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ABSTRACT OF THE DISSERTATION

Large-scale Inference of Correlation between Complex Biological Traits

by

Zhenyu Zhang
Doctor of Philosophy in Biostatistics
University of California, Los Angeles, 2022
Professor Marc A. Suchard, Chair

Inferring dependencies between complex biological traits while accounting for evolutionary
relationships among specimens is of great scientific interest, yet remains infeasible when trait
and specimen counts grow large. I aim to develop a scalable Bayesian inference framework to
assess correlation between complex traits along the evolutionary tree relating the specimens
and informed by molecular sequences. To accommodate discrete and continuous traits, I
posit a phylogenetic multivariate probit model that uses a latent variable framework. Poste-
rior computation under this model requires integrating many latent variables, or equivalently
making many computationally expensive draws from a high-dimensional multivariate trun-
cated normal distribution (MTN). To tackle this challenge, I propose an inference scheme
that exploits 1) representative cutting-edge Markov chain Monte Carlo (MCMC) methods
including the bouncy particle sampler (BPS), the Markovian Zigzag sampler (ZZ), and the
Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) that can simultaneously sample all trun-
cated normal dimensions, and 2) novel dynamic programming strategies that reduce the
cost of likelihood and gradient evaluations for all three samplers to linear in sample size.

Compared to the previous best practices that employ multiple-try rejection sampling, my
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approach achieves an order-of-magnitude speedup, allowing us to tackle previously unwork-
able large-scale problems. In an application with 535 HIV-1 viruses and 24 traits that
necessitates sampling from a 11,235-dimensional MTN, my method makes it possible to ex-
amine the conditional dependencies between 21 immune escape mutations and 3 virulence
measurements. In a second application I study the evolution of influenza HIN1 glycosyla-
tions using around 900 viruses. Lastly, I extend the phylogenetic probit model to incorporate
categorical traits and demonstrate its use to investigate Aquilegia flower and pollinator co-
evolution. In summary, the contribution of this dissertation is two-fold. First, I develop a
state-of-the-art solution for the long-standing problem in Bayesian phylogenetics — learn-
ing correlation among complex biological traits with joint tree modeling. Second, further
empirical and theoretical investigation of BPS, ZZ, and Zigzag-HMC yield insight into the
differences and similarities between these recently developed MCMC samplers. As Zigzag-
HMC outperforms the other two on MTNs, I also implement this approach in a standalone

R package, aiming to provide a general efficient tool for high-dimensional MTN simulation.
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CHAPTER 1

Introduction

1.1 Literature review and study objectives

Phylogenetics is the study of the evolutionary history relating individuals or groups of or-
ganisms and plays a central role in understanding the process of evolution and the interpre-
tation of biological information. In the 1960s, several pioneer groups launched the inference
of phylogenetic trees, or phylogenies, from molecular sequences. Cavalli-Sforza and Edwards
introduced the parsimony and likelihood methods for inferring phylogenies (Cavalli-Sforza
and Edwards, 1967; Edwards and Cavalli-Sforza, 1965). Fitch and Margoliash (1967) devel-
oped the first distance matrix method for tree construction. In the past decades, thanks to
the explosively accumulating molecular data, greatly improved computing power and sophis-
ticated statistical methods, phylogenetics continues to experience significant growth and has
found use in nearly all branches in biology (Lyubetsky, Piel, and Quandt, 2014). Modern
phylogenetics has two major goals: to reconstruct the evolutionary tree among species and
to investigate the mechanisms of the evolutionary process giving rise to these species (Yang,
2006). A variety of tree-reconstruction methods exist, and among the most popular ones
are the unweighted pair-group method using arithmetic averages (Sokal and Sneath, 1963,
UPGMA), maximum parsimony (Fitch, 1971), maximum likelihood (Felsenstein, 1981) and
Bayesian methods (Li, Pearl, and Doss, 2000; Rannala and Yang, 1996; Sinsheimer, Lake,
and Little, 1996). Bayesian inference is a flexible and versatile tool in phylogenetics, as it
can incorporate various modeling assumptions and at the same time provide a treatment for

uncertainty. This is especially important when we are interested in some evolutionary pro-



cess happening on the tree, but high uncertainty lingers about the tree itself. Under a joint
Bayesian framework we can average over the tree space, test evolutionary hypotheses with-
out conditioning on a single tree and therefore reduce bias (Suchard, Weiss, and Sinsheimer,

2001).

A tree structure is an intuitive device to describe an evolutionary history of molecular
sequences that are inherited in a vertical fashion from parent to progeny. With increas-
ing sample sizes and model complexity, however, posterior inference for highly structured
tree-based models tends to be computationally expensive. Therefore, much recent effort in
Bayesian phylogenetics has focused on developing efficient inference frameworks. To name
a few, Pybus et al. (2012) and Cybis et al. (2015) propose tree “traversals” to integrate out
the internal and root node trait values of biological phenotypes analytically, Hassler et al.
(2021) and Tolkoff et al. (2018) develop an efficient phylogenetic factor analysis approach
for learning correlations among high-dimensional traits, Ji et al. (2020, 2021) and Fisher
et al. (2021a,b) use scalable Hamiltonian Monte Carlo on general sequence substitution
and trait evolution models, and Hassler et al. (2020) propose a fast method to marginalize
missing traits. Of equal importance to the statistical development stand scientific software
that provide efficient implementations of these methods as well as user-friendly interfaces.
There exist a variety of packages specialized in Bayesian phylogenetic inference, such as the
Bayesian Evolutionary Analysis by Sampling Trees (Suchard et al., 2018, BEAST), MrBayes
(Ronquist et al., 2012), and RevBayes (H6hna et al., 2016).

The main goal of this dissertation is to develop a scalable inference framework to learn
correlation between complex biological traits observed on evolutionarily related taxa, while
simultaneously estimating the potentially unknown phylogeny. Here “complex” means that
the trait values can be continuous or discrete — a situation commonly seen in applications.
This is an important yet unsolved problem. To describe complex trait evolution I develop a
phylogenetic probit model based on the latent liability model (Cybis et al., 2015) for its great

utility and flexibility. Then I develop an inference toolbox for posterior computation under



this model and implement all developed methods in BEAST. Alternative approaches for
complex traits on unknown trees are limited. Phylogenetic regression models (Grafen, 1989)
assume a known fixed tree and their logistic extensions (Ives and Garland, 2009) take a single
binary trait as the regression outcome. On the other hand, for continuous traits, comparative
methods (Felsenstein, 1985) scale well on random trees (Pybus et al., 2012; Tung Ho and
Ané, 2014). Likewise, continuous-time Markov chain-based models (Lewis, 2001; Pagel,
1994) are popular for multiple binary traits, but restrictively assume independence between

traits given the tree.

Although my methodological development is driven by real-world phylogenetics applica-
tions (Chapter 3 and 4), I recognize that this development also delivers advances in statistical
computing beyond phylogenetics. So a side goal of my dissertation is to further explore this

broader contribution (Chapter 5 and 6).

1.2 Dissertation structure

I organize my dissertation around four projects in Chapters 3, 4, 5, 6 that together support
the thesis objectives yet all lead to individual manuscripts for publication. The project
chapters can be read as such and, therefore, please forgive the slight inconsistency in notation
and repetition of material between chapters. Placed before these independent chapters sits
Chapter 2 that provides necessary background in phylogenetics and statistics to help to

situate the projects.

To describe the evolution of mixed-type traits, Chapter 3 introduces a phylogenetic mul-
tivariate probit model by assuming latent parameters for binary outcome dimensions at the
tips of an unknown tree informed by molecular sequences. The focus of Chapter 3 is on
the inference challenge under the phylogenetic probit model. When fitting this model to
a large data set, the computational bottleneck is to repeatedly sample the latent variables

from a high-dimensional multivariate truncated normal (MTN) with a possibly random cor-



relation structure. For this task, I develop a new inference approach that exploits 1) the
bouncy particle sampler (Bouchard-Coté, Vollmer, and Doucet, 2018, BPS) based on piece-
wise deterministic Markov processes (PDMP) to simultaneously sample all truncated normal
dimensions, and 2) novel dynamic programming that reduces the cost of likelihood and gra-
dient evaluations for BPS to linear in sample size. Compared to the previous best practices
(Cybis et al., 2015), BPS achieves a 74x speed-up in terms of minimal effective sample size
(ESS) on a 11,235-dimensional MTN from an HIV data set with 535 taxa and 24 mixed-
type traits, making it possible to estimate the across-trait correlation with an explicit tree

modeling.

In Chapter 4, I develop a yet more efficient inference scheme for the phylogenetic probit
model to tackle larger problems. As the number of specimens grows, the BPS method fails
to reliably characterize conditional dependencies between traits. To resolve this limitation,
I employ the recent Zigzag Hamiltonian Monte Carlo (Nishimura, Dunson, and Lu, 2020,
Zigzag-HMC) that can utilize the same linear-order gradient evaluation method developed in
Chapter 3. I demonstrate that Zigzag-HMC better explores the parameter space than BPS
and so it samples from a high-dimensional MTN more efficiently. Zigzag-HMC also enjoys
another strong advantage in that it allows joint transition kernels for highly correlated la-
tent variables and correlation matrix elements. On the same HIV application as in Chapter
3, Zigzag-HMC yields a further 5-fold speedup compared to BPS and makes it possible to
learn partial correlations between candidate viral mutations and virulence. I demonstrate
the improved scalability of this approach in studying the evolution of influenza HIN1 glyco-
sylations on around 900 viruses. For broader applicability, I extend the phylogenetic probit
model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower

and pollinator co-evolution.

[ test another cutting edge PDMP-based sampler, the Markovian zigzag sampler (Bierkens,
Fearnhead, Roberts, et al., 2019, ZZ) on MTNs from the phylogenetic probit model to see if
it is a better choice than BPS or Zigzag-HMC. Zigzag-HMC turns out to be more efficient



and therefore becomes the final choice in Chapter 3. In Chapter 5 my collaborator Akihiko
Nishimura and I recognize an intriguing connection between the two zigzag samplers that
helps to explain their different behavior. Nishimura, Zhang, and Suchard (2021) theoretically
proves an equivalence of the two methods under certain limits. This result is consistent with
our observation that Zigzag-HMC outperforms ZZ when the dependency among parameters

increases.

The impressive efficiency of Zigzag-HMC on MTNs in the phylogenetic applications sug-
gests its broader use. Therefore, in Chapter 6 I introduce the hdtg R package for efficient
MTN simulations. MTN simulation arises in various statistical applications yet remains a
challenging problem in high dimensions. There is no available software package that can
generate samples from an arbitrary MTN with thousands of dimensions and this limitation
prevents researchers from developing methods that exploit sampling from a large MTN. Be-
sides Zigzag-HMC, the current best algorithms for MTN simulation are the minimax tilting
accept-reject sampler (Botev, 2017, MT) and the harmonic Hamiltonian Monte Carlo (Pak-
man and Paninski, 2014, Harmonic-HMC). However, the scale limit of minimax tilting is
often only a few hundred dimensions, and there is no efficient implementation of Harmonic-
HMC. T aim to bridge this gap with the hdtg package that implements both Zigzag-HMC
and Harmonic-HMC. I compare the efficiency between Zigzag-HMC, Harmonic-HMC, and
MET on MTNs with various correlation structures. Zigzag-HMC outperforms the other two
in most cases with a dimension > 1000. I also provide some practical guidance on method

choice for MTN simulation and illustrate the usage of hdtg functions.

Finally, in Chapter 7 I discuss what new knowledge and insights my doctoral projects

have contributed, and point out future directions in studying complex trait evolution.



CHAPTER 2

Background

2.1 Trait evolution framework

Here I introduce the basic trait evolution framework used throughout Chapters 3 and 4.
The phylogeny . = (V,t) is a directed, bifurcating acyclic graph with a set of nodes V and
branch lengths t. The node set V contains N tip nodes (“taxa”) and N — 1 internal nodes
including the root. The branch lengths t = (¢1,...,tay_2) denote the time distance from
every node to its single parent (except the root). On the ith taxon (i = 1,..., N), we observe
P continuous or discrete traits Y;. To jointly model the evolution of these complex traits, I
build a phylogenetic probit model that extends the popular threshold model for binary traits
(Cybis et al., 2015; Felsenstein, 2005, 2011). This model assumes 2N — 1 latent variables
X, for all nodes and those at tree tips decide the observed trait values. The latent variables
themselves follow a Brownian diffusion along the tree (Felsenstein, 1985). I then specify
a mapping function from X; to Y; that accommodates continuous, binary, and categorical
trait types (Section 3.2.1 and 4.2.1). Figure 2.1 visualizes such a trait evolution framework

on a 3-tip example tree.

2.2 Bayesian inference and Markov chain Monte Carlo

I take a Bayesian approach for every inference task in this dissertation. Bayesian inference

derives the posterior distribution of model parameters @ given all observed data Y according



Figure 2.1: An example tree with NV = 3 tips (purple) and 2 internal nodes (green). I denote
the latent variable and observed trait on the ¢th node with X; and Y}, respectively, and t;
is the branch length from node ¢ to its parent node.
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to Bayes’ theorem
p(Y |0)p(6)

p(O|Y) = (2.1)

p(Y)
Note that 0 includes all unknown model parameters. In phylogenetics applications, these
parameters define the tree topology and branch lengths, as well as any evolutionary process
described by the model. Data Y may contain sequence data, phenotypic trait data, and
relevant geographic information. In Chapter 3 and 4, I follow a 5-step process to perform

Bayesian analysis:

1. Identify the observed data Y and scientific questions.

2. Build a probabilistic model that gives the likelihood p(Y | 0).
3. Specify prior distributions p(8).

4. Learn the posterior p(0|Y).

5. Interpret the results.

Except for special cases where priors and likelihoods are conjugate, an analytical poste-

rior is not available, and it requires either a sampling- or approximation-based approach



to characterize p(6@|Y). Markov chain Monte Carlo (MCMC) is one of the most widely
used sampling approaches for Bayesian inference, and the methodology development in this
dissertation focuses on novel and efficient MCMC methods to tackle inference challenges in

studying complex trait evolution.

In short, MCMC algorithms construct a Markov chain whose stationary distribution is the
posterior distribution of interest. There are various ways to construct such a Markov chain,
including the classical Metropolis-Hastings algorithm (Metropolis et al.; 1953) and Gibbs
sampling (Geman and Geman, 1984), as well as the more recent Hamiltonian Monte Carlo
(Neal, 2011, HMC) and MCMC based on piecewise deterministic Markov processes (Davis,
1984; Fearnhead et al., 2018, PDMPs). HMC- and PDMP-based MCMC avoid the “random-
walk behavior” that hampers many MCMC methods by utilizing gradient information to
better explore the parameter space. However, none of the current MCMC methods is readily
applicable to the bottleneck of sampling the conditional posterior of latent variables under
the phylogenetic probit model, and this limitation motivates me to develop the inference
machinery in Chapter 3 and 4. As HMC- and PDMP-based MCMC are the key algorithms

in my development, I give a brief overview of them in the next sections.

2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (Neal, 2011, HMC) is a state-of-the-art general purpose sampler.
HMC only requires evaluations of the log-density and its gradient, yet is capable of sampling
efficiently from complex high-dimensional distributions (Gelman et al., 2013). In order to
sample a d-dimensional parameter & = (z1,...,x4) from the target distribution = (x), HMC
introduces an auxiliary momentum variable p = (py,...,pq) € R? and samples from the

product density 7(x, p) = 7(x)7(p) by numerically discretizing the Hamiltonian dynamics

E - VK(p), % = —VU(-’L‘), (22)



where U(x) = —logn(x) and K(p) = —logm(p) are the potential and kinetic energy. The
sum of U(x) and K (p) is the Hamiltonian which stays invariant over time. In each HMC
iteration, we first draw p from its marginal distribution 7 (p) ~ N(0,I), a standard Gaussian
and then approximate (2.2) from time t = 0 to t = T by L = |T/e| steps of the leapfrog
update with stepsize € (Leimkuhler and Reich, 2004):

p—p+ %Vw logm(x), @< x+ep, pp+ %Vw log 7 (). (2.3)

The end state is a valid Metropolis proposal that one accepts or rejects according to the

standard acceptance probability formula (Hastings, 1970; Metropolis et al., 1953).

By virtue of the properties of Hamiltonian dynamics, the HMC proposals generated above
can be far away from the current state yet be accepted with high probability. Good perfor-
mance of HMC depends critically on well-calibrated choices of L and e. In this dissertation
I automate these choices via the stochastic optimization approach of Andrieu and Thoms
(2008) and the No-U-Turn (NUTS) algorithm of Hoffman and Gelman (2014) that have
been shown to achieve performance competitive with manually optimized HMC. The key al-
gorithm in Chapter 4, Zigzag-HMC, is a less explored version of HMC where the momentum
components have independent Laplace distributions and the resulting Hamiltonian trajec-
tory possesses a zigzag shape. Since Zigzag-HMC is based on the reversible Hamiltonian
zigzag dynamics (Nishimura, Dunson, and Lu, 2020; Nishimura, Zhang, and Suchard, 2021),

it can also utilize NUTS to avoid manual tuning.

2.4 Piecewise deterministic Monte Carlo

The recent development of new MCMC algorithms based on piecewise deterministic Markov
processes (PDMPs) has attracted an explosion of interest (Dunson and Johndrow, 2020).
Examples include the bouncy particle sampler (Bouchard-Coté, Vollmer, and Doucet, 2018,
BPS), the Zig-Zag sampler (Bierkens and Duncan, 2017; Bierkens, Fearnhead, Roberts,

9



et al., 2019, ZZ), and the Boomerang sampler (Bierkens et al., 2020). Unlike traditional
MCMC methods that simulate a discrete-time Markov chain, PDMP-based MCMC simulates
a continuous-time Markov process designed to have the target distribution as its stationary
distribution. These conceptually new methods have demonstrated promising efficiency in
large-scale problems and my work in Chapter 3 to 5 are among the first examples where
they contribute to tackle challenging inference tasks in real-world applications (Nishimura,

Zhang, and Suchard, 2021; Zhang et al., 2021, 2022a).

Following Fearnhead et al. (2018), I briefly introduce PDMPs and their use in build-
ing continuous-time MCMC algorithms. A PDMP is a continuous-time stochastic process
(Davis, 1984). One can visualize a d-dimensional PDMP in terms of an imaginary particle
moving in the R? space, whose state at time t is (x;, v;), where x; = (a:tl, e ,xf) denotes
the particle’s position at time ¢ and v, = (vtl, e ,vf) is the velocity. The PDMP trajectory
consists of random velocity changing events and deterministic dynamics between the events.

The following three quantities define a PDMP:

(i) The deterministic dynamics. Between events, the trajectory follows a deterministic

path described by the ordinary differential equation:

dx!
dt

=, i=1,...,d (2.4)

(ii) The event rate. Velocity changing events will happen at a rate A (@, v;) that depends
on the current state (a;, v;) and the target distribution. In other words, the probability

that an event happens during interval [t,t + h] is A (x;) h + o(h).

(iii) The transition at events. The velocity will change at each event. If an event happens
at time 7, we have v, = ¢ (x,_,v,_), where v,_ and x,_ are the position and veloc-
ity immediately before the event and the transition kernel ¢ (-,-) specifies how they

determine v,.
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A PDMP-based MCMC algorithm first specifies these characteristic quantities. Then one

can simulate the underlying PDMP via:

(1) Given the current state (x;, v;), simulate the next event time 7.
(2) Compute (x,—,v,_), the state right before the event.
(3) Update the state at time 7 so v, « ¢ (x,_,v,_) and &,  T,_.

(4) Go back to Step 1 with the current state being (x,, v,).

Consequently, one MCMC iteration involves simulating the process for an arbitrary total time
duration 7" and the end position makes the MCMC sample. Some differences between BPS,
77 and the Boomerang sampler include 1) the between-event velocity for BPS and ZZ stays
constant while that for Boomerang is time-varying. 2) Besides the target-informed events in
(ii), BPS and the Boomerang sampler also incorporate random velocity refreshment events

to ensure ergodicity of the process, and ZZ does not require such velocity refreshments.
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CHAPTER 3

Large-scale inference of correlation among mixed-type
biological traits with phylogenetic multivariate probit

models

3.1 Introduction

Phylogenetics stands as a key tool in assessing rapidly evolving pathogen diversity and its im-
pact on human disease. Important taxonic examples include RNA viruses, such as influenza
and human immunodeficiency virus (HIV). Pathogens sampled from infected individuals
are implicitly correlated with each other through their shared evolutionary history, often
described through a phylogenetic tree that one reconstructs by sequencing the pathogen
genomes. Drawing inference about concerted changes within multiple measured pathogen
and host traits along this history leads to highly structured models. These models must
simultaneously entertain and adjust for the across-taxon correlation and the between-trait
correlation that characterizes the trait evolutionary process, leading to high computational
burden. This burden arises from the need to integrate over the unobserved trait process and
possible uncertainty in the history. This burden grows more challenging as the sample size,
both in terms of number of taxa N and number of traits P, increases and, especially, when
traits are of mixed-type, including both continuous quantities and discrete outcomes. Here,
even best current practices (Cybis et al., 2015) fail to provide reliable estimates for emerging

biological problems due to high computational complexity.
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To jointly model continuous and binary trait evolution along an unknown tree, we adopt
and extend the popular phylogenetic threshold model for binary traits (Felsenstein, 2005,
2011) with a long tradition in statistical genetics (Wright, 1934). This model assumes that
unobserved continuous latent parameters for each tip taxon in the tree determine the ob-
served binary traits according to a threshold. The latent parameters themselves arise from
a Brownian diffusion along the tree (Felsenstein, 1985). The correlation matrix of the diffu-
sion process informs correlation between latent parameters that map to concerted changes
between binary traits. Here one interprets the latent parameters as the combined effect of
all relevant genetic factors that influence the binary traits after adjusting for the shared

evolutionary history.

As in Cybis et al. (2015), we extend the threshold model to include continuous traits by
treating them as directly observed dimensions of the latent parameters. We recognize an
identifiability issue in Cybis et al. (2015) and address this limitation with specific constraints
on the diffusion covariance. We arrive at a mixed-type generalization of the multivariate
probit model (Chib and Greenberg, 1998) that allows us to jointly model continuous and
binary traits. We call this the phylogenetic multivariate probit model. Similar strategies
for mixed-type data that assume latent processes underlying discrete data are commonly
employed in various domain fields, including the biological and ecological sciences (Clark
et al., 2017; Irvine, Rodhouse, and Keren, 2016; Schliep and Hoeting, 2013), optimal design
(Fedorov, Wu, and Zhang, 2012), and computer experiments (Pourmohamad, Lee, et al.,
2016). The observed outcomes can also be conveniently clustered (Dunson, 2000; Murray
et al., 2013). Likewise, our phylogenetic probit model is easily extendable to categorical and

ordinal data (Cybis et al., 2015).

Bayesian inference for the phylogenetic multivariate probit model involves, however, re-
peatedly sampling latent parameters from an N P dimensional truncated normal distribution,
with NV being the number of taxa and P the number of traits. To attempt this, Cybis et al.

(2015) use Markov chain Monte Carlo (MCMC) based on a multiple-try rejection sampler.
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The sampler has a computational complexity of O (N P?) to update P dimensions of the la-
tent parameters for just one taxon within a Gibbs cycle. Hence, to touch all dimensions, the
resulting cost is O (N?P?). Further, since only a small portion of the latent parameter dimen-
sions are updated per rejection-sample, the resulting MCMC chain is highly auto-correlated,

hurting efficiency.

To overcome this limitation, we develop a scalable approach to sample from the mul-
tivariate truncated normal by combining the recently developed bouncy particle sampler
(Bouchard-Coté, Vollmer, and Doucet, 2018, BPS) and an extension of the dynamic pro-
gramming strategy by Pybus et al. (2012). BPS samples from a target distribution by
simulating a Markov process with a piecewise linear trajectory. The simulation generally
requires solving a one-dimensional optimization problem within each line segment. When
sampling from a truncated normal, however, this optimization problem can be solved via
a single log-density gradient evaluation. In the phylogenetic multivariate probit model, a
direct evaluation of this gradient requires O (N?P + N P?) computation. By extending the
dynamic programming strategy of Pybus et al. (2012) for diffusion processes on trees, we
reduce this computational cost to O(NP?) — a major practical gain as N > P in most
applications. Compared to the current practice, our BPS sampler achieves superior mixing

rate, allowing us to attack previously unworkable problems.

We apply this Bayesian inference framework to assess correlation between HIV-1 gag
gene immune-escape mutations and viral virulence, the pathogen’s capacity to cause disease.
By adjusting for the unknown evolutionary history that confounds our epidemiologically
collected data, we identify significant correlations that closely match with the biological

experimental literature and increase our understanding of the underlying molecular mecha-

nisms of HIV.

3.2 Modeling
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3.2.1 Phylogenetic multivariate probit model for mixed-type traits

Consider N biological taxa, each with P trait measurements. These measurements partition
as Y = {y;;} = [YP,Y¢] with YP being an N x P, matrix of P, binary traits and Y an
N x P, matrix of P. continuous traits, where P = P, + P.. We assume that Y arises from a
partially observed multivariate Brownian diffusion process along a phylogenetic tree .%. The
tree .# = (V,t) is a directed, bifurcating acyclic graph with a set of nodes V and branch
lengths t. The node set V contains N degree-1 tip nodes, N — 2 internal nodes of degree 3,
and one root node of degree 2. The branch lengths t = (¢1,...,tan_2) denote the distance
in real time from each node to its parent (Figure 3.1, left). The tree % is either known or

informed by molecular sequence alignment S (Suchard et al., 2018).

We associate each node i in .% with a latent parameter X; € R” for i = 1,...,2N —
1. A Brownian diffusion process characterizes the evolutionary relationship between latent

parameters, such that X; is multivariate normal (MVN) distributed,
Xi ~ N (Xpa(i)atiﬂ) y (3].)

centered at its parent node value X, with across-trait, per-unit-time, P X P variance
matrix €2 that is shared by all branches along .7 .

At the tips of .Z, we collect the N x P matrix X = {z;;} = [X,...,Xy]" and map it

to the observed traits through the function

sign(z;;), j=1,... P,
Yij = g(wi5) = (3.2)
LL’ij, j:Pb+1,...,P,

where sign(xz;;) takes the value 1 on positive values and -1 on negative values. As a result,
latent parameters at the tips and a threshold (that we set to zero without loss of generality)

determine the corresponding binary traits, and continuous traits can be seen as directly
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observed.

Turning our attention to the joint distribution of tip latent parameters X, we can integrate
out Xn41, ..., Xon_1 by assuming a conjugate prior on the tree root, Xoy_1 ~ N ([,Lg, 7‘0_19)

with prior mean py and prior sample size 75. Then X follows a matrix normal distribution
X ~MTNyp(M, T,Q), (3.3)

where M = (uy, ..., HO)T is an N x P mean matrix and the across-taxa tree covariance
matrix ¥ = V(F) + 75'J (Pybus et al., 2012). The tree diffusion matrix V(%) is a
deterministic function of .# and J is an N x N matrix of all ones, such that the term 75 'J
comes from the integrated-out tree root prior. Figure 3.1 illustrates how the tree structure
determines V(.%): the diagonals are equal to the sum of branch lengths from tip to root,
and the off-diagonals are equal to the branch length from root to the most recent common

ancestor of two tips. Combining equations (3.2) and (3.3) enables us to write down the
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F

Figure 3.1: A 4-taxon phylogenetic tree .% with tips (T, Ty, T3, T4) and their corresponding
tree diffusion matrix V(%).

augmented likelihood of X and Y through the factorization

p(Y> X ’ Ta Qa Mo, To, g) = p(Y ‘ X)p<X ’ T? Q? Mo, 7—0)’ (34)

where p(Y | X) = I(Y | X, g), the indicator function that takes the value 1 if X are consistent

with the observations Y and 0 otherwise.
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3.2.2 Decomposition of trait-covariance to account for varying data scales

The previous work of Cybis et al. (2015) uses a conjugate Wishart prior on Q7! for com-
putational convenience. However, there are two problems with the Wishart prior. First,
with mixed-type data, it leaves the model not parameter-identifiable. For a binary trait,
we only know the sign of its latent parameter; the absolute value is arbitrary. Consider a
latent parameter z;; and its marginal trait variance €2;;, the jth diagonal element of . If
we scale them to kx;; and €;;/k by any positive number k, then according to (3.3), the
likelihood remains unchanged. Therefore, we need to fix the marginal variances for latent
parameters underlying binary traits. On the other hand, continuous traits can be seen as
directly observed latent parameters, and their marginal trait variances depend on the po-
tentially differing rates of change along .# and should be inferred from the data. A Wishart
prior on Q7! does not allow such distinct constraints on the marginal variances for binary
and continuous traits. The second problem with the Wishart prior is that strong depen-
dencies exist among correlations and their joint distribution is considerably different from
uniform (Tokuda et al., 2011). Without knowing the true correlation structure, these prior
assumptions may not be appropriate. Hence, we favor a noninformative, uniform prior on

the correlation matrix.

We solve the above problems by decomposing €2 into an across-trait correlation matrix
and standard deviations, with a jointly uniform prior on the correlation matrix. Specifically,
we decompose €2 = DRD, where R is the P x P correlation matrix and D is a diagonal
matrix with elements D;; =1, fort=1,...,P,and D;; =0; >0fori =P, +1,...,P. We
use the prior of Lewandowski, Kurowicka, and Joe (LKJ) on the positive-definite correlation

matrix R (Lewandowski, Kurowicka, and Joe, 2009a), with density

LKJ(R|n) = c(n)det(R)", (3.5)

where 7 > 0 is a shape parameter and ¢(n) is the normalizing constant. When 1 = 1, the
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LKJ prior implies a uniform distribution over all correlation matrices of dimension P. For
the diagonal standard deviation matrix D, we assume independent log normal priors on
the variances o? for i = B, + 1,---, P with mean 0 and variance 1 on the log scale. We
describe how to carry out the posterior inference under this prior in Section 3.3.2. There
exists other methods for specifying a prior distribution on DRD. For example, Huang,
Wand, et al. (2013) use half-t distributions on standard deviations and achieve marginally
uniform correlations. We prefer log normal priors over half-t because the latter has non-zero
probability density for a zero standard deviation. If one favors half-t standard deviations or
marginally uniform correlations, our approach easily adapts to the prior in Huang, Wand,

et al. (2013).

3.3 Inference

Primary scientific interest lies in the across-trait correlation matrix R. We integrate out the
nuisance parameters by sampling from the joint posterior
p(R,D, X, Z[Y,S) x p(Y[X) x p(X[R,D,.7) x

(3.6)
p(R,D) x p(S|.F#) x p(F)

via a random-scan Gibbs scheme (Liu, Wong, and Kong, 1995), and drop the posterior’s
dependence on the hyper-parameters (Y, o, 70, g) to ease notation. The joint posterior
factorizes because sequences S only affect the parameters of primary interest through .#,

since we assume S to be conditionally independent of other parameters given .7 .

Within the Gibbs scheme, we alternatively update X, (R, D) and .% from their full con-
ditionals, taking advantage of the conditional independence structure. We construct p(S | %)
from a continuous-time Markov chain evolutionary model (Suchard, Weiss, and Sinsheimer,
2001) that describes nucleotide substitutions along the branches of .# that give rise to S.

We assume a typical tree prior p(.%) based on a coalescent process (Kingman, 1982) and
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adopt a random-scan mixture of effective Metropolis-Hastings transition kernels (Suchard
et al., 2018) to update parameters that define .%. For more details on tree sampling and
tree priors choices, we refer interested readers to Suchard et al. (2018). This section focuses
on overcoming the scalability bottleneck of updating X from an N P-dimensional truncated
normal distribution by combining BPS with dynamic programming strategy. We also de-
scribe how we deploy Hamiltonian Monte Carlo (HMC) to update (R, D) to accommodate
the non-conjugate prior on 2 = DRD.

3.3.1 BPS for updating high-dimensional latent parameters

BPS is a non-reversible “rejection-free” sampler originally introduced in the computational
physics literature by Peters and de With (2012) for simulating particle systems. Bouchard-
Coté, Vollmer, and Doucet (2018) later adopted the algorithm with modifications to better
suit statistical applications. BPS explores a target distribution p(x) by simulating a piecewise
deterministic Markov process. The simulated particle follows a piecewise linear trajectory,
with its evolution governed by the landscape of the energy function U(x) := —log p(x). To
respect the target distribution, classical Monte Carlo algorithms first propose a move, then
either accept or reject it such that a move towards areas of low probability or, equivalently,
of high energy, is more likely to be rejected than one towards areas of high probability. On
the other hand, BPS modifies its particle trajectory via a Newtonian elastic collision against

the energy gradient, thereby avoiding wasteful rejected moves.

BPS is an efficient sampler for log-concave target distributions in general, with the addi-
tional ability to account for parameter constraints by treating them as “hard-walls” against
which the particle bounces. Of particular interest to us is the fact that, when the target
distribution is a truncated MVN, the critical computation for BPS implementation is mul-
tiplying the precision matrix of the unconstrained MVN by an arbitrary vector. So BPS
becomes an especially efficient approach when one can carry out these matrix-vector op-

erations quickly. In our application, the tree diffusion process only defines the covariance,
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not the precision. But fortunately, the structured Brownian diffusion process enables us
to efficiently compute the precision-vector products without costly matrix inversion. BPS
also allows us to condition on a subset of dimensions that correspond to the continuous
traits without extra computation. We begin with an overview of BPS following Bouchard-
Coté, Vollmer, and Doucet (2018) and describe how to incorporate parameter constraints
(Bierkens et al., 2018); the subsequent sections describe how to optimize the implementation

when sampling from a truncated MVN.

3.3.1.1 BPS overview

To sample from the target distribution p(x), BPS simulates a particle with position x(¢) and
velocity v(t) for time ¢ > 0, initialized from vy ~ A(0,I) and a given xy at time ¢t = 0.
Over time intervals t € [tx,tx11], the particle follows a piecewise linear path with velocity
v(t) = vi and position x(t) = x; + (¢t — tx)vx . An inhomogeneous Poisson process governs

the inter-event times si1 = tx11 — tr with rate

A(x(t), vy) = max {0, (v, VU (x(t)))}, (3.7)

where (-, -) denotes an inner product.

When the target density is log-concave and differentiable, U(x) is convex, so one can
conveniently simulate the Markov process. We describe how to simulate the process for a
pre-specified amount of time ty,, > 0, and the mapping xg — X(tota1) defines a Markov

transition kernel with p(x) as the stationary density:

1. Solve a one-dimensional optimization problem to find

Smin = argmin U(xg_1 + svg_1) and Upin = U(Xk—1 + SminVi—1)- (3.8)
s>0

2. Draw T ~ Exp(1), an exponential random variable with rate 1, and solve for the next
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inter-event time s, the minimal root of

U(x—1+ SkVi—1) — Unin = T and s > Spin- (3.9)

3. Update (x,Vv) as

(i1, VU (%))
IVU (x) ||

Xg ¢ Xg—1 + SkVik—1, Vg < Vi_1 — 2 VU(Xk) (310)

4. Stop if Zle S; > tiotal and return X(fioral) = Xg—1 + (trotal — th—1)Ve—1 Where t;_1 =

Zf;} s;, otherwise repeat Steps 1 - 3.

Steps 1-4 form one conditional update by BPS inside a Gibbs scheme. They are the
same as the basic BPS algorithm in Bouchard-Co6té, Vollmer, and Doucet (2018), except
that we do not include velocity refreshment as random Poisson events. Since we use BPS
for conditional updates, we resample the velocity from N(0,I) at the beginning of every
BPS iteration. BPS without velocity refreshment is known to suffer from reducible behavior
when applied to an isotropic multivariate normal distribution (Bouchard-Coté, Vollmer, and
Doucet, 2018). Our velocity resampling already avoids this reducibility issue, and so we opt
not to incorporate further refreshment inside the transition kernel. As long as the entire
chain remains irreducible, Peskun-Tierney theory for non-reversible MCMC suggests that
adding further events only reduces the efficiency (Andrieu and Livingstone, 2019; Bierkens

and Duncan, 2017).

When the target distribution is constrained to some region x € D, the bounce events are
caused not only by the gradient VU (x) but also by the domain boundary 0D. We call these
bounces “gradient events” and “boundary events” respectively. Whichever occurs first is the

actual bounce. More precisely, we define the boundary event time spq as

Sbd,k = }ggg {Xk—l + SVE_1 ¢ D} . (311)
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Then the bounce time is given by s; = min{syq, Serk}, Where sq j denotes the gradient
event time of (3.9). If spqr < Sgrk, We have a boundary bounce and the position is updated

as in (3.10) while the velocity is updated as
Vi <= Vi1 — 2 (Vp_1, V) V, (3.12)
where v = v(x;) is a unit vector orthogonal to the boundary at x; € 9D.

3.3.1.2 BPS for truncated M VNs

We now describe how the BPS simulation simplifies when the target density is a d-dimensional

truncated MVN of the form
x ~ N (m, X) subject to x € D = {sign(x) =y} fory € {+1}%. (3.13)

Importantly, we can implement BPS so that, besides basic and computationally inexpensive
operations, it relies solely on matrix-vector multiplications by the precision matrix ® = X~
Moreover, under the orthant constraint {sign(x) =y}, we can handle a bounce against the
boundary in a particularly efficient manner, only requiring access to a column of ®.

We start with gradient events and then describe how to find boundary event times. Now

U(x) = —logp(x) = i(x — m)"®(x — m) + C where constant C' does not depend on x,

therefore

1 1
Ulx +5v) = 5{v,00)8" + (v, px)s + S {x —m, ) + C

where ¢, = ®v and ¢y =P®(x—m) =VU(x). (3.14)
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The solution to the optimization problem (3.8) is given by

Smin = Max {0, —(v, cpx>/(v, gov>} ,
1 1

Unin = §<V7 Pv)Somin + (V, Px) Smin + §<X —m, @) + C.

(3.15)

It follows from (3.14) that the gradient event time in (3.9) coincides with the larger root of

the quadratic equation as® + bs + ¢ = 0 with

1 1
a = §(V,¢v>, b= (v,px), and ¢ = —§<v, cpv)sfnin — (v, x)Smin — T,

SO

b+ Vb? — 4dac

Ser
& 2a

When a gradient event takes place, the position and velocity are updated according to (3.10)
with

VU(X + sV) = @xisy = P(x —m) + s®v = @, + sy (3.16)
Note that ¢y s can be computed by an element-wise addition of ¢, and s¢,, rather than
the expensive matrix-vector operation x + sv — ®(x + sv).

The orthant boundary is given by U;{z; = 0}. When sign(z;) = sign(v;), where z; and v;
denotes the i-th coordinate of particle position and velocity, the particle is moving away from
the i-th coordinate boundary {z; = 0} and thus never reaches it. Otherwise, the coordinate

boundary is reached at time s = |z;/v;|. Hence spq can be expressed as
Sbd = |Tiyy /Vina| s Tba = argmin,; |z;/v;| for I = {i: x;v; < 0}.

When a boundary event takes place, the particle bounces against the plane orthogonal to the

standard basis vector v = e;, .. As the updated velocity takes the form v* < v —2v;_.e;, .,
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we can save computational cost of simulating the next line segment by realizing that

*
?bd

Py = PV" =, +2v; Pe;, where v = —vy,. (3.17)

In other words, we can compute .« by simply extracting the ipq-th column of ® and up-
dating ¢, with an element-wise addition. This avoids the expensive matrix-vector operation
v — PV,

Algorithm 1 describes BPS implementation for truncated MVNs based on the discussion
above, with the most critical calculations optimized. Within each line segment, ¢, and ¢y
once efficiently computed (Section 3.3.1.3) can be re-used throughout. In our application
the observed continuous traits correspond to fixed dimensions in x, so we slightly modify the
BPS such that it can sample from a conditional truncated MVN. Specifically, we partition
x = (X, X.) by latent (x;) and observed dimensions (x.), with the aim to generate samples
from the conditional distribution p(x, | %) (details in Appendix 3.8.1). We choose the tuning

parameter ¢, based on a heuristic that works well in practice (Section 3.8.1).

3.3.1.3 Dynamic programming strategy to overcome computational bottleneck

A straight implementation of BPS remains computationally challenging, as computing ¢
and ¢, in Algorithm 1 involves a high-dimensional matrix inverse when the model is pa-
rameterized in terms of 3. From (3.3) and the equivalence between matrix normal and
multivariate normal distributions, to sample latent parameters X from their conditional
posterior, the target distribution (3.13) specifies as x = vec (X), m =vec(M), ¥ =Q® T,
and y = vec (Y), where vec (-) is the vectorization that converts an N x P matrix into an
NP x 1 vector and ® denotes the Kronecker product. A naive matrix inverse operation

3= 07! ® Y! has an intimidating complexity of O (N3 + P3). If we have a fixed tree,
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Algorithm 1 Bouncy particle sampler for multivariate truncated normal distributions

Require: t,.1, initial value for x

1:
2:
3:

10:
11:
12:

13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:

v ~ N(0,1)
px — P(x —m) > px = VU(x) is the gradient of energy
while t.,t,; > 0 do

> compute reused quantities once
if previous bounce is a boundary event at coordinate ¢« then
Pv — Py + 2v;Pe;
else
Py — PV > the expensive step
end if
Pvx & Vipx, vy < Vipy
> find gradient event time
Smin < Max {0, —py /vy }
T ~ Exp(1)
a4+ %gpv,v, b pyx, €4 —%s?mngovw — SminPvx — 1

Sgr  (—b+ Vb? — 4ac)/(2a)

> find truncation event time at coordinate ¢
Spd — argmin, z; /v;, for i with z;v; <0

> bounce happens
S — min {Sg, Sbd, total |
X ¢ X + 5V, Px < Px + SPy
if s = spq then
V; < —U;
else if s = s, then
V<< V— (2 <V7 ¢x> /HQDXHQ) Px
end if
tiotal < Ttotal — S
end while

25



such that Y1 is known, the typical computation proceeds via
S x—m)= (@Y ) (x—m) = vec (Y (X = M) Q) (3.18)

with a cost O(N2P + NP?). When the tree is random, the O (N?) cost to get Y~ seems
unavoidable. However, we show that even with a random tree, evaluating 5 and ¢, can
be O(NP?). We use conditional densities to evaluate these products (Proposition 1) and
obtain all conditional densities simultaneously via a dynamic programming strategy that

avoids explicitly inverting Y.

Proposition 1. Given joint variance matrix 3 and vectorized latent data X, the energy

gradient VU (x) is

Qi (X — p1)
Px =21 (x—m)= : , (3.19)

Qn (XN — )

where p; and Q; are the mean and the precision matriz of the distributions p(X;| X)) for
i=1,...,N, and p(X; | X)) is the conditional distribution of latent parameters at one tree

tip given those of all the other tips.

Proof. x ~ N (m, X), so p(X; | X;)) are also multivariate normal. Note that

0 [log p(x)] = —%El (x —m). (3.20)

ax
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. T
Likewise, -2 [log p(x)] = <8LX1 logp(x)], ..., % [logp(x)]> with

0
X, [log p(x)] = X, [log p(X; | X)) + log p(X(s))]
0
= X, [lOgP(Xz’|X(i))] (3-21)
1
= —§Qz (Xi — i) -
Equating (3.20) and (3.21) completes the proof. O

In Proposition 1, the partition is by taxon, but we can generalize to any arbitrary par-
titioning of the dimensions. By replacing x — m with v (or e;), we achieve a similar result
for ¢ (or ®e;). Given p; and Q;, the O (N P?) matrix-vector operation v* — ®v* based
on Proposition 1 is generally required for updating ¢+, but for boundary bounces, we can
exploit (3.17) and update ¢y« in O(NP). For the conditional posterior distribution in our
HIV application (Section 3.4), boundary bounces occur far more frequently than gradient

ones and thus the efficient update via (3.17) leads to further significant speed-up.

Fortunately, we are able to efficiently compute u; and Q; through a dynamic programming
strategy that recursively traverses the tree (Pybus et al., 2012) and enjoys a complexity of
O(NP). Here we give the results and omit the derivatives found in Pybus et al. (2012) and
Cybis et al. (2015).

The recursive traversals visit every node first in post-order (child — parent) and then
again in pre-order (parent — child) to calculate partial data likelihoods that lead to p; and
Q;. The post-order traversal begins at a tip and ends at the root, while pre-order starts at
the root and reaches every tip. The following results are in terms of the node triplets (i, 7, k)
where pa(i) = pa(j) = k as in Figure 3.2. We define |i] as the tree tips that are descendants
to or include (“below”) node i and [i] as the tree tips that are not descendants to (“above”)

node 1.

During the post-order traversal, the partial likelihoods of the data X|;; given latent X;

27



50000000

] []
Figure 3.2: A sample tree to illustrate post- and pre- traversals for efficiently computing
p(X; | X(;)). In the triplet (7,7, k), parent node k has two children i and j. We group the

tip nodes into two disjoint and exhaustive classes: |i| = tree tips that are descendants to or
include node i and [i] = tree tips that are not descendants to i.

is proportional to a MVN density of X, in terms of a post-order mean m; and variance v;£2

(Pybus et al., 2012), that is,
p(X iy | Xi) o MVN (X my, v;€2) . (3.22)

We re-employ these quantities shortly in the pre-order traversal. At the tree tips, m; = X;

and the variance scalar v; = 0. For internal nodes,

m; = vg [(Uz —+ ti)_l m; —+ (Uj —+ tj)_l mj} s Wlth

-1

(3.23)
vk = [(vi+ )7+ (v 1) 7]

Similarly, for the pre-order traversal, we calculate the conditional density of X; at node 7

given the data above it,
p(X; | X)) o MVN (X5 g, wif2) (3.24)

in terms of a pre-order mean p; and variance w;€2. Starting from the root where won_1 = 7, !
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and pon_1 = Mg, the traversal proceeds via

M = wl* [(Uj + tj>_1 m; + w,;luk} , with
wi = [0+ )™ + ], and 3.2

When reaching the tips where [i] = (), we obtain both the desired conditional mean p; and
precision Q; = (w; Q)"
For both pre- and post-order traversals, at each node we require O (P) elementary opera-

tions to obtain the mean vector and variance scalar; so, visiting all the nodes costs O (N P).

With p; and Q; for i = 1,..., N ready in hand, the computation in (3.19) remains O (N P?).

3.3.2 Hamiltonian Monte Carlo for updating trait covariance components

The across-trait covariance components R and D have complex and high-dimensional full
conditional distributions, with no obvious structure to admit sampling via specialized algo-
rithms. We therefore rely on HMC (Neal, 2011) to sample p(R,D | X, .%#) (see Section 2.3
for HMC details). We automate HMC tuning via the stochastic optimization approach of
Andrieu and Thoms (2008) and the No-U-Turn algorithm of Hoffman and Gelman (2014).
Because HMC applies most conveniently to a distribution without parameter constraints, we
map R and D to an unconstrained space using standard transformations (Stan Development

Team, 2018).

3.4 Application on HIV immune escape

3.4.1 Background

As a rapidly evolving RNA virus, HIV-1 has established extensive genetic diversity that

researchers classify into different major groups and, for HIV-1 group M, into different sub-
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types (Hemelaar, 2012). Such diversity implies that phenotypic traits can vary remarkably
among strains circulating in different patients. Differences in viral virulence and their deter-
minants, together with host factors, may explain the large variability in disease progression
rates among patients. On the host side, human leukocyte antigen (HLA) class I alleles are
important determinants of immune control that are known to be associated with differential
HIV disease outcomes, with particular HLA alleles offering considerable protective effect
(Goulder and Walker, 2012). An interesting phenomenon is that HIV-1 can evolve to escape
the HLA-mediated immune response, but the responsible escape mutations may compromise
fitness and hence reduce viral virulence (Nomura et al., 2013; Payne et al., 2014). Iden-
tifying these mutations and their effect on virulence while controlling for the evolutionary
relationships among the viruses that spread in populations with heterogeneous HLA back-
grounds represents a particular challenge. Here, we address this by estimating the posterior
distribution of across-trait correlation while controlling for the unknown viral evolutionary

history.

We analyze a data set of N = 535 aligned HIV-1 gag gene sequences collected from 535
patients in Botswana and South Africa between 2003 and 2010 (Payne et al., 2014). Both
countries are severely affected by the subtype C variant of HIV-1 group M. Each sequence
is associated with a known sampling date and phenotypic measurements, including P, = 3
continuous traits that are replicative capacity (RC), viral load (VL), and cluster of differenti-
ation 4 (CD4) cell count. An increasing VL and a decreasing CD4 count in the asymptomatic
stage characterize a typical HIV infection; RC is a viral fitness measure obtained by an assay
that, in this case, assesses the growth rate of recombinant viruses containing the patient-
specific gag-protease gene relative to a control virus (Payne et al., 2014). We further link
each sequence with P, = 21 binary traits, including the presence/absence of candidate HLA-
associated escape mutations at 20 different amino acid positions in the gag protein, and
another binary trait for the country of sampling (Botswana or South Africa). In cases where

ambiguous nucleotide states in a codon prevent the determination of presence/absence of
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escape mutations, we encode binary trait states as unobserved (ranging from 0.2% to 21%
across taxa) and set them as unbounded dimensions in the truncated normal distribution

sampled by BPS.

3.4.2 Correlation among traits

We revisit the original study questions in Payne et al. (2014) concerning the extent to
which HLA-driven HIV adaptation impacts virulence in both Botswana and South Africa
populations. Differences in HIV adaptation and virulence may arise from the fact the HIV
epidemic in Botswana precedes that in South Africa, leaving more time for the virus to adapt
to protective HLA alleles. Our approach employing a Bayesian inference framework based
on the phylogenetic multivariate probit model, is substantially different from Payne et al.
(2014) as they did not control for the shared evolutionary history between samples. For
this N = 535, P, = 21, P. = 3 data set, after fitting the phylogenetic multivariate probit
model, we obtain posterior samples for parameters that are of scientific interest. For MCMC
convergence assessment, we run the chain until the minimal effective sample size (ESS) across
all dimensions of X, R and D is above 200. This takes about 107 individual transition kernel
applications under our random-scan Gibbs scheme (iterations) and 30 hours on an Amazon
EC2 c¢5.large instance, and we discard the first 10% of the samples as burn-in. As a further
diagnostic, we execute five independent chains and confirm that the potential scale reduction
statistic R for all correlation elements fall within range [1, 1.04], well below the standard
convergence criterion of 1.1 (Gelman, Rubin, et al., 1992). We implement the method in
the software BEAST (Suchard et al., 2018), and provide the data set and source code in the

online supplementary material.

The heat map in Figure 3.3 depicts significant across-trait correlation determined by a
90% highest posterior density (HPD) interval that does not contain zero. We mainly focus
on the last 4 rows that relate to questions addressed by Payne et al. (2014), e.g. difference

in HLA escape mutations between the two countries and correlation between escape muta-
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tions and infection traits (VL and CD4 count) as well as replicative capacity. We identify
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Figure 3.3: Significant across-trait correlation with < 10% posterior tail probability and
their posterior mean estimates (in color). HIV gag mutations are named by the wild type
amino acid state, the amino acid site number according to the standard reference genome
(HXB2), and the amino acid ‘escape’ state that is any other amino acid or a deletion (‘X")
in almost all cases. Country = sample region: 1 = South Africa, -1 = Botswana; RC =
replicative capacity; VL = viral load; CD4 = CD4 cell count.

one escape mutation 1147X being significantly more prevalent in Botswana as indicated by
its negative correlation with South Africa. Located at the amino-terminal position of an
HLA-B57-restricted epitope (‘ISW9’), variation at gag residue 147 is known to be associ-
ated with expression of B57 (Draenert et al., 2004). It is worth noting that three of the
four escape mutations that correlate negatively with RC (161X, Q182X and T242X) have a
higher frequency in Botswana and may therefore have contributed to the lower RC found in
Botswana by Payne et al. (2014). Interestingly, the negative effect on RC we estimate for

two mutations finds clear confirmation in experimental testing: in vitro experiments provide
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evidence for a reduction in RC by T242X (Martinez-Picado et al., 2006; Song et al., 2012)
and T186X is also found to greatly impair RC (Huang et al., 2011).

Our analysis recovers the expected inverse correlation between CD4 count and RC or VL,
as well as the positive correlation between RC and VL (Prince et al., 2012), confirming that
more virulent viruses result in faster disease progression. Also, South Africa is associated
with higher VL and lower CD4, suggesting that the South African cohort may comprise
individuals with more advanced disease, even though the two cohorts are closely matched in
age (Payne et al., 2014). This is somewhat at odds with the original study that also finds a
higher VL for South Africa, but at the same time a higher CD4 count for patients from this

country. Such differences are likely to arise from controlling or not for the phylogeny.

The remaining significant correlation between escape mutations (row 1 to 19 in Figure 3.3)
can be considered as epistatic interactions, some of which are strongly positive. For example,
we find a strong positive correlation between T186X and T190X. The former represents an
escape mutation for HLA-B*81-mediated immune responses and has been reported to be
strongly correlated with reduced virus replication (Huang et al., 2011; Wright et al., 2010),
as also reflected in the negative correlation between this mutation and RC. In fact, Wright
et al. (2012) show T186X requires T1901 (or Q182X, also positively correlated with T186X,
Figure 3.3) to partly compensate for this impaired RC. The other strong positive correlation
between A163X and S165X has also been found to be a case of a compensatory mutation,
with S165N partially compensating for the reduced viral RC of A163G (Crawford et al.,
2007). The same holds true for the positive correlation between A146X and 1147X, with
[147L partially compensating the fitness cost associated with the escape mutation A146P
(Troyer et al., 2009).

3.4.3 Tree inference

Figure 3.4 reports the maximum clade credibility tree from the posterior sample. The tree

maximizes the sum of posterior clade probabilities. The posterior mean tree height is roughly
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30 years; so with the most recent samples from 2010, we date the common ancestor of all

viruses back to around 1980, consistent with the beginning of this epidemic.

0.52 0.26

latent parameter for T186X
log(RC)
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/# ’// /] ‘ \ R
) \\
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Figure 3.4: The maximum clade credibility tree with branches colored by the posterior mean
of the latent parameter corresponding to mutation T186X. Outer circle shows log(RC) in
gray scale.

3.5 Efficiency comparison and goodness-of-fit test

3.5.1 Efficiency comparison

To compare efficiency of BPS with the multiple-try rejection sampling in Cybis et al. (2015),
we run both samplers on the whole data set (N = 535, P = 24) and a subset with P = 8
including the three continuous traits, and fix the tree and across-trait covariance at the
same values from preliminary runs. The efficiency criterion is per unit-time ESS across
all NP latent parameters. BPS outperforms rejection sampling to a greater extent as P
increases. For P = 24, BPS yields a 74X increase in terms of the minimum ESS and an
11x increase for the median ESS (Table 3.1). This order-of-magnitude improvement is more
clear in Figure 3.5. Because rejection sampling only updates one taxon per iteration, some

latent parameters rarely change their values (Figure 3.6). As a result, the minimum ESS of
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multiple-try rejection sampling is much lower than BPS which simultaneously updates all
latent dimensions.

Table 3.1: Efficiency comparison between the bouncy particle sampler (BPS) and multiple-
try rejection sampling in terms of minimum and median of effective sample size (ESS) per
hour run-time. We report ESS values and their standard deviations (SD) across five inde-

pendent simulations.

P=38 P =24
ESS/hr (SD) min median min median
BPS 5392 (411) 20596 (271) 282 (20) 1468 (11)
Rejection 237 (20) 4707 (25) 3.8 (0.1) 137 (0.7)
Speed-up 23 x 4.4x T4x 11x

O BPS
O Rejection sampling

T T
1 10" 102 10° 10*
ESS per hour

Figure 3.5: A representative histogram of ESS across latent parameters, sampled by BPS or
rejection sampling in one hour run-time. Arrows and dashed lines denote the minimum and

median ESS (N = 535, P = 24).

3.5.2 Model goodness-of-fit

We compare the phylogenetic probit model fit to reduced models that do not include phy-

logenetic correction. This comparison not only allows us to assess goodness-of-fit of the
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Figure 3.6: Trace plot of the latent parameter with the least ESS by rejection sampling
(bottom) and trace plot of the same latent parameter sampled by BPS (top) for an one hour
run-time. BPS and rejection sampling run 1.1 x 10* and 2.6 x 10° iterations, respectively

(N = 535,P = 24).

phylogenetic probit model, but also tests whether explicit tree modeling is necessary in
practice. The two reduced models both assume independence among virus samples such
that the across-taxa tree covariance Y is diagonal. The first “dated star” model incorpo-
rates varying viral sampling time information such that Y has diagonal elements equal to
the time distance from virus sample date to the root date fixed, without loss of generality, to
1980. To understand the star-moniker, phylogeneticists often use a “star-tree” in which all
branch lengths between internal nodes equal 0 to represent independent samples. The second
“ultrametric star” model, assumes that all taxa have traits that are identically distributed

so Y is an identity matrix.

For each of the three models, we assess out-of-sample prediction by repeatedly splitting
up the HIV data into a training set used to build each model, and a test set to evaluate the
prediction. Across the 21 binary traits for all taxa, we hold out n; = 21 x 535 x 20% of the
observations, build the model and then estimate the posterior probability 7, for h =1,...n,

that held-out trait h equals its observed value.

We summarize performance through quantiles of the score logr, to measure accuracy,
and a higher score represents better prediction (Table 3.2). The phylogenetic probit model

commands higher scores compared to the two reduced models and we conclude that joint
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tree modeling through the phylogenetic probit model leads to better data fit.

Table 3.2: Prediction accuracy in out-of-sample logarithmic score. We report the score
quantiles and their standard deviations (SD) across five independent MCMC simulations
with 20% randomly held-out binary traits.

Log score quantiles (SD) 25% 50 % 75 %

Phylogenetic probit model -0.441 (0.007) -0.128 (0.003) -0.029 (0.003)
Dated star model 20.599 (0.014) -0.187 (0.005) -0.050 (0.006)
Ultrametric star model -0.592 (0.011) -0.187 (0.003) -0.052 (0.006)

3.6 Discussion

We present an efficient Bayesian inference framework to learn the correlation among mixed-
type traits across a large number of taxa, while jointly inferring the phylogenetic tree through
sequence data. Our approach significantly improves upon Cybis et al. (2015) in both model-
ing and inference. Better modeling comes from the decomposition of across-trait covariance
matrix 2 = DRD that keeps the generalized probit model identifiable and allows a jointly
uniform LKJ prior on R. Compared to the convenient but restrictive Wishart prior that
causes mixing problems for sampling ! and X, this decomposition facilitates correlation
inference among continuous traits and latent parameters (Appendix Figure A.2). Our main
contribution lies in an efficient inference framework, specifically, an optimized BPS to sam-
ple latent parameters from a high-dimensional truncated normal distribution. In contrast to
the “one-taxon-at-a-time” design in Cybis et al. (2015), BPS jointly updates all dimensions
therefore reducing auto-correlation among MCMC samples. The most expensive steps in-
volved are matrix-vector multiplications by the precision matrix & = X!, In our case, the
tree precision matrix is unknown and getting it by matrix inversion is notoriously O(N3).
Thanks to the insight in Proposition 1, we circumvent this obstacle by utilizing a dynamic

programming strategy and obtain the desired matrix-vector products in O (N P?). BPS also
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enjoys an advantage especially important for mixed-type traits. That is, we can simply
“mask out” the fixed continuous traits when sampling latent parameters for binary traits.
Whereas the rejection sampling in Cybis et al. (2015) has to calculate the conditional dis-
tribution of latent dimensions given continuous traits at each tip. This cost-free “masking”
technique to condition on a subset of dimensions exploits properties of normal distributions
and can be shared with other dynamics-based sampler, like HMC. Taking all of these points
together, the optimized BPS provides a huge gain in efficiency.

Naturally, BPS may also be an efficient choice in situations where ® itself has special
structures that facilitate quick matrix-vector multiplication. For example, inducing precision
matrices that are sparse or composed of sparse components is a common strategy for ana-
lyzing large spatial data (Heaton et al., 2019). Methods like the nearest neighbor Gaussian
process (Datta et al., 2016), integrated nested Laplace approximations (Rue, Martino, and
Chopin, 2009), and multi-resolution approximation of Gaussian processes (Katzfuss, 2017)
all achieve computational efficiency from sparsity in ®. Whether BPS would be useful in

these scenarios, especially with mixed-type data, is an interesting topic for future research.

Our application provides important information on the complex association between
HLA-driven HIV gag mutations and virulence that was previously assessed by experimental
and epidemiological studies. To our best knowledge, this is the first study to examine essen-
tial HIV virus-host interactions while explicitly modeling the phylogenetic tree. Our setup
is also different from the original study (Payne et al., 2014) in that we attempt to identify
correlation between individual epitope escape mutations, virulence, and country of sam-
pling, instead of considering all mutations together or grouping them with particular HLA
types (e.g. HLA-B*57/58:01). While the latter may increase power to detect population-level
differences in escape mutation frequencies, our approach allows us to pinpoint particular mu-
tations contributing to virulence. Good consistency between the mutations that we associate
with reduced RC and literature reports on virological assays suggests that our approach may

complement or help in prioritizing experimental testing, and therefore further assist in the
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battle against HIV-1. Our method contributes to a general framework to assess correlation

among mixed-type traits in virology, but also more broadly in evolutionary biology.

One future improvement lies in the prior choice on across-trait correlation. The LKJ
prior works well for our N = 535, P = 24 data set, as it is noninformative as desired, and
correlation elements are well-mixed through No-U-Turn HMC. Under this choice, we view
correlations with 90% HPD intervals not covering zero as significant. We can adjust this
decision threshold based on resource availability for follow-up experimental studies. However,
with much larger P and when only a small portion of the observed traits are truly involved
in the underlying biology, it becomes vital to control for false positive signals, and one may
favor a systematic solution. For example, it may be preferable to put a shrinkage-based
prior on R that shrinks individual elements towards zero. Ideas like the graphical lasso
prior (Wang et al., 2012) and factor models with shrinkage prior on the loading elements

(Bhattacharya and Dunson, 2011) are potential directions to explore.

Lastly, as understanding the relationship among mixed-type variables is a common ques-
tion in different fields, our method suits a large class of problems beyond evolutionary bi-
ology. The optimized BPS sampler through dynamic programming serves as an efficient
inference tool for any multilevel (hierarchical) model (Gelman, 2006) with an additive co-
variance structure on a directed acyclic graph (Figure 3.1). The tree variance matrix Y
that we use to describe the covariation of shared evolutionary history also arises from other
kinds of relationships. For example, additive covariance includes pedigree-based or genomic
relationship matrices in animal breeding (Mrode, 2014; Vitezica, Varona, and Legarra, 2013)
and distance matrices decided by geographical locations in infectious disease research (Barbu
et al., 2013). Intriguingly, our dynamic programming strategy also provides a way to invert
the N x N tree variance matrix Y in O(N?) by piecing together the products Y 'e; for
1=1,...,N. While this seems likely a well-known result, we have failed to find precedence
in the literature. Finally, the phylogenetic probit model can be generalized to categorical

and ordinal data, which will only add to its broad applicability.
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3.8 Appendices

3.8.1 BPS detalils

BPS modification for conditional truncated MVNs. Here we consider modifying the
BPS to incorporate fixed dimensions that are the observed, continuous traits in our mixed-
type model. We partition x = (x3,x.) by latent and observed dimensions and then generate
samples from the conditional distribution p(x,|x.). To make progress, we parameterize
p(Xp | %) in terms of p(x) with partitioned mean m = (m,, m.) and precision matrix

Py Py

¥l = “I. (3.26)

(I)cb (pcc
With a similarly partitioned velocity v = (v, v.), the distribution p(x; | x.) carries potential
energy

t2
Ub|c(Xb —|— tvb) = Evgibbvb —f- tvgq)bb(xb — mb|c) —|— C, (327)
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where constant C' does not depend on ¢. The conditional mean my|. = mb—él;)l@bc(xc—mc),

SO

Ub ‘ c(Xb + tVb)
2

t
= Evgi'bbvb —+ tVZ [(I'bb(xb — mb) + (I)bc(xc — mc)] + C (328)

This expression is equivalent to masking out the dimensions of v in (3.14) that corresponds

to x. via the vector v = (v;,0). To be explicit, we rewrite (3.28) as

t2
Uy ol 4 1v3) = SVT@V 4 197®(x — m) + C. (3.29)

Therefore, adding this masking operation for v, ¢y, ¢, in Lines 1, 2, 5, 7 in Algorithm 1

allows sampling from the conditional truncated MVN p(x, | x.) without any additional cost.

Tuning tio1a1 for BPS. The total simulation time ¢4, for the Markov process is a tuning
parameter in Algorithm 1. If ;. is too small, the particle does not travel far enough from
the initial position, leading to high auto-correlation among MCMC samples. On the other
hand, an unnecessarily large ¢, would waste computational efforts without any substantial
gain in mixing rate. To achieve best computational efficiency, therefore, one would like to
choose a tyoa just large enough that x(tiora1) is effectively independent of x(0). To help find
such tioi for BPS applied to truncated MV Ns, we develop a heuristic based on the following

observations.

At stationarity, the BPS has a velocity distributed as A/ (0,I). In other words, we have
v(t) ~ N (0,1) for all t > 0 if starting from stationarity. In particular, the velocity along
any unit vector u would be distributed as (v(t),u) ~ A (0,1), so that E|(v(t),u)| = 1/2/7.
Now, the motion of the particle along u is given