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Abstract

The advent of single-cell RNA sequencing (scRNA-seq) technologies has enabled gene expression profiling at the single-cell resolution,
thereby enabling the quantification and comparison of transcriptional variability among individual cells. Although alterations in
transcriptional variability have been observed in various biological states, statistical methods for quantifying and testing differential
variability between groups of cells are still lacking. To identify the best practices in differential variability analysis of single-cell gene
expression data, we propose and compare 12 statistical pipelines using different combinations of methods for normalization, feature
selection, dimensionality reduction and variability calculation. Using high-quality synthetic scRNA-seq datasets, we benchmarked the
proposed pipelines and found that the most powerful and accurate pipeline performs simple library size normalization, retains all
genes in analysis and uses denSNE-based distances to cluster medoids as the variability measure. By applying this pipeline to scRNA-
seq datasets of COVID-19 and autism patients, we have identified cellular variability changes between patients with different severity
status or between patients and healthy controls.

Keywords: single-cell genomics, differential variability analysis, hypothesis testing, data normalization

INTRODUCTION
In multi-cellular organisms, differences among single cells man-
ifest in the forms of phenotypic, genetic, transcriptomic and
epigenetic heterogeneity [1, 2]. It is now well acknowledged that
bulk sequencing technologies prevent the precise quantification
of cellular heterogeneity when a population of cells is sequenced
together. In contrast, single-cell omics profiling techniques pro-
vide a much higher resolution for revealing cell-to-cell variability.
Among these single-cell techniques, the single-cell RNA sequenc-
ing (scRNA-seq) technologies have been extensively utilized to
investigate transcriptional variation and regulation among indi-
vidual cells [3–5].

Data generated by scRNA-seq experiments have shown that
individual cells of the same cell type still present cell-to-cell vari-
ability in gene expression, and such variability is required for cell-
type-specific, higher level system functions [6–8]. For example,
differentially regulated genes and distinct nutrient absorption
preferences have been found among Paneth cells from different
regions of the intestine [9, 10]. Furthermore, transcriptional vari-
ability of the same cell type is observed to change in response to
biological conditions. Several studies have reported increased cell-
to-cell variability preceding irreversible commitment in differen-
tiation processes [11, 12]. In addition, T cells and cardiomyocytes

were found to exhibit high transcriptional variability in aged mice
[13, 14].

Although cell-to-cell transcriptional variability has been fre-
quently observed in single-cell studies, there have been limited
attempts to quantify to what extent transcriptional variability
changes between biological conditions. A handful of computa-
tional methods have been developed to detect differential vari-
ability of individual genes from bulk-tissue or single-cell gene
expression data [15, 16], but their reliance on specific parametric
models could lead to reduced power when model assumptions
are violated. New visualization tools, denSNE and densMAP [17],
enable visual comparison of relative transcriptional variability of
cell groups in a lower dimensional space. However, these tools do
not offer a rigorous computational comparison.

Motivated by the scarcity of computational tools to study differ-
ential variability between two groups of single cells, we proposed
and benchmarked 12 pipelines for quantifying and comparing the
transcriptional variability of two cell groups (e.g. one group of T
cells from healthy donors and one group from cancer patients).
Rather than focusing on individual genes, our study emphasizes
the overall cellular variability of a cell group. Hence, we consider
a distance-based variability measure as the proxy of transcrip-
tomic dissimilarities of the cells within a cell group. Then, we
further define differential variability as statistically significant
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differences in this variability measure between two cell groups. All
12 pipelines for detecting differential variability take read counts
and cell group labels as input and output P-values indicating the
statistical significance of observed variability changes. In these
pipelines, we consider different combinations of methods for nor-
malization, dimensionality reduction and variability calculation.

We conducted a comprehensive evaluation of the 12 pipelines
using high-quality synthetic datasets, which were generated with
ground truth information of differential variability. Based on our
analyses, we provide guidance on the selection of normaliza-
tion and variability calculation methods in differential variability
analysis. In particular, our analyses have identified the most
powerful pipeline, which performs simple library size normaliza-
tion, retains all genes in analysis and calculates the distances to
medoids using the density-preserving t-SNE embeddings as the
variability measure. Furthermore, we demonstrated the applica-
bility of this pipeline in a real-data analysis of immune cells from
COVID-19 patients. Our findings showed that 14 out of 17 immune
cell types differed significantly in cellular variability between
mild and severe disease stages. A second application on autism
spectrum disorder (ASD) revealed 14 out of 17 cortical cell types
that differed significantly in cellular variability between ASD
patients and healthy controls. To the best of our knowledge, there
is currently no established pipeline that can identify and quan-
tify changes in overall cellular variability using single-cell gene
expression data. Our study bridges this gap by constructing and
evaluating computational pipelines, as well as investigating the
effectiveness of individual steps in these pipelines. Our findings
provide a new perspective for comparing single-cell populations
between diverse biological conditions.

METHODS
Pipelines for differential variability analysis
of scRNA-seq data
Since there are no existing methods for comparing cellular vari-
ability based on single-cell gene expression data of two conditions,
we propose multiple differential variability analysis pipelines, all
of which consist of the following five key steps: (1) normalization,
(2) feature selection, (3) dimensionality reduction, (4) variability
calculation and (5) statistical testing. In particular, we consider
three methods of normalization, two methods of feature selection
and two methods of variability calculation, resulting in 12 distinct
pipelines for evaluation and comparison.

Normalization
Normalization is a critical step in scRNA-seq analysis to address
various technical effects in the sequencing process [18]. We con-
sider three normalization methods for the count data, TP10K,
LogTP10K and SCT, and we refer to the normalized counts as gene
expression levels (Figure 1).

The TP10K method calculates the number of transcripts per
10,000 transcripts in a cell. For each gene in each cell, its UMI
count is first divided by the total UMI count in that cell, and then
scaled by multiplying 10,000. The LogTP10K method represents
the TP10K calculation followed by the logarithm transformation.
For each gene in each cell, its TP10K value is first added by a
pseudo-count of 1, and then transformed using the natural loga-
rithm. The SCT method stands for sctransform, which is a normal-
ization method proposed by Hafemeister and Satija [19]. For each
gene, sctransform fits a Negative Binomial regression model on its
UMI counts, using the total number of UMI counts in individual
cells as an explanatory variable. Based on the fitted regression

models, the Pearson residuals are calculated for each gene in
each cell and then treated as the normalized gene expression
levels.

Feature selection
Selection of gene features is a common step in scRNA-seq anal-
ysis before model-based dimensionality reduction [20, 21]. Even
though feature selection has been shown to be effective in clus-
tering and classification analyses of single-cell gene expression
data, it is not clear if it also contributes to differential variability
analysis. In our study, we consider two methods for comparison.
The first method is to use all detected genes without feature
selection. The second method is to select the top 2000 variable
genes using the ‘vst’ method implemented in the Seurat package
[22]. Then, only the normalized expression levels of these genes
are used in subsequent steps.

Dimensionality reduction
We consider two methods for dimensionality reduction: princi-
pal component analysis (PCA) and density-preserving stochas-
tic neighbor embedding (denSNE) [17]. First, for each gene, the
normalized expression levels across individual cells are centered
and scaled, so the mean expression becomes 0, and the variance
becomes 1. When PCA is used, it is performed on the scaled data
to calculate the principal components (PCs) and corresponding
scores. The top 200 PCs are then used as the input for downstream
variability calculation.

The denSNE method modifies the objective function used by
tSNE [17] to better preserve the local density in data. Following
the original work of denSNE to first produce lower dimensional
representations of individual cells using PCA, denSNE is applied
on the top 200 PCs (calculated as described above) to obtain two-
dimensional denSNE embeddings.

Variability calculation
We use a matrix X to denote the cells’ coordinates obtained
from the dimensionality reduction step. X is either a 200 × J
or a 2 × J matrix with columns representing cells and rows
representing 200 PCs or two embedded denSNE features. For
cell j, its coordinate vector in the reduced-dimensional space is
denoted as Xj. These vectors are used to calculate the variability
measures.

We use the distance to the medoid (DM) as the variability
measure. As a distance-based measure, the DM represents dissim-
ilarity between the transcriptomic profile of each individual cell
and the ‘average’ transcriptomic profile of the same cell type. If a
cell type has increased variability in one condition than another,
the distribution of DM is expected to have a larger mean in the
former condition. The calculation of the DM measure requires
cell type labels so that the cell type medoids can be obtained.
In our simulation study, we directly used the K cell-type labels
obtained from the simulation process. In real practice, the labels
could be provided by the users as the input information of the
pipelines.

For each cell type, we first identify its medoid cell, assuming
that there are C cells in the cell type. The index of the medoid cell
can be determined as follows:

j∗ = argmin
j0∈{1,...,C}

∑

j∈{1,...,C}
d(Xj0 , Xj), (1)

where d(·) represents the Euclidean distance function. Then, cell
j’s distance to medoid is defined as its euclidean distance to the
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Figure 1. An outline of the 12 pipelines for differential variability analysis. For simplicity, we name the pipelines as X_Y_Z, where X stands for the
normalization method (‘TP’ for TP10K, ‘Log’ for LogTP10K and ‘SCT’ for sctransform), Y stands for the feature selection method (‘A’ for all genes and ‘2K’
for top 2000 variable genes) and Z stands for the dimensionality reduction method (‘PCA’ for principal component analysis and ‘denSNE’ for density-
preserving t-SNE). The variability measure is defined as the distance to the medoid (DM), which is the distance between a single cell and the medoid
of the cell type it belongs to (see Methods for details). All the pipelines take count matrices as input and output P values for the differential variability
analysis.

corresponding medoid cell:

DMj = d(Xj, Xj∗ ); j ∈ {1, . . . , C} . (2)

The above calculation process is repeated for every cell type.

Testing of differential variability
We consider the problem of comparing transcriptional variability
of the same cell type between two conditions. First, the count
data of cells from different cell types and conditions are analyzed
jointly to perform normalization, feature selection and dimen-
sionality reduction. Second, the cells are separated by cell types
and conditions before the calculation of distances to medoids.
After we obtain the DMs of individual cells in the two conditions,
a Wilcoxon rank sum test is performed for each cell type to decide
if there is a significant difference in cell type variability between
the two conditions.

Simulation of scRNA-seq data
We utilized the scDesign2 simulator (v0.1.0) to generate single-
cell gene expression data, so that we can evaluate the pipelines
on data with ground truth information about the change of
transcriptional variability [23, 24]. Briefly, we simulated single-
cell gene expression data of six cell types for two biological
conditions, C1 and C2. In detail, our simulation assumed that two
cell types (I1 and I2) had increased variability in C2 compared
with C1, two cell types had decreased variability (D1 and D2) and

two cell types (R1 and R2) had the same variability between the
two conditions. We introduce our simulation procedure in detail
below.

First, to mimic real data characteristics, we used scDesign2 to
learn gene expression parameters from a single-cell gene expres-
sion dataset of six immune cell types (B cells, monocytes, neu-
trophils, platelets, red blood cells and T cells). The dataset was
obtained from the immune cells of primary non-small-cell lung
cancer patients [25]. The expression parameters learned from
these real data were used to set up the expression parameters in
conditions C1 and C2 in the next step.

Second, we generated two sets of gene expression parameters
for the two conditions, C1 and C2. For cell types I1 and I2, we
directly used the estimated gene expression parameters from real
data as the parameters in condition C1. Since their variability
increased in condition C2, we randomly selected half of the genes
and increased their dispersion parameters by factors randomly
drawn from Unif(1.5, 3.0). For cell types D1 and D2, we directly
used the estimated gene expression parameters from real data
as the parameters in condition C2, and modified the dispersion
parameters in condition C1 as described above. For cell types R1
and R2, their parameters were the same in the two conditions, and
directly set to the estimated ones from real data.

Finally, we used scDesign2 to simulate gene expression count
matrices of the six cell types in the two conditions based on
the above gene expression parameters. As an example, we ran-
domly selected one simulated dataset with 200 cells per cell type
and visualized the cells in Figure 2 and Supplementary Figure 1.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data


4 | Liu et al.

Figure 2. The denSNE embeddings of an example simulated dataset. The TP10K normalization method and all genes were used for the dimensionality
reduction step. (A): Cells are colored by the two conditions. For each cell type in each condition, the ellipse outlines the region that covers around 95% of
cells from that cell type (estimated using a multivariate normal distribution). (B): Cells are colored by the six cell types, and cells are separately shown
for the two conditions.

As expected, cell types D1 and D2 had smaller variability in con-
dition C2, so the cells had increased densities in the denSNE and
PCA plots, compared with cells from the same type in condition
C1; cell types I1 and I2 had larger variability in condition C2, so the
cells had decreased densities compared with cells from the same
type in condition 1.

To evaluate the effect of available cell numbers on the
performance of the pipelines, we simulated data in four distinct
scenarios, each comprising 100, 200, 500 and 1000 cells per
cell type and condition. For each scenario, the simulation was
independently repeated 1000 times to allow for the calculation
of type I error and statistical power in differential variability
analysis.

In our simulation study, we applied two-sided Wilcoxon rank
sum tests to data of cell types R1 and R2, so as to evaluate
the pipelines’ type I error given no change in cellular variability
between conditions. In addition, we applied one-sided Wilcoxon
tests to data of the remaining four cell types (D1, D2, I1 and
I2) in order to evaluate the ability of different pipelines to cor-
rectly detect significant variability changes and their respective
directions. Specifically, for cell types D1 and D2 (I1 and I2), the
alternative hypothesis posits that the cellular variability is lower
(greater) in C2 than in C1.

Real data analysis
COVID-19 data analysis
In this real data application, we used the scRNA-seq count data of
36 COVID-19 patients [26] who exhibited mild or severe symptoms
at the time of blood sample collection. To perform the differential
variability analysis, we leveraged the cell type annotations from
the original publication and considered 17 cell types, including
B cells, CD4+ T cells (CD4), CD8+ T cells (CD8), dendritic cells
(DC), γ δ T cells (gdT), hematopoietic stem cells (HSC), prolif-
erating lymphocytes (Lymph_prolif), mucosal-associated invari-
ant T cells (MAIT), CD14+ monocytes (Mono1), CD16+ mono-
cytes (Mono2), CD16+ natural killer cells (NK_16hi), CD56+ nat-
ural killer cells (NK_56hi), plasmacytoid dendritic cells (pDC),
plasmablasts, platelets, red blood cells (RBC) and regulatory T
cells (Treg). We utilized the TP_A_denSNE pipeline to compare
the variability of each cell type in patients between two clin-
ical conditions of COVID-19 patients: mild and severe disease

phase. The two-sided Wilcoxon rank sum tests were used in this
analysis.

ASD data analysis
In this application, we used the scRNA-seq count data of the
cortical tissue from 14 ASD patients diagnosed with ASD and 16
healthy controls [27]. To perform the differential variability analy-
sis, we used the 17 cell types annotated by the original publication,
including fibrous astrocytes (AST-FB), protoplasmic astrocytes
(AST-PP), endothelial cells (Endothelial), parvalbumin interneu-
rons (IN-PV), somatostatin interneurons (IN-SST), synaptic vesi-
cle glycoprotein 2C-expressing interneurons (IN-SV2C), vasoac-
tive intestinal polypeptide–expressing interneurons (IN-VIP), layer
2/3 excitatory neurons (L2/3), layer 4 excitatory neurons (L4),
layer 5/6 corticofugal projection neurons (L5/6), layer 5/6 cortico-
cortical projection neurons (L5/6-CC), microglia, maturing neu-
rons (Neu-mat), neurogranin-expressing neurons subpopulation I
(Neu-NRGN-I), neurogranin-expressing neurons subpopulation II
(Neu-NRGN-II), oligodendrocytes and oligodendrocyte precursor
cells. Then, we utilized the TP_A_denSNE pipeline to compare the
variability of each cell type between autism patients and healthy
donors. The two-sided Wilcoxon rank sum tests were used in this
analysis.

Gene set enrichment analysis
To investigate the individual genes that contributed to the
cell type variability change and their biological functions, we
performed the gene set enrichment analysis on the COVID-19
and ASD datasets, respectively. First, we calculated the expression
variance of each gene in each cell type based on the TP10K-
normalized expression levels, and then selected the top 25%
genes that exhibited higher (or lower) variances in cell types with
increased (or decreased) variability. For the COVID-19 dataset,
we performed the enrichment analysis using pathways in the
Pathway Interaction Database (MSigDB v2023.1.Hs C2:PID) [28,
29]. For the ASD dataset, we performed the enrichment analysis
using pathways in the Pathway Interaction Database (MSigDB
v2023.1.Hs C2:PID) and the Human Phenotype Ontology (MSigDB
v2023.1.Hs C5:HPO) [28, 30]. The analyses were implemented
using the R package ClusterProfiler [31]. The enriched pathways
were defined as those with an FDR-adjusted P-value < 0.05.
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RESULTS
Effect of normalization methods in differential
variability analysis
To investigate the effect of various normalization methods in
differential variability analysis of single cells, we first compared
the pipelines’ performance with a focus on comparing the three
normalization methods, TP10K, LogTP10K and SCT, as described
in Methods. For this comparison, all gene features were used when
performing PCA.

When the denSNE embeddings were used to calculate the vari-
ability measure, the statistical power of the TP10K-based pipeline
(blue bars) was consistently better than the pipelines based on
LogTP10K (red bars) or SCT (green bars) (Figure 3A). It is also worth
noting that, when the cell number was relatively low (100 cells
per cell type), the TP10K-based pipeline had difficulty in detecting
decreasing variability from condition C1 to C2, but its statistical
power was between 0.642 and 1 when the cell number was at least
200 cells per cell type. In contrast, the performance of the SCT-
based pipeline was not consistent across cell types. It successfully
detected increasing variability (cell types I1 and I2) when the cell
number was at least 200 per cell type, but it failed to detect
decreasing variability (cell types D1 and D2) regardless of cell
numbers. As for the LogTP10K-based pipeline, it performed poorly
in all combinations of cell types and cell numbers. In terms of the
type I error, all three pipelines were able to control the type I error
below the nominal level of 0.05 (Figure 3B and Supplementary
Table 1).

When the PC scores were used to calculate the variability
measure, the TP10K normalization still achieved the best power in
most cases, followed by SCT and LogTP10K (Figure 3C). However,
the PCA-based pipelines often led to high type I errors regardless
of the normalization method used (Figure 3D and Supplemen-
tary Table 1). In addition, we observed that the LogTP10K nor-
malization yielded better power when used with the PCA-based
variability measure, while the TP10K normalization tended to
have a better power when used with the denSNE-based variability
measure.

To explore the reasons why the LogTP10K-based pipelines per-
formed the worst, and why the SCT-based pipelines had varying
power across the four cell types, we compared the calculated gene
variances between conditions C2 and C1 based on the normalized
expression levels (Figure 4). According to the ground truth from
the simulation process, the log-ratios of median gene variances
were expected to be negative in cell types D1 and D2 and positive
in cell types I1 and I2. In our analyses, the signs of log-ratios after
TP10K normalization were consistent with the expected signs in
all the scenarios. However, the log-ratios after LogTP10K normal-
ization always had opposite signs. This phenomenon explains
the poor performance of LogTP10K-based pipelines in detecting
differential variability of cells. Besides, the SCT-based log-ratios
were always positive except when the cell number was 500 or 1000
in cell type D1, which explains why the SCT-based pipelines only
had good power on cell types I1 and I2.

Next, we further investigated if the performance of the
normalization methods depends on the mean expression levels
of genes, since the dependence between expression mean and
variance is widely observed in scRNA-seq data [32]. We used one
simulation dataset with 100 cells per cell type as an example, and
compared the calculated gene variances based on the normalized
data between two gene groups: the low expression group and
the high expression group (Figure 5). We found that, for the
high expression group, the normalized data always presented
variance changes consistent with the ground truth directions,

regardless of normalization methods used. Yet, with the LogTP10K
normalization, the gene variances calculated for the low
expression group could not reflect the actual variance changes
between the two conditions for any of the four cell types. With the
SCT normalization, the calculated variances of the low expression
group always increased in condition C2 regardless of the ground
truth changes. These comparisons suggest that the LogTP10K
and SCT normalization methods cannot guarantee to retain the
relative relationships of gene variances in the normalization
process, especially for genes with relatively low expression levels.

Effect of feature selection in differential
variability analysis
Since TP10K and SCT have demonstrated obviously better
performance in the aforementioned results, we next evaluated
how the selection of gene features affected the differential
variability analysis based on these two normalization methods.
For simplicity, we name the pipelines as X_Y_Z, where X refers
to the normalization method (‘TP’ for TP10K and ‘SCT’ for
sctransform), Y stands for the feature selection method (‘A’ for all
genes and ‘2K’ for top 2000 variable genes) and Z stands for the
dimensionality reduction method.

First, we evaluated the impact of feature selection using
the pipelines based on TP10K normalization, by comparing
TP_2K_denSNE versus TP_A_denSNE and TP_2K_PCA versus
TP_A_PCA (Figure 6). Using the denSNE-based variability, the
pipelines based on both feature sets (TP_2K_denSNE and
TP_A_denSNE) performed comparably in detecting increasing
variability (cell types I1 and I2), whereas TP_A_denSNE performed
better in detecting decreasing variability (cell types D1 and D2)
when the cell number was relatively low (Figure 6A). Moreover,
both pipelines showed well-controlled type I errors (Figure 6B
and Supplementary Table 2). However, when using the PCA-based
variability measure, TP_2K_PCA consistently had larger power
and smaller type I errors than TP_A_PCA. Yet, the type I errors
could not be controlled under the target level, regardless of the
gene feature set being used (Figure 6C-D and Supplementary
Table 2).

Next, we evaluated SCT normalization-based pipelines
by comparing SCT_2K_denSNE versus SCT_A_denSNE and
SCT_2K_PCA versus SCT_A_PCA (Supplementary Figure 2). The
two pipelines using denSNE-based measures (SCT_2K_denSNE
and SCT_A_denSNE) were able to control type I errors (Supple-
mentary Figure 2A-B and Supplementary Table 3), but both had
an unstable power in detecting variability change (Supplementary
Figure 2A). The SCT_A_denSNE pipeline performed slightly better,
but exhibited a relatively high power only in cell types I1 and
I2 when the cell number was at least 200 per cell type. This is
consistent with our prior finding that the SCT normalization was
not able to preserve relative gene variance in all combinations of
cell types and cell numbers. Besides, between the two PCA-based
pipelines, SCT_A_PCA and SCT_2K_PCA, SCT_A_PCA had slightly
higher power in most cases, but the type I errors were again not
well controlled (Supplementary Figure 2C-D and Supplementary
Table 3).

Comparison of the 12 pipelines for differential
variability analysis
After evaluating the individual effects of normalization methods
and feature selection in differential variability analysis, we sought
to determine the pipelines with the best accuracy among all pos-
sible combinations of normalization (TP10K or SCT), feature selec-
tion and dimensionality reduction methods. We compared eight

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
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Figure 3. A comparison of the three normalization methods in differential variability analysis. (A): Statistical power of denSNE-based pipelines for cell
types D1, D2, I1 and I2. (B): Quantile–quantile plots comparing distributions of expected P-values and P-values from denSNE-based pipelines under the
null hypothesis. (C): Statistical power of PCA-based pipelines for different cell types. (D): Quantile–quantile plots comparing distributions of expected
P-values and P-values from PCA-based pipelines under the null hypothesis.

pipelines (TP_2K_denSNE, TP_A_denSNE, TP_2K_PCA, TP_A _PCA,
SCT_2K_denSNE, SCT_A_denSNE, SCT_2K_PCA and SCT_A_PCA),
and excluded the LogTP10K-based pipelines as previous results
have shown that LogTP10K normalization cannot correctly retain
the relative relationship among gene variances.

The comparison of statistical power shows that the TP10K-
based pipelines overall had a better power in detecting differential
variability than the SCT-based pipelines accounting for different
cell types and cell numbers (Figure 7A). The TP_A_denSNE and
TP_2K_denSNE pipelines had the largest average power across
different scenarios, followed by the TP_2K_PCA and TP_A_PCA
pipelines. In contrast, the power of SCT-based pipelines was not
stable across different cell types. In terms of controlling type
I errors, all of the denSNE-based pipelines were able to con-
sistently control type I errors across scenarios, while the PCA-
based pipelines frequently had large type I errors (Figure 7). In
summary, the TP_A_denSNE pipeline had the best performance
in differential variability analysis because of its high statistical
power and low type I error rate.

After identifying TP_A_denSNE as the best pipeline for
differential variability analysis, we further evaluated an extended
version of this pipeline on single-cell gene expression data
with batch effects. For this evaluation, we designed another

simulation study, in which we generated data from two biological
conditions, and cells in both conditions came from two batches
(Supplementary Methods). Subsequently, we used the extended
TP_A_denSNE pipeline to perform differential variability analysis.
First, the variability measure was calculated as described in
Methods for each cell type, batch and condition. Second, to
consider batch effects in the differential analysis, we built a linear
regression model for each cell type with the variability measure
as the response. The condition and batch labels were treated
as the independent variables. Finally, differential variability was
determined based on the statistical significance of the condition’s
regression coefficients (Supplementary Methods). Our results
based on 500 independently generated datasets show that the
extended TP_A_denSNE pipeline was able to maintain a high
statistical power and achieve control of the type I error in the
presence of batch effects (Supplementary Figure 3).

The TP_A_denSNE pipeline uses the denSNE method for dimen-
sionality reduction and cells’ distances to medoids as the vari-
ability measure. In the denSNE publication (Narayan et al.), a
measure called the local radius (LR) was proposed, which intu-
itively represents the average distance of a cell to its nearest
neighbors [17]. Therefore, we also evaluated the performance of
this variability measure. We refer to this new pipeline as TP_A_LR,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
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Figure 4. A comparison of gene variances calculated using different normalization methods. As 1000 independent datasets were generated for each
combination of cell type and cell number, for each dataset, we calculated the log-ratio of median gene variances (between condition 2 and condition 1)
based on the normalized expression values. The density plots illustrate the distribution of the log-ratios across the 1000 datasets. The expected sign of
log-ratios is negative for cell types D1 and D2 and positive for I1 and I2. Normalization methods that led to the correct signs are marked with �, and
those leading to incorrect signs are marked with �.

which followed Narayan et al. to calculate the cells’ LR and then
used the Wilcoxon test to identify differential variability. Our
results show that TP_A_denSNE outperformed TP_A_LR in terms
of statistical power when cell number within each cell type was at
least 200 (Supplementary Figure 4A). Moreover, TP_A_LR failed to
control the type I error regardless of cell numbers (Supplementary
Figure 4B).

In addition to the differential variability analysis considered by
this article, the BASiCS [16] method is able to perform differential
variability testing on individual genes. Even though developed for
a different purpose, we applied the BASiCS method to our simu-
lated data (with 200 cells per cell type) to evaluate its applicability.
For each gene, BASiCS will determine whether its variability is

significantly different between the biological conditions. Based on
our simulation process, cell types I1 and I2 only had genes with
higher variability in C2; cell types D1 and D2 only had genes with
higher variability in C1; cell types R1 and R2 did not have genes
with differential variability. However, the testing results of BASiCS
did not reflect this setting (Supplementary Table 4).

The TP_A_denSNE pipeline identifies changes in
immune cell variability in COVID-19 patients
Since the TP_A_denSNE pipeline has demonstrated the best accu-
racy in the simulation study, we applied it to study the peripheral
blood cell populations of COVID-19 patients [26]. In detail, we
used the scRNA-seq data of 36 patients, and tested the difference

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
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Figure 5. A comparison of calculated gene variances between genes with low and high mean expression levels (based on one simulation dataset). Lowly
and highly expressed genes were classified based on their log10-transformed mean UMI counts, using 0.5 as the cutoff. Each column represents one cell
type, and each row represents one normalization method. Only genes with different variances between the two conditions are included. The ground
truth gene variances in cell types I1 and I2 are higher under condition 2, and the ground truth gene variances in cell types D1 and D2 are higher under
condition 1. Normalization methods that lead to the correct orders are marked with �, and those leading to incorrect orders are marked with �.

in variability of their blood immune cells between two clinical
conditions: the mild and severe disease status (see Methods). Our
analysis revealed that 14 out of 17 cell types presented significant
differential variability in COVID-19 patients with different disease
severity, using a threshold of 0.05 and Benjamini–Hochberg cor-
rection (Figure 8). Among these, nine cell types have increased
variability and five cell types have decreased variability in the
severe stage.

Further, we identified top genes that had gene expression
variance change in the same direction as the cell type vari-
ability change, and performed the pathway enrichment analysis
(Methods). The enriched pathways helped explain the biological
variation of immune cells between mild and severe disease stages.

For example, the B cell population had increased variability in
the severe stage and its enriched pathways included the BCR
pathway, PDGFRB pathway, CDC42 pathway and MYC pathway,
which have important roles in the activation and proliferation of B
cells [33–36] (Supplementary Figure 5A). These enriched pathways
likely explain the clonal expansion of B cells in severe COVID-19
patients [26]. Besides, CD4+ T cells also had increased variability
in the severe stage, and we observed multiple enriched pathways
related to T cell activation and development, such as the TCR
pathway, HDAC Class I pathway and MYC pathway [37, 38]).
Further, we found that the genes that contributed to the decreased
variability of CD8+ T cells had enriched pathways responsible
for the effector function and exhaustion of CD8 T cells, such

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
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Figure 6. Effect of feature selection in differential variability analysis. (A): Statistical power of the TP_A_denSNE and TP_2K_denSNE pipelines. (B):
Quantile–quantile plots comparing distributions of expected P-values and P-values from TP_A_denSNE and TP_2K_denSNE pipelines under the null
hypothesis. (C): Statistical power of the TP_A_PCA and TP_2K_PCA pipelines. (D): Quantile–quantile plots comparing distributions of expected P-values
and P-values from TP_A_PCA and TP_2K_PCA pipelines under the null hypothesis.

as the HIF-1 pathway, lysophospholipid-related pathways, NFAT
pathway, and AP-1 pathway [39–41] (Supplementary Figure 5B).

Based on the top genes used in the pathway enrichment analy-
sis, we also investigated to what extent these genes demonstrated
consistent variance change across different patients. For each cell

type that had significantly different variability between mild and
severe stages and each top gene, we calculated the genes’s vari-
ance in each patient and found the median variances in the two
stages. If the cell type had increased variability in a condition and
a gene’s median variance was also higher in the same condition,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad294#supplementary-data
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Figure 7. A comparison of the eight TP10K- or SCT- based pipelines in differential variability analysis. (A): Statistical power of the eight pipelines. (B):
Type I errors of the eight pipelines under the null hypothesis. The pipelines are ordered by their average statistical power across all the combinations of
cell types and cell numbers.

Figure 8. A comparison of immune cell variability in patients at different COVID-19 severity status. The vertical axis represents the variability measure
of the immune cell variability calculated by the TP_A_denSNE pipeline. The plots are colored by the severity of COVID-19 symptoms. The adjusted
P-values from the TP_A_denSNE pipeline are shown below the cell type names. For significant changes (adjusted P-value < 0.05), the directions of
variability change from the mild to the severe stage are marked as ↑ (increase) or ↓ (decrease). CD4: CD4+ T cells; CD8: CD8+ T cells; DCs: dendritic cells;
gdT: γ δ T cells; HSC: hematopoietic stem cells; Lymph_prolif: proliferating lymphocytes; MAIT: mucosal-associated invariant T cells; Mono1: CD14+
monocytes; Mono2: CD16+ monocytes; NK_16hi: CD16+ natural killer cells; NK_56hi: CD56+ natural killer cells; pDC: plasmacytoid dendritic cells; RBC:
red blood cells; Treg: regulatory T cells.
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this indicated that the majority of subjects had consistent change
in this gene. We found that most cell types had over 70% top genes
that demonstrated a consistent change (Supplementary Table 5).

This real data application highlights the potential of differen-
tial variability analysis to analyze and compare single-cell gene
expression data from various disease phases, revealing cellular
variability changes in blood immune cells associated with COVID-
19 severity.

The TP_A_denSNE pipeline identifies changes in
cortical cell type variability in autism patients
We further applied the TP_A_denSNE pipeline to compare the
cortical cell types of ASD patients and healthy controls [27]. In
detail, we used the scRNA-seq data of 15 ASD patients and 16
healthy controls, and tested the difference in variability of 17
cell types from their cortical tissues (see Methods). Our results
revealed that 14 out of 17 cell types presented significant differ-
ential variability in ASD patients compared with healthy controls,
using a threshold of 0.05 and Benjamini–Hochberg correction
(Supplementary Figure 6). Among these, eight cell types have
increased variability and six cell types have decreased variability
in the ASD patients, compared with the healthy donors.

Next, we also extracted cell-type-specific genes that con-
tributed to the cell type variability change and performed
pathway enrichment analysis using these genes (see Methods). In
this analysis, we considered pathways in the Pathway Interaction
Database and the Human Phenotype Ontology [28, 30]. Among
cell types with significantly increased variability in ASD patients,
the ERBB1 and PDGFRB pathways were enriched in six and four
cell types, respectively. They have important functions in nerve
cell development and repair, and were reported to be associated
with ASD symptom severity [42, 43] (Supplementary Figure 7A). In
addition, we found that several phenotype ontology terms, such
as ‘Hyperactivity’, ‘Intellectual disability, severe’ and ‘Abnormal
emotion/affect behavior’, were enriched in multiple cell types
with increased variability (Supplementary Figure 8A). As for cell
types with significantly decreased variability in ASD patients,
the ERBB1 and PDGFRB pathways were most enriched in the
endothelial cells. Besides, in parvalbumin interneurons (IN-PV),
the CDC42 and mTOR signaling pathways were enriched, both
of which are indicative of neurodevelopmental abnormalities in
ASD patients [44, 45] (Supplementary Figure 7B). The phenotype
ontology ‘Abnormality of the cerebral cortex’ was also enriched
in genes with decreased variance in IN-PV of ASD patients
(Supplementary Figure 8B).

On this dataset, we also investigated to what extent the top
genes demonstrated consistent variance change across different
patients, using the same approach as on the COVID-19 data. Our
results show that all cell types had over 80% top genes that
demonstrated a consistent change (Supplementary Table 6).

CONCLUSIONS
Quantifying and comparing single-cell heterogeneity are pivotal
to understanding cell fate decisions and patterns of distinct cel-
lular behaviors. Although there have been some computational
efforts to detect and quantify gene-level variability from scRNA-
seq data, methods for differential variability analysis between cell
populations are not yet available.

Instead of studying the variability of individual genes, our work
focuses on quantifying and comparing the cellular variability of
cell populations between different biological conditions. To this

end, we formalized and evaluated 12 pipelines for differential
variability analysis of scRNA-seq data, which accounted for differ-
ent combinations of methods for normalization, feature selection
and dimensionality reduction.

Evaluation based on high-fidelity synthetic data with ground
truth suggests that the best pipeline performs library size nor-
malization without logarithm transformation, retains all genes
in analysis and uses the denSNE-based distances to population
medoids as the variability measure.

In summary, our work complements existing research focused
on gene-level variability changes or visualization methods. We
anticipate that our findings, together with the proposed pipelines,
will offer a new perspective to compare single-cell populations
from different cell types or biological conditions based on the
overall transcriptional variability. This approach will contribute
to a deeper understanding of cellular heterogeneity in various
biological and biomedical contexts.

Key Points

• We evaluated 12 pipelines for the differential variability
analysis of single-cell RNA-seq data. The pipelines are
composed of various combinations of methods for nor-
malization, feature selection, dimensionality reduction
and variability calculation.

• To benchmark the 12 pipelines, we generated high-
fidelity synthetic data with ground truth variability
alterations, and compared the statistical power and false
discovery control of the pipelines in diverse scenarios.

• By evaluating the effectiveness of individual steps within
the pipelines, we found that the TP10K-based normaliza-
tion method is more accurate than LogTP10K and SCT in
preserving gene variability.

• Utilizing density-based tSNE embeddings to define cel-
lular distances improves differential variability analysis
compared with scores of PCs.

• Among the 12 pipelines, the TP_A_denSNE pipeline is the
most powerful in identifying changes in transcriptional
variability in scRNA-seq data. Applying this pipeline to
real data uncovered biological variability distinctions
between COVID-19 patients with varying degrees of dis-
ease severity, and between autism patients and healthy
controls.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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