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Abstract 

Metabolomics is an analytical approach for systematic profiling of metabolites in biofluids, cells and 

tissues. Gas chromatography - mass spectrometry (GC-MS) and liquid chromatography - mass 

spectrometry (LC-MS) are most popular techniques in metabolomics due to their high-throughput and 

high sensitivity. Common procedures in metabolomics include study design, sample collection, sample 

extraction, data acquisition, data normalization, statistical analysis, and biological interpretation. All 

procedures before data normalization may introduce analytical variations as a hurdle for statistical 

performance. With the purpose of improving quality assurance in metabolomics for human disease studies, 

my dissertation work started with applying internal standards and external quality controls for quality 

assurance in untargeted metabolomics as showed in chapter one. A new tool called Systematical Error 

Removal using Denoising Autoencoder (SERDA) was developed and the median relative standard 

deviations (RSD) of the training QC samples was reduced to 4.6% RSD after normalized by SERDA. 

Then, I performed untargeted metabolomics assays to explore the lipidomic alterations and risk prediction 

of Type 2 Diabetes (T2D) in the cohort of American Indians from the Strong Heart Family Study (SHFS). 

Multivariate analysis of lipidomics identified distinct lipidomic signatures that can differentiate high- from 

low-risk groups. Higher baseline level of 33 lipid species, including triacylglycerols, diacylglycerols, 

phosphoethanolamines, and phosphocholines, was significantly associated with increased risk of T2D at 

5-year follow-up. Because studies in humans usually can only denote risk factors but not biochemical 

mechanisms, I continued my work on animal and cell studies in chapter three and four. In chapter three I 

showcase how metabolomics data can be integrated with phenotype information in mouse models to 

decipher the link between gene functions and metabolism and downstream diseases. Finally, I compared 

how different technologies can be used to measure isotope flux analyses in bacterial cell samples to detail 

specific differences in metabolic pathways under anaerobic or aerobic conditions. The comparison results 

revealed that all three instruments can provide similar biological conclusions with each instrument   

possessing their own advantages.
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Introduction 

Metabolomics has evolved from biomarker identification in cross-sectional analysis to predictor discovery 

in longitudinal research. Nowadays, large sample size studies have emerged for exploring innovative 

therapies of human diseases. Mass spectrometry (MS) in combination with chromatography has been 

widely used in metabolomics. Different instruments are required for specific studies based on their 

selectivity, sensitivity, mass resolution, and dynamic ranges. Both targeted and untargeted platforms are 

required to capture as complete metabolic profiles as possible for systematical studies of metabolic 

pathways and allow association with other features (e.g., outcomes from other ‘omics’) from the same 

samples. To enable such studies, a high quality metabolomic profiling dataset must be obtained. Therefore, 

my dissertation has a leaning focus on quality assurance and quality controls in metabolomics, especially 

for large-scale sample size. 

With more specific details, chapter one reports on my efforts to develop and validate normalization 

methods on GC-MS untargeted metabolomics in a very large-scale sample size analysis (> 4,000). 

Untargeted primary metabolomics on gas chromatography- mass spectrometry (GC-MS) suffers technical 

errors specifically due the need to increase the volatility of metabolites by chemical derivatizations. The 

development of advanced normalization method is therefore urgent for GC-MS based metabolomics. Due 

to the importance of branched-chain and aromatic amino acids in predicting T2D in Caucasian cohorts, I 

first tested internal standards (ISTD)-based normalization using 16 deuterated amino acids in small sample 

size experiments. I analyzed the repeatability and reproducibility by N-methyl-N-tert-butyldimethyl-silyl 

trifluoroacetamide (MTBSTFA) derivatization or N-methyltrimethylsilyl-trifluoroacetamide (MSTFA) 

derivatization on a nominal mass resolution GC-TOF MS, and propyl chloroformate (PCF) derivatization 

following a Ez:faastTM Kit on a low resolution GC-SQ MS for targeted amino acids measurements. Then 

I applied ISTD-based normalization, sum-based and QC-based normalization to a total of 413 pooled 

quality control (QC) samples as training dataset and 413 BioIVT samples as extra validation dataset. 

Machine-learning tool Systematical Error Removal using Random Forest (SERRF) favors lipidomics 
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dataset than GC-MS primary metabolomics. SERRF algorithm gave 13.1% median precision based on the 

pooled quality control samples. However, when the resulting SERRF data model was applied to the 

BioIVT validation pools, the technical error increased to 34% relative standard deviation (RSD). Then I 

demonstrated that a newly developed machine learning tool Systematical Error Removal using Denoising 

Autoencoder (SERDA) method outperformed all other normalization strategies on my very large-scale 

GC-MS untargeted metabolomics data. 

Chapter two depicts my quality assurance actions by incorporating quality controls into a very large-scale 

sample preparation and untargeted lipidomics assays for predicting the risk of type 2 diabetes (T2D) in 

American Indians. The International Diabetes Federation (IDF) estimates that 415 million people have 

diabetes worldwide, 91% of whom are diagnosed with type 2 diabetes mellitus. Diabetes is a metabolic 

disorder characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. 

Standard clinical diagnostics for T2D including fasting glucose, fasting insulin, BMI, age, or HbA1c are 

unsuitable for predicting the onset and development of pre-diabetes and insulin resistance. American 

Indians, an underrepresented cohort, suffer a much higher prevalence and incidence of T2D than other 

ethnic groups, and their metabolic changes in developing T2D may be different from other cohorts.  I used 

two different sets of quality controls (QC, one set of commercially available plasma samples from 

BioIVT, one set of standardized reference materials from NIST) for untargeted lipidomics assay on 

UPLC-QTOF MS. SERRF was used for normalization as demonstrated before. Then the normalized 

lipidomics dataset was used for statistical analysis. We identified novel plasma lipids and lipidomic 

signatures that can predict onset and progression of T2D in American Indians beyond conventional risk 

factors including BMI, fasting glucose and insulin resistance. These newly identified molecular lipid 

species are perturbed years before the onset of T2D, and can help identify high-risk individuals who may 

benefit from early intervention. 

Chapter three details my research on 30 mouse knockout lines with targeted and untargeted metabolomic 

assays to illustrate the sex-genotype interaction effects on plasma metabolites. Mouse models are a 
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critical tool in biomedical research; about 50% of all funded NIH projects use mice for at least one 

specific research aim. Understanding the effect of mouse gene dysfunction on metabolism will provide 

insights that may inform the function(s) of their human orthologs. I investigated the effect of loss-of-

function mutations in 30 unique gene knockout (KO) lines on plasma metabolites. Steroids, bile acids, 

oxylipins, primary metabolites, biogenic amines, and complex lipids were analyzed with dedicated mass 

spectrometry platforms, yielding 1,035 identified metabolites in male and female KO mice and wildtype 

(WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant 

genotype effect on plasma metabolites. Fifty-six percent of identified metabolites were significantly 

different between the sexes in WT mice. Many of these metabolites were also found to have sexually 

dimorphic changes in KO lines. I also investigated the associations between plasma metabolites and 

IMPC phenotypes such as open field parameters and flinching response to an unexpected strong auditory 

stimulus. Strong sexual dimorphism was also found in metabolite-phenotype associations. Those 

associations may provide valuable insight for understanding gene functions and disease mechanisms. I 

demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sexual dimorphism must 

be considered as an important factor in interpreting the role(s) of a gene in metabolism and disease 

etiology. 

Mechanic pathway was usually studied using in vitro models such as cell lines that permit a species-

specific, simpler, more convenient, and more microscopic analysis. Chapter four shows my extension to 

stable isotope enrichment analysis using bacterial cells. Stable isotopic labeling uses non-radioactive 

isotopes such as 2H, 13C, 15N, 18O, and 34S as labels for MS analysis for metabolite annotation and 

identification as well as understanding metabolite turnover and flux in organism. Simultaneous 

incorporation of stable isotopes into large numbers of metabolites can be accomplished using in vitro 

approaches with labeled nutrients as the source. Most often, such analyses are used with gas 

chromatography and mass spectrometry due to its ease of operation and reproducible mass spectral 
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databases. Metabolites require chemical derivatization before GC-MS analysis. The bacterium Rothia 

mucilaginosa belongs to the family of Micrococcaceae and is present and metabolically active in the 

airways and sputum of cystic fibrosis patients. In my study, R. mucilaginosa cultures were grown in 

triplicates in artificial-sputum medium spiked with 100 mM [U-13C6] d-glucose under anaerobic and 

aerobic conditions. I used N-methyl-N-tert-butyldimethyl-silyl trifluoroacetamide to derivatize the 

functional groups of metabolites to yield volatile TBDMS derivatives. Then I compared the performance 

of three commercially available instruments (low-resolution GC-SQ MS, low-resolution GC-TOF MS, 

and high-resolution GC-QTOF MS) on identical samples. Overall, all three GC-MS instruments can be 

used to perform stable isotope tracing studies for glycolytic intermediates, TCA metabolites, and amino 

acids, yielding similar biological results, with high-resolution GC-QTOF MS offering additional 

capabilities to identify chemical structures of unknown compounds that might show significant isotope 

enrichment in biological studies. 

While this dissertation’s work spreads across different species including human, mice and bacterium as 

well as multiple mass spectrometry instruments, all the studies can be taken as a whole to showcase that 

how metabolomics can be utilized from diverse aspects and how human diseases, or gene functions can 

be better understood using other in vitro or in vivo models. The most important side of this work is to 

address the importance of quality assurance and quality controls in metabolomics for optimal biological 

interpretation as also initiated by several authoritative organizations including the metabolomics standards 

initiative in toxicology (MERIT), the European centre for ecotoxicology and toxicology of chemicals 

(ECETOC), the metabolomics standards initiative (MSI), and the metabolomics quality assurance and 

quality control consortium (mQACC). The second purpose is to show that metabolome, aimed at the whole 

set of all metabolites in a biological sample, can only be comprehensively embraced using multiple 

techniques rather than a single platform/assay. Finally, animal and cell models are essential for human 

diseases/gene function research and biological differences exist not only between human and other animal 
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species but also between different human cohorts, metabolomics study must take into consideration of 

sexual dimorphism as a critical factor. This limited work may be beneficial to other future and related 

studies in metabolomics.  
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Chapter 1 Normalization Strategies for Large-scale Untargeted Metabolomics by Gas 

Chromatography-Mass Spectrometry Analysis 

Reproduced from unpublished manuscript: Ying Zhang, Sili Fan, Gert Wohlgemuth, Oliver Fiehn. 

“Normalization Strategies for Large-scale Untargeted Metabolomics by Gas Chromatography-Mass 

Spectrometry Analysis”. ready for submission to scientific journal. 

1.1 Abstract 

Large-scale metabolomics assays are widely used in epidemiology for biomarker discovery and risk 

assessments. However, systematic errors introduced by instrumental signal drifting pose a big challenge in 

large-scale assays, especially for derivatization-based gas chromatography-mass spectrometry (GC-MS). 

Here, we compare the results of different normalization methods for a study with more than 4,000 human 

plasma samples involved in a type 2 diabetes cohort study, in addition to 413 pooled quality control (QC) 

samples, 413 commercial pooled plasma samples and a set of 25 stable isotope labeled internal standards 

used for every sample. Data acquisition was conducted across 1.2 years including seven column changes. 

In total 413 pooled QC (training) and 413 BioIVT samples (validation) were used for normalization 

comparisons. Surprisingly, neither internal standards nor sum-based normalizations yielded median 

precision of less than 30% across all 563 metabolite annotations. Yet, the machine-learning based SERRF 

algorithm gave 13.1% median precision based on the pooled quality control samples. However, when the 

resulting SERRF data model was applied to the BioIVT validation pools, the technical error increased to 

34% relative standard deviation (RSD). We therefore used a newly developed denoising autoencoder 

method (SERDA). SERDA lowered the median standard deviations of the training QC samples down to 

4.6% RSD, yielding an overall error of 19.5% RSD when applied to the independent BioIVT validation QC 
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samples. This is the largest study on GC-MS metabolomics ever reported, demonstrating that technical 

errors can be normalized and handled effectively for this assay.  

1.2 Introduction 

Metabolome is defined as the complete set of low molecular mass compounds (<1500 Da) synthesized or 

modified by a living cell or organism. Metabolomics is the simultaneous measurement of all small 

molecular metabolites that participate as substrates, reactants, signaling agents, intermediates, and products 

of enzyme-mediated reactions.1 Mass spectrometry-based metabolomics has matured as a high-throughput, 

high-resolution, high-dimensional technique that identifies multiple metabolite markers present in 

significantly different abundances between different conditions in large human cohort studies, enabling the 

discovery of diagnostic and predictive metabolite levels for disease.2-3 

Metabolomics can be integrated with transcriptomics and proteomics to find biomarkers of diseases or to 

elucidate biological mechanisms. For both goals, high-quality data mining is needed that removes unwanted 

(technical) variance. Such technical variance, is impacted by various forms of unwanted variations in 

conducting laboratory experiments, from batch-to-batch differences, variation between different 

instruments, inter-person variation, and drifts in instrument sensitivity across a specific sequence of 

samples.4 To extract the biologically relevant information, such technical variance needs to be efficiently 

removed by data normalization methods after raw-data acquisition. Classic quantification strategies in 

analytical chemistry employ exogenous chemical surrogates as quality controls and for normalization 

against matrix effects, using either stable isotope labeled chemicals (deuterium or 13C labeled) or structural 

analogs of target molecules. Because metabolomics aims to analyze ‘all’ metabolites, the use of internal 
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standards certainly faces limitations due to the complexity and differences of metabolomics mixtures. 

Overall Metabolomics normalization have evolved in the past two decades from scaling normalizations,5-6 

use of housekeeping metabolites,4 normalization based on internal or external standards,7-9 and quality 

control samples (QC)-based normalizations.10-13  

Specifically, QC-based normalization methods are favored today.14 Systematic error removal using random 

forest (SERRF) normalization has been shown to outperform classic QC-normalizations such as locally 

estimated scatterplot smoothing (LOESS) in large-scale untargeted lipidomics.13, 15 However, no such 

analysis has been conducted for GC-MS based untargeted metabolomics. Interestingly, GC-MS based 

metabolomics studies typically are much smaller in size than LC-MS based studies, usually with fewer than 

1,500 samples.7, 16-19 Untargeted primary metabolomics on gas chromatography- mass spectrometry (GC-

MS) suffers technical errors specifically due the need to increase the volatility of metabolites by chemical 

derivatizations. In addition, involatile materials may accumulate in the GC-injection liners and the 

beginning of chromatography columns. Such deposits may alter the local catalysis environment for the 

delicate balance of derivatization products.20 

GC-MS is an ideal platform to detect volatile compounds. For primary metabolites with higher boiling 

points, a derivatization step reduces boiling points by exchanging acidic hydrogens against derivatization 

groups.  For chemical derivatizations, a wide array of strategies and reagents can be employed, ranging 

from alkylations, acylations to silylations and others.21-23 For example, alkylations use boron-

trifluoride/butanol or dimethylformamide dimethylacetals,24-26 silylation by N,O-Bis(trimethylsilyl)-

trifluoroacetamide, N-methyltrimethylsilyl-trifluoroacetamide (MSTFA) or N-Methyl-N-tert-
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butyldimethylsilyltrifluoroacetamide (MTBSTFA), acylation by propyl- or ethylchlorofomate, acetic 

anhydride or fluorinated anhydrides, or chiral derivatization reactions. Among silylating agents, 

trimethylsilylations are most frequently used in metabolomics, with MSTFA being the most widely utilized 

agent 27 due to its ease in handling and wide range of substrates encompassing hydroxyl-, carboxyl-, amino- 

or thiol- functional groups. In contrast, other derivatization agents are hampered by less convenient 

operation and narrower metabolite ranges. For example, boron-trifluoride in alkylation and anhydrides in 

acylation are corrosive, flammable and highly toxic.  

We here investigate and compare different quality control strategies for metabolomics of human plasma, 

including derivatization agents, internal standards, external quality control samples and computational 

modeling (Figure 1.1). We compared three derivatization agents with deuterated internal standards in three 

different trials across three months. We then applied two different external quality controls for a type 2 

diabetes study of > 4,000 human plasma samples, a QC pool made of extracts of the cohort samples and 

another QC pool that was commercially available. A new modeling tool called systematic error removal 

using denoising autoencoder (SERDA) showed an overwhelmingly better performance than SERRF in 

large-scale GC-MS based metabolome dataset. We further compared SERDA with other traditional 

normalization methods (e.g., mTIC, fTIC, iTIC, metabolite-ISTD ratio) and investigated the performance 

by combining different normalization methods. 
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Figure 1.1. Overview of study plan for normalization in a very large-scale human cohort plasma samples. 

 

1.3 Methods 

1.3.1 Reagents 

Pooled disodium EDTA plasma was purchased from BioIVT (Westbury, NY), aliquoted into portions of 

30 µL and stored at -80 °C freezer until extraction. The EZ:faastTM Amino Acid Analysis sample testing kit 

for propyl-chloroformate (PCF) derivatization was purchased from Phenomenex Inc (Torrance, CA, USA). 

4,104 dipotassium EDTA plasma samples were obtained from study participants of a large-scale human 

cohort for diabetes risk factor analysis. Samples were extracted as published previously 28-29 and aliquoted 

into analytical samples and backup extracts. 1,032 backup extracts were merged, homogenized and 

aliquoted as QC samples. To match the cohort plasma matrix, dipotassium EDTA plasma was purchased 

from BioIVT (Westbury, NY) and used as validation sample set. 

HPLC grade extraction solvents methanol, methyl-tertiary butyl ether (MTBE) and water were obtained 

from Sigma-Aldrich (Dorset, U.K.). Twenty-five deuterium labeled amino acids were purchased from 

Cambridge Isotope and were used as internal standards in the extraction solutions for the human cohort 

study. The following concentrations were added to plasma: alanine-d4 (400 mM), arginine-d7 (110 mM), 

asparagine-d3 (100 mM, aspartic acid-d3 (50 mM, glutamic acid-d5 (150 mM), glutamine-d5 (600 mM), 

glycine-d5 (400 mM), histidine-d5 (150 mM), homocysteine-d4 (100 mM), isoleucine-d10 (100 mM), 

leucine-d10 (250 mM), lysine-d8 (200 mM), methionine-d5 (60 mM, ornithine-d2 (100 mM), 

phenylalanine-d8 (100 mM), proline-d7 (200 mM), serine-d3 (150 mM), threonine-d5 (200 mM), 
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tryptophan-d8 (80 mM), tyrosine-d7 (100 mM), valine-d8 (400 mM), 2-aminobutyric acid-d6 (40 mM), 2-

hydroxybutyric acid-d3 (60 mM), 3-hydroxybutyric acid-d4 (100 mM), sorbitol-d8 (50 mM).  Only 16 of 

these amino acids were used in the initial derivatization normalization tests. 

1.3.2 Sample preparations for GC-MS 

For untargeted analyses, plasma samples were extracted using Matyash liquid-liquid extraction method 

with cold methanol/ MTBE/water.28 40 µL of aliquoted plasma was thawed to room temperature and kept 

on ice during the following steps. Samples were vortexed for 10s with 225 µL of ice-cold methanol, 

followed by adding 750 µL ice-cold MTBE. Samples were shaken for 6 min at 4°C. 188 µL of room 

temperature water containing the internal standards given above was added. Samples were vortexed for 20 

s followed by centrifugation at 12,210 × g for 2 min. The lipophilic phase was decanted. The remaining 

hydrophilic phase was transferred to a new Eppendorf tube, dried down under vacuum and used for 

derivatization.   

For silylations, derivatization started using 10 μL of methoxyamine hydrochloride in pyridine (40 mg/mL, 

with 5 ug/mL sorbitol-d8) and shaken at 30°C for 90 min.  Trimethylsilylation was performed by 90 μL N-

methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) containing C8-C30 fatty acid methyl esters 

(FAMEs) at 37°C for 30 min. For derivatization with tertiary butyl-dimethylsilylation, 90 μL of MTBSTFA 

containing C8-C30 fatty acid methyl esters (FAMEs) was used at 80°C for 30 min. Samples were 

centrifuged at 12,210 × g for 2 min and transferred to crimp top vials for GC-TOF MS detection.  

For targeted derivatization of amino acids in 100 μL plasma sample using propyl-chloroformate (PCF), 

samples were prepared by solid phase extraction method as described previously30 following manufactures 

instructions for the EZ:faastTM Amino Acid Analysis sample testing kit.  

1.3.3 Gas chromatography / mass spectrometry conditions 

Each mass spectrometer was coupled to an Agilent 7890 GC system (Santa Clara, CA). For silylated 

samples, a Restek (Bellefonte, PA) RTX-5Sil MS column was used (30m length, 0.25 mm i.d, 0.25 μm df, 
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95% dimethyl/5%diphenyl polysilox-ane film) with an additional 10m guard column. The oven temperature 

was held at initial temperature at 50°C for 1 min, increased at 20°C/min to 330°C, and kept isothermal for 

5 min. The injection temperature was 275°C. The injection volume was 0.5 µL in splitless mode. Silylated 

samples were measured on a LECO Pegasus IV TOF MS (St. Joseph, MI, USA) at +70 eV, source 

temperature 250 °C; scan range 85-700 m/z; sampling rate 17 Hz. 

 For PCF-derivatized amino acids, a Zebron™ ZB-AAA GC column (10m length, 0.25mm i.d.) was used. 

Carrier gas (helium) flow rate was kept constant at 1.5 mL/min (60kPa). The initial oven temperature was 

held at 110°C, and then ramped at 30°C/min from 110° to 320°C with no final hold. The injection 

temperature was 250°C. The injection volume was 2.0µL at a split ratio of 1:15. PCF derivatized amino 

acids were analyzed by a low-resolution Agilent 5977 single quadrupole MSD (Santa Clara, CA, USA) at 

+70 eV, source temperature 240 °C, quadrupole temperature 180 °C, scan range 45-450 m/z, sampling rate 

4 Hz. 

1.3.4 Data processing 

For silylated samples, raw data were deconvoluted by the Leco instrument software ChromaTOF version 

4.5. For silylated samples, deconvoluted data were submitted to the BinBase database for alignment and 

compound identification. Data files for PCF derivatized amino acids were processed using MassHunter 

Quantitative Analysis B.07.00 version.  

1.3.5 Data normalization 

Data of PCF-derivatized amino acids were normalized to corresponding internal standards as described 

previously30 and are named ISTD normalization. For MTBSTFA-derivatized amino acids, the same ISTD 

normalization method was used by internal standards. In addition, three sum-normalization methods were 

compared: (a) raw amino acid peak intensities were normalized to the sum of all deuterated internal 

standards, called iTIC. (b) Secondly, data were normalized to the sum of all retention time marker 

compounds (fatty acid methyl esters), called fTIC. (c) Thirdly, data were normalized to the sum of all 
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identified metabolites, here: amino acids, hydroxyl acids and related compounds, called mTIC. The same 

methods were used to compare the normalization of trimethylsilylated samples in the initial comparison of 

derivatization methods. In addition, human cohort samples that underwent trimethylsilylation derivatization 

were normalized by two methods using quality control samples (QC): (1) SERRF (Systematic Error 

Removal using Random Forest)13 and a new method that we present here (2) SERDA (Systematic Error 

Removal using Denoising Autoencoder). Statistical analyses were performed by Friedman nonparametric 

paired tests with adjusted Dunn’s significance thresholds of p < 0.0332 in GraphPad Prism 8.4.3.   

1.4 Results 

1.4.1 GC-MS based metabolomics: data normalization for small sample sets  

We first tested the two most common silylation reactions, trimethylsilylation (TMS) and tertiary-butyl 

dimethylsilylation (TBDMS), and compared these broad-range, untargeted reagents against a commercially 

available targeted assay for amino acid quantifications by chloroformate reaction. The broad-range 

silylation agents produced products with unstable ratios for primary amines, introducing unwanted 

variances in untargeted metabolomics. For example (Figure 1.2), trimethylsilylation usually generates two 

trimethylsilylated valine products, valine 1TMS with only the carboxyl acidic hydrogen replaced by TMS 

(Figure 1.2a, m/z 156), or valine 2TMS with one hydrogen of amine group and carboxyl proton replaced 

by TMS (Figure 1.2b, m/z 144). In principle, isotope labeled internal standards should correct for such 

difficulties in stabilizing reaction conditions and yield exactly the same TMS-derivatization ratios for amino 

acids. We used 16 isotope-labeled metabolite analogs and spiked them into the extraction solution to correct 

for all technical variations as their corresponding metabolites, from extraction, to derivatization, injection 

to the gas chromatograph and mass spectrometry. We found that the product ratios of N,O-TMS derivatized 
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amino acids to only O-TMS derivatized amino acids varied between pooled QC plasma samples despite all 

measures of pre-analytical quality controls such as regularly cutting columns, cleaning injectors, or 

exchanging injector needles.20 As expected, internal stable isotope standards reduced this technical error. 

For example (Figure 1.2a), the two trimethylsilylated products valine-d8 1TMS (m/z 164) and valine-d8 

2TMS (m/z 152) displayed similar ratios between two QC samples as the endogenous valine 1TMS and 

valine 2TMS products (Figure 1.2a,b). However, this control for unwanted technical variation did not 

completely eliminate technical errors when we compared trimethylsilylation to tertiary-butyl 

dimethylsilylation and targeted chloroformate derivatization (Figure 1.2c). For this initial comparison, we 

used 30 commercial plasma samples that were extracted in three independent replicate studies, each 

conducted on month apart (Figure 1.3, Supplementary Table 1.1). We limited the analysis to 16 amino 

acids that were detectable in all three derivatization methods. For examples, arginine was not amenable to 

any of the methods, while MSTFA was not yielding detectable signals for histidine and cysteine in the 

plasma samples analyzed here, due to lower sensitivity. Before normalization, the raw data of all three  
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Figure 1.2. Reaction schemes of MSTFA, MTBSTFA and PCF derivatization, and the chromatography of 
valine derivatized with MSTFA. a) valine-1TMS and valine-d8-1TMS products. b) valine-2TMS and 
valine-d8-2TMS products. c) reaction schemes for MSTFA, MTBSTFA and PCF derivatization of amino 
acids. 

 

derivatization methods showed significant variance between the three independent analyses (Figure 1.3). 

Yet, average raw data precision worsened from PCF to MTBSTFA to MSTFA, possibly due to the removal 

of matrix effects when using PCF derivatization under the Ez:faast protocol that uses a solid phase 

extraction method. Even after normalization to each individual stable-isotope labeled amino acids, PCF 
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derivatizations gave the lowest precision with 2.7% average coefficient of variance (CV), followed by 

MTBSTFA at 8.9% CV and MSTFA at 9.6% CV. Although using internal standards for normalization 

reduced overall systematical errors for three tested derivatization agents, residual variance was found across 

all amino acids, likely due to a random combination of all analytical errors, ranging from pipetting to 

extraction, moisture during derivatization and instrument performance. 

In metabolomics, such precision values are regarded as acceptable. However, metabolomics aims at 

analyzing a wide range of compounds, with the coverage of compound classes decreasing from MSTFA to 

MTBSTFA to PCF derivatization. One cannot include internal standards for all possible small molecule 

identifications in GC-MS based metabolomics. Therefore, we tested this data set whether other 

normalization methods might yield acceptable results for MSTFA or MTBSTFA derivatization. To this end 

we used three sum-based normalizations: (a) the sum of all internal isotope labeled standards (total ion 

chromatogram, iTIC), (b) the sum of all 13 fatty acid methyl esters that are added as retention index markers 

in our protocol (fTIC) and (c) the sum of all identified metabolites (mTIC) (Supplementary Table 1.1). 

Interestingly, the mTIC normalization worked better than iTIC or fTIC for correcting errors for the 16 

amino acids for both methods, with 13.5% CV for MSTFA and 8.3%CV for MTBSTFA (Figure 1.3).  Both 

derivatization methods showed little improvement in precision when using fTIC normalization in 

comparison to the raw data, possibly because fatty acid methyl esters did not undergo any derivatization 

but only account for random errors during injection. In comparison, iTIC normalizations yielded slightly 

better precisions for both MSTFA and MTBSTFA than fTIC because the individual amino acids showed 

similar error trend as all amino acids as a group. Nevertheless, mTIC should be regarded as best sum 
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normalization method for untargeted GC-MS analyses for small data sets like this, especially for 

MTBSTFA.  

 

Figure 1.3. Coefficient of variance of 16 amino acids by three derivatization reagents. 

 

 

1.4.2 GC-MS based metabolomics: data normalization for large and very large sample 

sets  

Most published GC-MS based metabolomics studies use fewer than 100 samples. Only a single study has 

been published with almost 1,200 samples16 using relatively matrix-poor tobacco leaf extracts. Apart from 

instrument drifts, differences in the types and amounts of involatile residues in biological matrices (such as 

complex lipids or incomplete removal of proteins) may cause additional technical errors in GC-MS based 

metabolomics. We here used human K2EDTA plasma samples as example of a matrix that is highly 
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enriched in fat and protein contents. Such plasma samples are most often used in very large clinical and 

epidemiological cohort studies that makes this sample type very relevant to be studied with respect to 

residual technical errors. We used 25 stable-isotope labeled metabolites during the extraction to investigate 

if such classic internal standards could be used beyond their corresponding unlabeled endogenous 

metabolites, to correct for drifts during data acquisition and reduce technical (random) errors for the 

metabolome at-large. In addition, we employed four further types of quality control samples to improve 

analytical precision: (a) From a cohort of 4,104 human K2EDTA plasma samples, we pooled half of the 

extracts obtained from the first 1,032 study samples and aliquoted this pool into 413 cohort-derived quality 

control (QC) samples. These QC samples were used for data normalization for MSTFA-derivatization 

based GC-TOF MS metabolomics that possess the widest range of metabolite coverage including amino 

acids, bioorganic acids, sugars, hydroxyl acids and fatty acids.  Pool QC samples were added after each 

subset of 10 clinical cohort samples. (b) Secondly, we added one method blank and one commercial BioIVT 

K2EDTA plasma sample as independent secondary quality controls for validation purposes. (c) Third, NIST 

SRM1950 human plasma QC samples31-35 were added after each set of 40 human cohort samples. (d) Fourth, 

we further analyzed a total of 102 technical replicate samples that were used within a single set of 80 

samples (Figure 1.4a).  
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Figure 1.4. Sequence of sample acquisition and distribution of three QC sets after GC-MS metabolomics. 

 

 

Table 1.1. Comparison of different normalization methods using pooled extracts as training QC set and 
BioIVT as validation QC set. 

 

Data acquisition was conducted across 1.2 years in 7 batches with many column cuts and >60 injection 

liner exchanges in addition to 8 column changes and instrument autotunings following the detailed 

recommendations published earlier.20 Due to these frequent, but necessary interventions, raw pooled QC 

data showed large technical variations. We first tested the three sum-normalization methods used in the 

small amino-acid derivatization method sets above (fTIC, mTIC and iTIC). As expected, none of the classic 
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sum-based normalization methods yielded acceptable precisions for such large-scale studies, with 

unacceptably high median technical errors between 53-63% for both cohort pool QC and commercial 

plasma QC samples (Table 1.1). Next, we used a machine-learning based data normalization method that 

we previously successfully used for large-scale lipidomics data with more than 5,000 samples (Systematic 

Error Removal by Random Forest, SERRF).13 SERRF uses correlation patterns of signal drifts of multiple 

metabolites in QC samples to determine correction factors that are then applied to the biological samples. 

SERRF avoids overcorrection by using any single metabolite, unlike the classic LOESS algorithm (‘locally 

estimated scatterplot smoothing).36 When applied to GC-TOF MS cohort pool QC samples, SERRF indeed 

greatly reduced the median technical error to only 13.1% CV (Table 1.1), clearly below the margin of 30% 

CV that had been proposed for metabolomics.37 Correspondingly, supervised classification of the cohort 

pool QC, commercial pool QC and NIST plasma pool QCs showed a large shrinkage of the data dispersion 

for the training data (cohort pool QC) compared to the raw data (Figure 1.4b,d). However, when the 

SERRF model was applied to the primary validation BioIVT commercial plasma QC samples, data still 

showed considerable dispersion (Figure 1.4d) and a median 34% CV (Table 1.1). In comparison to the 

success of SERRF in lipidomics, this diminished normalization power in GC-TOF MS metabolomics may 

be due to a higher random effect on absolute intensities (trimethylsilylation ratios, Figure 1.2a,b). In 

contrast, no chemical derivatization is required in lipidomics that therefore only has to be corrected for 

signal drift patterns due to systematic errors that occur gradually across hundreds of samples in a continuous 

way.  To better correct for random effects that may be caused by derivatizations or the less controllable 

splitless injection procedure in gas chromatography, we developed and applied a new normalization 

method, Systematic Error Removal by Denoising Autoencoder (SERDA). Denoising autoencoders are used 
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to recognize signals despite large but random noise. Denoising autoencoders first randomly hide some 

features from input data and automatically generate a new dataset that is similar to the input data.38 After 

capturing the useful information interrupted by noise signals by iterative neural network machine learning, 

the tool generates a reconstructed output with the same shape as the input data in the decoder stage. This 

initially graph-structured domain knowledge can also be used for developing drug combinations therapy 

for disease treatment,39 showing that this algorithm can be adopted for extracting information in a 

complicated chemical or biological combinatorial space. Hence, we assumed that autoencoders may be 

better used for data normalization in untargeted GC-MS metabolomics that show high random variance in 

addition to systematic drifts. When we applied SERDA to the GC-TOF MS untargeted metabolomics 

samples, we found this new normalization technique to greatly outperform the SERRF algorithm. For 

training cohort QC samples, a residual median technical error of 4.6% CV was achieved (Table 1.1) along 

with low dispersion in multivariate clustering of the three types of QC samples (Figure 4c). Even more 

importantly, when the SERDA model was applied to the independent commercial BioIVT QC samples, the 

data dispersion in multivariate cluster was smaller than with SERRF data (Figure 1.4c,d) and overall 

median errors after SERDA modeling were found at 19.6% CV, well within the acceptable limits in 

untargeted metabolomics. When we tested the effect of sum-normalization on top of SERDA modeled data, 

neither mTIC, fTIC nor iTIC normalizations further improved the residual technical errors of SERDA data 

(Table 1.1).   

Next, we analyzed the effect of SERDA on 102 biological duplicate samples that were interspersed into the 

data acquisition of the total of 4,104 cohort study samples (Figure 1.5, Supplementary Table 1.2). 48 
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biological replicates were measured in adjacent positions within GC autosamplers (Figure 4a) while 54 

additional biological replicates were measured apart within a set of 80 samples. Across all metabolites, 

correlation coefficients for both adjacent and non-adjacent biological replicates were found at excellent rxy 

= 0.98 with ranges of rxy = 0.81 to 1.0 for non-adjacent replicates that were only slightly worse than adjacent 

replicates with ranges of rxy = 0.90 to 1.0 (Figure 1.5, Supplementary Table 1.2). This data showed that 

the SERDA algorithm correctly normalized metabolite intensities in biological replicates for both high- and 

low-abundant compounds. 

 

Figure 1.5. Correlation of extra biological duplicates after normalized by SERDA. 
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Table 1.2. Reduction of QC numbers in SERDA normalization. 

 

 

We then investigated how the number of training cohort QC samples affected the overall efficiency of the 

SERDA algorithm. To this end, we used fewer cohort QC samples for training and then applied the SERDA 

models on the remaining cohort QC pool samples and the commercial BioIVT QC pools. Median technical 

errors for commercial BioIVT pools worsened from 19.6% CV when using training QC samples after each 

set of 10 biological samples to 22.8% CV, 26.2% CV and 29.1% CV when using training QC samples after 

each set of 20, 40 or 80 biological samples (Table 1.2). Technical errors for the remaining cohort QC pool 

followed the same trend when using SERDA models for each set of 20, 40 or 80 biological samples (Table 

1.2). Interestingly, technical errors for cohort QC pool samples remained 2.1-3.7% CV lower when used as 

testing samples than errors obtained by the BioIVT commercial pool samples. This observation can be 

explained by the slight differences in biological matrix compositions between the plasma QC pool of a 

specific age and ethnicity composition of a human cohort study, and the composition of commercial BioIVT 

samples. Based on this data, we recommend using one cohort pool QC sample for every 10 biological 

samples as it yielded significantly better precision than using fewer cohort QC pool sample. We also 
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advocate for using secondary test QC samples as shown here by commercial BioIVT QC plasma samples 

to independently test for the overall effect of the SERDA models.   

 

 

Figure 1.6. Comparison of ISTD absolute ratio normalization with QC-based and TIC-based normalization 
methods. Friedman nonparametric test was used for significance comparison with raw. P value threshold: 
0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002(***), 0.0001(****). Or Friedman nonparametric test was used 
for significance testing comparing to SERDA. P value threshold: 0.1234 (ns), 0.0332 (#), 0.0021 (##), 
0.0002(###), 0.0001(####). One-to-one: absolute ratio was calculated by dividing the peak intensity of 
endogenous metabolite by corresponding deuterated ISTD. One-to-class: absolute ratio was calculated by 
dividing the peak intensity of endogenous metabolite by a single deuterated compound as an analog ISTD 
for the entire class. 

 

 

Last, we investigated how SERDA normalization compared to the use of 25 internal standards (ISTD) that 

were spiked into the plasma extraction solution.  For 23 of these compounds, the corresponding unlabeled 

endogenous plasma metabolites levels were detected by GC-TOF MS metabolomics; two additional 

internal standards (homocysteine-d4 and sorbitol-d8) were structurally similar to endogenous metabolites 

(cysteine and blood sugar alcohols). When using the 23 ISTDs to normalize one-to-one to their endogenous 

plasma counterparts, a median 19.1 %CV was found with proline and histidine as outliers (Figure 1.6a). 

For the same 23 endogenous compounds, SERDA normalization achieved a much lower technical error of 
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3.8% CV, and even SERRF outperformed the use of internal standards with 5% CV (Figure 1.6a). The 

same trends were observed for both cohort pool QC samples and commercial BioIVT plasma QC samples 

(Figure 1.6a, Supplementary Figure 1.1a). Use of sum normalization methods (mTIC, fTIC, iTIC) 

worsened the performance of the SERRF or SERDA methods alone, and did also not outperform the one-

on-one use of internal standards (Figure 1.6a). When we used sorbitol-d8 as sole internal standard surrogate 

for a class of 20 detected sugars, sugar alcohols, or disaccharide, this ‘one-to-class’ normalization failed to 

improve the technical errors for these 20 sugars whereas SERDA still outperformed SERRF for 

carbohydrates for both cohort pool QCs and commercial BioIVT QCs (Figure 1.6b, Supplementary 

Figure 1.1b).  

1.5 Conclusions 

In summary, we here present the results of different normalization methods for GC-MS based metabolomics 

studies in human plasma. While MSTFA derivatization showed higher technical errors for amino acids than 

alternative MTBSTFA or PCF derivatizations, due to the much broader coverage of plasma metabolite 

annotations for trimethylsilylated compounds, MSTFA is still the reagent of choice for GC-MS profiling. 

Yet, due to both random and systematic errors in large-scale human plasma cohort studies, the technical 

errors in GC-MS based screening of primary (polar) metabolites are harder to control than in LC-MS based 

lipidomics.13 Neither classic internal standards nor sum-based normalizations were sufficient to correct for 

GC-MS drifts, and even the machine-learning based SERRF method did not yield satisfying results. Yet, 

using denoising autoencoder algorithms implemented in the SERDA random neural networks presented 

here reduced the median residual errors to less than 20% CV, making the data useable for epidemiological 

statistics. To match blood matrix effects in the best way possible, we strongly recommend using quality 

control samples pooled from the exact same samples as the human cohort study. Commercial plasma QC 

or NIST SRM1950 QC samples should only be used as independent test samples to estimate the overall 

residual technical errors. The use of internal standards should be limited to estimate absolute concentration 

of specific plasma metabolites but should not be used for broad-scale normalization schemes.   
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1.7 Supplementary Information 

 

Supplementary Table 1.1. Average of median %CV of 16 amino acids by three 
derivatization reagents across three months  

Reagents Raw ISTD fTIC iTIC mTIC 

PCF 11.9% 2.7% 
  

  

MSTFA 22.1% 9.6% 20.3% 14.5% 13.5% 

MTBSTFA 15.2% 8.9% 13.3% 9.7% 8.3% 

 

 

 

Supplementary Table 1.2. Correlation of extra biological duplicates after normalized by SERDA. 

Statistics for correlation Number of 
duplicates 

Mean of 
correlation 
coefficient 

S.D. of 
correlation 
coefficient 

Max. Min. 

Adjacent  
biological duplicates 48 0.98 2.15% 1.00 0.90 

Non-adjacent  
biological duplicates 54 0.98 3.03% 1.00 0.81 

Total 102 0.98 2.64% 1.00 0.81 
 

 

 



27 
 

 

Supplementary Figure 1.1. Comparison of ISTD absolute ratio normalization with QC-based and sum-
based normalization methods. Friedman nonparametric test was used for significance comparison with raw. 
P value threshold: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002(***), 0.0001(****). Or Friedman 
nonparametric test was used for significance testing comparing to SERDA. P value threshold: 0.1234 (ns), 
0.0332 (#), 0.0021 (##), 0.0002(###), 0.0001(####). One-to-one: absolute ratio was calculated by dividing 
the peak intensity of endogenous metabolite by corresponding deuterated ISTD. One-to-class: absolute ratio 
was calculated by dividing the peak intensity of endogenous metabolite by a single deuterated compound 
as an analog ISTD for the entire class. 
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Chapter 2 Longitudinal Plasma Lipidome of Risk for Type 2 Diabetes in a Large Sample of 

American Indians with Normal Fasting Glucose: The Strong Heart Family Study 

Reproduced from Guanhong Miao, Ying Zhang (co-first author), Zhiguang Huo, Wenjie Zeng, Jianhui Zhu, 

Jason G. Umans, Gert Wohlgemuth, Diego Pedrosa, Brian DeFelice, Shelley A. Cole, Amanda M. Fretts, 

Elisa T. Lee, Barbara V. Howard, Oliver Fiehn, and Jinying Zhao. “Longitudinal Plasma Lipidome and 

Risk of Type 2 Diabetes in a Large Sample of American Indians with Normal Fasting Glucose: The Strong 

Heart Family Study”. Diabetes Care, 2021. 

2.1 Abstract 

OBJECTIVE: Comprehensive assessment of alterations in lipid species preceding type 2 diabetes (T2D) 

is largely unknown. We aimed to identify plasma molecular lipids associated with risk of T2D in American 

Indians. 

RESEARCH DESIGN AND METHODS: Using untargeted liquid chromatography–mass spectrometry, 

we repeatedly measured 3,907 fasting plasma samples from 1,958 participants who attended two 

examinations (~5.5 years apart) and were followed up to 16 years in the Strong Heart Family Study. Mixed-

effects logistic regression was used to identify lipids associated with risk of T2D, adjusting for traditional 

risk factors. Repeated measurement analysis was performed to examine the association between change in 

lipidome and change in continuous measures of T2D, adjusting for baseline lipids. Multiple testing was 

controlled by false discovery rate at 0.05. 

RESULTS: Higher baseline level of 33 lipid species, including triacylglycerols, diacylglycerols, 

phosphoethanolamines, and phosphocholines, was significantly associated with increased risk of T2D (odds ratio 

[OR] per SD increase in log2-transformed baseline lipids 1.50–2.85) at 5-year follow-up. Of these, 21 lipids 

were also associated with risk of T2D at 16-year follow-up. Aberrant lipid profiles were also observed in 

prediabetes (OR per SD increase in log2-transformed baseline lipids 1.30–2.19 for risk lipids and 0.70–0.78 for 

protective lipids). Longitudinal changes in 568 lipids were significantly associated with changes in continuous 

measures of T2D. Multivariate analysis identified distinct lipidomic signatures differentiating high- from low-
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risk groups. 

CONCLUSIONS: Lipid dysregulation occurs many years preceding T2D, and novel molecular lipids (both 

baseline level and longitudinal change over time) are significantly associated with risk of T2D beyond 

traditional risk factors. Our findings shed light on the mechanisms linking dyslipidemia to T2D and may 

yield novel therapeutic targets for early intervention tailored to American Indians. 

2.2 Introduction   

Dyslipidemia, including high triglycerides and low HDL cholesterol (HDL-c), represents a hallmark of type 

2 diabetes (T2D) (1). American Indians are nearly three times more likely to be diagnosed with T2D than 

non-Hispanic whites (2). Routine biochemical tests cannot capture all molecular lipids (i.e., lipidome) and 

thus have limited value in detecting early lipid disturbances implicated in disease. Lipidomics can identify 

many individual lipids and is well suited for characterizing the perturbed lipids preceding T2D. This is 

important, because prevention or delay of T2D has proven to be effective via both lifestyle and 

pharmacological interventions. 

Previous studies have reported associations of altered blood lipids with T2D (3–9), obesity (10,11), and 

insulin resistance (IR) (9,11–13). Altered plasma triacylglycerols (TGs), diacylglycerols (DAGs), 

sphingomyelins (SMs), phosphoethanolamines (PEs), phosphocholines (PCs), and cholesterol esters (CEs) 

have been associated with T2D in different populations (3–5,7). However, most existing studies only 

measured baseline plasma lipids, which did not reflect change in plasma lipidome during T2D development. 

We are aware of only one lipidomic study that measured 207 known lipids in plasma sample collected at 

two time points (1 year apart) in a high-risk population, but none was associated with T2D after adjusting 

for baseline levels (7). Moreover, previous studies included predominately participants of European descent 

or at-risk individuals (as a result of matching in nested case-control design or inclusion of prediabetes as 

control). We are aware of two metabolomic studies among normoglycemic individuals with Chinese (4) or 
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European ancestry (14), both of which only measured baseline metabolites and had low coverage of plasma 

lipidome.  

Here we report findings from the first longitudinal lipidome profiling in 3,916 fasting plasma samples from 

1,962 normoglycemic American Indians who attended two examinations (~5.5 year apart) and were 

followed up to 16 years in the Strong Heart Family Study (SHFS). Our goal is to identify novel molecular 

lipids and lipidomic signatures that can predict the onset and progression of T2D beyond traditional risk 

factors.  

2.3 Research Design and Methods 

2.3.1 Participants  

All participants are American Indians in the SHFS (2001-ongoing), a family-based prospective study 

designed to identify genetic and metabolic factors for cardiovascular disease (CVD), T2D and related 

factors in American Indians (15). Briefly, 2,780 tribal members (aged 18 and older) from three geographic 

regions (Arizona, North/South Dakota, Oklahoma) were initially examined in 2001-2003 and re-examined 

in 2006-2009 (mean 5.5 years apart) using the same protocols. At each visit, participants completed 

questionnaires collecting information for demography, family history, medical records, and lifestyle. 

Biospecimens were also collected at each visit. Detailed descriptions for study design, laboratory methods 

(16) and phenotype collection of the SHFS were reported previously (15,16). More information on blood 

sample collection and sample handling is described in the Supplementary Materials. All participants 

provided informed consent. The SHFS protocols were approved by the institutional review board of each 

participating institution and tribe.  

Participants in the current study met the following criteria: 1) attended clinical examinations and had 

available fasting plasma samples at both baseline (2001–2003) and 5-year follow-up (2006–2009); 2) were 

free of overt CVD at baseline. Participants with missing information for fasting glucose or hypoglycemia 

medications at either time point were excluded. 
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2.3.2 Definition of incident T2D and T2D-related traits 

At baseline and 5-year follow-up, diabetes was defined as fasting plasma glucose (FPG) $7.0 mmol/L or 

receiving hypoglycemic medications. Impaired fasting glucose (IFG) was defined as FPG of 6.1–6.9 

mmol/L and no hypoglycemic medications, and normal fasting glucose (NFG) was defined as FPG <6.1 

mmol/L. Because SHFS did not collect biospecimens after the 5-year visit, T2D at 16-year follow-up was 

ascertained based on medical records abstracted by trained research staff. Incident T2D was defined as 

participants who had NFG at baseline (2001-2003) but developed T2D by end of 5-year (2006-2009) or 16-

year follow-up (31 December 2018). Insulin resistance was assessed using homeostatic model assessment 

(HOMA): HOMA-IR = fasting glucose (mg/dL) × insulin (μU/mL)/405 (17). Pancreatic β-cell function 

(HOMA-β) was assessed using the formula: 360 × fasting insulin (μU/mL) / (fasting glucose (mg/dL) - 63) 

(16). Insulin sensitivity was estimated by calculating the Quantitative Insulin sensitivity check index 

(QUICKI =1/[log insulin (mU/L) + log baseline glucose (mg/dL)] (18). 

2.3.3 Lipidomic data acquisition  

Fasting plasma was extracted using a modified liquid-liquid extraction method (cold 

methanol/MTBE/water) (19), then subjected to liquid chromatography–mass spectrometry on both positive 

and negative ion modes. Raw data were processed using in-house cloud-based software (LCBinBase) with 

peak detection and deconvolution algorithms adapted from MSDIAL (20). Lipid peak intensity results were 

manually checked against raw data files. Features and peaks with 50% missing values across all samples 

were removed. Batch effect was corrected by SERRF (21). Details on sample extraction, laboratory 

protocols, and data preprocessing are described in the Supplementary Materials.  

After preprocessing and quality control, we obtained 1,809 lipids (579 known, 1,230 unknown) in 3,916 

samples. Coefficient variations of the Bioreclamation and National Institutes of Standards and Technology 

samples were 9% and 16%, respectively. Relative abundances of duplicated samples were highly correlated 

(r > 0.95). 
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2.3.4 Statistical analyses  

Prior to statistical analysis, lipidomic data were log2 transformed, then standardized to zero mean and unit 

SD. Multimodal distribution was detected by the Hartigans-Dip test (22). Outlier samples were detected by 

principal component analysis, and those beyond mean ± 5 SD for any of the first three PCs were further 

removed. Our final analysis included 1,542 lipids (518 known, 1,024 unknown) in 3,907 samples (1,958 at 

baseline, 1,949 at 5-year follow-up). Of these, 1,945 participants had complete data at both time points. 

Prospective association analyses. To identify novel molecular lipids associated with risk of T2D, we 

constructed a mixed-effects logistic regression model, in which level of baseline lipid was the independent 

variable and incident status of T2D was the dependent variable, adjusting for TRFs including age, sex, 

study site, BMI, fasting glucose, IR, HDL-c, and total triglycerides at baseline. The model tested the fixed 

effect of baseline lipids on risk of T2D and included random effect to account for relatedness among family 

members. Similar analysis was conducted to identify lipids predictive of risk of prediabetes (IFG). These 

analyses were performed among 1,161 NFG participants followed through 2006–2009 (mean 5.5-year 

follow-up). 

Of 1,161 NFG participants at baseline, 989 individuals had information on T2D status through 31 December 

2018 (mean follow-up 16 years), during which 176 participants developed incident T2D. The same 

statistical model was used to identify lipids associated with 16-year risk of T2D among these 989 

participants. Multivariable adjusted odds ratios (ORs) and 95% CIs were calculated for each lipid. Multiple 

testing was controlled by false discovery rate (FDR) (23), and an FDR adjusted P value (i.e., q value) <0.05 

was considered significant. 

Repeated measurement analyses. To examine the longitudinal association between changes in plasma 

lipidome and changes in continuous measures of T2D, including fasting glucose, fasting insulin, IR 

(HOMA-IR), β-cell function (HOMA-β), and insulin sensitivity (QUICKI), we constructed a mixed-effects 

linear regression model, in which 5-year change in each continuous measure (i.e., difference between 5-
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year follow-up and baseline, standardized to N [0,1]) was the outcome and change in each lipid was the 

independent variable, adjusting for age, sex, site, change in BMI, baseline lipid, and trait under study. The 

model tested the fixed effect of change in lipids on the change in T2D-related traits and included random 

effect to account for relatedness among family members. We also estimated to what extent the variation in 

5-year change of each trait could be explained by change in plasma lipidome using the R package r2glmm. 

In addition, we tested the association of change in lipidome (focusing on known lipids whose 5-year 

changes were associated with changes in continuous measures of T2D at q < 0.05) with risk of T2D at 16-

year follow-up, adjusting for TRFs and baseline lipids. 

Multivariate analysis by partial least squares discriminant analysis. To identify discriminatory lipids and 

lipidomic signatures associated with risk of T2D, we conducted partial least squares discriminant analysis 

(PLS-DA) using the R package mixOmics (24). The model included all 1,542 lipids among 1,161 NFG 

participants at baseline, adjusting for TRFs. Optimal number of components and potential overfitting of the 

model were assessed with 10-fold cross validation (repeated 100 times). Lipids with variable importance in 

projection (VIP) scores ≥ 1.5 were considered crucial in identifying participants who developed incident 

T2D or IFG (cases) from those who remained NFG (controls) over 5 years of follow-up. Discriminant 

power of the validated model was assessed by area under the receiver-operating curve. 

Sensitivity analyses. To examine whether diet quality (assessed by the Alternate Healthy Eating Index), 

physical activity (steps per day), or use of lipid-lowering medications (yes/no) affected our results, we 

additionally adjusted for baseline levels of these covariates in the above-described prospective analyses.  

2.4 Results 

After stringent quality control, we obtained data for 1,542 plasma lipids (both positive and negative 

ionization) in 3,907 samples from 1,958 participants at both baseline and 5-year follow-up.  

Of the 1,161 NFG participants followed through 2006–2009 (mean follow-up 5.5 years), 205 participants 

developed incident IFG and 73 developed incident T2D. Of these 1,161 NFG participants, 989 were 
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followed through 31 December 2018 (mean follow-up 16 years), during which 176 participants developed 

incident T2D. Table 2.1 presents the baseline characteristics of participants according to diabetic status by 

end of 5-year and 16-year follow-up. Compared with participants who did not develop incident T2D, those 

who developed incident T2D had higher levels of BMI, waist circumference, blood pressure, total 

triglycerides, fasting glucose, fasting insulin, IR, and β-cell function, but lower levels of HDL-c and insulin 

sensitivity, at baseline. Supplementary Table 2.1 presents the differences in baseline characteristics of 

participants between incident T2D or IFG, as compared with those who remained NFG, by end of 5-year 

follow-up.  

 

Table 2.1. Baseline characteristics of NFG participants according to diabetes status by end of 5-year and 16-
year follow-up 

 5-year follow-up (n = 1,161) 16-year follow-up (n = 989) 

Characteristic Cases  
(n = 73) 

Noncases  
(n = 1,088)  P Cases  

(n = 176)  
Noncases  
(n = 813) P 

Age (years) 35.8 ± 
11.3 36.1 ± 13.0 0.84 36.7 ± 

10.9 35.9 ± 12.9 0.40 

Female (%) 44 (60) 693 (64) 0.54 110 (62) 539 (66) 0.347 

BMI (kg/m2) 34.9 ± 
7.6 29.6 ± 6.6 1.75 x 10

-10 33.9 ± 
7.4 29.2 ± 6.2 4.96 x 10

-12 

Waist (cm) 110.4 ± 
18.4 97.3 ± 15.9 4.83 x 10

-10 106.8 ± 
17.7 96.1 ± 15.0 1.07 x 10

-11 

SBP (mmHg) 123.4 ± 
14.1 119.4 ± 14.5 0.01 122.6 ± 

14.3 118.6 ± 14.3 3.66 x 10
-1 

3DBP 
(mmHg) 

79.0 ± 
9.9 76.0 ± 10.5 7.62 x 10

-3 78.6 ± 
10.6 75.7 ± 10.4 1.37 x 10

-3 

HDL (mg/dL) 49.1 ± 
15.5 53.9 ± 14.9 0.02 48.4 ± 

11.6 54.7 ± 15.1 8.01 x 10
-9 

LDL (mg/dL) 101.8 ± 
29.0 100.3 ± 29.2 0.66 99.4 ± 

25.5 101.0 ± 29.4 0.5 
Triglycerides 

(mg/dL) 
177.9 ± 
124.8 139.0 ± 78.9 8.93 x 10

-4 166.0 ± 
118.2 136.7 ± 76.4 3.90 x 10

-3 
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Total 
cholesterol 

(mg/dL) 
184.3 ± 

35.1 181.8 ± 33.7 0.55 179.8 ± 
31.0 182.9 ± 33.8 0.3 

Fasting 
glucose 
(mg/dL) 

91.3 ± 
6.5 88.9 ± 6.6 9.36 x 10

-3 90.6 ± 
6.4 88.7 ± 6.6 2.58 x 10

-3 

Fasting insulin 
(mU/mL) 

21.1 ± 
16.0 12.4 ± 10.3 1.34 x 10

-7 17.3 ± 
13.0 11.9 ± 10.0 1.56 x 10

-5 
HOMA-IR 4.7 ± 3.5 2.8 ± 2.3 8.96 x 10

-8 3.9 ± 3.0 2.6 ± 2.3 1.12 x 10
-5 

HOMA-b 295.8 ± 
273.5 180.3 ± 155.6 1.39 x 10

-7 237.6 ± 
203.3 

174.8 ± 
153.1 3.87 x 10

-4 

QUICKI 0.14 ± 
0.01 0.15 ± 0.02 1.40 x 10

-8 0.14 ± 
0.01 0.15 ± 0.02 9.05 x 10

-10 

Data are presented as mean ± SD or n (%). P values were obtained by generalized estimating equation to 
account for correlation among family members. Cases are participants who developed incident T2D by end 
of follow-up. Noncases are participants who did not develop incident T2D by end of follow-up. 

 

2.4.1 Novel lipid species associated with risk of T2D over TRFs 

After adjusting for TRFs (age, sex, site, BMI, fasting glucose, IR, total triglycerides, and HDL-c) and 

multiple testing (q < 0.05), we found that higher baseline levels of 56 lipids (33 known, 23 unknown) were 

significantly associated with risk of T2D at 5-year follow-up. The 33 known lipids included 19 glycerolipids 

(TGs and DAGs) and 14 glycerophospholipids (PCs and PEs) with ORs (per SD increase in log2-

transformed baseline lipids) ranging from 1.50 to 2.85. Of these, 21 lipids were also associated with risk of 

T2D at 16-year follow-up (Fig. 2.1).  

By contrast, 90 plasma lipids (49 known, 41 unknown) were positively or inversely associated with risk of 

future IFG at 5-year follow-up (q < 0.05). Of the 49 known lipids, higher baseline levels of 44 lipids, 

including glycerolipids (TGs and DAGs), glycerophospholipids (PCs, PEs, PIs, and PGs), SMs, and CEs, 

were positively (OR per SD increase in log2-transformed baseline lipids ranging from 1.30 to 2.19), while 

5 lipids, including LPC(20:4), PC(17:1/22:5), PC(39:6), PC(p-18:1/20:4)/PC(o-18:2/20:4), and SM(d40:3), 

were inversely (OR per SD increase in log2-transformed baseline lipids ranging from 0.70 to 0.78) 
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associated with risk of future IFG. Twenty-four of 49 lipids were also significantly associated with 5-year 

risk of T2D. Besides the known lipids mentioned above, our untargeted lipidomics also identified multiple 

lipids with unknown structures associated with future risk of T2D/IFG. Figure 2.2 displays the lipidome--

wide associations of plasma lipidome with risk of T2D (Fig. 2.2A) and IFG (Fig. 2.2B) during 5-year 

follow-up. 

 

Figure 2.1. Baseline plasma lipids significantly associated with risk of T2D. Only known lipids are shown. 
The solid line represents OR = 1. Of the 33 known lipids associated with 5-year risk of T2D (q < 0.05), 21 
lipids were also associated with 16-year risk of T2D. The mixed-effects logistic regression model adjusted 
for age, sex, BMI, fasting glucose, IR, HDL-c, and total triglycerides at baseline. Random effect was 
included in the model to account for relatedness among family members. 



37 

 

 

 
Figure 2.2. A and B: Manhattan plots showing the prospective associations of 1,542 baseline plasma lipid 
species with future risk of T2D (A) or prediabetes (B) over 5 years of follow-up. The mixed-effects logistic 
regression model adjusted for age, sex, study site, BMI, fasting glucose, IR, HDL-c, and total triglycerides 
at baseline. Random effect was included in the model to account for relatedness among family members. 
C: Manhattan plot showing the association between change in plasma lipidome (baseline to 5-year follow-
up) and 16-year risk of T2D. x-axis indicates lipid class; y-axis indicates log10 P. The dashed line represents 
significance level at q = 0.05. 
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2.4.2 Longitudinal changes in plasma lipidome associated with changes in T2D traits 

After correction for multiple testing (q < 0.05) and adjustments for covariates (age, sex, site, and change in 

BMI between baseline and follow-up) as well as baseline lipids and the trait under investigation, our 

repeated measurement analysis identified significant associations between 5-year changes in 568 lipids (230 

known, 338 unknown) and changes in one or more T2D-related traits, including fasting glucose, fasting 

insulin, IR, pancreatic b-cell function, and insulin sensitivity. The 230 known lipids largely belong to TGs 

(n = 84), PCs (n = 57), fatty acids (FAs) (n = 23), SMs (n = 15), PEs (n = 13), acylcarnitines (ACs) (n = 

13), and DAGs (n = 9). Figure 2.3 illustrates the longitudinal association patterns between changes in 

lipidome and changes in T2D-related traits during 5-year follow-up (only lipids from seven main classes 

are shown). We observed a clear pattern that longitudinal changes in TGs, DAGs, and PEs were positively 

associated with changes in IR, b-cell function, and fasting insulin and inversely associated with changes in 

insulin sensitivity. In contrast, longitudinal changes in FAs and ACs were inversely associated with changes 

in IR, β-cell function, and fasting insulin and positively associated with changes in insulin sensitivity. In 

addition, changes in SMs were inversely associated with changes in fasting plasma glucose. To further 

evaluate the impact of altered plasma lipids on diabetes development, we estimated to what extent the 

variability in change of each T2D trait could be explained by the change in plasma lipids over 5-year follow-

up period. After adjusting for covariates and baseline lipids and the trait under investigation, longitudinal 

changes in three major classes (TGs, PCs, and FAs) explained up to 8.4% variability in the change of T2D-

related traits. These findings indicate a potential large impact of altered plasma lipidome on development 

of T2D. To examine the association between change in plasma lipidome and risk of T2D, we focused on 

the 230 known lipids whose longitudinal changes between baseline and 5-year follow-up were associated 

with one or more continuous measures of T2D and tested their associations with risk of T2D at 16-year 

follow-up. We found that 5-year changes in 10 lipids (7 TGs and DAGs, 3 PCs) were significantly 

associated with 16-year risk of T2D at q < 0.05 (Fig. 2.2C). 
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Figure 2.3. Heatmap illustrating the longitudinal associations between change in plasma lipidome and 
change in continuous diabetes traits during 5-year follow-up. Each row represents a lipid, and each column 
represents a phenotype. The heatmap is arranged based on lipid classes, and only top 10 known lipids in 
each class are shown. Color code is based on regression coefficients obtained from the linear mixed-effect 
model, in which change in lipid was the independent variable, and change in each of the T2D-related traits 
was the dependent variable. The model adjusted for age, sex, study site, change in BMI, and baseline levels 
of the specific lipid and the trait under investigation. Random effect was included in the model to account 
for relatedness among family members. FPG: fasting plasma glucose; FPI: fasting plasma insulin; HOMA-
IR: insulin resistance; HOMA-b: b-cell function; QUICKI: insulin sensitivity. **P < 0.001, *P < 0.01, 1P 
< 0.05. 
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2.4.3 Discriminatory lipidomic signatures identified by PLS-DA 

Our multivariate analysis revealed a distinct lipidomic signature that was able to separate cases (incident 

T2D or IFG) from controls (NFG) at 5-year follow-up. The validated PLS-DA model identified four clinical 

variables (site, baseline BMI, fasting glucose, and IR) and 128 discriminatory lipids with VIP score >1.5.  

2.4.4 Results from sensitivity analyses 

Additional adjustments for diet quality, physical activity, and lipid-lowering drugs did not change the 

associations between baseline lipids and 5-year risk of T2D (Supplementary Table 8). Of the 21 lipids 

associated with 16-year risk of T2D, 15 and 12 lipids remained significant after further adjustment for lipid-

lowering drugs or physical activity, respectively. Four lipids remained significant after further adjustment 

for all three covariates (diet quality, physical activity, and lipid-lowering drugs). 

2.5 Conclusions 

Dyslipidemia may precede overt T2D by many years (24), but a full spectrum of plasma lipid species (i.e., 

lipidome) predicting the onset and progression of T2D among apparently healthy individuals remains 

largely unknown. Moreover, few studies have examined the longitudinal association of change in lipidome 

with T2D development in a large community sample of normoglycemic individuals. Here we report 

findings from a longitudinal profiling of plasma lipidome in nearly 4,000 fasting plasma samples collected 

at two time points from 2,000 apparently healthy American Indian men and women. Our study has several 

novel findings. First, we identified novel molecular lipids associated with risk of future T2D beyond TRFs, 

including age, sex, BMI, fasting glucose, IR, HDL-c, and total triglycerides. At baseline, individuals who 

later developed T2D exhibited elevated levels of TGs, DAGs, PCs, and PEs. Altered lipid profiles were 

also observed in prediabetes (i.e., IFG). These results demonstrate lipid dysregulation occurs years before 

symptoms appear, and if confirmed, the newly identified molecular lipids may serve as novel biomarkers 

for risk stratification and early intervention. Second, our repeated measurement analyses identified several 

lipid species (e.g., TGs, PCs, FAs, and SMs) whose changes over time were associated with changes in 
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T2D traits during 5 years of follow-up. Overall, changes in plasma lipidome explained up to 3.0%, 4.0%, 

and 8.4% variability in changes of fasting glucose, IR, and insulin sensitivity, respectively. Third, our 

multivariate analysis identified distinct lipidomic signatures associated with risk of T2D. To our knowledge, 

the current study represents the first comprehensive assessment of fasting plasma lipidome in relation to 

risk of T2D in a large community sample of apparently healthy adults among not only American Indians 

but other racial/ethnic groups as well.  

In line with previous studies among European Caucasians (3,7,12,14,26), Mexican Americans (3), and 

Chinese individuals (4,27,28), we found that glycerolipids (e.g., TGs and DAGs) showed the most 

significant associations with risk of T2D in American Indians. In our study, higher baseline levels of 

multiple glycerolipids, including TAG(46:0), TAG (47:0)/TAG(14:0/16:0/17:0), TAG(48:1), TAG(49:1), 

TAG(49:0), TAG(50:0), TAG(52:1), DAG(36:1), DAG(16:0/16:1), and DAG(16:0/16:0), were 

consistently associated with risk of future T2D and prediabetes. Many lipids identified in ourstudy, such as 

TAG(48:1), TAG(48:2), TAG (49:1), TAG(50:0), TAG(51:0)/TAG(16:0/17:0/18:0), TAG(51:1), 

TAG(52:1), DAG(34:1), DAG(34:2), and DAG(16:0/16:0), were also reported to be associated with 

diabetes (in the same direction) in European Caucasians (3,12,26), Mexican Americans (3), and Chinese 

individuals (27,28). The mechanisms through which TGs and DAGs affect T2D are likely related to their 

roles in membrane fluidity, inflammation, oxidative stress, and insulin signaling, all of which may affect 

glucose metabolism and IR (29–32).  

Besides TGs and DAGs, we found that higher baseline levels of PCs, including PC(32:0), PC(38:2), and 

PC(38:3), and PEs, including PE(16:0/16:1), PE(18:0/20:3), PE(34:1), and PE(36:2), were also associated 

with increased risk of T2D in American Indians. Many of these lipids, such as PC(32:0), PC(38:3), 

PE(34:1), and PE(36:2), were also associated with T2D in other cohorts (3). Moreover, previous studies 

have reported associations of different species of phospholipids with IR, T2D, and related traits (7,33,34), 

even though specific lipid molecules were not identical as a result of the use of different analytical platforms 

and/or sample heterogeneity across studies. PCs and PEs are the major components of cellular membranes, 
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and their roles in regulating glucose metabolism and insulin sensitivity have been reported in both animal 

models (35–37) and humans (33,38,39). Our results in American Indians, along with findings from other 

populations, demonstrate that altered plasma lipids precede T2D, and perturbed metabolism in TGs, DAGs, 

PCs, and PEs is implicated in T2D development. 

In agreement with previous studies among European Caucasians and Mexican Americans (3,40), we found 

that lipid profiles of risk for prediabetes (IFG) were similar to those of T2D in American Indians. 

Specifically, of the 33 known lipids associated with risk of T2D, 24 lipids (largely TGs, DAGs, and PEs) 

were also associated with IFG in the same direction, indicating that aberrant lipid metabolism presents in 

prediabetes and persists during T2D development. Moreover, longitudinal changes (baseline to 5-year 

follow-up) in four of these 24 lipids, specifically DAG(16:0/16:1), DAG(34:1), DAG(36:1), and 

TAG(52:1), were also associated with risk of T2D at 16-year follow-up. These consistent findings lend 

support to an important role of these lipids in diabetes pathogenesis. 

In line with previous studies reporting that SMs were either positively or inversely associated with T2D 

(7,9,12), we found that SM(d40:3) was inversely whereas SM(d34:0) was positively associated with risk of 

prediabetes. Our repeated measurement analysis showed that 5-year changes in SMs, such as SM(d40:2) 

and SM(d41:2), were inversely associated with changes in fasting glucose and positively associated with 

insulin sensitivity. In addition, we found that higher baseline levels of four PCs, including LPC (20:4), 

PC(39:6), PC(17:1/22:5), and PC(p-18:1/20:4)/PC(o-18:2/20:4), were inversely associated with risk of 

prediabetes. The observed bidirectional relationship of some SMs and PCs with T2D may be attributable 

to the different numbers of carbons and/or double bonds in these lipids. For example, previous research 

reported that lipids with lower numbers of carbons and double bonds were positively, whereas those with 

higher numbers of carbons and double bonds were inversely, associated with diabetes (12). 

Our repeated measurement analysis identified a clear pattern between changes in lipidome and changes in 

T2D traits. Specifically, 5-year changes in TGs, DAGs, and PEs were positively associated with changes 

in fasting insulin, IR, and β-cell function and inversely associated with changes in insulin sensitivity. In 
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contrast, 5-year changes in ACs and FAs were inversely associated with changes in fasting insulin, IR, and 

β-cell function and positively associated with changes in insulin sensitivity. Moreover, we found that of the 

230 known lipids whose longitudinal changes between baseline and 5-year follow-up were significantly 

associated with changes in continuous T2D traits, 37 lipids were also significantly associated with risk of 

T2D (both 5-year and 16-year follow-up) or IFG. These consistent results from different analyses support 

the robustness of our findings. Moreover, these novel and potentially important findings may provide 

mechanistic insights into the role of molecular lipids in diabetes development.  

Our multivariate analysis identified distinct baseline lipidomic signatures able to classify participants into 

different risk groups. Top discriminatory lipids included TGs, DAGs, PCs, PEs, SMs, and ceramides. Of 

the 67 known discriminatory lipids, 30 were also identified in prospective and repeated measurement 

analyses. These results support important roles of these lipids in T2D development among American 

Indians. 

Our study has several strengths. First, the repeatedly measured plasma lipidome in a large number of 

community-dwelling individuals represents a major strength of our study. To our knowledge, this is by far 

the largest longitudinal lipidomic study on risk of T2D in any racial/ethnic group. Second, unlike most 

previous studies that included a mixture of both normoglycemic individuals and individuals with 

prediabetes (i.e., those with IFG or IGT among whom early metabolic disturbances might have already 

been present) at baseline, our study focused on normoglycemic individuals who were also free of overt 

CVD at baseline. This makes our results much easier to interpret. Moreover, because we focused on 

apparently healthy individuals at baseline, and only a small proportion (1.1%) of participants received lipid-

lowering drugs, our results are less likely to be confounded by drug use. Third, compared with previous 

research, our high-resolution liquid chromatography–mass spectrometry identified a larger number of lipid 

species spanning five lipid categories, including fatty acyls, glycerolipids, glycerophospholipids, 

sphingolipids, and sterol lipids. The high-coverage plasma lipidome allowed us to identify novel lipid 

species associated with T2D and provided unprecedented opportunities for future lipidomic research. 
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Fourth, we conducted comprehensive statistical analyses, including prospective association analyses, 

repeated measurement analyses, and multivariate analyses, to identify novel lipids and lipidomic signatures 

associated with T2D. Fifth, many lipids were consistently detected by different statistical models and were 

also reported in previous studies across different populations. Moreover, our analyses adjusted for a 

comprehensive list of clinical covariates, including age, sex, BMI, fasting glucose, IR, total triglycerides, 

HDL-c, diet, physical activity, and use of lipid-lowering medications, signifying the robustness of our 

findings. 

Our study has several limitations. First, although we detected more than 1,500 lipids covering a wide range 

of molecular lipid species, we were unable to match many lipids to the current databases. We were also 

unable to distinguish and identify isomeric lipids. These unknown compounds and isomers need to be 

characterized using de novo identification or additional experiments if considered of interest. Second, 

because of our focus on normoglycemic participants who were also free of overt CVD at baseline, the 

number of incident T2D cases during the 5-year follow-up period was relatively small, and therefore, our 

power in detecting predictive lipids was limited. However, there was a large number of incident T2D cases 

during 16-year follow-up. Third, T2D ascertainment was based on one single blood test at baseline and 5-

year follow-up, and the diagnosis of T2D at 16-year follow-up was based on medical records (because of 

lack of blood samples at 16-year follow-up). Fourth, although our analyses adjusted for many known risk 

factors, we cannot exclude the possibility of potential confounding by unknown or unmeasured factors (e.g., 

changes in lifestyle factors, insulin secretion, and resistance over time). Fifth, although our analysis 

included a large number of American Indians, we did not have an external validation because of the lack of 

comparable cohorts comprising normoglycemic individuals who developed T2D for whom longitudinal 

lipidomic data were also available. However, many lipids were consistently identified in different models 

in our own study and were also previously associated with diabetes (in the same direction) in different 

populations. This increases the confidence in and signifies the robustness of some of our findings. Finally, 

the observational nature of our study precludes any causal inference regarding the role of altered lipids in 
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diabetes etiology. 

In summary, we identified novel lipid species (both baseline level and longitudinal change over time) and 

lipidomic signatures associated with risk of T2D beyond conventional risk factors. The newly identified 

lipids were altered years before the onset of T2D or prediabetes and could help identify high-risk individuals 

who may benefit from early intervention. Targeting metabolic pathways involving these newly identified 

lipids would help develop precision strategies tailored to American Indians. 
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2.7 Supplementary Information  

Supplementary Table 2.1. Baseline characteristics of NFG participants according to diabetes status by end 
of 5-year follow-up 

Characteristics T2D (N=73) IFG (N=205) NFG (N=883) 
P-value†      
(T2D vs. 

NFG) 

P-value†       
(IFG vs. 

NFG) 
Age (years) 35.8 ± 11.3 36.5 ± 12.7 36.0 ± 13.1 0.90 0.57 
Female, n (%) 44 (60%) 123 (60%) 570 (65%) 0.45 0.20 
BMI (kg/m2) 34.9 ± 7.6 31.9 ± 6.9 29.1 ± 6.4 6.25×10-12 5.37×10-9 
Waist (cm) 110.4 ± 18.4 103.0 ± 16.2 96.0 ± 15.6 4.43×10-10 3.12×10-8 
SBP (mmHg) 123.4 ± 14.1 121.9 ± 13.6 118.9 ± 14.7 4.98×10-3 3.54×10-3 
DBP (mmHg) 79.0 ± 9.9 78.5 ± 9.7 75.4 ± 10.6 1.82×10-3 4.24×10-5 
HDL (mg/dL) 49.1 ± 15.5 51.2 ± 12.7 54.5 ± 15.3 0.01 2.64×10-3 
LDL (mg/dL) 101.8 ± 29.0 103.5 ± 29.7 99.5 ± 29.1 0.50 0.08 
Triglycerides 
(mg/dL) 177.9 ± 124.8 151.2 ± 73.3 136.1 ± 79.9 1.28×10-3 0.02 
Total cholesterol 
(mg/dL) 184.3 ± 35.1 184.8 ± 34.9 181.1 ± 33.5 0.45 0.16 
Fasting glucose 
(mg/dL) 91.3 ± 6.5 91.0 ± 6.8 88.4 ± 6.4 2.34×10-3 6.29×10-5 
Fasting insulin 
(µU/ml) 21.1 ± 16.0 14.5 ± 10.1 11.9 ± 10.3 1.74×10-6 7.58×10-3 
HOMA-IR 4.7 ± 3.5 3.3 ± 2.3 2.6 ± 2.3 1.41×10-6 3.88×10-3 
HOMA-β 295.8 ± 273.5 193.5 ± 153.7 177.2 ± 155.9 2.64×10-7 0.18 
QUICKI 0.14 ± 0.01 0.14 ± 0.01 0.15 ± 0.02 2.19×10-9 1.56×10-5 

Data are mean ± SD unless otherwise indicated.  

†P-values were obtained by generalized estimating equation (GEE) model accounting for correlation among 
family members. 

 

2.7.1 Participants and sample collection 

Participants. The Strong Heart Family Study (SHFS, 2001-ongoing), a component of the Strong Heart Study 

(SHS, 1989-ongoing), is a multicenter, family-based prospective study designed to identify genetic factors 

for cardiovascular disease (CVD), T2D and their risk factors in American Indians. A total of 2,780 tribal 

members (≥18 years old) from 12 tribes residing in Arizona, North Dakota, South Dakota, and Oklahoma 

were initially examined in 2001-2003 and re-examined in 2006-2009 (mean 5.5 years apart) using the same 
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protocols. At each visit, participants received a personal interview to collect data on demographic 

characteristics, medical history and lifestyle risk factors including smoking, alcohol consumption, diet and 

physical activity. A physical examination was given to each participant, including anthropometric and blood 

pressure measurements and an examination of the heart and lungs. Biospecimens including fasting plasma 

samples were collected at each visit. Laboratory methods were reported previously (1). All living 

participants are currently being followed through 2026 to collect information for disease morbidity and 

mortality. The SHS protocols were approved by the Indian Health Service, institutional review boards for 

each participating institution, and participating communities. All participants have given informed consent. 

Detailed descriptions of the SHS protocols for the collection of phenotype data have been described 

previously (2). 

Participants in the current study met the following criteria: 1) attended clinical examinations and had 

available fasting plasma samples at both baseline (2001–2003) and 5-year follow-up (2006–2009); 2) were 

free of overt CVD at baseline. Participants with missing information for fasting glucose or hypoglycemia 

medications at either time point were excluded. 

Definition of T2D. According to the American Diabetes Association 2003 criteria (3), diabetes was defined 

as fasting plasma glucose ≥7.0 mmol/L or using hypoglycemic medications. Impaired fasting glucose (IFG) 

was defined as a fasting glucose of 6.1–6.9 mmol/L and no hypoglycemic medications, and normal fasting 

glucose (NFG) was defined as fasting glucose <6.1 mmol/L. Incident diabetes was defined as participants 

who had NFG at baseline (2001-2003) but developed new diabetes by the end of 5-year follow-up (2006-

2009) or 16-year follow-up (December 31, 2017). 

Assessments of clinical factors. Fasting plasma glucose, insulin, lipids, and lipoproteins were measured by 

standard laboratory methods as previously described (1). Body mass index (BMI) was calculated as body 

weight in kilograms divided by the square of height in meters. Hypertension was defined as blood pressure 

levels ≥140/90 mmHg or use of antihypertensive medications. Insulin resistance was assessed using 

homeostatic model assessment (HOMA) according to the following formula: HOMA-IR = fasting glucose 
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(mg/dL) × insulin (μU/mL)/405.(4) Pancreatic β-cell function (HOMA-β) was assessed using the formula: 

360 × fasting insulin (μU/mL) / (fasting glucose (mg/dL) - 63).(4) Insulin sensitivity was estimated by 

calculating the Quantitative Insulin sensitivity check index (QUICKI =1/[log insulin (mU/L) + log baseline 

glucose (mg/dL)] (5). Renal function was assessed using the estimated glomerular filtration rate (eGFR) 

calculated by the MDRD equation (6). For cigarette smoking, participants were classified as current 

smokers, former smokers, and never smokers. Alcohol consumption was determined by self-reported 

history of alcohol intake, the type of alcoholic beverages consumed, frequency of alcohol consumption, and 

average quantity consumed per day and per week. Physical activity was assessed by the mean number of 

steps per day calculated by averaging the total number of steps recorded each day during a 7-day period 

(7). Dietary intake, including total protein intake, total calories intake, total fat intake was assessed using 

the Block Food Frequency questionnaire (8). Information on use of medications including anti-

hypertensive, hypoglycemic and lipid-lowering drugs was also collected at each visit. 

Blood sample collection. Participants were instructed to fast overnight before their visit, and fasting blood 

sample was collected into 10ml EDTA tubes at the SHS field centers. The tubes were then gently inverted 

and placed on ice or refrigerated (- 4 °C) immediately. Plasma sample was obtained by centrifuging the 

tubes for 10 minutes at 3,000 rpm at - 4 °C and aliquots (0.5 ml) were immediately stored at -80 °C until 

further analysis. For the current study, 0.5 ml fasting plasma sample, which were never thawed before, was 

shipped to Dr. Fiehn’s lab at the West Coast Metabolomics Center (UC-Davis) on dry ice via FedEx 

overnight, and stored at -80 oC immediately on arrival until further analyses. Samples were randomized 

before shipping to the Fiehn’s laboratory, where randomization was performed again before the lipidomics 

analysis as described below. As part of the QC procedures, 109 duplicated samples (55 at baseline and 54 

at 5-year follow-up) were included to evaluate analytical or measurement precision. Lipid values of the 

duplicated samples were highly correlated (Spearman's correlation coefficient, ρ = 0.95, P < 2.2 × 10-16). 

Laboratory technicians were blinded to all clinical data throughout the assays.  
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2.7.2 Lipidomics data acquisition via liquid chromatograph-mass spectrometry (LC-MS) 

Plasma samples were first extracted based on a modified liquid-liquid extraction method (cold methanol/ 

MTBE/water). The extracted samples were then subjected to lipidomics analysis by LC-MS in both positive 

and negative ionization modes.  

Lipidomics ESI (+) on 6550 Agilent LC-QTOF MS. The injection volume on ESI (+) mode was 3 μL. The 

mobile phase compositions were:  A) Acetonitrile: water (60:40, v/v) with 10 mM ammonium formate and 

0.1% formic acid; and B) Isopropanol: acetonitrile (90:10, v/v) with 10 mM ammonium formate and 0.1% 

formic acid. The LC gradient consisted of the following elution conditions: 0 min 15% (B); 0−2 min 30% 

(B); 2−2.5 min 48% (B); 2.5−11 min 82% (B); 11−11.5 min 99% (B); 11.5−12min 99% (B); 12−12.1 min 

15% (B); and 12.1−15 min 15% (B).  

Lipidomics ESI (-) on 6550 Agilent LC-QTOF MS.  The injection volume on ESI (-) mode was 5 μL. The 

mobile phase compositions were:  A) Acetonitrile: water (60:40, v/v) with 10 mM ammonium acetate; and 

B) Isopropanol: acetonitrile (90:10, v/v) with 10 mM ammonium acetate. The LC gradient consisted of the 

following elution conditions: 0 min 15% (B); 0−2 min 30% (B); 2−2.5 min 48% (B); 2.5−11 min 82% (B); 

11−11.5 min 99% (B); 11.5−12min 99% (B); 12−12.1 min 15% (B); and 12.1−15 min 15% (B). 

The lipids were separated on Agilent 1290 Infinity LC system using an Acquity CSH C18 column (100 

mm × 2.1 mm, 1.7 μm) with an Acquity CSH C18 guard column (5 mm × 2.1 mm, 1.7 μm) (Waters, 

Milford, MA). The column temperature was 65 °C with a flow rate of 0.6 mL/min. Sample temperature 

was maintained at 4 °C throughout the experiment. The guard column was changed every 300 samples, and 

a new column was replaced every 1,000 samples. We also measured a Bioreclamation plasma sample per 

10 samples and a NIST plasma sample per 40 samples as quality controls for monitoring the instrumental 

drift. Detailed methods for sample extraction and lipidomic analysis on ESI (+) and ESI (-) were described 

in the online supplementary methods. 
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2.7.3 Lipidomics data pre-processing and quality control  

The lipidomics data were pre-processed using a new in-house cloud-based software (LC-BinBase) with 

peak detection and deconvolution algorithms adapted from MS-DIAL (9). Raw files were automatically 

converted into correct formats and the LC-BinBase algorithms performed peak picking, retention time 

alignment using internal standards, and gap filling from raw data for missed peaks. Lipid peak intensity 

results were manually checked against raw data files. Adducts were combined into single features for 

statistical assessments. False negative features and peaks with 50% missing values across all samples were 

removed. The batch effect of reformatted dataset was normalized by SERRF software (Systematic Error 

Removal using Random Forest) (10), which dramatically reduced the raw data variance coefficient by 23% 

in positive mode data and 25% in negative mode to less than 10% in result files. After data pre-processing, 

we obtained 1,809 lipids (579 known and 1,230 unknown lipids) in both positive and negative ionizations 

(787 positive and 1,022 negative) from 1,983 samples at baseline and 1,994 samples at 5-year follow-up. 

The lipid levels of the duplicated samples were highly correlated (Spearman’s correlation coefficient 

ρ =0.95, p<2.2× 10−16 ).  
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Chapter 3 Sex-Dependent Plasma Metabolome and Metabolite Associations with Mouse 

Phenotypes 

Reproduced from Ying Zhang, Dinesh K. Barupal, Sili Fan, Bei Gao, Chao Zhu, Ann M. Flenniken, Colin 

McKerlie, Lauryl M. J. Nutter, K. C. Kent Lloyd and Oliver Fiehn. “Sex-dependent plasma metabolome 

and metabolite associations with mouse phenotypes”. Major revision, revised, resubmitted to Nature 

Communication. 

3.1 Abstract 

Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact 

of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse 

gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the 

effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites including 

genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases 

(7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines, and complex lipids were 

analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and 

female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison 

tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites 

were significantly different between the sexes in WT mice. Many of these metabolites were also found to 

have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype 

information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. Association of plasma 

metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate 

how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor 

in biological interpretation of gene functions. 

3.2 Introduction 

As a result of greater efforts to include both male and female subjects in biomedical research, sexually 

dimorphic abnormal phenotypes are now being recognized in disease studies that analyze the 
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pathophysiological consequences of genetic shift/reproduction 1-11. Historically, sex-bias in animal studies 

were extensive resulting in potentially misleading or incomplete conclusions 12-16. In neuroscience, for 

example, studies in male rats, mice, monkeys, and other mammals outnumbered those in females by 5.5 to 

1 16. In 2014 the U.S. National Institutes of Health issued a policy mandating the inclusion of female and 

male subjects in animal and cell research 12 and that sex be factored as a biological variable into research 

design, analysis, and reporting 17. Sexual dimorphism may be established by the action of hormones that 

are expressed in different amounts between the sexes 18. These hormones may act differently on peripheral 

organs and thus impact a multitude of systems, including cardiovascular physiology, the immune system, 

and nutrient absorption, and can be involved in complex diseases such as type 2 diabetes, obesity, and 

Alzheimer's disease 19-23. 

In general, sexual dimorphism has been observed in various classes of metabolites, such as branch-chain 

amino acids, phosphocholines, sphingomyelin, and urea cycle metabolites 24-27. Yet, the impact of gene 

dysfunction on metabolism has not been broadly studied. Specific genes may have pleiotropic effects on 

the metabolic systems of female and male cells, tissues, organs, and organ systems 28-31. To study the in 

vivo effects using a mammalian model, we obtained samples from KO mice generated by the International 

Mouse Phenotyping Consortium (IMPC), a global program linking 16 different research centres in 12 

countries on 5 continents engaged in identifying the in vivo function of all protein coding human gene 

homologs in the mouse genome. The IMPC uses standardized phenotyping protocols that generate ~1,200 

parameters. All of the IMPC’s material and data resources are publicly available for each of ~7,000 KO 

lines phenotyped to date (https://www.mousephenotype.org/) 32, including 208 classified as continuous 

variables, some of which are metabolic traits, such as glucose tolerance and total plasma triacylglyceride 

content. For continuous traits in 2,186 KO lines, 9% of phenotype parameters showed significant genotypic 

differences of which 14% were sexually dimorphic 33. 

Metabolomics is increasingly used in epidemiology and clinical research 34,35 to understand the mechanism 

of disease development 36,37. Mass spectrometry is the dominant technology in targeted and  

https://www.mousephenotype.org/)
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Figure 3.1. Graphic abstract of study design and data analysis. 30 gene knockout lines and corresponding 
wildtype controls were selected with phenotypic data available from IMPC. Plasma samples of 220 mice 
were analyzed using 5 assays including 3 untargeted metabolomic profiling and 2 targeted data acquisition 
methods.    
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untargeted metabolomics 38,39. Version 4.0 of the Human Metabolome Database records more than 25,300 

blood metabolites 40, but due to the chemical diversity of metabolites, individual analytic approaches can 

identify far fewer metabolites. Data sets from most individual metabolomic studies comprise 100─1,200 

metabolites 41-43. We used multiple analytical methods to interrogate several metabolic pathways, including 

hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS), gas chromatography-time-

of-flight mass spectrometry (GC-TOF MS), and reverse-phase liquid chromatography-mass spectrometry 

(RPLC-MS) 44. Mice are the most often used in vivo model to study the functions of genes compared to 

human orthologues. We here showcase how metabolomic data can be used to complement the existing 

IMPC data repositories to link sex, genotypes and phenotypes. 

3.3 Results 

3.3.1 827 unique metabolites were detected in mouse plasma 

Two-hundred and twenty mice (110 female and 110 male) on the C57BL/6NCrl background produced and 

phenotyped by The Center for Phenogenomics (TCP, Toronto, ON, Canada) as part of the IMPC project 

were used for this study. Approximately 30% of KO lines analyzed by the IMPC are embryonic lethal 45 

for which test cohorts of heterozygous KO mice were used for adult phenotyping. Blood plasma was 

obtained at the end of the in vivo phenotyping pipeline. The metabolic impact of null mutations was tested 

on 17 adult heterozygous lines and 13 adult homozygous lines (Fig. 3.1) using 6 mice (3 female and 3 male) 

of each KO line. Control samples were collected from 40 (20 female and 20 male) co-housed sex- and age-

matched C57BL/6NCrl WT mice over the same time period as the KO mice (Supplementary Table 3.1). 

KO lines of genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and 

protein kinases (7 of 30) were selected to assess their impact on blood metabolic phenotypes. Among those 

genes, 16 gene KOs were used as models for human diseases (by similarities of annotation and orthology) 

(Supplementary Table 3.1). Using previously established IMPC criteria, phenotypes of these disease 

mouse models overlapped with human diseases that harbor mutations in the mouse orthologous genes 45. 

We acquired comprehensive metabolomic data using a total of 20 μL lithium heparin plasma per mouse for 
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three untargeted metabolomics assays and an additional 50 μL lithium heparin plasma to target low 

abundant bile acids, steroids, and oxylipins 44. In total, 827 unique metabolites identified using these five 

mass spectrometry assays were utilized for sexual dimorphism assessment, detecting 21 bile acids, 13 

steroids, 52 oxylipins, 108 primary metabolites, 451 complex lipids, and 182 biogenic amines. The assays 

showed little overlap of compounds (Fig. 3.1), proving their complementary nature and utility. 

3.3.2 Sexual dimorphism in wildtype (WT) mice 

3.3.2.1 Overview of sexual dimorphism of metabolomics and phenotype data in WT mice 

The differences in metabolomic data were first assessed between 20 female and 20 male WT mice. Fifty-

six percent of all plasma metabolites displayed sexual dimorphism using a generalized linear model at P < 

0.05. The levels of 337 of 805 metabolites (41.9%) were increased in male mice compared to females, and 

116 of 805 (14.4%) metabolites were more abundant in female than in male mice (Fig. 3.2a). With a more 

stringent criteria at FDR < 0.05, this analysis only slightly changed the proportion of significant metabolites 

from 56.3% to 51.8% with 39.3% plasma metabolites more abundant in male mice, and 12.6% in female 

mice (Supplementary Fig. 3.2a). Using chemical similarity enrichment statistics by ChemRICH impact 

plot 46, we found 31 classes of compounds that were enriched by direct comparison of the two sexes (Fig. 

3.2e). Most complex lipids showed higher plasma levels in male mice than in females (Fig. 3.2b, d, e), for 

example, with higher abundances of triacylglycerides (TAG), phosphatidylcholines (PC), and 

phosphoinositides (PI) in WT males. Many other metabolites were found at higher levels in female mice 

than in males (Fig. 3.2d). Within the biogenic amines, some metabolite classes such as acylcarnitines, 

indole derivatives, and L-alpha-amino acids showed sexual dimorphism with higher levels detected in WT 

female mouse plasma (Fig. 3.2e). While the sexual dimorphism is dominated by complex lipids, the 

contribution of bile acids and oxylipins seem to exceed that of primary metabolites in terms of their 

proportions in each platform (Fig. 3.2d). When analyzing previously reported IMPC phenotype data 47, we 

also found a strong sexual dimorphism in in vivo phenotypes of these WT mice (Fig. 3.2a, c), with similarly 

more variables significantly greater in male mice compared to females. Overall plasma metabolites levels 
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were so different that perfect discrimination between the sexes was achieved by PLS-DA multivariate 

statistics (Supplementary Fig. 3.1). 

 

Figure 3.2. Sex as a biological variable in wildtype mice. 2a) Metabolites that were significantly affected 

by sex in 40 wildtype mice (n = 20 males & 20 females, generalized linear model was used at P < 0.05). 
2b) The distribution of sex-affected metabolites among five metabolic assays (P < 0.05). 2c) IMPC 
phenotypes of continuous variables that were significantly affected by sex in 40 wildtype mice (P < 0.05). 
2d) Metabolites affected by sex per metabolomics assay (P < 0.05). 2e) Chemical Similarity Enrichment 
Analysis between male and female wildtype mice by ChemRICH impact plot (larger dot size indicates 
greater number of metabolites in the cluster). PC: Phosphatidylcholines; TAG: Triacylglycerides; DAG: 
Diacylglycerides; PI: Phosphatidylinositols; PE: Phosphatidylethanolamines; plasmanyl-PC: plasmanyl-
phosphocholines; plasmenyl-PC: plasmenyl-phosphocholines; plasmanyl-PE: plasmanyl-
phosphoethanolamines; plasmenyl-PE: plasmenyl-phosphoethanolamines;  SM: Sphingomyelins; LPC: 
Lyso-phosphocholines; LPE: Lysophosphatidylethanolamine; CE: Cholesteryl esters; Cer-NS: Ceramides; 
LC-Cer: Long Chain Ceramides; HexCer-NS: Glycosyl-N-acylsphingosines; Phytoceramide: 
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Phytoceramides; HETE & DiHETrE: Hydroxyeicosatetraenoic acids & Hydroxyeicosatrienoic acids; 
DiOH BA & deriv: Dihydroxy bile acids, alcohols and derivatives; TriOH BA & deriv: Trihydroxy bile 
acids, alcohols and derivatives; Taurinated BA & deriv: Taurinated bile acids and derivatives; VLCFA and 
deriv: Very long-chain fatty acids and derivatives; MCFA deriv: Medium-chain hydroxy acids and 
derivatives; BCFA deriv: Hydroxy fatty acids; AC: Acyl carnitines; L-αAA: Proteinogenic L-α-amino acids 
and derivatives; αAA: Non-proteinogenic L-α-amino acids and derivatives; N-acyl-αAA: N-acyl-alpha 
amino acids; Pro & deriv: Proline and derivatives: Indolyl deriv: Indolyl acids & derivatives; Purine deriv: 
Purine nucleosides. 

 

 

Metabolite levels may be impacted by total body weight. Hence, sexual dimorphism of metabolites could 

be attributed to these known differences between the sexes. We therefore conducted a secondary analysis 

by adjusting metabolite levels to body weight at the time of blood collection. After adjusting to body weight 

at an FDR < 0.05, 51.3% of all metabolites showed sexual dimorphism (39.0% of metabolites higher in 

male mice and 12.3% higher in females, Supplementary Fig. 3.2d). For comparison, 0.5% of all 208 

IMPC-measured continuous phenotypic variables were higher in wildtype male mice after body weight 

adjustment and FDR correction, and 1.0% of the phenotypes were increased in female mice 

(Supplementary Fig. 3.2f). These results showed that differences in body weight impacted the sex 

differences in phenotype data but not in plasma metabolite levels.  

3.3.2.2 Example of metabolites with sexual dimorphism in WT mice 

Table 3.1 shows 20 individual examples of metabolites that were significantly different between WT 

female and male mice. Metabolites were chosen based on metabolic classes, significance levels, and fold 

change. Most of these metabolites were also found to be affected by KO mutations, except for a single 

phosphatidylcholine membrane lipid (PC 40:4). Many of these compounds also showed sexual dimorphism 

in KO lines. 
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Note: Two-way ANOVA was used for statistical analysis. *, P < 0.05; **, P < 0.01, ***, P < 0.001.  

 

Based on studies of human cohorts including men and women, blood metabolite levels usually do not show 

large differences 48, often displaying changes of less than 30% in human genome-wide association studies 

when analyzing the differences between sexes 49,50. In this study we found more than 18.5% of 805 

metabolites showed a sex difference greater than 2 folds in WT mice. Plasma levels of sex hormones were 

expected to be significantly different between the sexes, with testosterone only detected in the plasma of 

WT male mice. Progesterone was found at 2.5-fold higher levels in WT female mice due to their role in the 

estrous cycle, but it was also present in male mice as a crucial intermediate in the production of other 

endogenous steroids. A similar concentration ratio between sexes has also been reported in humans 51. Yet, 

many other compounds were not well-known to be differentially present in the sexes. For example, the gut 
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microbial metabolite trimethylamine-N-oxide (TMAO) was found at 4-fold higher levels in female than in 

male mice (Table 3.1). Different levels of circulating TMAO have also been observed in humans 52. 

Similarly, specific microbially transformed secondary bile acids like glycocholic acid and 

tauroursodeoxycholic acid were also found at higher levels in plasma from female mice, indicating a 

potentially differential impact of the gut microbiome on the sexes. A range of arachidonyl-lipid mediators 

such as the oxylipin 11,12-epoxyeicosa-5,8,14-trienoic acid (11,12-EpETrE) were detected in increased 

concentrations in female compared to male mice (Table 3.1), as well as 8,9-epoxyeicosatrienoic acid (8,9-

EpETrE) and 8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-DiHETrE). Conversely, the most 

significantly elevated plasma metabolites in male mice mainly belonged to polar and neutral lipid species 

(Table 3.1, Fig. 3.2e), including diacyl- and monoacylphosphatidylcholines (PC, LPC), 

phosphatidylethanolamines (PE), and neutral fats (triacylglycerides, TAG). Adjustment to whole body 

weight differences between the sexes did not change this finding. Higher plasma levels of both membrane 

phospholipids and fats are partly explained by higher levels of circulating lipoproteins in male mice. Indeed, 

high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol were determined to be 37% and 7% 

higher in male mice, respectively (Supplementary Table 3.3), along with total plasma TAGs measured by 

the IMPC clinical chemistry protocols in concordance with our LC-MS/MS determination of significantly 

higher individual plasma TAG levels in male mice. Other selected IMPC phenotype differences are listed 

in Supplementary Table 3.3. 
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Figure 3.3. Overall genotype effect with sex interaction on metabolomics/phenotype data of 30 KO lines (n 
= 20 male & 20 female C57BL/6NCrl controls, n = 3 male & 3 female mice per KO line group. Two-way 
ANOVA at P < 0.05). (3a) Classification of significant genotype and sex interaction effect on the 
metabolomics dataset. (3b) Classification of significant genotype and sex interaction effect on the IMPC 
phenotype dataset. (3c) The proportion of metabolites that were altered by genotype effect and genotype-
sex interaction effect for each KO line. 
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3.3.3 Sexual dimorphism in mouse KO lines 

3.3.3.1 Two-way ANOVA revealed sexual dimorphism in 30 KO mouse lines 

We found that more than 260 metabolites had significant genotype effects with more than 2-fold differences 

in plasma levels, such as a 3-fold change in plasma adenosine level in Sra1-/- (steroid receptor agonist 1) 

mice or 12(13)-Ep-9-KODE with greater than 3-fold change in Npc2+/- (NPC intracellular cholesterol 

transporter 2) mice compared to WT controls. 

Next, we explored if plasma metabolite levels of KO lines were differentially influenced in male and female 

mice. All mice were housed at The Center for Phenogenomics under identical conditions using standard 

operating procedures and on the same inbred strain background, C57BL/6NCrl 45. Hence, we could exclude 

environmental and husbandry effects that were unrelated to genotype-sex interactions. We conducted two-

way ANOVA tests to assess the interaction effect of genotype and sex on all 208 continuous phenotypes 

reported by the IMPC and our metabolome data for the 30 KO lines in this study. IMPC phenotype data 

showed that 26.3% of all 4,756 comparisons across the 30 KO lines had significant phenotype differences 

(5.0% from body weight measured at different time points). Among those differences, 37.4% of the 

phenotypes were found to be sexually dimorphic (6.7% from body weight measured at different time points, 

Fig. 3.3b). Our metabolomics data identified 21.5% among 23,698 KO lines / WT comparison tests were 

significant at P < 0.05. Similarly, about one third of metabolomic changes showed significant genotype-

sex interactions (Fig. 3.3a). Most changes were based on alterations in one sex but not the other. While 

both phenotype (Fig. 3.3b) and metabolome analyses (Fig. 3.3a) showed that a majority of the significant 

differences were true for both sexes and at similar magnitude and direction, phenotype analyses had a higher 

percent of traits that were significantly different from WT mice in both sexes but with changes in different 

directions or with different effect sizes between the two sexes (Fig. 3.3b). In comparison, metabolome 

analyses showed that the proportion of metabolites different from WT in only one sex was slightly higher 

with a lower proportion of metabolites showing opposite directions and different effect sizes in the two 

sexes (Fig. 3.3a, b). For metabolome data, the degree of sexual dimorphism was more pronounced in some 
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KO lines than in others (Fig. 3.3c). For example, 26.9% of all plasma metabolites were altered in Npc2+/- 

mice, but plasma levels of almost 64.8% of those compounds were sexually dimorphic (Fig. 3.3c). 

Similarly, 44.8% of all significantly genotype-affected metabolites in the Mvk+/- (metabolic enzyme 

mevalonate kinase) mice were found to be sexually dimorphic (Fig. 3.3c). 

Initially we hypothesized that a number of genes might be so distant from enzymatic functions that no 

overall changes of metabolic phenotypes would be detected in such KO mouse plasma. However, we 

identified at least a few metabolites that were differently affected between the sexes compared to WT mice 

in each of the 30 KO lines (Fig. 3.3c). Each gene KO showed specific metabolites that were differentially 

regulated between male and female mice, ranging from 3-17% of the annotated metabolome (Fig. 3.3c). 

For example, the least affected KO mouse line was Rock1+/-, coding for a gene involved in the regulation 

of cell motility, cell cycle, and cell adhesion, with about 12.3% of the metabolome found to be changed in 

Rock1+/- mice compared to WT controls of which 21.7% showed sexual dimorphism. A similarly small 

number of metabolic changes were found in Ckd4+/- mice, coding for another kinase involved in regulating 

cell cycle and tumorigenesis (Fig. 3.3c). As expected, genes that directly targeted metabolic enzymes or 

overall organ development had a stronger impact on the plasma metabolome with changes in up to 29% of 

all identified compounds. Examples of KO lines with genes targeting metabolism are Pmm2+/-, coding for 

a phosphomannomutase involved in protein glycosylations, the cholesterol transporter, Npc2+/-, and Idh1-/- 

that codes for isocitrate dehydrogenase 1. Similarly, a higher number of metabolic differences were found 

in gene KO lines involved in organ development such as the sonic hedgehog unc-51-like kinase 3 (Ulk3-/-) 

that is involved in embryonic development (Fig. 3.3c). 

3.3.3.2 Genotype-sex interactions on lipid metabolism in Dhfr+/-, Npc2+/-, Nek2-/-, and Sra1-/- 

lines 

Three genes, Dhfr, Npc2, and Nek2, had the highest proportion of lipids with genotype-sex interaction 

effects (Fig. 3.3c). Two of these genes code for enzymes that are known for their impact on cell division 

and therefore are actively studied in cancer research. DHFR  
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Figure 3.4. Examples of metabolites affected by genotype-sex interaction of 30 KO lines. Comparison of 
20 male & 20 female C57BL/6NCrl control mice versus 3 male, 3 female mice per knockout line. Two-
way ANOVA followed by individual comparisons using a generalized linear model, red= significant, 
black= not significant. Error bars represent standardized genotype effects with minimum and maximum 
values for each sex. (4a) Butyryl-L-carnitine. (4b) Stearyl-L-carnitine. (c─e) Plasma levels of three 
metabolites in Sra1-/-. Boxplot represents standardized fold-changes normalized to that of wildtype female 
mice. Error bars stand for mean of fold-changes ±1 s.d. 

 

(dihydrofolate reductase) is important in nucleoside biosynthesis 53 and NEK2 (NIMA-related kinase 2) is 

a centrosome kinase involved in Wnt-signaling pathways 54,55. By altering the rate of cell division, both 

enzymes can act on lipid metabolism. More lipids were impacted in Nek2-/- females than in males while 

divergent changes in plasma lipids levels were observed in Dhfr+/- male and female mice. 
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The gene that had the highest fraction of sexually dimorphic plasma lipid levels was Npc2. Overall, 26.9% 

of all plasma metabolites were affected in Npc2+/- mice (Fig. 3.3c). Of these metabolites, 51.2% were 

detected by the lipidomics assay but were confined to Npc2+/- female mice. Npc2 encodes the intracellular 

cholesterol transporter 2, regulating the transport of cholesterol to the perimeter membrane of late 

endosomes, to become available for transporting payloads to mitochondria, leading to cholesterol 

accumulation in lysosomes. In humans, a defect in NPC2-related cholesterol trafficking leads to the 

ultimately fatal Niemann-Pick Type C2 (NPC2) disease, an autosomal recessive complex lipid storage 

disorder 56. Therefore, we expected to detect primary changes in lipid signatures. However, differences in 

the mitochondrial fatty acid transport molecules butyryl-carnitine and stearoyl-carnitine were only found 

in female Npc2+/- mice and not in male Npc2+/- mice (Fig. 3.4a, b). 

Interestingly, both acylcarnitines were found to be dysregulated in many KO lines, often in a sexually 

dimorphic manner (Fig. 3.4a, b). Since mitochondrial fatty acid oxidation is a major contributor to overall 

energy usage, such data may enable a better understanding of the impact of gene dysfunction in human 

disease phenotypes. Lipids were also much more affected in Sra1-/- female than Sra1-/- male mice. For 

example, many triacylglycerides and phosphocholines were significantly down-regulated in Sra1-/- female 

mice, but not always in males (Fig. 3.4c, d). A bacterial leucine-derived metabolite 57,58 2-hydroxy-4-

methylpentanoic acid was higher in plasma for both Sra1-/- male and female mice (Fig. 3.4e). This 

observation shows again that gene KO mutations can have metabolic effects that involve the microbiome. 

The Sra1 gene encodes the steroid receptor RNA activator protein and is involved in breast tumorigenesis 

and tumor progression. Our metabolomic results showed that triacylglycerides but also mitochondrial 

acylcarnitines, oxylipins, and sphingomyelins were differentially regulated in Sra1-/- female and male mice. 

Several oxylipins that can act as potent physiological mediators 59,60 were significantly upregulated 

including 8,9-DiHETrE and 11,12-EpETrE (in female Sra1-/- mice at P < 0.05), 11-HETE (in Sra1-/- male 

mice at P < 0.01), and 15-HETE (fold-change = 1.4 and 1.9 in Sra1-/- female and male mice, respectively) 
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while three other oxylipins were downregulated such as 15-HEPE and 15-KETE (in Sra1-/- female mice at 

P < 0.05) as well as 9,10-e-DiHO (in Sra1-/- male mice at P < 0.01). 

3.3.3.3 Phyh-/-, Npc2+/-, and Mfap4-/- impact plasma lipid and peptide metabolism 

Some genes are known for their implicit contribution to human diseases such as Phyh, Pmm2, and Npc2, 

while many others may not directly lead to a specific disease but may participate in the pathophysiology of 

some diseases. However, the influence of their dysfunction on metabolism is not fully understood. Phyh, a 

major player in Refsum disease, encodes phytanoyl-CoA hydroxylase responsible for breaking down 

phytanic acid in the alpha-oxidation pathway. Indeed, our metabolomic results showed differential 

regulation of plasma levels of 2-hydroxylated (branched) fatty acids such as 2-hydroxy-3-methylbutyric 

acid (fold-change = 1.6 in Phyh-/- male at P < 0.001) and 2-hydroxy-4-methylpentanoic acid (fold-change 

= 2.4 in Phyh-/- female at P = 0.01) and the carnitine transport forms of 3-methyl-fatty acids such as 3-

hydroxyisovaleroylcarnitine (fold-change = 0.8 in Phyh-/- female at P = 0.02), isovaleryl-carnitine (fold-

change = 0.8─0.9 in both sexes with P = 0.2) as well as derivatives of 3-methyl-fatty acid structures 

including valine (fold-change = 1.4 in Phyh-/- female at P = 0.02), isovaleryl-glycine (fold-change = 1.8 in 

Phyh-/- male at P = 0.04), and valine-dipeptides. Consequential genotype effect also exists for other 

metabolites such as decreased plasma levels of straight-chain fatty-acyl carnitines. Plasma prostanoids and 

prostaglandin were upregulated in Phyh-/- mice including progesterone (fold-change = 2.2 in Phyh-/- female 

at P = 0.006) and PGF3alpha (fold-change = 2.8 in Phyh-/- male at P < 0.001), and plasma bile acids were 

impacted by genotype-sex interaction including tauroursodeoxycholic acid (fold-change = 0.3 in Phyh-/- 

female at P = 0.003) and glycocholic acid (fold-change = 5.7 in Phyh-/- male at P = 0.02). 

Because homozygous null mutations in Npc2 are lethal, the viable heterozygotes were used for this study 

(Supplementary Table 3.1). Human NPC2 is mainly expressed in lung, thyroid, and gall bladder 61. In 

addition to Niemann-Pick Type C2 (NPC2) disease, NPC2 is involved in chronic obstructive pulmonary 

disease (COPD)62. Microfibril-associated protein 4 coding gene Mfap4 also has high expression in lung 
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Figure 3.5. Comparison of sexually dimorphic alterations of plasma metabolites between Npc2
+/-

 and 
Mfap4

-/-
 mice. Comparison of 20 male & 20 female C57BL/6NCrl control mice versus 3 male, 3 female 

mice per knockout line. Significance levels given as *, P < 0.05; **, P < 0.01; ***, P < 0.001. (5a) Plasma 
cholesterol levels in Npc2

+/- 
and Mfap4

-/-
 mice versus controls. (5b) Plasma cholesterol ester levels in 

Npc2
+/- 

mice versus controls. (5c) Plasma cholesterol ester levels in Mfap4
-/-

 versus controls. (5d) Number 
of significant metabolites across five metabolomics assays for for Npc2

+/- 
and Mfap4

-/- 
versus controls. (5e) 

Chemical set enrichment plots of mouse plasma metabolites in Npc2
+/-

 versus controls. (5f) Chemical set 
enrichment plots of mouse plasma metabolites in Mfap4

-/-
 versus controls. For both bubble plots (e,f), larger 

bubbles indicate a higher number of metabolites per chemical set. Set names:  TAG: Triacylglycerols; PC: 
Phosphatidylcholines; PE: Phosphatidylethanolamines; PI: Phosphatidylinositols; CE: Cholesteryl esters; 
LPC: Lyso-phosphocholines; AC: Acyl carnitines; LCFA: Long-chain fatty acids; MCFA: Medium-chain 
fatty acids; αAA: α-amino acids; N-acyl-αAA: N-acyl-α-amino acids; SM: Sphingomyelins; Linoleic acid 
& deriv: Linoleic acids & derivatives; His & deriv: Histidine & derivatives. 
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and gall bladder 61 and is upregulated in COPD 63. The MFAP4 protein has binding specificities for both 

collagen and carbohydrates. We report here the first metabolomic effects of these two genes (Fig. 3.5). 

Because cholesterol trafficking is impaired in Npc2+/- mutants, we investigated if lower plasma levels of 

cholesterol esters (CE) were observed. Indeed, a range of both plasma cholesterol esters and free cholesterol 

were found significantly altered, specifically in female mice (Fig. 3.5a, b). Similarly, significant differences 

in both CE lipids and free cholesterol were found in Mfap4-/- mice, but male mice were more affected (Fig. 

3.5a, c). For both genotypes, the largest number of metabolic changes were observed in lipid metabolism, 

extending to steroids, bile acids, oxylipins (Fig. 3.5d), and a range of phospholipids and neutral lipids that 

showed great effects in metabolite set enrichment statistics (Fig. 3.5e─f), with notable differences between 

Npc2+/- female and male mice. Effects on hydrophilic metabolites were found for amino acids in both sexes 

of Mfap4-/- and Npc2+/- genotypes, but not in other metabolic modules such as dipeptides, carbohydrates, or 

nucleosides. In comparison, sexually dimorphic metabolic alterations were much more prevalent in Npc2+/- 

mice (Fig. 3.5e) than that in Mfap4-/- mice (Fig. 3.5f). In combination, these results suggest that genes 

participating in the same disease (e.g., Mfap4 and Npc2 in COPD) may execute major effects on similar 

metabolic modules but, in addition, may also exert specific sexually dimorphic influence over other 

metabolic phenotypes. 

3.3.3.4 Metabolic alterations in Idh1-/- mice 

The enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the cytoplasmic oxidative decarboxylation of 

isocitrate to α-ketoglutarate with an identical reaction performed by IDH3 in the tricarboxylic acid cycle 

(TCA cycle, Fig. 3.6a). Therefore, the overall effect of the Idh1-/- allele might not be detectable on plasma 

concentrations of these metabolites due to a compensatory effect of the corresponding mitochondrial 

transporters and mitochondrial IDH3 enzyme (Fig. 3.6a). Plasma levels of the substrates of IDH1 catalyzed 

reactions, citrate and isocitrate, showed significant increases in Idh1-/- mice (isocitrate with 1.4─1.6 fold-

changes at P < 0.04 for both sexes, citrate with 1.3─1.4 fold-changes at P = 0.04 in female mice and P = 

0.07 in male mice, Fig. 3.6b). Consequently, plasma levels of the reaction product α-ketoglutarate were 
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downregulated in both sexes with 0.5─0.6 fold-changes at P < 0.04 (Fig. 3.6b). This KO line is therefore a 

prime example for a direct match of the immediate biochemical reaction in the cell to plasma metabolite 

levels. Downstream metabolite levels such as plasma glutamate were also  

Figure 3.6. Sexual dimorphic alteration of plasma metabolites in Idh1
-/-

 mice. Comparison of 20 male & 20 
female C57BL/6NCrl control mice versus 3 male, 3 female Idh1 -/- mice. Significance levels given as *, P 
< 0.05; **, P < 0.01; ***, P < 0.001. (a) Representative metabolic map of TCA cycle metabolism in cells. 
CS: Citrate synthase; AH: Aconitase; IDH3: Isocitrate dehydrogenase (NAD), mitochondrial; IDH1: 
Isocitrate dehydrogenase (NADP+), cytosolic; KGDHC: α-Ketoglutarate dehydrogenase; CSC: Succinyl 
coenzyme A synthetase; SDH: Succinate dehydrogenase; FH: Fumarase; MDH: Malate dehydrogenase; 
GLDH: Glutamate dehydrogenase; AADAT: α-Aminoadipate aminotransferase. (b) Expected mouse 
plasma content changes of isocitrate, citrate, and α-ketoglutarate as the loss of IDH1 function. (c) Chemical 
set enrichment plots of mouse plasma metabolites in female Idh1

-/-
 mice versus controls. (d) Chemical set 

enrichment plots of mouse plasma metabolites in male Idh1
-/-

 mice versus controls. For both bubble plots 
(c,d), larger bubbles indicate a higher number of metabolites per chemical set. Set names: PC: 
Phosphatidylcholines; Plasmanyl-PC: Plasmanyl-phosphocholines; Plasmenyl-PC: plasmenyl-
phosphocholines; SM: Sphingomyelins; CE: Cholesteryl esters; TAG: Triacylglycerols; PE: 
Phosphatidylethanolamines; LPC: Lyso-phosphocholines; AC: Acyl carnitines; PI: Phosphatidylinositols; 
LCFA: Long chain fatty acids; L-αAA: L-α-amino acids. 
 



 

76 
 

found significantly decreased in Idh1-/- male mice (fold-change = 0.76 at P = 0.03) but not in female mice. 

Further pleiotropic effects of Idh1 KO mutation were found in both sexes alike as well as in a sexually 

dimorphic way. For example, in both sexes Idh1-/- mutants showed set enrichment increases in 

acylcarnitines and decreases in free long chain fatty acids. Yet, in Idh1-/- male mice, we found significantly 

decreased plasma levels of phosphatidylinositols, phosphatidylethanolamine, and phosphatidylcholines as 

well as increased levels of triacylglycerides (Fig. 3.6d), while in Idh1-/- female mice phosphatidylcholines 

levels were increased, and levels of cholesteryl esters were decreased (Fig. 3.6c). 

3.3.4 Sexual dimorphism in metabolite-phenotype correlations 

Sixteen out of thirty mouse KO lines are used as models for human diseases. Those genes showed overlap 

between phenotypes observed in human diseases and phenotypes observed in mouse KOs for orthologous 

genes (Supplementary Table 3.1). The relationships between plasma metabolite and phenotype 

parameters/parameter series may provide additional information to understand the gene functions and 

disease etiology. Due to limited number of mice per sex-per KO line, the associations were only performed 

in WT mice where strong sexual dimorphism was also observed. 
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Figure 3.7. Heatmap of spearman correlation of metabolite clusters and IMPC open field phenotypes. (a) 
Correlation of metabolite clusters with body weight phenotype parameter series in WT mice.  (b) 
Correlation of metabolite clusters with grip strength phenotype parameters in WT mice.  Spearman 
correlation with P < 0.05, sample size in each metabolite and phenotype > 14, for each gender respectively. 
Red color, positive correlation; blue color, negative correlation. Axis labels: x-axis, phenotypes; y-axis, 
metabolite clusters.  

 

 

To assess the magnitude of the associations between metabolites and IMPC phenotypes, spearman 

correlation analysis was performed in wildtype mice. 803 metabolites were correlated to 208 phenotypes, 

yielding 167,024 metabolite-phenotype spearman-rank correlations in wildtype mice. 20,435 correlations 

(12.2%) were significant at P < 0.05. Among those correlations, 9,136 were only significant in females and 

10,392 were only significant in males. Only 742 correlations (3.6%) were significant in both sexes and in 

the same direction, indicating an overwhelming sexual dimorphism in metabolite-phenotype correlations. 

A small fraction of 165 metabolite-phenotype correlations were even statistically significant with opposite 

directions between the two sexes. For example, TAG 16:0-18:0-22:0, a triacylglyceride with three saturated 

free fatty acid chains, was negatively correlated with the phenotype ‘center average speed’ (one parameter 

in open field tests for anxiety) in wildtype females (r = -0.71 at P = 0.0007), but turned positive in wildtype 

male mice (r = +0.74 at P = 0.0002). Pre-pulse inhibition (PPI) is the suppression of an acoustic startle 

reflex (ASR) to an intense stimulus when a weak pre-pulse stimulus precedes the startle stimulus. A 

reduction of PPI is thought to reflect dysfunction of sensorimotor gating that normally suppresses excessive 

behavioral responses to disruptive stimuli 64. Several clinical studies have shown that a number of human 

disorders have impaired PPI including: schizophrenia, Huntington’s disease, fragile X syndrome, and 

autism. Phosphatidylcholine PC 40:4, was positively correlated with % Pre-pulse inhibition - PPI2 in female 

WT mice but was negatively correlated in male WT mice. Several other PCs/Plasmanyl-PCs were showed 

sexual dimorphism correlations with other PPI phenotype parameters.   

Because every single phenotype/metabolite association might be caused by random chance, we 

accumulated all data in more robust chemical enrichments statistics (ChemRICH) analysis.  Based on 10 
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phenotype pipelines, metabolites were clustered by ClassyFire 65 and subjected to ChemRICH analysis to 

associate clusters of metabolites with specific phenotypes. As expected, metabolomic measurements were 

correlated with blood chemistry data acquired by the IMPC (Supplementary Fig. 3.5b). For example, 

‘metabolomic’ triacylglycerides and hexoses were positively correlated with IMPC triglycerides and 

glucose in both sex (Supplementary Fig. 3.5b). Dramatic sexual dimorphism in metabolite cluster-

phenotype correlations were found in each of the 10 phenotype pipelines. For example, body weight (Fig. 

3.7a) was highly positively associated with acylcarnitines and linoleic acid-derivatives as well as long-

chain fatty acids-derivatives in males, but not in females, starting from week 5. Conversely, 

lysophosphatidylcholines were positively associate with body weight in females from 5 weeks onward, but 

not in males. Similarly, Dipeptides and proteinogenic amino acids were negatively associated with body 

weight in females from 5─10 weeks, but not in males (Fig. 3.7a). Since body weight includes muscle mass, 

we also studied the association of plasma metabolites with grip strength, normalized to body weight (Fig. 

3.7b). While several compound classes (proteinogenic amino acids, dipeptides, sphingomyelins and 

phosphocholines) were found correlated in both sexes with forelimb grip strength, there was also 

remarkable sexual dimorphism. For example, plasma nonproteinogenic amino acids in males were 

positively associated with forelimb grip strength but not in females.  Conversely, in females, N-acylated 

amino acids were found to be positively associated with forelimb grip strength but not in males. Similarly, 

sexual dimorphism was found for mitochondrial acylcarnitines and in linoleic acid-derivatives and other 

compound classes.   

3.4 Discussion 

We found that overt phenotypes measured by the IMPC showed ~25% of all phenotypic measures to be 

sexually dimorphic, while more than 56% of all plasma metabolites were significantly different between 

males and females. This finding indicates that sex has a major impact on many different metabolic pathways 

in mice 66,67. Moreover, FDR correction and body weight adjustment did not influence the statistical results 

of sexual dimorphism in metabolomics data. We therefore conclude that sex differences in plasma 
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metabolite levels were not simply due to differences in body weight. Oxylipins, indolyl derivatives, bile 

acids, amino acids, and sphingomyelins were all increased more in female mice than males, pointing to 

differences in the use of metabolites with regulatory roles that are well-known for sphingomyelins 68, 

oxylipins 69, or indoles 70 and bile acids 71. Even metabolites like TMAO that are clearly formed by gut 

intestinal microbes showed different levels in male and female mice, the level of which was also reported 

for rats and humans 25,72,73. TMAO might act by stabilizing proteins as a “chemical chaperone” in the 

endoplasmic reticulum (ER) 74. Levels of TMAO are associated with cardiovascular risk 74,75 and likely 

other diseases 76-81. This finding shows that levels of metabolites produced by many routes (including by 

different microbiomes) are sex-dependent suggesting that metabolomic data might best be interpreted 

differently between the sexes. Similar to TMAO, we found EpETrEs (also called EETs) to be sexually 

dimorphic. EETs are derived from arachidonate and have opposite effects to TMAO with respect to 

vasodilatory impact and other cardioprotective effects 82-84. Lipid mediators including EETs are important 

actors in the regulation of a range of physiological parameters such as blood pressure 69,85 but are not 

generally known to have sexually dimorphic levels in humans. Hence, such sexually dimorphic metabolites 

might contribute to the well-known differences in cardiovascular risk in men compared to women 86. In 

addition, we found many lipid classes to be elevated in WT male mice such as membrane lipids, cholesteryl 

esters, and triacylglycerides, whereas signaling lipids like phospho-sphingolipids were elevated in female 

mice. Similar to TMAO and EETs, such findings have implications for health effects as excessive 

accumulation of TAG are known to be associated with a range of diseases including hepatic steatosis and 

non-alcoholic fatty liver disease 87. Indeed, in humans, men also have higher TAG blood levels 88 and higher 

VLDL lipoprotein particle levels than women 89, which is highly correlated with higher risk of  

atherosclerotic cardiovascular disease in men 90. On the other hand, though sexual dimorphism was also 

observed in many human healthy cohort studies, the sex effect on metabolism can differ greatly between 

humans and mice as well as between different human cohorts 49,50,91-93. Sexual dimorphism is expected to 

be different between species. On average, the protein-coding regions of the mouse and human genomes are 

85 percent identical. Some regions are highly evolutionarily conserved because they are required for 
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function. In contrast, the non-coding regions are much less similar (only 50 percent or less). Since mice (or 

other animal models) have different life span and maturational rate from humans, the findings from animal 

models may only serve as a reference for metabolism and pathophysiology in human diseases, but the major 

impacts caused by gene homologue mutations can definitely exceed the differences in sexual dimorphism 

between different species as exemplified for gene Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. 

We also found that the magnitude of overall genotype effects on phenotypic traits and cellular metabolites 

was strikingly similar, with 26.3% of IMPC phenotypes (21.3% when excluding body weight measured at 

different time points) in KO lines differing from WT, and 21.5% of all metabolites being significantly 

affected by genotype effect or genotype-sex interactions. This finding supports the concept that cellular 

metabolites provide additional information on gene function. Of these overall gene KO effects, 37.4% of 

the phenotypes (30.7% when excluding body weight measured at different time points) and 34.4 % of the 

metabolites were found to be sexually dimorphic. This proportion of differences between sexes in 

phenotypes and metabolites caused by KO mutations reinforces the importance of using both sexes when 

probing gene function. Differentiation of gene function by sex should be considered as an important factor 

in human disease etiology. Each of the 30 tested gene KO lines had clear and significant genotype or 

genotype-sex interaction effects on metabolism. This was true even for genes that had no direct impact on 

metabolic enzymes such as C8a, a gene involved in immune response, or Dync1li1, a gene involved in the 

intracellular protein transport and assembly. The mechanistic explanation for metabolomic sex differences 

remains to be investigated in detail. While we restricted analyses to plasma metabolite levels in order to 

study potential translation of mouse screens for clinical use, it is clear that plasma levels serve only as 

indirect footprints of cellular, tissue, and organ mechanisms underlying metabolic changes. Future studies 

using these and other gene KO lines will shed light on the target-specific effects of gene dysfunction and 

consequent impact on the metabolome. This, along with the metabolic data presented here, should in turn 

provide the basis for developing diagnostic tests for cell-to-organ system dysfunction and diseases. 
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Nevertheless, it was interesting that for several enzyme KOs, the effect of the perturbed biochemical 

reaction was directly detectable in plasma levels of the product metabolites. For example, IDH1 is one of 

three isoforms in mammals that catalyze the conversion of isocitrate to α-ketoglutarate. The activity of the 

other two isoforms could have had compensatory effects that might have led to undetectable changes on 

blood metabolites. Yet, both Idh1-/- male and female mice showed clear upregulation of plasma isocitrate 

and downregulation of plasma α-ketoglutarate with the same effect size. This initial perturbation of a major 

metabolic enzyme then caused additional downstream differences, specifically in lipid metabolites such as 

reduced long-chain fatty acid and increased mitochondrial acylcarnitine levels in both sexes. Yet, even for 

IDH1, important sexually dimorphic levels of plasma metabolites were observed, such as diametrically 

opposed changes of lyso-phosphatidylcholine and plasmanyl-phosphatidylcholine levels. 

Previously Karp et al analyzed 234 phenotype parameters from 2,186 KO mouse lines across 10 IMPC 

centers and showed that phenotypic sexual dimorphism varied between centers 33. For example, continuous 

phenotype trait parameters from TCP showed less sexual dimorphism than the average across all centers. 

The reason for this may be that the genes analyzed in one center inherently have less sexual dimorphism 

than the other centers. Indeed, sexually dimorphic phenotypes were higher in KO lines of genes expressing 

proteins that influence hormonal effects on behavior and physiology 33. Several of the KO lines analyzed 

in this study included genes expressing proteins known to be involved in the regulation of sexual 

development (e.g. Sra1) 94. The steroid receptor RNA activator protein SRAP, encoded by Sra1, regulates 

estrogen and androgen receptor signaling pathways. Sra1 is an estrogen and androgen-dependent gene that 

contributes to the progression of breast cancer in women 95. Mitochondrial dysfunction and increased fatty 

acid oxidation were shown to be associated with breast cancer 96,97. Twenty-three percent of all metabolites 

were affected in the Sra1-/- mice, and more than twice as many metabolites including lipids were affected 

in Sra1-/- female mice compared to Sra1-/- male mice. In addition to lipids and acylcarnitines that showed 

sexual dimorphism in Sra1-/- female and male mice, several oxylipins such as 11,12-EpETrE, 11-HETE and 

15-HETE were also differentially affected between the two sexes of Sra1-/- mice. Epoxyeicosatrienoic acids 
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(EETs, or EpETrEs) induce angiogenesis and initiate cancer cell migration 98. On the other hand, oxylipins 

like 11-HETE are reported to have anti-mitogenic and anti-tumor activity 99,100. Dysregulated plasma 

oxylipin levels in breast cancer patients indicated that these metabolites may become therapeutic target 

candidates 59,97,101, indicating such gene-metabolite functional data may provide better understanding of the 

role(s) of a gene in metabolic regulation and its involvement in human diseases including breast cancer. It 

also proved how data from mouse gene KOs could inform translational research into human diseases. 

Several of the KO mouse lines analyzed have been shown previously to be associated with human disease 

phenotypes. For instance, mutations in human PHYH causes Refsum Disease 102 which includes visual 

impairment and hearing loss. PHYH and its mouse orthologue Phyh encode a peroxisomal protein that is 

involved in the alpha-oxidation of 3-methyl branched fatty acids. Alpha-oxidation is a process in which 

fatty acids are shortened by one carbon atom, producing 2-hydroxylated intermediates in the process 102,103. 

Our metabolomic results indicated the deletion of Phyh differentially affected peroxisomal alpha-oxidation 

related metabolites of 2-hydroxylated (branched) fatty acids and their derivatives. Phyh-/- mutants also 

showed impact on metabolites that are related to generic peroxisomal functions 103 including 

downregulation of straight-chain fatty-acyl carnitine transport molecules. Other metabolites involved in 

peroxisomal oxidation were differentially altered such as prostanoids (progesterone, PGD2, PGF3alpha), 

and bile acids (tauroursodeoxycholic acid, glycocholic acid). Plasma metabolomic changes in Phyh-/- mice 

ranged from differential regulation of methylated- and acetylated amino acids to oxylipins including 13-

KODE, 15,16-DiHODE, 9,10-DiHODE, and 9,10-DiHOME that were found in a sexually dimorphic 

manner. Therefore, our metabolic phenotype results confirm the primary role of Phyh but also adds valuable 

additional data to inform secondary mechanisms that link disease phenotypes to the underlying metabolic 

function(s). Another example is Npc2 that causes Niemann-Pick disease C2, a hereditary neurovisceral 

lysosomal lipid storage disorder due to mutations in NPC2. Respiratory distress and lung disease were 

uniformly observed in patients with Niemann-Pick type C2 in early infancy 62,104,105. Mfap4 encoding 

microfibrillar-associated protein 4 (MFAP4) contributes to mature elastic fiber homeostasis and stability in 
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connective tissues such as lung, skin, and aorta 106. Plasma MFAP4 is associated with chronic obstructive 

pulmonary disease (COPD) severity and may serve as a COPD biomarker 107. With similar localization in 

tissues and implication in diseases of MFAP4 and NPC2, we were prompted to investigate what extent they 

impact plasma metabolomics. Indeed, cholesterol and cholesterol esters showed similar alteration in plasma 

from Mfap4-/- and Npc2+/- mice. But they also had very different influences on the majority of other 

metabolites with diverse genotype-sex interaction effects, indicating that genes involved in the same disease 

may exhibit effects on similar metabolic classes while affecting other metabolic phenotypes differently.  

In addition, we found numerous interesting correlations between metabolomics and IMPC phenotypes. 

Correlation analysis (like Spearman-rank calculations here) rely on multiple data points to associate 

different variables. While the number of samples per KO genotype was too small to confidently score 

associations between IMPC phenotypes and plasma metabolites, the strength, number and the degree of 

sexual dimorphism of such correlations in female and male wild type mice was astounding. While no one 

should mistake statistical associations with causal effects, we pose that associating visible IMPC 

phenotypes with molecular and metabolic variables may open the doors to better mechanistic understanding 

of mouse phenotypes, and eventually their links to corresponding human diseases. For example, center 

average speed is a common parameter used in mouse behavior and neurological and nerve system research. 

The blood triacylglyceride (16:0-18:0-22:0) consisting only of saturated fatty acyl groups showed 

completely opposite correlations with center average speed in wildtype female and male mice. The 

corresponding free palmitic acid was found to be involved in sexual dimorphisms of microglia (resident 

brain immune cells) 108 while its hydroxylated fatty acid ester derivative 5-PAHSA was involved in 

antioxidant response in mice and PC12 neuronal model cells 108,109. While few studies have investigated 

how specific triacylglycerides are related to disease phenotypes110, these studies show possible ways to 

mechanistically relate lipids to neurological differences, at least in cell and animal models.  

In summary, the evidence for significant sexual dimorphism in both 30 KO lines and WT controls 

demonstrates that sex must be considered as an important factor in interpreting the role(s) of a gene in 
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metabolism and disease etiology. Such observations may serve to help understand the physiological 

consequences of genetic alterations underlying human diseases that manifest differently in men and women. 

Plasma metabolite alterations detected by metabolomics techniques can provide insight into, and contribute 

to unraveling the many complex links between gene functions and the etiology of complex diseases. With 

an overview of 30 mouse KO lines we here showed how comprehensive metabolomics data may inform 

such links, and how often metabolic effects are different between sexes.  This report exemplifies the power 

for unraveling the links between gene functions and mouse models of human diseases once metabolomics 

data are combined with mouse phenotypes on the complement of >7,000 available IMPC mouse KO lines. 

3.5 Methods 

3.5.1 Mouse KO production and selection  

All KO mouse lines were produced from C57BL/6N-derived targeted embryonic stem (ES) cells from the 

International Knockout Mouse Consortium (IKMC) using standard protocols at The Centre for 

Phenogenomics (TCP) in Toronto, Canada 111. All procedures involving mice were performed in 

compliance with the Animals for Research Act of Ontario and the Guidelines of the Canadian Council on 

Animal Care. TCP’s Institutional Animal Care Committee also reviewed and approved all procedures 

conducted on mice at TCP. Mice were subjected to phenotyping at TCP as part of the IMPC project using 

standardized protocols (IMPReSS, https://www.mousephenotype.org/impress). Lithium heparin plasma of 

30 KO lines (three mice per sex and gene) were selected from TCP’s bioarchive along with 40 

corresponding C57BL/6NCrl WT mice (20 female, 20 male) 44. All phenotype data are available from the 

IMPC website (https://www.mousephenotype.org/) 47. All metabolomics data were obtained at the West 

Coast Metabolomics Center (WCMC) at UC Davis. 

3.5.2 Data acquisition  

Plasma samples were prepared by liquid-liquid extractions as published previously 44,112. Pooled human 

plasma (BioIVT) samples were used as quality control (QC) samples in this study for each of the five 

platforms. Blanks and QC samples were prepared at the same time of mouse plasma sample extraction. All 

https://www.mousephenotype.org/
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samples were randomized via miniX study design software 39 with one blank and one quality control (QC) 

sample between every 10 mouse plasma samples. In total 22 QC samples were used for calculating the 

RSDs for each platform. Mass spectrometry data were acquired by using three untargeted assays: primary 

metabolites covering carbohydrates, amino acids, hydroxyl acids, and related compounds were analyzed on 

gas chromatography-time-of-flight mass spectrometry (GC-TOF MS, Leco Corporation, St. Joseph, MI, 

USA) 39,113,114, complex lipids such as phosphatidylcholines, ceramides, sphingomyelins, and 

triacylglycerides were acquired by Vanquish UHPLC system with Q-Exactive HF mass spectrometry 

(Thermo Scientific, Waltham, MA, USA) 114, and biogenic amines such as carnitines, dipeptides, 

nucleosides, and modified amino acids were analyzed by hydrophilic interaction chromatography-orbital 

ion trap mass spectrometry (HILIC-Q-Exactive MS/MS, Thermo Scientific, Waltham, MA, USA) 115. Data 

on bile acids, steroids, and oxylipins were acquired by reversed phase LC separation followed by targeted 

analysis on a Sciex quadrupole-linear ion trap mass spectrometer (6500+ QTRAP MS/MS) 116,117. Detailed 

methods about metabolite annotations have been previously published 44. The median RSD for compounds 

in QC samples was less than 20%. After removing deuterated internal standards, metabolites with at least 

70% missing values, repeatedly identified metabolites between platforms and metabolites with failed QC 

criteria (RSDQC > 50%), 827 metabolites remained. HILIC-(ESI) MS data were normalized by the median 

value for each batch to remove batch effects. GC-TOF MS data was normalized using SERRF method 118. 

Data from other assays were not normalized because no batch effects were observed. Identified compounds 

were used for statistics if they were positively detected in more than 30% of all samples. 

3.5.3 Missing value treatment  

For GC-TOF MS, the peak intensity values were automatically extracted from raw data (of the target m/z 

and target retention time) during the data processing procedure by GC BinBase 39, and missing values were 

automatically replaced by local noise.  

For other metabolomic assays, missing values were replaced in R by half of the minimum of the non-

missing values in each mouse genotype. Metabolites or phenotype data were discarded from analyses when 
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the percentage of missing values was > 70% of total number of mice in each sex group. Otherwise, missing 

phenotype data were replaced by the minimum of the non-missing values in each genotype mice. 

3.5.4 Statistical analysis  

Because all mice were housed at TCP under identical standard operating procedures and were based on the 

same WT strain C57BL/6NCrl, and plasma were collected from mice at similar ages (Supplementary 

Table 3.1), factors such as age, environment, and husbandry were considered to be constant. Statistical 

analysis was performed using R 3.6.0. An overview on statistical workflows is given in Supplementary 

Fig. 3.4. 

Wildtype (WT) mice. Analysis methods for testing sexual dimorphism in WT mice were adapted from Karp 

et al 119. and summarized in Supplementary Fig. 3.4a and 3.4b. Briefly, generalized linear regressions 

were used to test the role of sex as a variable (Y ~ sex) or as a covariate with adjusting body weight (Y ~ 

Sex + Weight). Compounds are deemed to be statistically significantly affected by sex at P < 0.05 or FDR 

< 0.05 after Benjamini-Hochberg false discovery rate adjustments 120. The same methods were used to 

analyze 208 IMPC phenotypes classified as continuous data parameters as extracted from the IMPC 

database. For graphic representation of results in boxplots or fold-change calculations, arithmetic means ± 

standard deviations were used. 

KO mice. We adopted a previously published method that investigated gene-phenotype effects to assess 

statistical impacts in KO mice 119. Briefly, we first studied the role of genotype alone, and subsequently we 

assessed the impact of genotype-sex interaction on plasma metabolite levels. Batch effect was not 

considered in analyses because all mice were raised and analyzed under identical conditions and 

metabolomics data were acquired within one batch. For both investigations, two-way ANOVA was used 

for testing the statistical significance of genotype-sex interaction effect on each metabolite (P < 0.05). Body 

weight was not accounted for due to the very small difference between sex effect adjusted to body weight 

and sex effect without adjusting to body weight in WT mice, as well as the low number of mice per KO 

genotype and sex. False discovery rate adjustment was not carried out on individual metabolite levels 
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because the purpose of this study was to generate novel biochemical hypotheses rather than the discovery 

of biomarkers for diagnostic purposes. Also, evidence showed that there was only a small difference 

between sex effect with FDR correction and sex effect without FDR correction in wildtype. Instead, we 

combined all metabolites into classes to conduct set enrichment analysis with FDR correction using 

ChemRICH software (see below). To test the genotype effect, a full model (Y ~ Genotype + Sex + 

Genotype: Sex) was compared with a null model (Y ~ Sex). For the genotype-sex interaction effect, the 

regression analysis compared the full model (Y ~ Genotype + Sex + Genotype: Sex) against the null model 

(Y ~ Genotype + Sex). Individual comparison of genotype / WT for each sex were used to classify the 

genotype effect (Supplementary Fig. 3.4c). If the plasma level of a specific metabolite was significantly 

different by the genotype effect and also by genotype-sex interaction, then we specified whether effects 

were found only in females or only in males, or in both sexes but in different directions of change, or in 

both sexes but with different effect sizes. However, if a metabolite level was significant at the genotype 

level alone but not for genotype-sex interaction effect, then the effect was classified as ‘genotype effect 

with no sex difference’ in Fig. 3.3a and Fig. 3.3b. For Fig. 3.4a and Fig. 3.4b, effect sizes were calculated 

by standardizing the associated arithmetic average estimate of each KO line to the mean of the 

corresponding WT mice. For other graphic representations in boxplots (Fig. 3.4c─4e, Fig. 3.5, and Fig. 

3.6) or fold-change calculations, arithmetic means ± standard deviations were used. For continuous 

phenotypic traits extracted from the IMPC database, the same methods were used by comparing a full model 

(Y ~ Genotype + Sex + Genotype: Sex) to a null model (Y ~ Sex) for assessing the genotype effect and by 

comparing the full model (Y ~ Genotype + Sex + Genotype: Sex) to a null model (Y ~ Genotype + Sex) 

for assessing the genotype-sex interaction effect where the dependent variable is an adult or embryo 

phenotype parameter from IMPC. 

Metabolite set enrichment statistics. Chemical Similarity Enrichment Analysis (ChemRICH) was used for 

finding differentially regulated clusters of metabolites 46. ChemRICH defines different sets of molecules in 

metabolomics assays based on the Medical Subject Headings (MeSH) ontology term annotations and 
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Tanimoto chemical similarity calculations. The PubChem identifier of each identified metabolite was 

mapped to MeSH term in ChemRICH database. For compounds that were not contained in ChemRICH 

database, their MeSH terms were estimated using Tanimoto chemical similarity coefficients. According to 

PubChem CIDs, names, SMILES codes, and MeSH terms, metabolites were separated into non-overlapping 

chemical clusters. Then, Kolmogorov–Smirnov test was conducted on each cluster to assess the significance 

alteration, compared with random distribution. A P-value less than 0.05 or FDR P-value less than 0.05 were 

used as criterion to determine the cluster significance.  

Metabolite-phenotype correlation statistics. For WT mice, Spearman-rank correlations were used to 

calculate associations between 803 metabolites and 208 IMPC phenotypes. ChemRICH was used for 

assessing metabolite clusters that were correlated with phenotypes46. Only metabolite-phenotype 

correlations with > 14 data points per variable and per sex were subjected to ChemRICH analysis. P-values 

< 0.05 were used to determine cluster significance levels. Correlation results can be found in Fig. 3.7 and 

Supplementary Fig. 3.5. 

Code availability. R code for reproducing the analyses shown in the main figures is available at 

https://github.com/ythzhang/KOMP_test. Additional code related to extended data and supplementary 

figures is available upon request from the corresponding author. 
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3.7 Supplementary Information 

 

 

Supplementary Figure 3.1. Sexual dimorphism of metabolomics data and phenotype data in wildtype mice 
(n = 20 males & 20 females). (a) PLS-DA plot of metabolomics data in wildtype mice. (b) PLS-DA plot of 
IMPC phenotype dataset in wildtype mice. 
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Supplementary Figure 3.2. Sex as a biological variable with a stricter significance threshold and normalized 
to body weight in wildtype C57BL/6NCrl mice (n = 20 males & 20 females, generalized linear model at 
FDR < 0.05). (a) Proportion of metabolites significantly affected by sex. (b) Proportion of metabolites 
significantly affected by sex, adjusted by body weight. (c) Assay-based proportion of sex-affected 
metabolites. (d) Assay-based proportion of sex-affected metabolites, adjusted by body weight. (e) 
Proportion of IMPC phenotypes of continuous traits significantly affected by sex. (f) Proportion of IMPC 
phenotypes of continuous traits significantly affected by sex; adjusted by body weight. 
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Supplementary Figure 3.3. PLS-DA plot of metabolomics data in 30 KO mouse lines compared to wildtype 
mice (n = 20 males & 20 females in C57BL/6NCrl wildtype mice, n = 3 male & 3 female mice in each KO 
mouse line). Circles: confidence intervals for plasma metabolic phenotype variance. Axes: Regression 
vectors with % of total explained variance. 
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Supplementary Figure 3.4. Statistical analyses to study sexual dimorphism in wildtype mice and in 
knockout mice. (a) Statistical analysis in wildtype mice using generalized linear model at P < 0.05. (b) 
Statistical analysis in wildtype mice using generalized linear model at P < 0.05 with false discovery rate 
correction (FDR < 0.05) and body weight adjustment. (c) Statistical analysis for genotype-sex interaction 
effect in knockout lines compared to wildtype mice using two-way ANOVA followed by individual 
comparison by generalized linear model at P < 0.05. 
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Supplementary Figure 3.5a. Acoustic Startle and Pre-pulse Inhibition (PPI, week 10). The acoustic startle 
response is characterized by an exaggerated flinching response to an unexpected strong auditory stimulus 
(pre-pulse). This response can be attenuated when it is preceded by a weaker stimulus (pre-pulse) and is the 
principle underlying pre-pulse inhibition (PPI). Several clinical studies have shown that a number of human 
disorders have impaired PPI including schizophrenia, Huntington’s disease, fragile X syndrome, and 
autism. 
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Supplementary Figure 3.5b. Clinical Chemistry (CBC, week 16). Clinical chemistry determines 
biochemical parameters in plasma including enzymatic activity, specific substrates and electrolytes. 

 

 

Supplementary Figure 3.5c. Body Composition (DEXA lean/fat, week 14). Measure bone mineral content 
and density as well as body composition in mice using the DEXA (Dual Energy X-ray Absorptiometry) 
analyser. 
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Supplementary Figure 3.5d. Electrocardiogram (ECG, week 12). Electrocardiogram provides a high 
throughput method to obtain Electrocardiograms in a conscious mouse or an anesthetized mouse. 
Electrocardiographic recordings usually help to detect abnormal myocardial action potential, conduction of 
impulse, disturbances in cardiac rate and rhythm, and altered autonomic activities. 

 

 

Supplementary Figure 3.5e. Hematology (week 16). Hematological assessment of blood determines blood 
cell counts (white blood cells, red blood cells, hemoglobin, and platelets) and additional hematological 
parameters (hematocrit, mean cell volume, mean corpuscular hemoglobin, mean cell hemoglobin 
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concentration) can be derived using these indices. These tests will indicate abnormalities in the production 
of blood and its components (blood cells and hemoglobin) as well as in the associated blood-forming 
organs. 
 

 

Supplementary Figure 3.5f. Heart Weight (week 16). To evaluate cardiac size using heart weight and body 
weight. 
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Supplementary Figure 3.5g. Intraperitoneal glucose tolerance test (IPG, week 13). The glucose tolerance 
test measures the clearance of an intraperitoneally injected glucose load from the body. It is used to detect 
disturbances in glucose metabolism that can be linked to human conditions such as diabetes or metabolic 
syndrome. 
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Supplementary Figure 3.5h. Open Field (week 8). The Open Field test is used to assess anxiety and 
exploratory behaviors. It is based on the natural tendency of an animal to explore and to protect itself using 
avoidance which translates to a normal animal spending more time in the periphery of the Open Field arena 
than in the center (the most anxiogenic area). 

 

 



 

111 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

112 
 

Supplementary Table 3.2. Number of significantly changed metabolites by genotype effect and their 
alterations in 30 knockout strains. 

Genotype  of significant 
metabolites 

Significant 
clusters 

FC > 2 or FC 
< 0.5 

FC > 5 or FC 
< 0.2 

FC > 10 or FC 
< 0.1 

A2m-/- 201 13 36 0 2 

Ahcy+/- 128 10 22 2 0 

Atp5b+/- 181 13 52 3 1 

Atp6v0d1+/- 120 10 29 2 0 

C8a-/- 203 14 50 1 3 

Cdk4+/- 135 16 29 3 1 

Dhfr+/- 184 13 43 5 1 

Dync1li1+/- 229 13 63 7 0 

G6pd2-/- 113 8 26 5 4 

Galc+/- 154 9 36 2 2 

Gnpda1+/- 143 9 29 2 2 

Idh1-/- 156 13 28 4 0 

Iqgap1-/- 137 13 17 1 2 

Lmbrd1+/- 198 13 53 2 1 

Mfap4-/- 192 10 34 4 1 

Mmachc+/- 182 13 35 2 3 

Mvk+/- 230 13 43 9 4 

Nek2-/- 205 15 47 1 3 

Npc2+/- 213 14 64 7 2 

Pebp1-/- 183 13 36 4 3 

Phyh-/- 159 8 39 5 5 

Pipox-/- 121 5 22 2 1 

Plk1+/- 127 10 27 3 2 

Pmm2+/- 232 18 59 6 7 

Ptpn12+/- 149 7 32 2 2 

Pttg1-/- 179 17 38 5 1 

Rock1+/- 97 7 26 2 1 

Sra1-/- 181 15 33 3 2 

Ulk3-/- 213 17 64 8 2 

Ywhaz+/- 154 12 36 7 7 
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Chapter 4 Comparing Stable Isotope Enrichment by Gas Chromatography with Time-of-

Flight, Quadrupole Time-of-Flight and Quadrupole Mass Spectrometry 

Reproduced from Ying Zhang, Bei Gao, Luis Valdiviez, Chao Zhu, Tara Gallagher, Katrine Whiteson, 

Oliver Fiehn. “Comparing stable isotope enrichment by gas chromatography with time-of-flight, 

quadrupole time-of-flight, and quadrupole mass spectrometry,” Anal. Chem., 2021, 93 (4), 2174-2182. 

4.1 Abstract 

Stable isotope tracers are applied in vivo and in vitro studies to reveal the activity of enzymes and 

intracellular metabolic pathways. Most often, such tracers are used with gas chromatography coupled to 

mass spectrometry (GC-MS) due to its ease of operation and reproducible mass spectral databases. 

Differences in isotope tracer performance of classic GC-quadrupole MS instrument and newer time-of-

flight instruments are not well-studied. Here, we used three commercially available instruments for the 

analysis of identical samples from a stable isotope labeling study that used [U-13C6] d-glucose to investigate 

the metabolism of bacterium Rothia mucilaginosa with respect to 29 amino acids and hydroxyl acids 

involved in primary metabolism. The prokaryote Rothia mucilaginosa belongs to the family of 

Micrococcaceae and is present and metabolically active in the lungs and sputum of cystic fibrosis patients. 

Overall, all three GC-MS instruments (low-resolution GC-SQ MS, low-resolution GC-TOF MS, and high-

resolution GC-QTOF MS) can be used to perform stable isotope tracing studies for glycolytic intermediates, 

TCA metabolites and amino acids, yielding similar biological results, with high-resolution GC-QTOF MS 

offering additional capabilities to identify chemical structures of unknown compounds that might show 

significant isotope enrichments in biological studies. 

4.2 Introduction 

Metabolomics has been widely used to study human diseases in the past 20 years.1-7 While snapshot (steady-

state) of metabolite profiles provides important information on cellular metabolism and physiology, such 

data do not necessarily reflect enzyme or pathway activity directly.8 Instead, stable isotope tracing can be 
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used to track the fate of labeled atoms in metabolite substrates, quantify the rates of changes of these 

metabolites and elaborate the direction of pathway activities.9-11 When isotope tracers are used along with 

absolute (molar) quantifications, fluxes across pathways can be discerned.12-13 Isotope tracers can delineate  

the alternative use of substrates in uncontrolled cell growth in malignant tumors14-16, determine the target 

pathways of novel drugs for disease therapy development,17-19 investigate the metabolic cross-feeding 

between bacteria,20-22 and assign/quantify the global plant metabolome that is riddled with heavy matrix 

interference.23-24  

Mass spectrometry (MS) has played a central role in metabolomics and stable isotope tracing studies.9 Gas 

chromatography with mass spectrometry (GC-MS) has been used for a long time for stable isotope labeling 

studies because many target compounds are directly amenable to GC-MS, including metabolites in the 

oxidative part of glycolysis, the TCA cycle and adjacent amino acids.25-27 For many compounds including 

sugars and hydroxyl acids,28-31 GC-MS offers an easier route to chromatographic separation than liquid 

chromatography (LC)-MS unless specific procedures like ion-pairing LC are used.32 Small molecules 

analyzed by GC-MS require derivatization to decrease their polarity and to increase volatility, selectivity, 

and sensitivity, especially for metabolites bearing acidic protons.30, 33 A typical silylation reagent used for 

derivatization in stable isotope tracing is N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide 

(MTBSTFA), which replaces non-sterically hindered active hydrogens (e.g., on -COOH, -OH, NH2, -HN, 

-SH groups) with tert-butyldimethylsilyl (TBDMS). MTBSTFA-derivatives produce characteristic 

fragmentation patterns with three major ions [M]+, [M─57]+, and [M─131]+. The [M─57]+ is generally the 

dominant ion and harbors the entire original metabolite7, 34 and is therefore best suited for isotope tracer 

studies. In comparison, trimethylsilylation (TMS) reagents do not yield abundant molecular fragment ions35 

and are less stable and more sensitive to moisture. On one hand, due to steric hindrance, TBDMS derivatives 

only replace one active hydrogen per amino group, leading to better precision in quantitative analysis of 

amino-containing compounds than smaller TMS reagents36-37 that generate several derivatives. On the other 
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hand, because of this effect, TBDMS-derivatization cannot derivatize sugars or sugar alcohols, limiting the 

use of TBDMS derivatization for general untargeted metabolomics compared to TMS reagents. 

A wide range of GC-MS instruments are available varying in resolution and mass separation. However, 

comparison of the performance of different GC-MS instruments using stable isotope labeling technique is 

not well-studied. Isotope tracing studies investigate either isotopomer or isotopologue information of 

metabolites.38-41 Isotopologue refers to molecules that differ only in their isotopic compositions. 

Isotopomers also consider the constitutional differences of isotopes within molecule structures.42 Isotope 

enrichment studies are not often conducted together with absolute quantifications43-44 which were used for  

the determination of absolute fluxes.45 To date, GC-MS are widely used for isotopologue tracer studies for 

which we here compared on three types of GC-MS instruments.  

We have applied [U-13C6] d-glucose to investigate the metabolism of Rothia mucilaginosa and reported the 

incorporation of glucose derived 13C into glycolysis metabolites and some amino acid biosynthesis 

pathways using a low-resolution GC-single quadrupole-MS (GC-SQ MS).20 Here, we investigate the same 

samples but used three different GC-MS instruments (Figure 4.1, Figure S4.1), with either low-resolution 

single quadrupole MS (GC-SQ MS), low-resolution time-of-flight MS (GC-TOF MS) or high-resolution 

GC-Quadrupole Time-of-Flight MS (GC-QTOF MS). 
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Figure 4.1. Evaluating the performance of isotope measurements for three GC-MS instruments using 
chemical standards and isotope tracer biological experiments.  

 

4.3 Methods 

4.3.1 Samples 

A quality control mixture of 29 unlabeled metabolite standards (Table S4.1) was prepared to reach a final 

concentration of 1 mg/mL as stock solution. 50 µL aliquot from each stock solution was combined into a 

new tube and dried down. Then, the mixture was diluted to reach a final concentration of 50 µg/mL working 

solution. 

Rothia mucilaginosa strain RmFLR01 was isolated from a cystic fibrosis (CF) patient at the UC San Diego 

Adult CF Clinic.20, 46 R. mucilaginosa cultures were grown in triplicates in artificial-sputum medium47 

spiked with 100 mM [U-13C6] d-glucose (Cambridge Isotope Laboratory, Tewksbury, MA, USA) under 
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anaerobic and aerobic conditions (5% CO2) at 37°C and harvested at 4, 8, 12, and 24 h for isotope tracer 

analyses.  

4.3.2 Sample preparation 

For the 29 unlabeled standards mixture, 10 µL of the final solution was dried down for GC-MS 

measurement. Derivatization and data acquisition of mixture aliquots by GC-MS were reproduced on three 

days for inter-day precision. Dried mixtures were derivatized by adding 10 µL of 40 mg/mL methoxyamine 

hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) in pyridine (Sigma-Aldrich, St. Louis, MO, USA) and 

shaking at 30°C for 1.5 h. Subsequently, 90 µL MTBSTFA (Sigma-Aldrich, St. Louis, MO, USA) was 

added with 13 fatty acid methyl esters (FAMEs) as retention index markers and shaken at 80°C for 30 min. 

Samples were immediately transferred to crimp top vials and injected onto each GC-MS instrument. 

Same samples of R. mucilaginosa cultures were extracted using published methods.20 The extraction solvent 

was prepared by mixing 3 volume of acetonitrile (Fisher Scientific), 3 volume of isopropanol (Fisher 

Scientific), and 3 volume of water (Fisher Scientific) together and was then degassed by directing a gentle 

stream of nitrogen through the solvent for 5 min. The solvent was cooled to −20°C prior to extraction.36, 48 

Samples were added 1 mL pre-chilled, degassed acetonitrile: isopropanol: water (v/v/v 3:3:2, Fisher 

Scientific) followed by vortexing 30 s and shaking at 4°C for 5 min. Samples were centrifuged for 2 min at 

12,210 × g to precipitate debris from extracts. Supernatants were collected and split into two equal portions. 

One aliquot was dried to completeness in a Labconco cold trap centrifuge evaporator and then resuspended 

in 0.5 mL degassed acetonitrile: water (v/v 1:1, Fisher Scientific) to remove triacylglycerides. Resuspension 

solutions were vortexed for 30s and centrifuged for 2 min. Supernatants were transferred into clean 

Eppendorf tubes and dried down completely. Dried extracts were derivatized as given above. 

4.3.3 Gas chromatographic conditions 

Each mass spectrometer was coupled to an Agilent 7890 GC system (Santa Clara, CA) installed with a 

Restek (Bellefonte, PA) RTX-5Sil MS column (30m length, 0.25 mm i.d, 0.25 μM df, 95% 
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dimethyl/5%diphenyl polysiloxane film) with an additional 10m guard column. For the quadrupole-MS and 

QTOF MS analyses, identical GC parameters were used by injecting 1 µL of derivatized sample into the 

GC in splitless mode at an injection temperature of 250°C and a constant flow of 1 mL/min. The initial 

oven temperature was held at 60°C for 0.5 min, and ramped at a rate of 10°C/min to 325°C that was 

maintained for 10 min for a total run time of 37 min.  

For the low-resolution LECO TOF MS (St. Joseph, MI, USA) instrument, 1 µL of derivatized sample was 

injected in splitless mode with an injection temperature of 275°C. The oven temperature started at 50°C for 

1 min, increased at 20°C/min to 330°C, and kept isothermal for 5 min. 

Each standards mixture sample was injected 6 times to obtain intra-day precision data for each instrument. 

The comparison of these samples measured on three separate days gave data for inter-day precisions.  

Each of the R. mucilaginosa biological triplicate samples was injected 10 times on each of the three GC-

MS instruments to discriminate true biological isotope enrichment effects from the impact of technical 

imprecision.  

4.3.4 MS analysis 

We compared the high-resolution Agilent 7200 QTOF (Santa Clara, CA, USA), the low-resolution Agilent 

5977 MSD (Santa Clara, CA, USA), and the low resolution LECO Pegasus IV TOF MS (St. Joseph, MI, 

USA) in this study. All three instruments used electron ionization (EI) mode at +70 eV electron voltage. 

Mass spectra were acquired from 85─700 m/z at 17 Hz and 250°C source temperature on the Pegasus IV 

TOF MS, 50─1050 m/z at 1.5 Hz and 240°C source temperature on the quadrupole-MS and from 50─1050 

m/z at 5 Hz and 230°C source temperature on the QTOF MS instrument.  

4.3.5 Data processing 

Because of the chromatography parameter differences on three instruments, retention times (RT) were 

initially determined by running each metabolite as chemical standard on the high-resolution GC-QTOF MS. 

During derivatization, FAMEs (fatty-acid methyl esters) with 8 to 30 fatty acyl carbon lengths were added 
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into MTBSTFA. These FAMEs were used as internal standards for retention index markers. This FAME 

marker set yields a stable set system with fixed differences in retention times.49 Despite other differences 

between the instruments, all three GC-MS instruments used the same electron ionization (EI) mode at +70 

eV electron voltage and the spectra were very comparable among three instruments. An example is given 

in Figure S4.1.  

LECO TOF MS raw data files (.CDF format) were converted to MassHunter formats (.D format) using 

Agilent GCMS translator software. MassHunter Quantitative Analysis B.07.00 version was used to process 

the data that acquired from all three GC-MS instruments to avoid potential differences caused by different 

data processing software parameters. We used identical S/N and RT tolerance settings for quantifying 

isotope tracers on the GC-QTOF and the GC-TOF MS instruments. Threshold of S/N was set to peak height 

≥ 1% of the largest peak. RT tolerance was set to ± 0.08 min. For the GC-quadrupole MS, the S/N was set 

to peak height ≥ 0.2%. All peak integrations were manually validated within the vendor software to exclude 

potential artifacts based on possible differences in software settings. Theoretical isotope ratios were 

calculated for [M─57]+ ion of each derivatized structure of the 29 standards using an online isotope 

calculator.50 As this study is not for absolute quantification and absolute flux calculations, we normalized 

over-enrichment of isotopes to the unlabeled M0 monoisotope ion, i.e., the [M-57]+ fragment. Hence, 

normalization was performed as ratio M+1/M (or M+2/M or M+3/M) from peak heights of extracted ion 

chromatograms. Averages and standard deviations as well as technical errors and isotope enrichments were 

calculated in Microsoft Excel by correcting for natural isotope abundances. The data sets are available in 

the Metabolomics Workbench data repository with accession numbers 2231(ST001613) for low-resolution 

GC-TOF MS and 2278 (ST001608) for the other two GC-MS instruments. 



 

121 
 

4.4 Results and Discussion 

4.4.1 Precision of isotope abundance measurements for three GC-MS instruments using 29 

unlabeled metabolite standards  

MTBSTFA derivatization replaces active hydrogens on polar functional groups and forms tert-

butyldimethylsilyl (TBDMS) derivatives which are fragmented during electron impact ionization to 

generate the most abundant ion [M─57]+ with tert-butyl cleavage (Figure 4.2A). TBDMS derivatization 

therefore has the advantage to yield a very abundant molecular fragment ion which contains the entire 

underivatized molecular skeleton with only one derivative product per metabolite. In addition, it had been 

previously shown that TBDMS derivatization yields better reproducibility than trimethylsilyl derivatization 

for amino acids which are important target compounds to be analyzed in metabolic isotope tracer studies. 

Using silylation reactions has a big advantage for isotope abundance analyses because the Si-atom has a 

high natural abundance of 5.1% for the M+1 isotope and 3.4% for the M+2 isotope, leading to easily 

detectable signals in GC-MS analyses even for low abundant metabolites in biological studies.   

We measured 29 unlabeled metabolite standards that are typically investigated in metabolic flux studies 

including glycolysis intermediates, TCA metabolites, and amino acids on three GC-MS instruments. We 

first evaluated the overall performance of three instruments by calculating relative and absolute errors for 

the three most important isotope ratios (M+1/M, M+2/M and M+3/M). Our results showed that the low-

resolution GC-TOF MS instrument yielded a significant systematic overrepresentation of the average 

isotope ratios for M+1/M, M+2/M, and M+3/M (Figure 4.2C) compared to GC-QTOF MS and GC-SQ 

MS instruments. The GC-TOF MS instrument also showed greater absolute errors (Table 4.1). These errors 

in the low-resolution GC-TOF MS instrument were clearly dependent on the molecular size of the 

chemicals (Figure 4.2D) as molecule [M─57] + fragments at < m/z 350 had isotopic ratios that were close 

to the theoretical values whereas at > m/z 350, systematic errors increased dramatically. These systematic 

errors are likely due to the way of this specific instrument accounting for ions by optimizing ion detection 

for speed, not for resolution, leading to non-optimal accounting for mass defects at higher m/z values. For 
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the single quadrupole, we found three outlier compounds, leucine and fumarate that showed detector 

saturation at [M─57]+ monoisotopic ion peak heights, and mass spectral undersampling for pyruvate as 

very low abundant compound. The GC-QTOF MS showed the most accurate isotope ratios with only one 

compound (lysine) that had more than 5% absolute error for the M+1/M isotope ratio (Figure 4.2D). This 

excellent accuracy of the GC-QTOF MS (Table 4.1) might be due to the high mass resolving power that at 

least partly separates co-elution isobaric noise ions and therefore leads to better peak integration of low 

abundant isotope ions. 

The mixture of 29 metabolite standards was injected six times each day to determine intra-day precision 

and reproduced for three days to test inter-day precision that were calculated as coefficient of variation 

(%CV). The low-resolution GC-TOF MS gave significantly better intra- and inter-day precisions than the 

other two instruments. For M+1/M (Table 4.1), GC-TOF MS instrument yielded only 1.1% CV on average 

for intra-day precision, compared to more than 2% CV for GC-quadrupole and GC-QTOF MS instruments. 

Similarly, for inter-day precision of M+1/M ratios, the low-resolution GC-TOF MS had best precision with 

2.3% CV compared to 4─6% CV for the other two instruments. The same trends were observed for M+2/M 

with significantly better intra-day and inter-day precisions for the low-resolution GC-TOF MS instrument 

compared to the other two mass spectrometers. For M+3/M ratios, overall signal intensities were too low 

to obtain reliable data with 4─10% CV for intra-day and 5─13% CV for inter-day precisions. We verified 

the excellent precision but also the high absolute error for the low-resolution GC-TOF MS on four separate 

instruments (Table S4.3) for TMS-derivatized standards, analyzed on different days and by different 

personnel. The superior precision of the low-resolution GC-TOF MS instruments compared to the other 

two instruments was also verified by additional analysis of underivatized fatty acid methyl esters (Table 

S4.4). In combination, these findings indicate that isotope ratio measurements correspond to the physics of 

the ion optics and ion detection system of each instrument type, rather than to small differences between 

individual instruments of the same type or the type of chemical derivatizations. 
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Figure 4.2. Overall performance of isotope detection using three instruments for 29 unlabeled standards. 
(A) MTBSTFA derivation leads to [M─(tert-butyl)]+ fragments that are used as M+ surrogate ions. (B) 
Example of chromatographic ion traces and corresponding averaged mass spectrum for [M─57]+ fragment 
of succinate.2TBDMS derivative at m/z 289 and its isotopologue intensities. (C) Average isotope ratios 
across all 29 metabolite standards and three GC-MS instruments. QTOF = high-resolution quadrupole time-
of-flight MS, SQ = low-resolution single quadrupole MS, TOF = low-resolution time-of-flight MS. Isotope 
ratios are represented as arithmetic means ±1 σ. (D) Measured M+1/M ratios for 29 metabolites corrected 
by their theoretical abundances, sorted by number of TBDMS derivatizations and m/z values.  

 

Table 4.1. Comparison of M+1/M and M+2/M isotope ratios of non-labeled standards from three 
instruments.  
QTOF = high-resolution quadrupole time-of-flight MS, SQ = low-resolution single quadrupole MS, TOF 
= low-resolution time-of-flight MS. 

  intra-day precision (%CV) inter-day precision (%CV) absolute error (ratio %) 
  QTOF SQ TOF QTOF SQ TOF QTOF SQ TOF 
M+1/M 2.7% 3.3% 1.1% 3.7% 5.8% 2.3% 0.8% 3.1% 12.0% 
M+2/M 3.4% 3.7% 1.5% 4.2% 6.1% 2.7% 0.6% 1.5% 4.7% 
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Interestingly, despite its excellent isotope accuracy, we did not find improved precision for the high-

resolution QTOF MS instrument compared to classic unit-resolution quadrupole instrument. Instead, the 

better precision observed for the GC-TOF MS might be explained by its faster spectral acquisition rate of 

the. Using this instrument, spectra are acquired at 500 spectra/s and then accumulated to 17 spectra/s during 

initial raw data processing. In comparison, high-resolution GC-QTOF MS and classic quadrupole MS 

instruments are typically scanning at 2─5 spectra/s. At this spectral acquisition rate, data might be under-

sampled for peaks that have band widths of 3 s (i.e. a total of 6-12 data points per peak) such as pyruvate 

measured on GC-SQ MS (Figure 4.2D), especially for lower-abundant M+1 and M+2 ions. Such 

undersampling of data points may certainly lead to lower precision. 

 

 

Figure 4.3. Isotope enrichment measured on three GC-MS instruments for selected metabolites in R. 
mucilaginosa. QTOF = high-resolution quadrupole time-of-flight MS, SQ = low-resolution single 
quadrupole MS, TOF = low-resolution time-of-flight MS. (3A─3C) Isotope enrichment of selected 
metabolites pyruvate, serine, and citrate in R. mucilaginosa grown for 24h under anaerobic or aerobic 
conditions depending on different [M─57]+ fragment size. Isotope enrichments were corrected for natural 
abundance and are represented as arithmetic means ±1 σ. Calculation of σ was from 30 injections with a 
combination of both technical variation of 10 replicates and biological variation of 3 biological sample 
replicates. 
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Figure 4.4. Increase in isotope enrichments measured on three GC-MS instruments for pyruvate, lactate and 
valine in R. mucilaginosa. QTOF = high-resolution quadrupole time-of-flight MS, SQ = low-resolution 
single quadrupole MS, TOF = low-resolution time-of-flight MS. Student t-test was used for assessing the 
significance levels by three biological replicates for enrichment at each time point compared to 4h time 
point in R. mucilaginosa grown for 4h─24h under anaerobic or aerobic conditions. *P < 0.05, **P < 0.01, 
***P < 0.001 with values represented as arithmetic means ±1 σ. (4A─4C) Increase in isotope enrichments 
for pyruvate M+3/M. (4D─4F) Increase in isotope enrichments for lactate M+3/M. (4G─4I) Increase in 
isotope enrichments for valine M+5/M. 
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4.4.2 Performance of three GC-MS instruments on 13C labeled R. mucilaginosa samples 

Isotope tracing in biochemistry can highlight active enzymes and pathways that may differ between 

biological conditions. We therefore tested the performance of three GC-MS instruments to determine 

whether each of the instruments would yield the same biological conclusions. We here used a [U-13C6] d-

glucose feeding experiment for which we previously published the overall biological insights using the GC-

quadrupole-MS system,20 and  reproduced the study three times to compare GC-SQ MS to the GC-TOF 

MS and the GC-QTOF MS systems.   

Rothia mucilaginosa (formerly Stomatococcus mucilaginosus) is a gram-positive coccus of the family 

Micrococcaceae and was found as a cause of oral, cutaneous, and central nervous system infections. All 29 

metabolites were detected in R. mucilaginosa cultures   grown under anaerobic and aerobic conditions from 

4─24 hours. Three independent cultures per time point were harvested and measured repeatedly for ten 

times. Isotope enrichment of three primary metabolites, pyruvate, serine and citrate all showed clear 

incorporation of labeled carbon into the metabolite structures at 24h (Figure 4.3A─C). Isotope enrichment 

analysis showed that the 3-carbon molecule pyruvate significantly enriched its M+3 isotope (Figure 4.3A) 

with 8─9 folds higher abundance than the unlabeled M+ monoisotopic parent molecule. Incomplete 

incorporation by one or two labeled carbons was much less pronounced for pyruvate. In comparison, the 3-

carbon molecule serine (Figure 4.3B) showed only modest, but notable incorporation of labeled carbon 

into the M+1, M+2 and M+3 isotopologues. For the 6-carbon molecule citrate (under aerobic condition, 

Figure 4.3C) that is formed by addition of acetyl-groups using citrate synthase, we investigated the M+2, 

M+4 and M+6 isotopologues and also found small but detectable labeling. Citrate under aerobic conditions 

were still detected at low abundance, thus the isotope enrichment among three instruments were slightly 

different but gave overall similar 13C incorporation patterns. These comparisons showed that all three GC-

MS instruments correctly detected a large metabolic flux into the endpoint of glycolysis, pyruvate, with 

only small flux into off-stream biosynthesis of serine under anaerobic conditions. The instruments also all 

found an overall limited metabolic flux from pyruvate into the TCA cycle. Importantly, pyruvate did not 
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show a large difference between the GC-SQ and the other two instruments (Figure 4.3A), unlike for the 

unlabeled mixture experiment (Figure 4.2D). Moreover, despite the differences in reported isotope 

enrichment for each of the metabolites on the three GC-MS instruments, the biological conclusions would 

be the same, with high degree of 13C incorporation in pyruvate but low 13C enrichment for citrate and serine 

(Figure 4.3A─C). This biological conclusion would be even clearer if raw measurements were to be 

corrected for the systematic errors observed in the GC-TOF MS instrument by a post-hoc mass-dependent 

regression, which can be further explored in future studies. 

The growth and metabolism of bacteria are sensitive to oxygen conditions. Thus, we examined the impact 

of oxygen condition on the metabolism of R. mucilaginosa and studied whether biological conclusions 

would differ between the three GC-MS instruments with respect to isotope enrichment over the course of 

one day under both aerobic and anaerobic conditions, correcting for natural isotope abundances (Figure 

4.4A─I). The increase pattern in fully labeled pyruvate M+3 was similar for all three GC-MS instruments 

(Figure 4.4A─C) as well as for amino acids, citrate and other TCA cycle metabolites. All three instruments 

showed a decrease of fully labeled pyruvate M+3 under aerobic conditions at 24h compared to 12h, but not 

for anaerobic conditions (Figure 4.4A─C). Interestingly, all three instruments found much higher 

incorporation of labeled carbon into lactate under aerobic conditions than under anaerobic media between 

8─24h growth (Figure 4.4D─F), reaching a plateau at 12h. Under anaerobic conditions, all three 

instruments showed only enrichment for lactate only at 24h (Figure 4.4D─F). For amino acid metabolite 

valine, greater isotope enrichment was observed under anaerobic conditions compared to aerobic growth 

conditions (Figure 4.4G─I). This indicated the incorporation rates of glucose derived 13C into valine were 

faster under anaerobic condition than aerobic environment. Similar biological results were observed by all 

three types of GC-MS instruments for tryptophan that showed clearly higher enrichment for tryptophan 

M+3 under aerobic conditions than anaerobic conditions (Figure S4.2A─C). Only when absolute ion 

intensities were too low, for example for phosphoenolpyruvate (Figure S4.2D─F), differences between the 

instruments might interfere with detection of biological differences. Specifically, temporal differences in 
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isotope enrichment in PEP from 4─24h growth were found only when using the quadrupole and QTOF 

instruments, but not the TOF instrument (Figure S4.2D─F). While we have not tested for biological 15N 

incorporation,51 similar performance of three GC-MS instruments as in 13C labeling isotope enrichment 

analyses can be expected because such isotopologue enrichment analyses only consider the differences 

between full mass units,  not the isotopic fine structures.38, 52 

4.5 Conclusion 

Our results show that the three tested types of GC-MS instruments were all capable of performing 13C-

based stable isotope ratio enrichments studies for primary metabolites. While the GC-QTOF MS showed 

better accuracy than the other two instruments, the low-resolution GC-TOF MS was superior in precision 

of 13C labeled isotopologue analysis. It is important to note that none of these instruments enables 

isotopomer (13C positional) analyses or studies combining 13C, 18O, and 15N labeled substrates. Instruments 

to enable such studies for discerning the fine isotope structure of the labeled isotopes must have resolving 

power with R > 250,000.38, 52 The nominal-mass GC-TOF MS showed systematic overrepresentation of 

isotope ratios for high m/z metabolites while the nominal-mass GC-single quadrupole yielded saturation 

effects at high metabolite concentrations. Nevertheless, when used in an example biological study on 13C-

glucose fed Rothia bacteria, all three GC-MS instruments yielded similar biological interpretations. While 

the low-resolution instruments are cheaper and easier to operate and maintain than high-resolution GC-MS 

instruments, accurate mass GC-QTOF MS instruments offer additional capabilities to identify chemical 

structures of unknown compounds.53-54 This study exceeded the number of metabolites analyzed in the prior 

biology-focused study that only used GC-quadrupole MS instrumentation.20 Interestingly, the inclusion of 

such a wider range of metabolic targets discovered differences in metabolic 13C-enrichment for low 

abundant compounds that were not reported in the prior study.20 For example, stark differences in isotope 

enrichment for low abundant tryptophan were observed with all three instruments between aerobic and 

anaerobic cultures. In addition, temporal 13C-enrichment differences in some low abundant metabolites 

such as phosphoenolpyruvate were only detected by GC-QTOF MS and GC-SQ MS instruments, but not 
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by low-resolution GC-TOF mass spectrometry. Hence, this study shows how the number of metabolites in 

13C-enrichment analysis can be easily enlarged, offering the potential to extend the use of GC-MS to 

untargeted metabolome enrichment studies. If the aim of using 13C-enrichment is to report absolute fluxes 

in biological studies, multiple time points would need to be analyzed in combination with absolute 

quantifications. Overall, we conclude that different GC-MS instruments showed to be highly useful for 

isotopic enrichment analysis in metabolomic studies. 
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4.7 Supplementary Information 

 
Table S4.1. Information or Standards name and provided vendor names.  

Standards Name CAS# Catalog Vendor Abbreviation 
Pyruvic acid 127-17-3 107360 Sigma-Aldrich pyr 
L-leucine 61-90-5 L8000 Sigma-Aldrich leu 
L-Isoleucine 73-32-5 I2752 Sigma-Aldrich ile 
Glycine 56-40-6 G7126 Sigma-Aldrich gly 
L-Alanine >98% 56-41-7 A7627 Sigma-Aldrich ala 
L(+)-Lactic acid 79-33-4 L1750 Sigma-Aldrich lac 
L-Proline 147-85-3 P0380 Sigma-Aldrich pro 
Fumaric acid 110-17-8 47910 Sigma-Aldrich fum 
L-Valine 72-18-4 V0500 Sigma-Aldrich val 
Succinic acid 110-15-6 398055 Sigma-Aldrich suc 
Oxoproline 98-79-3 83160 Sigma-Aldrich opro 
L-Methionine 63-68-3 M9625 Sigma-Aldrich met 
L-Phenylalanine 63-91-2 P2126 Sigma-Aldrich phe 
α-Ketoglutarate 328-50-7 75890 Sigma-Aldrich akg 
L-Tryptophan 73-22-3 T0254 Sigma-Aldrich trp 
D-Serine 312-84-5 S4250 Sigma-Aldrich ser 
L-Threonine 72-19-5 T8625 Sigma-Aldrich thr 
L-Cysteine 52-90-4 168149 Sigma-Aldrich cys 
L-Asparagine 70-47-3 A0884 Sigma-Aldrich asn 
L-Aspartic acid 56-84-8 A9256 Sigma-Aldrich asp 
L(-)-Malic acid 97-67-6 M1000 Sigma-Aldrich mal 
L-Glutamine 56-85-9 G3202 Sigma-Aldrich gln 
L-Lysine 56-87-1 L5501 Sigma-Aldrich glu 
L-Glutamic acid 56-86-0 G1251 Sigma-Aldrich lys 
L-Histidine 71-00-1 H8000 Sigma-Aldrich his 
D-Tyrosine 556-02-5 855456 Sigma-Aldrich tyr 
Phospho(enol)pyruvic acid 
monopotassium salt 4265-07-0 860077 Sigma-Aldrich pep 

Citric acid 77-92-9 251275 Sigma-Aldrich ca 
DL-Isocitric acid trisodium salt 
hydrate 1637-73-6 I1252 Sigma-Aldrich ica 
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Table S4.2. InChiKeys, KEGG IDs, and PubChem CIDs for the 29 metabolites.  

Metabolite Name InChiKey KEGG ID PubChem CID 
pyruvic acid LCTONWCANYUPML-UHFFFAOYSA-N C00022 1060 

lactic acid JVTAAEKCZFNVCJ-UHFFFAOYSA-N C01432 612 
alanine QNAYBMKLOCPYGJ-REOHCLBHSA-N C00041 5950 
glycine DHMQDGOQFOQNFH-UHFFFAOYSA-N C00037 750 
valine KZSNJWFQEVHDMF-BYPYZUCNSA-N C00183 6287 
leucine ROHFNLRQFUQHCH-YFKPBYRVSA-N C00123 6106 

isoleucine AGPKZVBTJJNPAG-WHFBIAKZSA-N C00407 6306 
succinic acid KDYFGRWQOYBRFD-UHFFFAOYSA-N C00042 1110 

proline ONIBWKKTOPOVIA-BYPYZUCNSA-N C00148 145742 
fumaric acid VZCYOOQTPOCHFL-OWOJBTEDSA-N C00122 444972 
oxoproline ODHCTXKNWHHXJC-VKHMYHEASA-N C01879 7405 
methionine FFEARJCKVFRZRR-BYPYZUCNSA-N C00073 6137 

serine MTCFGRXMJLQNBG-REOHCLBHSA-N C00065 5951 
a-ketoglutaric acid KPGXRSRHYNQIFN-UHFFFAOYSA-N C00026 51 

threonine AYFVYJQAPQTCCC-GBXIJSLDSA-N C00188 6288 
phenylalanine COLNVLDHVKWLRT-QMMMGPOBSA-N C00079 6140 

malic acid BJEPYKJPYRNKOW-UHFFFAOYSA-N C00711 525 
aspartic acid CKLJMWTZIZZHCS-REOHCLBHSA-N C00049 5960 

cysteine XUJNEKJLAYXESH-REOHCLBHSA-N C00097 5862 
phosphoenolpyruvic acid DTBNBXWJWCWCIK-UHFFFAOYSA-N C00074 1005 

glutamic acid WHUUTDBJXJRKMK-VKHMYHEASA-N C00025 33032 
asparagine DCXYFEDJOCDNAF-REOHCLBHSA-N C00152 6267 

lysine KDXKERNSBIXSRK-YFKPBYRVSA-N C00047 5962 
glutamine ZDXPYRJPNDTMRX-VKHMYHEASA-N C00064 5961 
histidine HNDVDQJCIGZPNO-YFKPBYRVSA-N C00135 6274 

citric acid KRKNYBCHXYNGOX-UHFFFAOYSA-N C00158 311 
isocitric acid ODBLHEXUDAPZAU-ZAFYKAAXSA-N C00311 1198 

tyrosine OUYCCCASQSFEME-QMMMGPOBSA-N C00082 6057 
tryptophan QIVBCDIJIAJPQS-VIFPVBQESA-N C00078 6305 
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Table S4.3. Comparison of M+1/M and M+2/M isotope ratios of 28 non-labeled QC mixture from four 
unit-resolution GC-TOF instruments. 

 

Name absolute error within-
instrument A B C D 

M+1/M 2.8% 2.5% 1.7% 1.5% 3.1% 3.6% 
M+2/M 4.3% 4.0% 4.9% 2.3% 3.5% 5.2% 

 
 

 

Table S4.4. Comparison of M+1/M isotope ratios of non-labeled FAMES standards from three instruments. 
QTOF = high-resolution quadrupole time-of-flight MS, SQ = low-resolution single quadrupole MS, TOF 
= low-resolution time-of-flight MS 

 

 

 
 
 
 
We processed the data showed in Table S4.4 using MassHunter Quantitative Analysis B07.00 and 
investigated the abundant m/z 87 fragment and its isotopes M+1, M+2 and M+3. m/z 87 is a typical ion 
fragment of FAMES. The results showed that all instrument showed a significant absolute error for this 
mass: the formula C4H7O2 should have a ratio of M+1/M = 4.5%, but the measured ratios showed systematic 
errors ranging from measure values of 8.9% (quadrupole) to 6.5% (QTOF). These systematic errors lead to 
absolute errors of 2─4.5% and were larger than observed in our study for the tert-butyl-loss fragments 
[M─57]+ of tert-butyldimethylsilylated metabolites. This effect may be due to the difficulties in peak 
integration for low abundant M+1 and M+2 peaks. This effect is less prominent in MTBSTFA derivatization 
because the silicon atom has significant abundance of its natural isotopes of M+1/M = 5.1% and M+2/M = 
3.4%. For this reason, derivatized metabolites have higher total abundance in isotope ratio enrichment 
analyses in GC-MS chromatograms, and consequently, lower errors. In addition, analysis of m/z 87 cannot 
reflect the differences we observed for high m/z ions, specifically for the low-resolution GC-TOF MS 
instrument. 

      M+1 / M           precision (% CV) 
FAMEs m/z 87 absolute error inter-day intra-day 

SQ 4.4% 5.4% 2.8% 
TOF 4.0% 3.7% 1.9% 
QTOF 2.0% 6.4% 6.4% 
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Figure S4.1. Full spectrum of aspartate 3TBS-derivatives for the three instruments. 
The spectrum showed in Figure 1 of the main manuscript was an example obtained by high-resolution GC-
QTOF MS analyses. Only the relevant isotope data of the [M─57]+ fragment were shown in Figure 1. 
Nominal m/z values obtained for identical compound are identical across instruments.  
4.1A. Low-resolution GC-TOF MS: Aspartate 

 
4.1B. Low-resolution GC-SQ MS: Aspartate 

 
 
4.1C. High-resolution GC-QTOF MS: Aspartate 
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Figure S4.2. Increase in isotope enrichments measured on three GC-MS instruments for 
phosphoenolpyruvate (PEP) and tryptophan in R. mucilaginosa. (S4.2A-S4.2C) Isotope enrichment pattern 
for phosphoenolpyruvate, M+3/M. (S4.2D-S4.2F) Isotope enrichment pattern for tryptophan, M+3/M. 
QTOF = high-resolution quadrupole time-of-flight MS, SQ = low-resolution single quadrupole MS, TOF = 
low-resolution time-of-flight MS. Student t-test for three biological replicates was used for assessing 
significance levels for enrichment at each time point compared to 4h time point in R. mucilaginosa grown 
for 4h-24h under anaerobic or aerobic conditions. *P < 0.05, **P < 0.01, ***P < 0.001, values were 
represented as mean ±1 S.D.  

 
 
Figure S4.2 shows examples for two metabolites with low abundance in R. mucilaginosa samples, 
phosphoenolpyruvate (PEP) and tryptophan. QTOF MS and SQ MS showed PEP M+3/M started significant 
enrichment at 8h under anaerobic conditions and at 12h under aerobic conditions. On TOF MS, there is no 
significant enrichment but overrepresentation of enrichment across all time points. For tryptophan, the 
intensities are also relatively low on three GC-MS instruments, but all three instruments showed higher 
enrichment under aerobic conditions than anaerobic conditions. 
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