) =− 2.01, FDR-
adjusted P < 0.034) (Dataset S3). Furthermore, under 0.2 mM
PQ, strain PQ3 maintained higher expression of ISC compared
with the preevolved BOP1000 strain. Specifically, we observed
higher expression of the transcription units iscRSUA (mean log2
(fold change) =3.47, FDR-adjusted P < 0.001) and hscBA-fdx-
iscX (mean log2 (fold change) =1.99, FDR-adjusted P < 0.001)
(Dataset S3).

The contrasting transcriptomic response of the PQ-evolved
strain from those of the glucose-evolved and wild-type strains
prompted us to investigate genetic and systems-level mechanisms
for ROS adaptation.

Genetic and Systems-Level Mechanisms of Optimal Fe–S Cluster
Biosynthesis. The genetic basis for the PQ-evolved response
of ISC and SUF was a mutation in iscR. IscR regulates the
transcription of both ISC and SUF based on coordination of
2Fe–2S at its Cys92, Cys98, and Cys104 residues (29, 35).
The evolved strain had mutation C104S in iscR. This muta-
tion may hinder IscR’s ability to incorporate 2Fe–2S and to
regulate expression of the ISC and SUF systems under ROS
stress (35).

We then investigated why increasing ISC and repressing SUF
improve fitness under sustained ROS stress. Clearly, we expect
a tradeoff between the rate of Fe–S inactivation at IscU and the
fitness advantage of using SUF. Indeed, simulations show that
below a threshold rate of Fe–S inactivation at IscU (∼ 0.78 s−1),
sulfur transfer during Fe–S assembly occurs almost exclusively
by IscS rather than by SufSE (SI Appendix, Fig. S4). Interest-
ingly, IscU expression is predicted to increase proportionally to
Fe–S inactivation rate up until the threshold, indicating an initial
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compensatory response to lowered Fe–S assembly efficiency at
IscU. However, above the threshold, expression of IscU and IscS
drops sharply, while SufSE and SufBCD expression increases.
One reason for the fitness advantage of ISC over SUF is the cost
of protein expression for each system. Considering just the sul-
fur transfer and scaffold complexes, IscS and IscU require 118
kDa of protein translated, while SufSE and SufBC2D require
227 kDa—93% more than ISC.

Thus, increased ISC expression suggests that strain PQ3 may
experience lowered Fe–S inactivation at IscU. To investigate this
possibility, recall that E. coli possesses several genes associated
with repair or oxidation resistance of Fe–S clusters, includ-
ing ygfZ (33), yggX (15), and ytfE (16). RNA-Seq (Dataset S3)
showed that none of these genes were differentially expressed
by strain PQ3 in response to PQ. There was also no differ-
ence in expression level compared with strain BOP1000 under
PQ treatment. However, DNA-Seq revealed a mutation (T108P)
in ygfZ, a gene thought to contribute to Fe–S cluster synthe-
sis or repair (33). Alternatively, ygfZ may directly degrade PQ,
since it was shown to degrade plumbagin, another redox cycling
compound (36). Either adaptive function would be consistent
with lessened damage to Fe–S clusters overall; however, it is
unclear whether protecting Fe–S clusters at IscU is sufficient
to reproduce the observed increase of ISC expression (and
repression of SUF).

We thus performed simulations where we set the damage
rate to Fe–S clusters at IscU to zero and kept damage pro-
cesses for all other iron and Fe–S cluster-containing complexes.
We then simulated growth of E. coli under basal (0.2 nM) and
high (2 nM) intracellular concentrations of superoxide and iden-
tified in silico DEGs. Simulated DEGs were consistent with
RNA-Seq of PQ3: hscBA-fdx-iscX and iscRSUA operons were
up-regulated, and sufABCDSE was repressed (Dataset S4). This
result indicates that protecting Fe–S clusters at IscU is sufficient
to make ISC more favorable than SUF under ROS stress. The
PQ-evolved strain potentially achieves this protection through
ygfZ and in turn switches to the more advantageous ISC by
mutation of iscR.

Discussion
The use of iron–sulfur clusters and transition metals to catalyze
biological processes can be traced back to the last universal
common ancestor (37) and ROS stress has a profound impact
on all aerobic life forms. OxidizeME advances our understand-
ing of stress-response mechanisms by providing a genome-wide
description of metabolism, protein expression, prosthetic group
engraftment, and ROS protecting mechanisms that collectively
account for up to 85% of the proteome by mass.

We used OxidizeME to predict and explain four cellular
responses of E. coli to ROS. 1) Our model correctly pre-
dicted amino acid auxotrophy under ROS stress and traced the
molecular mechanisms to the correct target enzymes for aro-
matic and branched-chain amino acids. 2) We used OxidizeME
to identify a pair of carbon sources (glycolate and galactose)
predicted to display differential ROS sensitivity, out of 180 pos-
sible sources. By tracing the metalloprotein targets of ROS,
we designed shikimate supplementation experiments predicted
to restore growth in galactose but not in glycolate under ROS
stress. Experiments confirmed our predictions. Furthermore,
our model suggested that ROS sensitivity increased when E.
coli was grown on galactose due to suboptimal NAD(P)H pro-
duction that relied heavily on folate metabolism. Drugs that
target folate metabolism are available (e.g., trimethoprim) (38),
and future studies may explore interventions that combine
ROS, disruption of folate metabolism, and specific nutrient
perturbations. 3) We delineated 56 ROS-specific DEGs from
global expression change resulting from decreased growth rate
under ROS stress. (iv) OxidizeME provided an explanation

for a nonintuitive cellular behavior in ROS-evolved strains:
An inverted preference for using ISC over SUF under ROS
stress, contrasting with ISC repression in both wild-type and
glucose-evolved E. coli. Our model showed that ISC is prefer-
able over SUF under ROS stress when the rate of Fe–S
cluster inactivation at IscU scaffolds remains below a thresh-
old. Below that threshold, ISC is activated proportionally with
ROS stress, and above the threshold the switch from ISC to
SUF occurs. A mutation in ygfZ supported our hypothesis that
Fe–S inactivation at IscU is possibly lowered, while a muta-
tion in iscR explained how the ROS-evolved strain deregulated
ISC and SUF.

In this work, we extended the ME modeling framework
(9, 13, 39) by accounting for chemical (oxidative) stress to
macromolecules. Previously, FoldME (40) enabled simulation
of thermal stress response. In this way, ME models can be
extended to model major physicochemical stresses. Micro-
bial stress response is thought to play an important role in
infectious disease (41, 42), and systems-level reconstructions
of stress response can facilitate model-driven discovery of
antimicrobials. For example, to kill pathogens, macrophages
use ROS (oxidative burst), acidification, and accumulation
of toxic metals including zinc and copper (43). We showed
that OxidizeME computes fitness defects caused by ROS and
disruption of metal ion homeostasis. Therefore, our model
and its extensions can be valuable for investigating host–
pathogen interactions. Fundamentally, the ability to quantita-
tively and mechanistically describe responses to the damage of
ancient conserved molecular targets by ROS and other physico-
chemical factors has broad implications for organisms across the
tree of life.

Materials and Methods
Computing with OxidizeME. We compute solutions to Eq. 6 using Quad
MINOS (44) via the solveME Python module (10).

Differentiating Stress-Specific from Growth-Associated Responses. Using
OxidizeME, we compute growth rate at various intracellular superoxide con-
centrations. At these growth rates, we compute the transcriptome of the
basic ME model (without stress response) to identify DEGs that are associ-
ated with lowered growth. DEGs that are correctly predicted by OxidizeME
but not by ME are stress associated. DEGs that are correctly predicted by
ME and do not considerably change expression in OxidizeME are growth
associated.

Model-Computed Differentially Expressed Genes. We use OxidizeME to clas-
sify genes as activated, repressed, or unchanged in expression in response
to ROS. We compute the change in transcription rates of all transcrip-
tion units in the model for intracellular superoxide concentrations rang-
ing from 0.2 to 2 nmol, which is ∼10 to 100 times the concentration
under aerobic growth without PQ. We then use the average transcription
rate changes. Because certain genes change expression nonlinearly with
superoxide concentration, including an inverse response, and because the
transcription rate change depends on the reference state simulation, we
also compute the Spearman rank correlation of transcription rate with
superoxide concentration. Thus, if a gene has a lower relative rate than
the reference but its rate is positively and significantly (P < 0.05) corre-
lated with superoxide, we use this Spearman rank to predict expression
change. We then classify genes as activated or repressed based on a
threshold transcription rate change, which we vary and investigate using
a precision-recall curve. The best classification is chosen using the thresh-
old that maximizes F = 2 · precision · recall/(precision + recall) (SI Appendix,
Fig. S3).

Randomly Sampling the Scope of Metalloprotein Damage. To investigate
whether the proteins damaged by ROS are limited to the 43 iron metallo-
proteins, we simulated response to ROS for 1,000 models. In each model,
we inactivated a random set of 43 enzymes. Of the 1,000 random models,
26 (2.6%) overlapped with measured down-regulated genes as well as or
better than our model, while none overlapped with up-regulated genes as
well as our model. Therefore, ROS is significantly more likely to damage
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the 43 iron metalloproteins studied here than any other set of 43 proteins
randomly chosen from the 1,582 proteins in OxidizeME.

Data Availability. Code to build and use OxidizeME is available at
https://github.com/SBRG/oxidizeme (45). Mutations for strain PQ3 are
reported in ALEdb (46): https://aledb.org (Project ID OxidizeME) (47).
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