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STOCHASTIC MICROENVIRONMENT MODELS
FOR AIR POLLUTION EXPOSURE

NAIHUA DUAN
RAND Corporation

Exposure assessment is a crucial link in air pollution risk assessment
and management. With the recent advances in instrumentation, it
has become possible to measure air pollution exposure in the vicinity
of the individual human subjects, using either personal monitoring
or microenvironment monitoring. For many important pollutants
such as CO, NO, and VOC, the air pollution exposure depends
crucially on the location and activity of the individual: indoor versus
outdoor, smoking versus not smoking, etc. The stochastic
microenvironment models were developed to relate air pollution
exposure to the location and activity. We review the two major
existing models, the Cartesianization method (Duan, 1980, 1982,
1987) and SHAPE (Out, 1981, 1982, 1984), and compare their
assumptions and implications. We also propose a new model, the
variance components model, which includes both Cartesianization
and SHAPE as special cases. The variance components model
considers both long-term average concentrations and short-term
Sfluctuations. The Cartesianization focuses on long-term averages,
while SHAPE focuses on short-term fluctuations. We propose to
choose among the three models by examining the variance function
which relates variability to averaging time.

The theory is applied to the data collected from U.S. EPA’s
Washington CO Study, with the variance function estimated using
Carroll and Ruppert’s (1984) transform-both-sides regression model
and Duan’s (1983) smearing estimate. For the microenvironment
in transit, both long-term averages and short-term fluctuations are
important.

1. Address all correspondence to: Naihua Duan, RAND Corporation, 1700 Main Street, Santa Monica, CA
90407.
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Ted Johnson, Bill Nelson, Wayne Ott, Paul Switzer, and Jacob Thomas during the course of this research,
and helpful comments from an anonymous referee.
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INTRODUCTION

Air pollution exposure has a variety of meanings; see, for instance, Duan, Dobbs,
and Ott (1989). Given the appropriate instruments for continuous personal
monitoring, we might consider each individual’s exposure profile, i.e., the individual’s
instantaneous exposure taken as a function of time. We usually summarize the
exposure profiles into summary measures such as integrated exposures,

b
Y, = f c(t) dt, (D
a

where Y; denotes the i-th individual’s integrated exposure over a given time period
(a,b), say, a twenty—four hour period, and ¢(¢) denotes the i-th individual’s exposure
profile as a function of time . It is possible to consider other summary measures
such as the maximum exposure, M; = max,<,c(f). We focus on the integrated
exposure in this paper, although most of the principles are generalizable to other
summary measures.

The integrated exposure usually varies from individual to individual. For air quality
management, we need to consider the distribution of the integrated exposure in
a target population:

Fr(y)= P(Y=)). @

We might, for example, base the regulatory decisions on the proportion of individuals
with integrated exposures exceeding a safety threshold y,. We will refer to the
distribution Fy as the exposure distribution.

For many pollutants such as CO, NO,, and VOC, we can conduct personal
monitoring: we take a random sample of » individuals from the target population,

equip them with personal monitors, and observe their integrated exposures, { ¥, _Y,}.
We can then estimate the exposure distribution by the empirical distribution
Fy)=n1 2 1Y =),
i=1 3)

where 1(Y; < y) is the indicator function for the event “Y; < y.” This has been
known as the direct approach.

In many situations we also observe covariates, such as location and activity, which
are predictive of instantaneous exposures. We can stratify each individual’s
instantaneous exposures into strata using those covariates. Each stratum will be
called a microenvironment. For example, we might stratify by the location of the
individual and define five microenvironments: indoor at home, indoor at school,
indoor at other locations, outdoor in transit, and outdoor not in transit. Duan
(1980) developed a criterion for comparing the merits of candidate stratification
schemes.
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Given a stratification of instantaneous exposures into microenvironments, we can
decompse the integrated exposure as follows:

Yizé Ty Cyo

k=1 (4)

where 7, denotes the amount of time the i-th individual spent in the k-th
microenvironment during the time period (a,b), and Cj;, denotes the average pollutant
concentration for the i-th individual in the k-th microenvironment:

C, = [elatdi | Ty, )

where 1,(f) is the indicator for the event “the i-th individual was in the k-th
microenvironment at time ¢.” The decomposition (4) has been known as the
microenvironment decomposition.

We will refer to the row vector T; = (Tj,...,Tix) as the activity pattern for the
i-th individual, and the column vector C; = (Cy,...,Cix)’ as the microenvironment
concentrations for the i-th individual. Both C and T vary from individual to
individual.

According to the microenvironment decomposition, we can represent the exposure
distribution as follows:

Fyy)= f j I(te = y) dFcir(c | YdFr(b), ©)

where F¢r denotes the conditional distribution of C given T, and will be called
the conditional microenvironment concentration distribution; Fy denotes the
marginal distribution of T, and will be called the activity pattern distribution.

As an alternative to the direct approach, we can also estimate the exposure
distribution indirectly from the microenvironment decomposition: we estimate the
conditional microenvironment concentration distribution F¢p and the activity
pattern distribution Fy, then use (6) to estimate the exposure distribution. This
has been known as the indirect approach.

It is usually easy to estimate the activity pattern distribution Fr. We can take
a random sample of individuals from the target population, and conduct an activity
survey, say, using an activity diary: we ask each sampled individual to keep a
diary, and record the amount of time he spent in each microenvironment during
the time period (a,b). From the activity survey, we observe the activity patterns
{Ty...,T,,} for the sampled individuals. We then estimate Fp by the empirical
distribution
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F{y=n"1 Z T < 1) -
i=1

It is usually harder to estimate the conditional microenvironment concentration
distribution F¢ . Ideally, we like to have an enhanced personal monitoring study
in which both C and T are observed on the same individuals. We can then estimate
F¢ir using an appropriate regression of C on T, such as Koencker and Bassett’s
(1978) quantile regression or Efron’s (1991) percentile regression. Such an ideal
study requires that the personal monitoring study be conducted in conjunction
with an activity survey: the same individuals need to fill out activity diaries at
the same time their exposures are being monitored. Furthermore, in order to measure
C, we need to have a personal monitor which provides continuous measurements
of the entire exposure profile.! We can then match the exposure profile with the
activity diary to compute C. Such a study design was used in the Washington
CO Study (Akland et al., 1985).

An important application for the indirect approach is to re-use the monitoring
data from an enhanced personal monitoring study, so as to estimate the exposure
distribution for a new target population. We assume the conditional microenvir-
onment concentration distribution Fg|r in the new population is the same as that
in the previous study. Under this assumption, we need only conduct an activity
survey on the new target population; we don’t need to conduct personal monitoring
in the new study.2 We can combine the conditional microenvironment concentration
distribution estimated from the previous study with the activity pattern distribution
estimated from the new study, then use (6) to estimate the exposure distribution
for the new target population.

Another important application for the indirect approach is known as a
microenvironment monitoring study. We don’t have any personal monitoring data.
Instead, we have monitoring data collected from a random sample of the relevant
microenvironments, say, homes, office buildings, etc.: we send technicians to measure
the pollutant concentrations in those microenvironments. We assume that we can
estimate the conditional microenvironment concentration distribution F¢p from
those measurements.> Under this assumption, we need only conduct an activity
survey on the target population; we don’t need to conduct personal monitoring,.

!For many pollutants such as VOC, there are no personal monitors which can provide continuous measurements.
We can only observe ¥ and T on the sampled individuals, not C. Duan (1989) examines several approaches
to estimate the conditional microenvironment concentration distribution for such studies.

2t is desirable to collect at least some personal monitoring data in the new study to validate of the assumption
that the two conditional microenvironment concentration distributions are the same.

3This is an important assumption and requires that we have a representative sample of the microenvironments.
The sampling of some microenvironments such as homes might be straightforward, and can be implemented
with standard probability sampling techniques. The sampling of some other microenvironments such as in transient
might be fairly difficult, and remains to be studied.
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We can combine the conditional microenvironment concentration distribution
estimated from microenvironment monitoring with the activity pattern distribution
estimated from the activity survey, then use (6) to estimate the exposure distribution.

When applying the indirect approach to estimate the exposure distribution, it is
usually necessary to impose some simplifying assumptions on the conditional
microenvironment concentration distribution F¢r. In other words, we might need
to use models to implement the indirect approach. We call such models the stochastic
microenvironment models, and discuss several such models below.

There are two major stochastic microenvironment models for the indirect approach:
the Cartesianization method (Duan, 1980, 1982, 1987) and SHAPE (Ott, 1981,
1982, 1984).

The Cartesianization method, also known as the convolution method, assumes
C is stochastically independent of T. We will review this model in the next section.
SHAPE decomposes C into short term averages such as minute averages, and
assumes the minute averages are stochastically independent of T. We will review
this model in the section “SHAPE.” We propose a new model, the variance
components model, which includes both the Cartesianization method and SHAPE
as special cases. The theory is then applied to the data collected from U.S. EPA’s
Washington CO Study.

CARTESIANIZATION

Duan (1980, 1982) developed the convolution method which can be used to
implement the indirect approach. The method was applied to the Washington CO
Study in Duan (1985). It was generalized to a broader context in Duan (1987)
and renamed as the Cartesianization method. The essence of the method is to
take the cross product (the Cartesian product) between the microenvironment
concentration data and the activity pattern data.

The Cartesianization method assumes that the microenvironment concentrations
are stochastically independent of activity patterns. This assumption is equivalent
to

Fepr(e | t) = Fe(o), ®

where F: denotes the marginal distribution of C, and will be called the
microenvironment concentration distribution. Under (8), the joint distribution for
C and T is given by multiplying the activity pattern distribution and the
microenvironment concentration distribution. It follows that we can estimate the
two distributions separately, then multiply the two estimated distributions to estimate
the joint distribution.

It follows from (6) and (8) that the exposure distribution is given as follows:
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Fy(y)= | l(tc = y) dF(c)dF(1), ®

Given an estimate for F: and an estimate for Fr, we can use (9) to combine
the two estimated distributions, so as to estimate the exposure distribution. We
can apply this method to three types of situations.

For the first type of application, we have an enhanced personal monitoring study
in which we observe C and T for a random sample of »n individuals from the
target population. We estimate Fy by the empirical distribution (7), and estimate
Fc by the empirical distribution

h
Fdo)y=n"! 2 1(C < o).
Py (10)
We then substitute the empirical distributions (7) and (10) into (9), and estimate

the exposure distribution by

By =n2 2 3 I(TG=y).
i=1j=1 (11)

The estimated exposure distribution (11) can be interpreted as follows. We observe
matched data {(T;, C), i = I,...,n} from the enhanced personal monitoring study,
where each datum T is matched with a corresponding datum C from the same
individual. Under the independence assumption (8), the observed matching is
irrelevant: it is equally likely for T, to occur with C, as it is to occur with C,.
Therefore we neglect the observed matching, and construct a new data set which
consists of all possible matches between T and C: {(T;, C), i = 1,...,n, j = 1,...,n}.
The new data set is the cross product (the Cartesian product) of the observed
activity pattern data, {T,,...,T,}, and the observed microenvironment concentration
data, {Cy,...,C,}. This is the motivation for the terminology Cartesianization.

For each matched pair (T,, C), the corresponding integrated exposure is given
by

Y =TC,= é T Ciko
k=1 (12)

We can interprete Y; as the integrated exposure that would occur if a hypothetical
individual had the i-th individual’s activity pattern and the j-th individual’s
microenvironment concentrations. The estimated exposure distribution (11) is the
empirical distribution for the Y.

Since we do observe the integrated exposures {Y),...,Y,} in an enhanced personal
monitoring study, we can also use the direct approach and estimate the exposure
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distribution by the empirical distribution (3) of the observed integrated exposures.
We can rewrite the direct approach estimate (3) as follows:

Fyy)=n-1 (T,C, < y).

It can be seen from (11) and (3’) that the difference between the direct approach
and the Cartesianization method for an enhanced personal monitoring study lies
in whether we re-match the observed C’s and T’s. Duan (1987) showed that the
Cartesianization method estimate (11) is more precise than the direct approach
estimate (3) when the independence assumption (8) is valid, and gave methods
for estimating the amount of improvement in precision when we use the
Cartesianization method estimate instead of the direct approach estimate. The
improvement can be substantial.

The second type of application is the re-use of monitoring data discussed in the
Introduction. We have an activity survey on a random sample from the target
population, from which we observe activity patterns {T,,...,T,}. We estimate the
activity pattern distribution for this target population by (7). We do not have
personal monitoring data on this sample. Instead, we have an enhanced personal
monitoring study for another population, from which we observe microenvironment
concentrations {C,...,C,,}. We assume the microenvironment concentration
distributions in the two populations are the same, therefore we estimate the
microenvironment concentration distribution in the new target population by the
empirical distribution for C’s from the previous study:

Floo=m1 D 1(C,< o).
‘ J‘S':' : (10)

Under the independence assumption (8), we combine (7) and (10’) to estimate the
exposure distribution Fy for the new target population:

Fy(y) = (nm) 22 TG, <y).
i=1=1 (11)

The estimate (11°) is similar to (11), and can be interpreted similarly.

The third type of application is the microenvironment monitoring study discussed
in the Introduction. We assume that we can estimate the microenvironment
concentration distribution F¢ from the microenvironment monitoring data. We
can then combine the estimated microenvironment concentration distribution with
the activity pattern distribution estimated from the activity survey, then use (9)
to estimate the exposure distribution.
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For all three types of applications, the Cartesianization method requires the
independence assumption (8). This assumption has three major implications. First,
it implies that the activity patterns and the microenvironment concentrations are
uncorrelated:

Cov(Ty,C))=0,k=1,..K, 1= 1, ...,K. (13)

Duan (1985) examined this property for the Washington CO Study, and found
the correlations to be all small and insignificant. Second, (8) implies that the mean
functions are constant:

EC | Ty=pu, k=1,., K (14)

where u, is the expectation for the microenvironment concentration in the k-th
microenvironment. Both (13) and (14) are common to all three stochastic
microenvironment models considered in this paper.

Another implication of (8) is that the variance functions Var(Cy|T,) are constant:
Var(Cy | T)=o0at, k=1,..., K, (15)

where of is the variance of the microenvironment concentration in the k-th
microenvironment. This property does not hold for the other two microenvironment
models to be discussed below.

The property (15) might appear counter-intuitive: the microenvironment
concentration Cj is the average of the exposure profile over the time spent in
the k-th microenvironment, therefore we might expect the variance of Cy would
decrease with the averaging time 7. We will examine the variance function for
the Washington CO Study in a later section.

SHAPE

An alternative stochastic microenvironment model, the Simulation of Human
Activity and Pollution Exposure (SHAPE), was developed in Ott (1981, 1982,
1984). Its validation was studied in Ott, Thomas, Mage, and Wallace (1988) and
Ott, Thomas, Wallace, and Hunt (1988).

SHAPE decomposes microenvironment concentrations into short term averages,
say, minute averages:

T;
Ci = 5: buls) | Ti

s=1

(16)

where b;(s) denotes the average pollutant concentration during the s-th minute
spent in the k-th microenvironment by the i-th individual. (We assume from now
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on that the activity patterns are measured in units of minutes.) It follows from
(16) that we can rewrite the microenvironment decomposition (4) as follows:

Y= fﬁkbik(s).

k=1s=1 “)

SHAPE assumes that the minute averages for the same microenvironment have
the same distribution, and all minute averages are stochastically independent:

bu(s)~ Gilbp) s=1, .., Ty k=1,.., K (17)

where G denotes the distribution for minute averages in the k-th microenvironment.
We will call G, the minute average distribution for the k-th microenvironment.

Given estimated minute average distributions and an estimate for the activity pattern
distribution, SHAPE estimates the exposure distribution by a simulation based
on the microenvironment decomposition (4). For each replicate of the simulation,
we generate the activity pattern for a hypothetical individual in the target population,
for example, by sampling from the estimated activity pattern distribution. We then
generate independent random samples for the minute averages. For the k-th
microenvironment, we generate T minute averages from the corresponding minute
average distribution Gy. The microenvironment decomposition (4') is then used
to determine the integrated exposure for this hypothetical individual: we sum over
all the minute averages. The procedure is replicated N times to provide the integrated
exposures {Y,....Yy} for a hypothetical sample from the target population. The
exposure distribution is then estimated by the empirical distribution of the simulated
integrated exposures.

SHAPE requires that we have valid estimates for the minute average distributions.
This is straightforward if we have an enhanced personal monitoring study in which
we observe each individual’s exposure profile and his activity pattern. Alternatively,
we might conduct a microenvironment monitoring study to obtain minute averages
for the relevant microenvironments, from which we can estimate the minute average
distributions. SHAPE can be applied to the same three types of situations considered
earlier for the Cartesianization method, so long as we can estimate the minute
average distributions from the available monitoring data.

The key assumption in SHAPE is that all minute averages are stochastically
independent. This assumption leads to the same properties (13) and (14) that were
discussed earlier for the Cartesianization method: the microenvironment
concentrations and the activity patterns are uncorrelated, the mean functions are
constant. On the other hand, SHAPE does lead to a different property for the
variance function. Since SHAPE assumes the microenvironment concentration Cj,
is the average of T} independent minute averages, the variance of Cy is inversely
proportional to the averaging time T}
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Var(Cy | T)=1% | Tpo k=1, ..., K, (159

where 77 is the variance for the minute averages in the k-th microenvironment.
We will examine the variance function for the Washington CO Study in a later
section.

The assumption that the minute averages are stochastically independent over time
might be unrealistic, because the adjacent minute averages are likely to be correlated.
Switzer (1988) derived methods which can be used when the minute averages in
the same microenvironment follow a time series model with autocorrelation. The
autocorrelation model also satisfies (13) and (14). Furthermore, the variance function
Var(Cy|T,) also behaves like (15"): it decreases to zero as Ty becomes large, although
it might decrease slower than (15’) because of the autocorrelation.

VARIANCE COMPONENTS MODEL

The Cartesianization method and SHAPE lead to two different variance functions,
(15) and (15’), because they make different independence assumptions. Both variance
functions might be unrealistic. Because of averaging over time, it is unlikely to
have a constant variance function (15). On the other hand, the variance function
in (15") might not allow for heterogeneity of microenvironments, as will be discussed
below. We propose a more general model in this section which includes both
Cartesianization and SHAPE as special cases.

For an illustration, we consider the microenvironment home for two individuals
in a target population. The CO concentration in each of their homes might be
substantially different at any minute. Assume, however, that we monitor their homes
for a very long time period, say, several years, so that the temporal variation
would be essentially eliminated. The microenvironment concentrations in those
two homes are still likely to be somewhat different: one of the two homes might
use gas for heating and cooking, the other might be all electrical; one of the two
individuals might be a smoker, the other home might be free from smokers. If
the monitoring period is long enough, the microenvironment concentration in those
two homes will converge to their long-term averages. However, because the two
homes and the two individuals might be different, the two long term averages
are likely to be different.

The above scenario suggests that the variance function Var(Cy|T;) might decrease
as the averaging time T} becomes longer, although it might never approach zero
as (15') indicates. This suggests that we should consider a variance components
model, in which we decompose the minute averages into two components,

buls) = ay + du(s), (18)

where a;, denotes the long-term average which varies from individual to individual,
but does not vary over time, and dy(s) denotes the short-term fluctuation which
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varies both over individuals and over time. We assume without loss of generality
that the mean of the short-term fluctuation is zero:

E(dy(s) = 0. (19)

It follows from (16) and (18) that the microenvironment concentration is given
by

T,
Cix = ay+ 2 dy(s) | Ty.
s=1 (20)

Furthermore, the microenvironment decomposition (4) is given by

K K T
Y= D apTyt 3,2, dfs).
k=1

k=1s=1 (4”)

We assume the long-term averages and the short-term fluctuations are all
stochastically independent,* and follow the probability distributions

Qi NFk(ak)’ k= 19 oo K (21)
du(s)~ Hi(dp), s=1, ..., Ty, K=1, ..., K. (22)

We will call Fy the long-term average distribution for the k-th microenvironment,
and H) the short-term fluctuation distribution for the k-th microenvironment.

Given estimated long-term average distributions, estimated short-term fluctuation
distributions, and an estimate for the activity pattern distribution, we can use a
simulation similar to SHAPE to estimate the exposure distribution under the
variance components model. For each hypothetical individual from the target
population, we generate the activity pattern according to the estimated activity
pattern distribution. We then generate the long-term averages from the estimated
long-term average distributions, and generate the short-term fluctuations from the
estimated short-term fluctuation distributions; for the k-th microenvironment, we
generate 7 random samples of dy(s). We then use the microenvironment
decomposition (4”) to determine the integrated exposure for this hypothetical
individual. The procedure is replicated N times to provide the integrated exposures
{Y},..., Yy} for a hypothetical sample from the target population. The exposure
distribution is then estimated by the empirical distribution of the simulated integrated
exposures.

The variance components model can be applied to the same types of situations
considered earlier for the Cartesianization method and SHAPE, assuming that

4We can relax the assumption that the short-term fluctuations in the same microenvironment are stochastically
independent over time, and allow for autocorrelation in a way similar to Switzer (1988).
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we can estimate both the long-term average distributions and the short-term
fluctuation distributions. The estimation of the long-term average distributions and
the short-term fluctuation distributions will be studied in a future paper.

The Cartesianization method and SHAPE are both special cases of the variance
components model. If the short-term fluctuations are negligible, i.e., dy(s) = 0,
we have

Ci = ay,

therefore the variance components model simplifies to the Cartesianization method.
If the long-term averages are negligible, the variance components model simplifies
to SHAPE. If neither component is negligible, the variance components model
is different from either the Cartesianization method or SHAPE.

Under the variance components model, the variance function Var(Cy | T) is given
by

Var(Cy | T)= ot + 12 | Ty (157

where of is the variance of the long-term average a;, and ¢ is the variance of
the short-term fluctuation dy(s). It follows that the variance function decreases
as the averaging time 7}, becomes large, although its limit is o7 instead of zero.

Comparing (15), (15), and (15”), we see that the choice among the three stochastic
microenvironment models can be made by examining the variance function. If
the variance function is nearly constant, then the short-term fluctuation is negligible,
and we can use the Cartesianization method. If the variance function decreases
to zero, then the long-term average is negligible, and we can use SHAPE. If the
variance function decreases but flattens out at a positive value, then neither
component is negligible, and we need to use the variance components model. In
the next section we examine the variance function for the Washington CO Study.

WASHINGTON CO STUDY

As was discussed earlier, we can examine the variance function Var(Cy|T)) to choose
among the three stochastic microenvironment models. We now use the empirical
data from the Washington CO Study to illustrate this application. This is an enhanced
personal monitoring study in which we observe both C and T for the same individuals.

The data were collected from a random sample of 705 residents of the Washington,
D.C., metropolitan area. Each participant was monitored for approximately twenty-
four hours, and each filled out a diary. The study was conducted during the winter
of 1982-83. Further details on the study can be found in Akland, et al. (1985),
Duan (1985), and Duan, Sauls, and Holland (1985).
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TABLE 1
Summary Statistics for C and T
Mean SD Min Max
C 445 3.97 0.05 40.68
T 130.23 110.94 8.0 952.0

C: CO concentration in the microenvironment in transit, unit = ppm
T: time spent in the microenvironment in transit, unit = minute

The major source of CO exposure comes from the exposure to automobile exhaust.
We therefore focus this analysis on the microenvironment in transit. We use the
observed activity diaries to determine when an individual was in transit: driving
an automobile, riding a bicycle, walking on the street, etc. We then combine the
activity diary data with the personal monitoring data to determine C; and Tj,.

(We have labeled the microenvironment in transit as the first microenvironment:
k=1)

We have 662 individuals who spent some time in the microenvironment in transit,
therefore we restrict this analysis to those individuals. Table 1 gives the summary
statistics for the observed C,’s and Tj’. The microenvironment concentrations
range from 0.05 ppm (below detection limit) to 40.68 ppm; the activity times range
from 8 minutes to almost 16 hours.

We assume the variance components model, and want to determine whether the
model can be simplified to either the Cartesianization method or SHAPE. As
was discussed above, we can examine the variance function (15”) to choose among
the three models.

In order to estimate the variance function (15”), we define
I/i = (Cil - 6 1)2’ i= 17 w1 (23)

where C., = n ! 3t~ Cy = 4.45 ppm is the average CO concentration in the
microenvironment in transit. Under (14), V; has the following expectation:

E(V)=(1—2) Var(Cy| T)+ Var(C.,). (24)
n

Since the sample size n = 662 is fairly large, the right hand side of (23) is in
essence the variance function Var(C; | T) = o} + 1§ /| T;. We therefore have
a regression model

Visot+ 1| Tyte Ee)=0, (25)

where the residual ¢; denotes the difference between ¥; and its expectation. It follows
that we can estimate the variances ¢? and 77 using a regression of ¥ on 1/T.
For the ease of notation, we define

Ri=1/ T,
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We plotted V; against R; in Figure 1. Since V; is fairly skewed, it is difficult to
visualize any relationship between 7 and R. In order to enhance the interpretation
for Figure 1, we partitioned the individuals into four groups according to their
activity times, each group having approximately the same number of individuals.
We then compared their microenvironment concentrations. The results are given
in Table 2. For each group, the first row gives the sample size; the second and
third rows give the range of activity times; the fourth row gives the average of
R; the fifth row gives the average of V. It appears from the table that V increases
in R, which is consistent with model (25). However, the relationship is statistically
insignificant. We carried out an F test on the difference in ¥ across the four groups;
the P-value was 0.57, indicating there is no evidence that the four groups are
different.

We also fitted a least squares regression of ¥ on R based on model (25); the
results are given in Table 3. The intercept (15.87) is our estimate for of; the slope
coefficient (—7.53) is our estimate for 77. The intercept is significantly different
from zero, indicating that we cannot neglect the long-term averages. The slope
coefficient is insignificant. However, the standard error for the slope coefficient
is very large, therefore the data does not rule out the possibility that the short-
term fluctuations might not be negligible.

Since V is fairly skewed, the validity of the inference in the above analysis is
questionable. Furthermore, the estimates might not be efficient and can be improved
upon by taking a suitable transformation on V. Since we have a theoretical model
(25) for the relationship between ¥ and R, we apply Carrol and Ruppert’s (1984)
transform-both-sides model. We choose the logarithmic transformation because
it approximately symmetrizes the distribution of V.5 OQur transform-both-sides model
is given as follows:

Wi=log(Vy)=log (a+ B/ Ty) + m;, E(my) =0. (26)

where o and B are analogous to o} and 73 in model (26). In order to see the
relationship between the two models, observe that

Vi=(a+ B/ Ty) - exp(n),
EV)=(a+ B/ Th) &,
where ¢ = E(exp(n)) is the retransformation correction.s It follows that

ol=a ¢, 2=["¢. (27)

SWe can improve upon the symmetry by using the eighth root transformation instead; the analyses based
on the two transformations lead to very similar results. The logarithmic transformation has two advantages.
First, it is easier to interpret. Second, it simplifies the retransformation problem.

®We have assumed implicitly that the residuals »; in model (26) have a common distribution. This appears
to be reasonable, as seen from the residual plot in Figure 3. Duan (1983) gave further discussions on the
retransformation problem.
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TABLE 2
By-group Analyses Results

Variable Group 1 Group 2 Group 3 Group 4
n 164 168 161 169
Tpin 8 65 100 160

T ax 64 99 159 952
R 0.0322 0.0125 0.0080 0.0043
14 20.79 18.09 10.96 13.13
w 1.492 0.996 0.987 0.900
w 1.479 1.087 0.995 0.912

n: number of individuals

T i lowest T

T,nax largest T

R:averageof R=1/T

V: average of V

W: average of W = log(V)

W: average of W based on model (5.4)

We can estimate o and B using a nonlinear regression of W = log(¥) on R =
1/T. We can estimate ¢ using the smearing estimate in Duan (1983). We can
then combine those estimates to estimate 67 and 77 using (27).

We plotted W against R in Figure 2. It is difficult to visualize any obvious relationship
between W and R. In order to enhance the interpretation of Figure 2, we carried
out the same by-group analysis on W, for each group, the sixth row in Table
2 gives the average of W. It appears that W is increasing in R, which is consistent
with model (26). We carried out an F test on the difference in W across the four
groups; the P-value was 0.07. Although the F test is not significant at the conventional
5% level, it is close.

We fitted a nonlinear least squares regression of W on R based on model (26);
the results are given in Table 4. The estimated intercept (A = 2.24) is significantly
different from zero, indicating that we cannot neglect the long-term averages. The
estimated slope (B = 58.27) is also significantly different from zero at the conventional
5% level, indicating that we cannot neglect the short-term fluctuations either.

The data appears to fit model (26) reasonably well. The seventh row in Table
2 gives the average predicted values for W for each group of individuals; they
were very close to the corresponding values in the sixth row. We also plotted
the fitted residuals against the predicted values in Figure 3. In order to avoid
the illusion of heteroscedasticity due to the uneven density on the horizontal axis,
we transformed the predicted values into their ranks. There does not appear to
be any obvious anomalies in this scatterdiagram. We tested for the presence of
nonlinearity using the by-group analysis; the P-value was 0.86. We also tested
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TABLE 4
Nonlinear Regression of W = log(V) on R = 1/T
A = Intercept, B = Slope

Non-Linear Least Squares Summary Statistics Dependent Variable W
Source DF Sum of Squares Mean Square
Regression 2 821.3635044 410.6817522
Residual 660 3264.5364056 4.9462673
Uncorrected Total 662 4085.8999100
(Corrected Total) 661 3295.9798961
Parameter Estimate Asymptotic Asymptotic 95%
Std. Error Confidence Interval
Lower Upper
A 2.23931654 0.387305719 1.4788043456 2.99982874
B 58.27135457 29.087978064 1.1542995185 115.38840962
Asymptotic Correlation Matric of the Parameters
Corr A B
A 1.0000 —0.7665
B —0.7665 1.0000

for heteroscedasticity, which gave a P-value of 0.18. Neither P-values are close
to being significant.

As was noted earlier in (27), we need to correct for retransformation bias in order
to relate the estimated intercept and slope from model (26) to ot and 7. We estimate
the retransformation correction ¢ with the smearing estimate in Duan (1983), which
for model (26) is given by

n

$=n"1 exp(i),
i=1
where %, = W, — log(a + 8 | T;) is the fitted residual for the i-th individual.
The estimates are given as follows:

-

¢ =53562=1197,72=311.52,

Since both 0% and 7} are significantly different from zero, we cannot use either
the Cartesianization method or SHAPE, and need to use the variance components
model and consider both the long-term averages and the short-term fluctuations.

Based on the above results, the variance function (15”) is estimated to be
Var(Cy | T) = 11.97 + 311.52/ T}.

If the activity time is short, the short-term fluctuation dominates the long-term
average: the former makes a larger contribution to Var(C; | T). If the activity
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time is 26 minutes (311.52/11.97), the two components are comparable: they make
the same contribution to Var(C; | T)). If the activity time is longer than 26 minutes,
the long-term average dominates over the short-term fluctuation. Among the 662
individuals in our sample, only 36 spent 26 minutes or less in the microenvironment
in transit. Therefore the long-term average dominates over the short-term fluctuation
for the vast majority of our sample.

DISCUSSION

The stochastic microenvironment models are useful for implementing the indirect
approach. The choice among the three models can be made by examining the
variance function. If the variance of the microenvironment concentration does not
depend on the time spent in the microenvironment, we can use the Cartesianization
method. If the variance decreases with time and approaches zero, we can use SHAPE.
If the variance decreases with time but does not approach zero, we need to use
the variance components model and consider both the long-term averages and
the short-term fluctuations.

The transform-both-sides model (26) is useful for estimating the variance function.
For the microenvironment in transit in the Washington CO Study, we estimate
the variance for the long-term average to be o? = 11.97 ppm?, and the variance
for the short-term fluctuation to be 72 = 311.52 ppm?/minute. Both variances
are significantly different from zero.

All results in this paper require some independence assumptions. This is intrinsic
for the indirect approach. Whether those assumptions are realistic remains to be
studied empirically more thoroughly. Duan (1985) examined the correlations among
activity pattern and microenvironment concentrations for the Washington CO study,
and found that all correlations were small and insignificant. Switzer (1988) examined
the minute averages from a microenvironment monitoring study conducted on El
Camino Real, an arterial route in Palo Alto, California, and found little
autocorrelation beyond the first few minutes. More empirical studies of this type
still need to be done.

The results in this paper can be extended in many directions. We now discuss
one important generalization, the incorporation of covariate information into the
variance components model. Assume that we observe covariates x; which describe
the characteristics about the microenvironments, such as ventilation rate, type of
fuel used in cooking and heating, etc. Those covariates can be used to predict
part of the difference in the long-term averages. For example, we might use a
linear regression model:

Ay = v+ Xy + ey, (28)

where -y, denote the average of the long-term averages for individuals with x
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= 0, §, denotes the residual variation in the long-term averages among individuals
with the same covariates. The minute average is then given by

buls) = vi + Sixu + ey + duls). (29)

Given the appropriate data, we can estimate the parameters -y, and &, the distribution
for e, and the short-term fluctuation distribution. We can then estimate the exposure
distribution in two ways. First, we can restrict to the subpopulation of individuals
with the same covariates; we simulate their e’s and short-term fluctuations, then
add the term v, + §,x; to estimate their integrated exposures and their exposure
distribution. Alternatively, if we want to estimate the exposure distribution for
a target population consisting of individuals with different covariates, we need
to conduct a survey to estimate the distribution of the covariates in the target
population, then simulate the covariates along with the other stochastic elements.

We can also use model (28) to incorporate observed ambient conditions as part
of the covariates x;. For some individuals observed on a windy day with low
ambient CO concentration, we might have x; being (windy, 0.5 ppm). For some
individuals observed on a windless day with high ambient CO concentration, we
might have x; being (windless, 10.0 ppm). The long term average a; in (28) should
be interpreted as the long term average for the microenvironment concentration
under the same ambient condition.

Again, we can estimate the exposure distribution in two ways. First, we can restrict
to the exposure distribution under a given ambient condition. We simulate the
e’s and short term fluctuations, then add the term v, + 8;x; corresponding to
the given ambient condition. Alternatively, we can estimate the exposure distribution
pooled across different ambient conditions. We need to collect data on the ambient
conditions, for example, on 10% of the days x; is (windy, 0.5 ppm), on 5% of
days x; is (windless, 10.0 ppm), etc. We simulate the exposure distribution for
each ambient condition, then pool across different ambient conditions, by taking
the weighted average of those exposure distributions, weighted by the prevalence
for each ambient condition.
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