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Inferring dependencies between complex biological traits while accounting for evolutionary

relationships among specimens is of great scientific interest, yet remains infeasible when trait

and specimen counts grow large. I aim to develop a scalable Bayesian inference framework to

assess correlation between complex traits along the evolutionary tree relating the specimens

and informed by molecular sequences. To accommodate discrete and continuous traits, I

posit a phylogenetic multivariate probit model that uses a latent variable framework. Poste-

rior computation under this model requires integrating many latent variables, or equivalently

making many computationally expensive draws from a high-dimensional multivariate trun-

cated normal distribution (MTN). To tackle this challenge, I propose an inference scheme

that exploits 1) representative cutting-edge Markov chain Monte Carlo (MCMC) methods

including the bouncy particle sampler (BPS), the Markovian Zigzag sampler (ZZ), and the

Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) that can simultaneously sample all trun-

cated normal dimensions, and 2) novel dynamic programming strategies that reduce the

cost of likelihood and gradient evaluations for all three samplers to linear in sample size.

Compared to the previous best practices that employ multiple-try rejection sampling, my

ii



approach achieves an order-of-magnitude speedup, allowing us to tackle previously unwork-

able large-scale problems. In an application with 535 HIV-1 viruses and 24 traits that

necessitates sampling from a 11,235-dimensional MTN, my method makes it possible to ex-

amine the conditional dependencies between 21 immune escape mutations and 3 virulence

measurements. In a second application I study the evolution of influenza H1N1 glycosyla-

tions using around 900 viruses. Lastly, I extend the phylogenetic probit model to incorporate

categorical traits and demonstrate its use to investigate Aquilegia flower and pollinator co-

evolution. In summary, the contribution of this dissertation is two-fold. First, I develop a

state-of-the-art solution for the long-standing problem in Bayesian phylogenetics — learn-

ing correlation among complex biological traits with joint tree modeling. Second, further

empirical and theoretical investigation of BPS, ZZ, and Zigzag-HMC yield insight into the

differences and similarities between these recently developed MCMC samplers. As Zigzag-

HMC outperforms the other two on MTNs, I also implement this approach in a standalone

R package, aiming to provide a general efficient tool for high-dimensional MTN simulation.
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CHAPTER 1

Introduction

1.1 Literature review and study objectives

Phylogenetics is the study of the evolutionary history relating individuals or groups of or-

ganisms and plays a central role in understanding the process of evolution and the interpre-

tation of biological information. In the 1960s, several pioneer groups launched the inference

of phylogenetic trees, or phylogenies, from molecular sequences. Cavalli-Sforza and Edwards

introduced the parsimony and likelihood methods for inferring phylogenies (Cavalli-Sforza

and Edwards, 1967; Edwards and Cavalli-Sforza, 1965). Fitch and Margoliash (1967) devel-

oped the first distance matrix method for tree construction. In the past decades, thanks to

the explosively accumulating molecular data, greatly improved computing power and sophis-

ticated statistical methods, phylogenetics continues to experience significant growth and has

found use in nearly all branches in biology (Lyubetsky, Piel, and Quandt, 2014). Modern

phylogenetics has two major goals: to reconstruct the evolutionary tree among species and

to investigate the mechanisms of the evolutionary process giving rise to these species (Yang,

2006). A variety of tree-reconstruction methods exist, and among the most popular ones

are the unweighted pair-group method using arithmetic averages (Sokal and Sneath, 1963,

UPGMA), maximum parsimony (Fitch, 1971), maximum likelihood (Felsenstein, 1981) and

Bayesian methods (Li, Pearl, and Doss, 2000; Rannala and Yang, 1996; Sinsheimer, Lake,

and Little, 1996). Bayesian inference is a flexible and versatile tool in phylogenetics, as it

can incorporate various modeling assumptions and at the same time provide a treatment for

uncertainty. This is especially important when we are interested in some evolutionary pro-
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cess happening on the tree, but high uncertainty lingers about the tree itself. Under a joint

Bayesian framework we can average over the tree space, test evolutionary hypotheses with-

out conditioning on a single tree and therefore reduce bias (Suchard, Weiss, and Sinsheimer,

2001).

A tree structure is an intuitive device to describe an evolutionary history of molecular

sequences that are inherited in a vertical fashion from parent to progeny. With increas-

ing sample sizes and model complexity, however, posterior inference for highly structured

tree-based models tends to be computationally expensive. Therefore, much recent effort in

Bayesian phylogenetics has focused on developing efficient inference frameworks. To name

a few, Pybus et al. (2012) and Cybis et al. (2015) propose tree “traversals” to integrate out

the internal and root node trait values of biological phenotypes analytically, Hassler et al.

(2021) and Tolkoff et al. (2018) develop an efficient phylogenetic factor analysis approach

for learning correlations among high-dimensional traits, Ji et al. (2020, 2021) and Fisher

et al. (2021a,b) use scalable Hamiltonian Monte Carlo on general sequence substitution

and trait evolution models, and Hassler et al. (2020) propose a fast method to marginalize

missing traits. Of equal importance to the statistical development stand scientific software

that provide efficient implementations of these methods as well as user-friendly interfaces.

There exist a variety of packages specialized in Bayesian phylogenetic inference, such as the

Bayesian Evolutionary Analysis by Sampling Trees (Suchard et al., 2018, BEAST), MrBayes

(Ronquist et al., 2012), and RevBayes (Höhna et al., 2016).

The main goal of this dissertation is to develop a scalable inference framework to learn

correlation between complex biological traits observed on evolutionarily related taxa, while

simultaneously estimating the potentially unknown phylogeny. Here “complex” means that

the trait values can be continuous or discrete — a situation commonly seen in applications.

This is an important yet unsolved problem. To describe complex trait evolution I develop a

phylogenetic probit model based on the latent liability model (Cybis et al., 2015) for its great

utility and flexibility. Then I develop an inference toolbox for posterior computation under
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this model and implement all developed methods in BEAST. Alternative approaches for

complex traits on unknown trees are limited. Phylogenetic regression models (Grafen, 1989)

assume a known fixed tree and their logistic extensions (Ives and Garland, 2009) take a single

binary trait as the regression outcome. On the other hand, for continuous traits, comparative

methods (Felsenstein, 1985) scale well on random trees (Pybus et al., 2012; Tung Ho and

Ané, 2014). Likewise, continuous-time Markov chain-based models (Lewis, 2001; Pagel,

1994) are popular for multiple binary traits, but restrictively assume independence between

traits given the tree.

Although my methodological development is driven by real-world phylogenetics applica-

tions (Chapter 3 and 4), I recognize that this development also delivers advances in statistical

computing beyond phylogenetics. So a side goal of my dissertation is to further explore this

broader contribution (Chapter 5 and 6).

1.2 Dissertation structure

I organize my dissertation around four projects in Chapters 3, 4, 5, 6 that together support

the thesis objectives yet all lead to individual manuscripts for publication. The project

chapters can be read as such and, therefore, please forgive the slight inconsistency in notation

and repetition of material between chapters. Placed before these independent chapters sits

Chapter 2 that provides necessary background in phylogenetics and statistics to help to

situate the projects.

To describe the evolution of mixed-type traits, Chapter 3 introduces a phylogenetic mul-

tivariate probit model by assuming latent parameters for binary outcome dimensions at the

tips of an unknown tree informed by molecular sequences. The focus of Chapter 3 is on

the inference challenge under the phylogenetic probit model. When fitting this model to

a large data set, the computational bottleneck is to repeatedly sample the latent variables

from a high-dimensional multivariate truncated normal (MTN) with a possibly random cor-
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relation structure. For this task, I develop a new inference approach that exploits 1) the

bouncy particle sampler (Bouchard-Côté, Vollmer, and Doucet, 2018, BPS) based on piece-

wise deterministic Markov processes (PDMP) to simultaneously sample all truncated normal

dimensions, and 2) novel dynamic programming that reduces the cost of likelihood and gra-

dient evaluations for BPS to linear in sample size. Compared to the previous best practices

(Cybis et al., 2015), BPS achieves a 74× speed-up in terms of minimal effective sample size

(ESS) on a 11,235-dimensional MTN from an HIV data set with 535 taxa and 24 mixed-

type traits, making it possible to estimate the across-trait correlation with an explicit tree

modeling.

In Chapter 4, I develop a yet more efficient inference scheme for the phylogenetic probit

model to tackle larger problems. As the number of specimens grows, the BPS method fails

to reliably characterize conditional dependencies between traits. To resolve this limitation,

I employ the recent Zigzag Hamiltonian Monte Carlo (Nishimura, Dunson, and Lu, 2020,

Zigzag-HMC) that can utilize the same linear-order gradient evaluation method developed in

Chapter 3. I demonstrate that Zigzag-HMC better explores the parameter space than BPS

and so it samples from a high-dimensional MTN more efficiently. Zigzag-HMC also enjoys

another strong advantage in that it allows joint transition kernels for highly correlated la-

tent variables and correlation matrix elements. On the same HIV application as in Chapter

3, Zigzag-HMC yields a further 5-fold speedup compared to BPS and makes it possible to

learn partial correlations between candidate viral mutations and virulence. I demonstrate

the improved scalability of this approach in studying the evolution of influenza H1N1 glyco-

sylations on around 900 viruses. For broader applicability, I extend the phylogenetic probit

model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower

and pollinator co-evolution.

I test another cutting edge PDMP-based sampler, the Markovian zigzag sampler (Bierkens,

Fearnhead, Roberts, et al., 2019, ZZ) on MTNs from the phylogenetic probit model to see if

it is a better choice than BPS or Zigzag-HMC. Zigzag-HMC turns out to be more efficient
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and therefore becomes the final choice in Chapter 3. In Chapter 5 my collaborator Akihiko

Nishimura and I recognize an intriguing connection between the two zigzag samplers that

helps to explain their different behavior. Nishimura, Zhang, and Suchard (2021) theoretically

proves an equivalence of the two methods under certain limits. This result is consistent with

our observation that Zigzag-HMC outperforms ZZ when the dependency among parameters

increases.

The impressive efficiency of Zigzag-HMC on MTNs in the phylogenetic applications sug-

gests its broader use. Therefore, in Chapter 6 I introduce the hdtg R package for efficient

MTN simulations. MTN simulation arises in various statistical applications yet remains a

challenging problem in high dimensions. There is no available software package that can

generate samples from an arbitrary MTN with thousands of dimensions and this limitation

prevents researchers from developing methods that exploit sampling from a large MTN. Be-

sides Zigzag-HMC, the current best algorithms for MTN simulation are the minimax tilting

accept-reject sampler (Botev, 2017, MT) and the harmonic Hamiltonian Monte Carlo (Pak-

man and Paninski, 2014, Harmonic-HMC). However, the scale limit of minimax tilting is

often only a few hundred dimensions, and there is no efficient implementation of Harmonic-

HMC. I aim to bridge this gap with the hdtg package that implements both Zigzag-HMC

and Harmonic-HMC. I compare the efficiency between Zigzag-HMC, Harmonic-HMC, and

MET on MTNs with various correlation structures. Zigzag-HMC outperforms the other two

in most cases with a dimension > 1000. I also provide some practical guidance on method

choice for MTN simulation and illustrate the usage of hdtg functions.

Finally, in Chapter 7 I discuss what new knowledge and insights my doctoral projects

have contributed, and point out future directions in studying complex trait evolution.
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CHAPTER 2

Background

2.1 Trait evolution framework

Here I introduce the basic trait evolution framework used throughout Chapters 3 and 4.

The phylogeny F = (V, t) is a directed, bifurcating acyclic graph with a set of nodes V and

branch lengths t. The node set V contains N tip nodes (“taxa”) and N − 1 internal nodes

including the root. The branch lengths t = (t1, . . . , t2N−2) denote the time distance from

every node to its single parent (except the root). On the ith taxon (i = 1, . . . , N), we observe

P continuous or discrete traits Yi. To jointly model the evolution of these complex traits, I

build a phylogenetic probit model that extends the popular threshold model for binary traits

(Cybis et al., 2015; Felsenstein, 2005, 2011). This model assumes 2N − 1 latent variables

Xi for all nodes and those at tree tips decide the observed trait values. The latent variables

themselves follow a Brownian diffusion along the tree (Felsenstein, 1985). I then specify

a mapping function from Xi to Yi that accommodates continuous, binary, and categorical

trait types (Section 3.2.1 and 4.2.1). Figure 2.1 visualizes such a trait evolution framework

on a 3-tip example tree.

2.2 Bayesian inference and Markov chain Monte Carlo

I take a Bayesian approach for every inference task in this dissertation. Bayesian inference

derives the posterior distribution of model parameters θ given all observed data Y according
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Figure 2.1: An example tree with N = 3 tips (purple) and 2 internal nodes (green). I denote
the latent variable and observed trait on the ith node with Xi and Yi, respectively, and ti
is the branch length from node i to its parent node.

X1 X2 X3

X4

X5

t1 t2

t4

t3

Y1 Y2 Y3

to Bayes’ theorem

p(θ |Y) =
p(Y |θ)p(θ)

p(Y)
. (2.1)

Note that θ includes all unknown model parameters. In phylogenetics applications, these

parameters define the tree topology and branch lengths, as well as any evolutionary process

described by the model. Data Y may contain sequence data, phenotypic trait data, and

relevant geographic information. In Chapter 3 and 4, I follow a 5-step process to perform

Bayesian analysis:

1. Identify the observed data Y and scientific questions.

2. Build a probabilistic model that gives the likelihood p(Y |θ).

3. Specify prior distributions p(θ).

4. Learn the posterior p(θ |Y).

5. Interpret the results.

Except for special cases where priors and likelihoods are conjugate, an analytical poste-

rior is not available, and it requires either a sampling- or approximation-based approach
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to characterize p(θ |Y). Markov chain Monte Carlo (MCMC) is one of the most widely

used sampling approaches for Bayesian inference, and the methodology development in this

dissertation focuses on novel and efficient MCMC methods to tackle inference challenges in

studying complex trait evolution.

In short, MCMC algorithms construct a Markov chain whose stationary distribution is the

posterior distribution of interest. There are various ways to construct such a Markov chain,

including the classical Metropolis-Hastings algorithm (Metropolis et al., 1953) and Gibbs

sampling (Geman and Geman, 1984), as well as the more recent Hamiltonian Monte Carlo

(Neal, 2011, HMC) and MCMC based on piecewise deterministic Markov processes (Davis,

1984; Fearnhead et al., 2018, PDMPs). HMC- and PDMP-based MCMC avoid the “random-

walk behavior” that hampers many MCMC methods by utilizing gradient information to

better explore the parameter space. However, none of the current MCMC methods is readily

applicable to the bottleneck of sampling the conditional posterior of latent variables under

the phylogenetic probit model, and this limitation motivates me to develop the inference

machinery in Chapter 3 and 4. As HMC- and PDMP-based MCMC are the key algorithms

in my development, I give a brief overview of them in the next sections.

2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (Neal, 2011, HMC) is a state-of-the-art general purpose sampler.

HMC only requires evaluations of the log-density and its gradient, yet is capable of sampling

efficiently from complex high-dimensional distributions (Gelman et al., 2013). In order to

sample a d-dimensional parameter x = (x1, . . . , xd) from the target distribution π(x), HMC

introduces an auxiliary momentum variable p = (p1, . . . , pd) ∈ Rd and samples from the

product density π(x,p) = π(x)π(p) by numerically discretizing the Hamiltonian dynamics

dx

dt
= ∇K(p),

dp

dt
= −∇U(x), (2.2)
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where U(x) = − log π(x) and K(p) = − log π(p) are the potential and kinetic energy. The

sum of U(x) and K(p) is the Hamiltonian which stays invariant over time. In each HMC

iteration, we first draw p from its marginal distribution π (p) ∼ N (0, I), a standard Gaussian

and then approximate (2.2) from time t = 0 to t = T by L = bT/εc steps of the leapfrog

update with stepsize ε (Leimkuhler and Reich, 2004):

p← p+
ε

2
∇x log π(x), x← x+ εp, p← p+

ε

2
∇x log π(x). (2.3)

The end state is a valid Metropolis proposal that one accepts or rejects according to the

standard acceptance probability formula (Hastings, 1970; Metropolis et al., 1953).

By virtue of the properties of Hamiltonian dynamics, the HMC proposals generated above

can be far away from the current state yet be accepted with high probability. Good perfor-

mance of HMC depends critically on well-calibrated choices of L and ε. In this dissertation

I automate these choices via the stochastic optimization approach of Andrieu and Thoms

(2008) and the No-U-Turn (NUTS) algorithm of Hoffman and Gelman (2014) that have

been shown to achieve performance competitive with manually optimized HMC. The key al-

gorithm in Chapter 4, Zigzag-HMC, is a less explored version of HMC where the momentum

components have independent Laplace distributions and the resulting Hamiltonian trajec-

tory possesses a zigzag shape. Since Zigzag-HMC is based on the reversible Hamiltonian

zigzag dynamics (Nishimura, Dunson, and Lu, 2020; Nishimura, Zhang, and Suchard, 2021),

it can also utilize NUTS to avoid manual tuning.

2.4 Piecewise deterministic Monte Carlo

The recent development of new MCMC algorithms based on piecewise deterministic Markov

processes (PDMPs) has attracted an explosion of interest (Dunson and Johndrow, 2020).

Examples include the bouncy particle sampler (Bouchard-Côté, Vollmer, and Doucet, 2018,

BPS), the Zig-Zag sampler (Bierkens and Duncan, 2017; Bierkens, Fearnhead, Roberts,
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et al., 2019, ZZ), and the Boomerang sampler (Bierkens et al., 2020). Unlike traditional

MCMC methods that simulate a discrete-time Markov chain, PDMP-based MCMC simulates

a continuous-time Markov process designed to have the target distribution as its stationary

distribution. These conceptually new methods have demonstrated promising efficiency in

large-scale problems and my work in Chapter 3 to 5 are among the first examples where

they contribute to tackle challenging inference tasks in real-world applications (Nishimura,

Zhang, and Suchard, 2021; Zhang et al., 2021, 2022a).

Following Fearnhead et al. (2018), I briefly introduce PDMPs and their use in build-

ing continuous-time MCMC algorithms. A PDMP is a continuous-time stochastic process

(Davis, 1984). One can visualize a d-dimensional PDMP in terms of an imaginary particle

moving in the Rd space, whose state at time t is (xt,vt), where xt =
(
x1t , . . . , x

d
t

)
denotes

the particle’s position at time t and vt =
(
v1t , . . . , v

d
t

)
is the velocity. The PDMP trajectory

consists of random velocity changing events and deterministic dynamics between the events.

The following three quantities define a PDMP:

(i) The deterministic dynamics. Between events, the trajectory follows a deterministic

path described by the ordinary differential equation:

dxit
dt

= vit, i = 1, . . . , d. (2.4)

(ii) The event rate. Velocity changing events will happen at a rate λ (xt,vt) that depends

on the current state (xt,vt) and the target distribution. In other words, the probability

that an event happens during interval [t, t+ h] is λ (xt)h+ O(h).

(iii) The transition at events. The velocity will change at each event. If an event happens

at time τ , we have vτ = q (xτ−,vτ−), where vτ− and xτ− are the position and veloc-

ity immediately before the event and the transition kernel q (·, ·) specifies how they

determine vτ .
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A PDMP-based MCMC algorithm first specifies these characteristic quantities. Then one

can simulate the underlying PDMP via:

(1) Given the current state (xt,vt), simulate the next event time τ .

(2) Compute (xτ−,vτ−), the state right before the event.

(3) Update the state at time τ so vτ ← q (xτ−,vτ−) and xτ ← xτ−.

(4) Go back to Step 1 with the current state being (xτ ,vτ ).

Consequently, one MCMC iteration involves simulating the process for an arbitrary total time

duration T and the end position makes the MCMC sample. Some differences between BPS,

ZZ and the Boomerang sampler include 1) the between-event velocity for BPS and ZZ stays

constant while that for Boomerang is time-varying. 2) Besides the target-informed events in

(ii), BPS and the Boomerang sampler also incorporate random velocity refreshment events

to ensure ergodicity of the process, and ZZ does not require such velocity refreshments.
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CHAPTER 3

Large-scale inference of correlation among mixed-type

biological traits with phylogenetic multivariate probit

models

3.1 Introduction

Phylogenetics stands as a key tool in assessing rapidly evolving pathogen diversity and its im-

pact on human disease. Important taxonic examples include RNA viruses, such as influenza

and human immunodeficiency virus (HIV). Pathogens sampled from infected individuals

are implicitly correlated with each other through their shared evolutionary history, often

described through a phylogenetic tree that one reconstructs by sequencing the pathogen

genomes. Drawing inference about concerted changes within multiple measured pathogen

and host traits along this history leads to highly structured models. These models must

simultaneously entertain and adjust for the across-taxon correlation and the between-trait

correlation that characterizes the trait evolutionary process, leading to high computational

burden. This burden arises from the need to integrate over the unobserved trait process and

possible uncertainty in the history. This burden grows more challenging as the sample size,

both in terms of number of taxa N and number of traits P , increases and, especially, when

traits are of mixed-type, including both continuous quantities and discrete outcomes. Here,

even best current practices (Cybis et al., 2015) fail to provide reliable estimates for emerging

biological problems due to high computational complexity.
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To jointly model continuous and binary trait evolution along an unknown tree, we adopt

and extend the popular phylogenetic threshold model for binary traits (Felsenstein, 2005,

2011) with a long tradition in statistical genetics (Wright, 1934). This model assumes that

unobserved continuous latent parameters for each tip taxon in the tree determine the ob-

served binary traits according to a threshold. The latent parameters themselves arise from

a Brownian diffusion along the tree (Felsenstein, 1985). The correlation matrix of the diffu-

sion process informs correlation between latent parameters that map to concerted changes

between binary traits. Here one interprets the latent parameters as the combined effect of

all relevant genetic factors that influence the binary traits after adjusting for the shared

evolutionary history.

As in Cybis et al. (2015), we extend the threshold model to include continuous traits by

treating them as directly observed dimensions of the latent parameters. We recognize an

identifiability issue in Cybis et al. (2015) and address this limitation with specific constraints

on the diffusion covariance. We arrive at a mixed-type generalization of the multivariate

probit model (Chib and Greenberg, 1998) that allows us to jointly model continuous and

binary traits. We call this the phylogenetic multivariate probit model. Similar strategies

for mixed-type data that assume latent processes underlying discrete data are commonly

employed in various domain fields, including the biological and ecological sciences (Clark

et al., 2017; Irvine, Rodhouse, and Keren, 2016; Schliep and Hoeting, 2013), optimal design

(Fedorov, Wu, and Zhang, 2012), and computer experiments (Pourmohamad, Lee, et al.,

2016). The observed outcomes can also be conveniently clustered (Dunson, 2000; Murray

et al., 2013). Likewise, our phylogenetic probit model is easily extendable to categorical and

ordinal data (Cybis et al., 2015).

Bayesian inference for the phylogenetic multivariate probit model involves, however, re-

peatedly sampling latent parameters from an NP dimensional truncated normal distribution,

with N being the number of taxa and P the number of traits. To attempt this, Cybis et al.

(2015) use Markov chain Monte Carlo (MCMC) based on a multiple-try rejection sampler.
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The sampler has a computational complexity of O(NP 2) to update P dimensions of the la-

tent parameters for just one taxon within a Gibbs cycle. Hence, to touch all dimensions, the

resulting cost is O(N2P 2). Further, since only a small portion of the latent parameter dimen-

sions are updated per rejection-sample, the resulting MCMC chain is highly auto-correlated,

hurting efficiency.

To overcome this limitation, we develop a scalable approach to sample from the mul-

tivariate truncated normal by combining the recently developed bouncy particle sampler

(Bouchard-Côté, Vollmer, and Doucet, 2018, BPS) and an extension of the dynamic pro-

gramming strategy by Pybus et al. (2012). BPS samples from a target distribution by

simulating a Markov process with a piecewise linear trajectory. The simulation generally

requires solving a one-dimensional optimization problem within each line segment. When

sampling from a truncated normal, however, this optimization problem can be solved via

a single log-density gradient evaluation. In the phylogenetic multivariate probit model, a

direct evaluation of this gradient requires O(N2P +NP 2) computation. By extending the

dynamic programming strategy of Pybus et al. (2012) for diffusion processes on trees, we

reduce this computational cost to O(NP 2) — a major practical gain as N � P in most

applications. Compared to the current practice, our BPS sampler achieves superior mixing

rate, allowing us to attack previously unworkable problems.

We apply this Bayesian inference framework to assess correlation between HIV-1 gag

gene immune-escape mutations and viral virulence, the pathogen’s capacity to cause disease.

By adjusting for the unknown evolutionary history that confounds our epidemiologically

collected data, we identify significant correlations that closely match with the biological

experimental literature and increase our understanding of the underlying molecular mecha-

nisms of HIV.

3.2 Modeling
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3.2.1 Phylogenetic multivariate probit model for mixed-type traits

Consider N biological taxa, each with P trait measurements. These measurements partition

as Y = {yij} =
[
Yb,Yc

]
with Yb being an N × Pb matrix of Pb binary traits and Yc an

N × Pc matrix of Pc continuous traits, where P = Pb + Pc. We assume that Y arises from a

partially observed multivariate Brownian diffusion process along a phylogenetic tree F . The

tree F = (V, t) is a directed, bifurcating acyclic graph with a set of nodes V and branch

lengths t. The node set V contains N degree-1 tip nodes, N − 2 internal nodes of degree 3,

and one root node of degree 2. The branch lengths t = (t1, . . . , t2N−2) denote the distance

in real time from each node to its parent (Figure 3.1, left). The tree F is either known or

informed by molecular sequence alignment S (Suchard et al., 2018).

We associate each node i in F with a latent parameter Xi ∈ RP for i = 1, . . . , 2N −

1. A Brownian diffusion process characterizes the evolutionary relationship between latent

parameters, such that Xi is multivariate normal (MVN) distributed,

Xi ∼ N
(
Xpa(i), tiΩ

)
, (3.1)

centered at its parent node value Xpa(i) with across-trait, per-unit-time, P × P variance

matrix Ω that is shared by all branches along F .

At the tips of F , we collect the N × P matrix X = {xij} = [X1, . . . ,XN ]T and map it

to the observed traits through the function

yij = g(xij) =


sign(xij), j = 1, . . . Pb,

xij, j = Pb + 1, . . . , P,

(3.2)

where sign(xij) takes the value 1 on positive values and -1 on negative values. As a result,

latent parameters at the tips and a threshold (that we set to zero without loss of generality)

determine the corresponding binary traits, and continuous traits can be seen as directly
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observed.

Turning our attention to the joint distribution of tip latent parameters X, we can integrate

out XN+1, . . . ,X2N−1 by assuming a conjugate prior on the tree root, X2N−1 ∼ N
(
µ0, τ

−1
0 Ω

)
with prior mean µ0 and prior sample size τ0. Then X follows a matrix normal distribution

X ∼ MTNNP (M,Υ,Ω) , (3.3)

where M = (µ0, . . . ,µ0)
T is an N × P mean matrix and the across-taxa tree covariance

matrix Υ = V(F ) + τ−10 J (Pybus et al., 2012). The tree diffusion matrix V(F ) is a

deterministic function of F and J is an N ×N matrix of all ones, such that the term τ−10 J

comes from the integrated-out tree root prior. Figure 3.1 illustrates how the tree structure

determines V(F ): the diagonals are equal to the sum of branch lengths from tip to root,

and the off-diagonals are equal to the branch length from root to the most recent common

ancestor of two tips. Combining equations (3.2) and (3.3) enables us to write down the
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Figure 3.1: A 4-taxon phylogenetic tree F with tips (T1, T2, T3, T4) and their corresponding
tree diffusion matrix V(F ).

augmented likelihood of X and Y through the factorization

p(Y,X |Υ,Ω,µ0, τ0, g) = p(Y |X)p(X |Υ,Ω,µ0, τ0), (3.4)

where p(Y |X) = I(Y |X, g), the indicator function that takes the value 1 if X are consistent

with the observations Y and 0 otherwise.
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3.2.2 Decomposition of trait-covariance to account for varying data scales

The previous work of Cybis et al. (2015) uses a conjugate Wishart prior on Ω−1 for com-

putational convenience. However, there are two problems with the Wishart prior. First,

with mixed-type data, it leaves the model not parameter-identifiable. For a binary trait,

we only know the sign of its latent parameter; the absolute value is arbitrary. Consider a

latent parameter xij and its marginal trait variance Ωjj, the jth diagonal element of Ω. If

we scale them to kxij and Ωjj/k by any positive number k, then according to (3.3), the

likelihood remains unchanged. Therefore, we need to fix the marginal variances for latent

parameters underlying binary traits. On the other hand, continuous traits can be seen as

directly observed latent parameters, and their marginal trait variances depend on the po-

tentially differing rates of change along F and should be inferred from the data. A Wishart

prior on Ω−1 does not allow such distinct constraints on the marginal variances for binary

and continuous traits. The second problem with the Wishart prior is that strong depen-

dencies exist among correlations and their joint distribution is considerably different from

uniform (Tokuda et al., 2011). Without knowing the true correlation structure, these prior

assumptions may not be appropriate. Hence, we favor a noninformative, uniform prior on

the correlation matrix.

We solve the above problems by decomposing Ω into an across-trait correlation matrix

and standard deviations, with a jointly uniform prior on the correlation matrix. Specifically,

we decompose Ω = DRD, where R is the P × P correlation matrix and D is a diagonal

matrix with elements Dii = 1, for i = 1, . . . , Pb and Dii = σi > 0 for i = Pb + 1, . . . , P . We

use the prior of Lewandowski, Kurowicka, and Joe (LKJ) on the positive-definite correlation

matrix R (Lewandowski, Kurowicka, and Joe, 2009a), with density

LKJ(R|η) = c(η)det(R)η−1, (3.5)

where η > 0 is a shape parameter and c(η) is the normalizing constant. When η = 1, the
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LKJ prior implies a uniform distribution over all correlation matrices of dimension P . For

the diagonal standard deviation matrix D, we assume independent log normal priors on

the variances σ2
i for i = Pb + 1, · · · , P with mean 0 and variance 1 on the log scale. We

describe how to carry out the posterior inference under this prior in Section 3.3.2. There

exists other methods for specifying a prior distribution on DRD. For example, Huang,

Wand, et al. (2013) use half-t distributions on standard deviations and achieve marginally

uniform correlations. We prefer log normal priors over half-t because the latter has non-zero

probability density for a zero standard deviation. If one favors half-t standard deviations or

marginally uniform correlations, our approach easily adapts to the prior in Huang, Wand,

et al. (2013).

3.3 Inference

Primary scientific interest lies in the across-trait correlation matrix R. We integrate out the

nuisance parameters by sampling from the joint posterior

p(R,D,X,F |Y,S) ∝ p(Y |X) × p(X |R,D,F )×

p(R,D) × p(S |F ) × p(F )
(3.6)

via a random-scan Gibbs scheme (Liu, Wong, and Kong, 1995), and drop the posterior’s

dependence on the hyper-parameters (Υ,µ0, τ0, g) to ease notation. The joint posterior

factorizes because sequences S only affect the parameters of primary interest through F ,

since we assume S to be conditionally independent of other parameters given F .

Within the Gibbs scheme, we alternatively update X, (R,D) and F from their full con-

ditionals, taking advantage of the conditional independence structure. We construct p(S |F )

from a continuous-time Markov chain evolutionary model (Suchard, Weiss, and Sinsheimer,

2001) that describes nucleotide substitutions along the branches of F that give rise to S.

We assume a typical tree prior p(F ) based on a coalescent process (Kingman, 1982) and
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adopt a random-scan mixture of effective Metropolis-Hastings transition kernels (Suchard

et al., 2018) to update parameters that define F . For more details on tree sampling and

tree priors choices, we refer interested readers to Suchard et al. (2018). This section focuses

on overcoming the scalability bottleneck of updating X from an NP -dimensional truncated

normal distribution by combining BPS with dynamic programming strategy. We also de-

scribe how we deploy Hamiltonian Monte Carlo (HMC) to update (R,D) to accommodate

the non-conjugate prior on Ω = DRD.

3.3.1 BPS for updating high-dimensional latent parameters

BPS is a non-reversible “rejection-free” sampler originally introduced in the computational

physics literature by Peters and de With (2012) for simulating particle systems. Bouchard-

Côté, Vollmer, and Doucet (2018) later adopted the algorithm with modifications to better

suit statistical applications. BPS explores a target distribution p(x) by simulating a piecewise

deterministic Markov process. The simulated particle follows a piecewise linear trajectory,

with its evolution governed by the landscape of the energy function U(x) := − log p(x). To

respect the target distribution, classical Monte Carlo algorithms first propose a move, then

either accept or reject it such that a move towards areas of low probability or, equivalently,

of high energy, is more likely to be rejected than one towards areas of high probability. On

the other hand, BPS modifies its particle trajectory via a Newtonian elastic collision against

the energy gradient, thereby avoiding wasteful rejected moves.

BPS is an efficient sampler for log-concave target distributions in general, with the addi-

tional ability to account for parameter constraints by treating them as “hard-walls” against

which the particle bounces. Of particular interest to us is the fact that, when the target

distribution is a truncated MVN, the critical computation for BPS implementation is mul-

tiplying the precision matrix of the unconstrained MVN by an arbitrary vector. So BPS

becomes an especially efficient approach when one can carry out these matrix-vector op-

erations quickly. In our application, the tree diffusion process only defines the covariance,
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not the precision. But fortunately, the structured Brownian diffusion process enables us

to efficiently compute the precision-vector products without costly matrix inversion. BPS

also allows us to condition on a subset of dimensions that correspond to the continuous

traits without extra computation. We begin with an overview of BPS following Bouchard-

Côté, Vollmer, and Doucet (2018) and describe how to incorporate parameter constraints

(Bierkens et al., 2018); the subsequent sections describe how to optimize the implementation

when sampling from a truncated MVN.

3.3.1.1 BPS overview

To sample from the target distribution p(x), BPS simulates a particle with position x(t) and

velocity v(t) for time t ≥ 0, initialized from v0 ∼ N (0, I) and a given x0 at time t = 0.

Over time intervals t ∈ [tk, tk+1], the particle follows a piecewise linear path with velocity

v(t) = vk and position x(t) = xk + (t− tk)vk . An inhomogeneous Poisson process governs

the inter-event times sk+1 = tk+1 − tk with rate

λ(x(t),vk) = max {0, 〈vk,∇U(x(t))〉} , (3.7)

where 〈·, ·〉 denotes an inner product.

When the target density is log-concave and differentiable, U(x) is convex, so one can

conveniently simulate the Markov process. We describe how to simulate the process for a

pre-specified amount of time ttotal > 0, and the mapping x0 → x(ttotal) defines a Markov

transition kernel with p(x) as the stationary density:

1. Solve a one-dimensional optimization problem to find

smin = argmin
s≥0

U(xk−1 + svk−1) and Umin = U(xk−1 + sminvk−1). (3.8)

2. Draw T ∼ Exp(1), an exponential random variable with rate 1, and solve for the next
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inter-event time sk, the minimal root of

U(xk−1 + skvk−1)− Umin = T and sk > smin. (3.9)

3. Update (x,v) as

xk ← xk−1 + skvk−1, vk ← vk−1 − 2
〈vk−1,∇U(xk)〉
‖∇U(xk)‖2

∇U(xk). (3.10)

4. Stop if
∑k

j=1 sj ≥ ttotal and return x(ttotal) = xk−1 + (ttotal − tk−1)vk−1 where tk−1 =∑k−1
j=1 sj, otherwise repeat Steps 1 - 3.

Steps 1-4 form one conditional update by BPS inside a Gibbs scheme. They are the

same as the basic BPS algorithm in Bouchard-Côté, Vollmer, and Doucet (2018), except

that we do not include velocity refreshment as random Poisson events. Since we use BPS

for conditional updates, we resample the velocity from N (0, I) at the beginning of every

BPS iteration. BPS without velocity refreshment is known to suffer from reducible behavior

when applied to an isotropic multivariate normal distribution (Bouchard-Côté, Vollmer, and

Doucet, 2018). Our velocity resampling already avoids this reducibility issue, and so we opt

not to incorporate further refreshment inside the transition kernel. As long as the entire

chain remains irreducible, Peskun-Tierney theory for non-reversible MCMC suggests that

adding further events only reduces the efficiency (Andrieu and Livingstone, 2019; Bierkens

and Duncan, 2017).

When the target distribution is constrained to some region x ∈ D, the bounce events are

caused not only by the gradient ∇U(x) but also by the domain boundary ∂D. We call these

bounces “gradient events” and “boundary events” respectively. Whichever occurs first is the

actual bounce. More precisely, we define the boundary event time sbd,k as

sbd,k = inf
s>0
{xk−1 + svk−1 /∈ D} . (3.11)

21



Then the bounce time is given by sk = min{sbd,k, sgr,k}, where sgr,k denotes the gradient

event time of (3.9). If sbd,k < sgr,k, we have a boundary bounce and the position is updated

as in (3.10) while the velocity is updated as

vk ← vk−1 − 2 〈vk−1,ν〉ν, (3.12)

where ν = ν(xk) is a unit vector orthogonal to the boundary at xk ∈ ∂D.

3.3.1.2 BPS for truncated MVNs

We now describe how the BPS simulation simplifies when the target density is a d-dimensional

truncated MVN of the form

x ∼ N (m,Σ) subject to x ∈ D = {sign(x) = y} for y ∈ {±1}d. (3.13)

Importantly, we can implement BPS so that, besides basic and computationally inexpensive

operations, it relies solely on matrix-vector multiplications by the precision matrix Φ = Σ−1.

Moreover, under the orthant constraint {sign(x) = y}, we can handle a bounce against the

boundary in a particularly efficient manner, only requiring access to a column of Φ.

We start with gradient events and then describe how to find boundary event times. Now

U(x) = − log p(x) = 1
2
(x −m)ᵀΦ(x −m) + C where constant C does not depend on x,

therefore

U(x + sv) =
1

2
〈v,ϕv〉s2 + 〈v,ϕx〉s+

1

2
〈x−m,ϕx〉+ C

where ϕv = Φv and ϕx = Φ(x−m) = ∇U(x). (3.14)
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The solution to the optimization problem (3.8) is given by

smin = max
{

0,−〈v,ϕx〉
/
〈v,ϕv〉

}
,

Umin =
1

2
〈v,ϕv〉s2min + 〈v,ϕx〉smin +

1

2
〈x−m,ϕx〉+ C.

(3.15)

It follows from (3.14) that the gradient event time in (3.9) coincides with the larger root of

the quadratic equation as2 + bs+ c = 0 with

a =
1

2
〈v,ϕv〉, b = 〈v,ϕx〉, and c = −1

2
〈v,ϕv〉s2min − 〈v,ϕx〉smin − T,

so

sgr =
−b+

√
b2 − 4ac

2a
.

When a gradient event takes place, the position and velocity are updated according to (3.10)

with

∇U(x + sv) = ϕx+sv = Φ(x−m) + sΦv = ϕx + sϕv. (3.16)

Note that ϕx+sv can be computed by an element-wise addition of ϕx and sϕv, rather than

the expensive matrix-vector operation x + sv→ Φ(x + sv).

The orthant boundary is given by ∪i{xi = 0}. When sign(xi) = sign(vi), where xi and vi

denotes the i-th coordinate of particle position and velocity, the particle is moving away from

the i-th coordinate boundary {xi = 0} and thus never reaches it. Otherwise, the coordinate

boundary is reached at time s = |xi/vi|. Hence sbd can be expressed as

sbd = |xibd/vibd | , ibd = argmin i∈I |xi/vi| for I = {i : xivi < 0}.

When a boundary event takes place, the particle bounces against the plane orthogonal to the

standard basis vector ν = eibd . As the updated velocity takes the form v∗ ← v − 2vibdeibd ,
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we can save computational cost of simulating the next line segment by realizing that

ϕv∗ = Φv∗ = ϕv + 2v∗ibdΦeibd where v∗ibd = −vibd . (3.17)

In other words, we can compute ϕv∗ by simply extracting the ibd-th column of Φ and up-

dating ϕv with an element-wise addition. This avoids the expensive matrix-vector operation

v∗ → Φv∗.

Algorithm 1 describes BPS implementation for truncated MVNs based on the discussion

above, with the most critical calculations optimized. Within each line segment, ϕx and ϕv

once efficiently computed (Section 3.3.1.3) can be re-used throughout. In our application

the observed continuous traits correspond to fixed dimensions in x, so we slightly modify the

BPS such that it can sample from a conditional truncated MVN. Specifically, we partition

x = (xb,xc) by latent (xb) and observed dimensions (xc), with the aim to generate samples

from the conditional distribution p(xb |xc) (details in Appendix 3.8.1). We choose the tuning

parameter ttotal based on a heuristic that works well in practice (Section 3.8.1).

3.3.1.3 Dynamic programming strategy to overcome computational bottleneck

A straight implementation of BPS remains computationally challenging, as computing ϕx

and ϕv in Algorithm 1 involves a high-dimensional matrix inverse when the model is pa-

rameterized in terms of Σ. From (3.3) and the equivalence between matrix normal and

multivariate normal distributions, to sample latent parameters X from their conditional

posterior, the target distribution (3.13) specifies as x = vec (X), m = vec (M), Σ = Ω⊗Υ,

and y = vec (Y), where vec (·) is the vectorization that converts an N × P matrix into an

NP × 1 vector and ⊗ denotes the Kronecker product. A naive matrix inverse operation

Σ−1 = Ω−1 ⊗Υ−1 has an intimidating complexity of O(N3 + P 3). If we have a fixed tree,
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Algorithm 1 Bouncy particle sampler for multivariate truncated normal distributions

Require: ttotal, initial value for x
1: v ∼ N (0, I)
2: ϕx ← Φ(x−m) . ϕx = ∇U(x) is the gradient of energy
3: while ttotal > 0 do

. compute reused quantities once
4: if previous bounce is a boundary event at coordinate i then
5: ϕv ← ϕv + 2viΦei
6: else
7: ϕv ← Φv . the expensive step
8: end if
9: ϕv,x ← vᵀϕx, ϕv,v ← vᵀϕv

. find gradient event time
10: smin ← max {0,−ϕv,x/ϕv,v}
11: T ∼ Exp(1)
12: a← 1

2
ϕv,v, b← ϕv,x, c← −1

2
s2minϕv,v − sminϕv,x − T

13: sgr ← (−b+
√
b2 − 4ac)/(2a)

. find truncation event time at coordinate i
14: sbd ← argmini xi/vi, for i with xivi < 0

. bounce happens
15: s← min {sgr, sbd, ttotal}
16: x← x + sv, ϕx ← ϕx + sϕv

17: if s = sbd then
18: vi ← −vi
19: else if s = sgr then
20: v← v − (2 〈v,ϕx〉

/
‖ϕx‖2)ϕx

21: end if
22: ttotal ← ttotal − s
23: end while
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such that Υ−1 is known, the typical computation proceeds via

Σ−1 (x−m) =
(
Ω−1 ⊗Υ−1

)
(x−m) = vec

(
Υ−1 (X−M) Ω−1

)
, (3.18)

with a cost O(N2P +NP 2). When the tree is random, the O(N3) cost to get Υ−1 seems

unavoidable. However, we show that even with a random tree, evaluating ϕx and ϕv can

be O(NP 2). We use conditional densities to evaluate these products (Proposition 1) and

obtain all conditional densities simultaneously via a dynamic programming strategy that

avoids explicitly inverting Υ.

Proposition 1. Given joint variance matrix Σ and vectorized latent data x, the energy

gradient ∇U(x) is

ϕx = Σ−1 (x−m) =


Q1 (X1 − µ1)

...

QN (XN − µN)

 , (3.19)

where µi and Qi are the mean and the precision matrix of the distributions p(Xi |X(i)) for

i = 1, . . . , N , and p(Xi |X(i)) is the conditional distribution of latent parameters at one tree

tip given those of all the other tips.

Proof. x ∼ N (m,Σ), so p(Xi |X(i)) are also multivariate normal. Note that

∂

∂x
[log p(x)] = −1

2
Σ−1 (x−m) . (3.20)
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Likewise, ∂
∂x

[log p(x)] =
(

∂
∂X1

[log p(x)] , . . . , ∂
∂XN

[log p(x)]
)T

with

∂

∂Xi

[log p(x)] =
∂

∂Xi

[
log p(Xi |X(i)) + log p(X(i))

]
=

∂

∂Xi

[
log p(Xi |X(i))

]
= −1

2
Qi (Xi − µi) .

(3.21)

Equating (3.20) and (3.21) completes the proof.

In Proposition 1, the partition is by taxon, but we can generalize to any arbitrary par-

titioning of the dimensions. By replacing x −m with v (or ei), we achieve a similar result

for ϕv (or Φei). Given µi and Qi, the O(NP 2) matrix-vector operation v∗ → Φv∗ based

on Proposition 1 is generally required for updating ϕv∗ , but for boundary bounces, we can

exploit (3.17) and update ϕv∗ in O(NP ). For the conditional posterior distribution in our

HIV application (Section 3.4), boundary bounces occur far more frequently than gradient

ones and thus the efficient update via (3.17) leads to further significant speed-up.

Fortunately, we are able to efficiently compute µi and Qi through a dynamic programming

strategy that recursively traverses the tree (Pybus et al., 2012) and enjoys a complexity of

O(NP ). Here we give the results and omit the derivatives found in Pybus et al. (2012) and

Cybis et al. (2015).

The recursive traversals visit every node first in post-order (child → parent) and then

again in pre-order (parent → child) to calculate partial data likelihoods that lead to µi and

Qi. The post-order traversal begins at a tip and ends at the root, while pre-order starts at

the root and reaches every tip. The following results are in terms of the node triplets (i, j, k)

where pa(i) = pa(j) = k as in Figure 3.2. We define bic as the tree tips that are descendants

to or include (“below”) node i and die as the tree tips that are not descendants to (“above”)

node i.

During the post-order traversal, the partial likelihoods of the data Xbic given latent Xi
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k

i j

· · ·

· · · · · ·

⌊i⌋ ⌈i⌉

Figure 3.2: A sample tree to illustrate post- and pre- traversals for efficiently computing
p(Xi |X(i)). In the triplet (i, j, k), parent node k has two children i and j. We group the
tip nodes into two disjoint and exhaustive classes: bic = tree tips that are descendants to or
include node i and die = tree tips that are not descendants to i.

is proportional to a MVN density of Xi, in terms of a post-order mean mi and variance viΩ

(Pybus et al., 2012), that is,

p(Xbic |Xi) ∝ MVN(Xi; mi, viΩ) . (3.22)

We re-employ these quantities shortly in the pre-order traversal. At the tree tips, mi = Xi

and the variance scalar vi = 0. For internal nodes,

mk = vk
[
(vi + ti)

−1 mi + (vj + tj)
−1 mj

]
, with

vk =
[
(vi + ti)

−1 + (vj + tj)
−1]−1 . (3.23)

Similarly, for the pre-order traversal, we calculate the conditional density of Xi at node i

given the data above it,

p(Xi |Xdie) ∝ MVN(Xi;µi, wiΩ) , (3.24)

in terms of a pre-order mean µi and variance wiΩ. Starting from the root where w2N−1 = τ−10

28



and µ2N−1 = µ0, the traversal proceeds via

µi = w∗i
[
(vj + tj)

−1 mj + w−1k µk
]
, with

w∗i =
[
(vj + tj)

−1 + w−1k
]−1

, and

wi = w∗i + ti.

(3.25)

When reaching the tips where die = (i), we obtain both the desired conditional mean µi and

precision Qi = (wiΩ)−1.

For both pre- and post-order traversals, at each node we require O(P ) elementary opera-

tions to obtain the mean vector and variance scalar; so, visiting all the nodes costs O(NP ).

With µi and Qi for i = 1, . . . , N ready in hand, the computation in (3.19) remains O(NP 2).

3.3.2 Hamiltonian Monte Carlo for updating trait covariance components

The across-trait covariance components R and D have complex and high-dimensional full

conditional distributions, with no obvious structure to admit sampling via specialized algo-

rithms. We therefore rely on HMC (Neal, 2011) to sample p(R,D |X,F ) (see Section 2.3

for HMC details). We automate HMC tuning via the stochastic optimization approach of

Andrieu and Thoms (2008) and the No-U-Turn algorithm of Hoffman and Gelman (2014).

Because HMC applies most conveniently to a distribution without parameter constraints, we

map R and D to an unconstrained space using standard transformations (Stan Development

Team, 2018).

3.4 Application on HIV immune escape

3.4.1 Background

As a rapidly evolving RNA virus, HIV-1 has established extensive genetic diversity that

researchers classify into different major groups and, for HIV-1 group M, into different sub-
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types (Hemelaar, 2012). Such diversity implies that phenotypic traits can vary remarkably

among strains circulating in different patients. Differences in viral virulence and their deter-

minants, together with host factors, may explain the large variability in disease progression

rates among patients. On the host side, human leukocyte antigen (HLA) class I alleles are

important determinants of immune control that are known to be associated with differential

HIV disease outcomes, with particular HLA alleles offering considerable protective effect

(Goulder and Walker, 2012). An interesting phenomenon is that HIV-1 can evolve to escape

the HLA-mediated immune response, but the responsible escape mutations may compromise

fitness and hence reduce viral virulence (Nomura et al., 2013; Payne et al., 2014). Iden-

tifying these mutations and their effect on virulence while controlling for the evolutionary

relationships among the viruses that spread in populations with heterogeneous HLA back-

grounds represents a particular challenge. Here, we address this by estimating the posterior

distribution of across-trait correlation while controlling for the unknown viral evolutionary

history.

We analyze a data set of N = 535 aligned HIV-1 gag gene sequences collected from 535

patients in Botswana and South Africa between 2003 and 2010 (Payne et al., 2014). Both

countries are severely affected by the subtype C variant of HIV-1 group M. Each sequence

is associated with a known sampling date and phenotypic measurements, including Pc = 3

continuous traits that are replicative capacity (RC), viral load (VL), and cluster of differenti-

ation 4 (CD4) cell count. An increasing VL and a decreasing CD4 count in the asymptomatic

stage characterize a typical HIV infection; RC is a viral fitness measure obtained by an assay

that, in this case, assesses the growth rate of recombinant viruses containing the patient-

specific gag-protease gene relative to a control virus (Payne et al., 2014). We further link

each sequence with Pb = 21 binary traits, including the presence/absence of candidate HLA-

associated escape mutations at 20 different amino acid positions in the gag protein, and

another binary trait for the country of sampling (Botswana or South Africa). In cases where

ambiguous nucleotide states in a codon prevent the determination of presence/absence of
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escape mutations, we encode binary trait states as unobserved (ranging from 0.2% to 21%

across taxa) and set them as unbounded dimensions in the truncated normal distribution

sampled by BPS.

3.4.2 Correlation among traits

We revisit the original study questions in Payne et al. (2014) concerning the extent to

which HLA-driven HIV adaptation impacts virulence in both Botswana and South Africa

populations. Differences in HIV adaptation and virulence may arise from the fact the HIV

epidemic in Botswana precedes that in South Africa, leaving more time for the virus to adapt

to protective HLA alleles. Our approach employing a Bayesian inference framework based

on the phylogenetic multivariate probit model, is substantially different from Payne et al.

(2014) as they did not control for the shared evolutionary history between samples. For

this N = 535, Pb = 21, Pc = 3 data set, after fitting the phylogenetic multivariate probit

model, we obtain posterior samples for parameters that are of scientific interest. For MCMC

convergence assessment, we run the chain until the minimal effective sample size (ESS) across

all dimensions of X, R and D is above 200. This takes about 107 individual transition kernel

applications under our random-scan Gibbs scheme (iterations) and 30 hours on an Amazon

EC2 c5.large instance, and we discard the first 10% of the samples as burn-in. As a further

diagnostic, we execute five independent chains and confirm that the potential scale reduction

statistic R̂ for all correlation elements fall within range [1, 1.04], well below the standard

convergence criterion of 1.1 (Gelman, Rubin, et al., 1992). We implement the method in

the software BEAST (Suchard et al., 2018), and provide the data set and source code in the

online supplementary material.

The heat map in Figure 3.3 depicts significant across-trait correlation determined by a

90% highest posterior density (HPD) interval that does not contain zero. We mainly focus

on the last 4 rows that relate to questions addressed by Payne et al. (2014), e.g. difference

in HLA escape mutations between the two countries and correlation between escape muta-
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tions and infection traits (VL and CD4 count) as well as replicative capacity. We identify
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Figure 3.3: Significant across-trait correlation with < 10% posterior tail probability and
their posterior mean estimates (in color). HIV gag mutations are named by the wild type
amino acid state, the amino acid site number according to the standard reference genome
(HXB2), and the amino acid ‘escape’ state that is any other amino acid or a deletion (‘X’)
in almost all cases. Country = sample region: 1 = South Africa, -1 = Botswana; RC =
replicative capacity; VL = viral load; CD4 = CD4 cell count.

one escape mutation I147X being significantly more prevalent in Botswana as indicated by

its negative correlation with South Africa. Located at the amino-terminal position of an

HLA-B57-restricted epitope (‘ISW9’), variation at gag residue 147 is known to be associ-

ated with expression of B57 (Draenert et al., 2004). It is worth noting that three of the

four escape mutations that correlate negatively with RC (I61X, Q182X and T242X) have a

higher frequency in Botswana and may therefore have contributed to the lower RC found in

Botswana by Payne et al. (2014). Interestingly, the negative effect on RC we estimate for

two mutations finds clear confirmation in experimental testing: in vitro experiments provide
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evidence for a reduction in RC by T242X (Martinez-Picado et al., 2006; Song et al., 2012)

and T186X is also found to greatly impair RC (Huang et al., 2011).

Our analysis recovers the expected inverse correlation between CD4 count and RC or VL,

as well as the positive correlation between RC and VL (Prince et al., 2012), confirming that

more virulent viruses result in faster disease progression. Also, South Africa is associated

with higher VL and lower CD4, suggesting that the South African cohort may comprise

individuals with more advanced disease, even though the two cohorts are closely matched in

age (Payne et al., 2014). This is somewhat at odds with the original study that also finds a

higher VL for South Africa, but at the same time a higher CD4 count for patients from this

country. Such differences are likely to arise from controlling or not for the phylogeny.

The remaining significant correlation between escape mutations (row 1 to 19 in Figure 3.3)

can be considered as epistatic interactions, some of which are strongly positive. For example,

we find a strong positive correlation between T186X and T190X. The former represents an

escape mutation for HLA-B*81-mediated immune responses and has been reported to be

strongly correlated with reduced virus replication (Huang et al., 2011; Wright et al., 2010),

as also reflected in the negative correlation between this mutation and RC. In fact, Wright

et al. (2012) show T186X requires T190I (or Q182X, also positively correlated with T186X,

Figure 3.3) to partly compensate for this impaired RC. The other strong positive correlation

between A163X and S165X has also been found to be a case of a compensatory mutation,

with S165N partially compensating for the reduced viral RC of A163G (Crawford et al.,

2007). The same holds true for the positive correlation between A146X and I147X, with

I147L partially compensating the fitness cost associated with the escape mutation A146P

(Troyer et al., 2009).

3.4.3 Tree inference

Figure 3.4 reports the maximum clade credibility tree from the posterior sample. The tree

maximizes the sum of posterior clade probabilities. The posterior mean tree height is roughly
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30 years; so with the most recent samples from 2010, we date the common ancestor of all

viruses back to around 1980, consistent with the beginning of this epidemic.
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Figure 3.4: The maximum clade credibility tree with branches colored by the posterior mean
of the latent parameter corresponding to mutation T186X. Outer circle shows log(RC) in
gray scale.

3.5 Efficiency comparison and goodness-of-fit test

3.5.1 Efficiency comparison

To compare efficiency of BPS with the multiple-try rejection sampling in Cybis et al. (2015),

we run both samplers on the whole data set (N = 535, P = 24) and a subset with P = 8

including the three continuous traits, and fix the tree and across-trait covariance at the

same values from preliminary runs. The efficiency criterion is per unit-time ESS across

all NP latent parameters. BPS outperforms rejection sampling to a greater extent as P

increases. For P = 24, BPS yields a 74× increase in terms of the minimum ESS and an

11× increase for the median ESS (Table 3.1). This order-of-magnitude improvement is more

clear in Figure 3.5. Because rejection sampling only updates one taxon per iteration, some

latent parameters rarely change their values (Figure 3.6). As a result, the minimum ESS of
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multiple-try rejection sampling is much lower than BPS which simultaneously updates all

latent dimensions.

Table 3.1: Efficiency comparison between the bouncy particle sampler (BPS) and multiple-
try rejection sampling in terms of minimum and median of effective sample size (ESS) per
hour run-time. We report ESS values and their standard deviations (SD) across five inde-
pendent simulations.

P = 8 P = 24

ESS/hr (SD) min median min median

BPS 5392 (411) 20596 (271) 282 (20) 1468 (11)

Rejection 237 (20) 4707 (25) 3.8 (0.1) 137 (0.7)

Speed-up 23× 4.4× 74× 11×

1 10
1

10
2

10
3

10
4

ESS per hour

BPS

Rejection sampling

Figure 3.5: A representative histogram of ESS across latent parameters, sampled by BPS or
rejection sampling in one hour run-time. Arrows and dashed lines denote the minimum and
median ESS (N = 535, P = 24).

3.5.2 Model goodness-of-fit

We compare the phylogenetic probit model fit to reduced models that do not include phy-

logenetic correction. This comparison not only allows us to assess goodness-of-fit of the
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Figure 3.6: Trace plot of the latent parameter with the least ESS by rejection sampling
(bottom) and trace plot of the same latent parameter sampled by BPS (top) for an one hour
run-time. BPS and rejection sampling run 1.1 × 104 and 2.6 × 105 iterations, respectively
(N = 535, P = 24).

phylogenetic probit model, but also tests whether explicit tree modeling is necessary in

practice. The two reduced models both assume independence among virus samples such

that the across-taxa tree covariance Υ is diagonal. The first “dated star” model incorpo-

rates varying viral sampling time information such that Υ has diagonal elements equal to

the time distance from virus sample date to the root date fixed, without loss of generality, to

1980. To understand the star-moniker, phylogeneticists often use a “star-tree” in which all

branch lengths between internal nodes equal 0 to represent independent samples. The second

“ultrametric star” model, assumes that all taxa have traits that are identically distributed

so Υ is an identity matrix.

For each of the three models, we assess out-of-sample prediction by repeatedly splitting

up the HIV data into a training set used to build each model, and a test set to evaluate the

prediction. Across the 21 binary traits for all taxa, we hold out nt = 21× 535× 20% of the

observations, build the model and then estimate the posterior probability rh for h = 1, . . . nt

that held-out trait h equals its observed value.

We summarize performance through quantiles of the score log rh to measure accuracy,

and a higher score represents better prediction (Table 3.2). The phylogenetic probit model

commands higher scores compared to the two reduced models and we conclude that joint
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tree modeling through the phylogenetic probit model leads to better data fit.

Table 3.2: Prediction accuracy in out-of-sample logarithmic score. We report the score
quantiles and their standard deviations (SD) across five independent MCMC simulations
with 20% randomly held-out binary traits.

Log score quantiles (SD) 25% 50 % 75 %

Phylogenetic probit model -0.441 (0.007) -0.128 (0.003) -0.029 (0.003)

Dated star model -0.599 (0.014) -0.187 (0.005) -0.050 (0.006)

Ultrametric star model -0.592 (0.011) -0.187 (0.003) -0.052 (0.006)

3.6 Discussion

We present an efficient Bayesian inference framework to learn the correlation among mixed-

type traits across a large number of taxa, while jointly inferring the phylogenetic tree through

sequence data. Our approach significantly improves upon Cybis et al. (2015) in both model-

ing and inference. Better modeling comes from the decomposition of across-trait covariance

matrix Ω = DRD that keeps the generalized probit model identifiable and allows a jointly

uniform LKJ prior on R. Compared to the convenient but restrictive Wishart prior that

causes mixing problems for sampling Ω−1 and X, this decomposition facilitates correlation

inference among continuous traits and latent parameters (Appendix Figure A.2). Our main

contribution lies in an efficient inference framework, specifically, an optimized BPS to sam-

ple latent parameters from a high-dimensional truncated normal distribution. In contrast to

the “one-taxon-at-a-time” design in Cybis et al. (2015), BPS jointly updates all dimensions

therefore reducing auto-correlation among MCMC samples. The most expensive steps in-

volved are matrix-vector multiplications by the precision matrix Φ = Σ−1. In our case, the

tree precision matrix is unknown and getting it by matrix inversion is notoriously O(N3).

Thanks to the insight in Proposition 1, we circumvent this obstacle by utilizing a dynamic

programming strategy and obtain the desired matrix-vector products in O(NP 2). BPS also
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enjoys an advantage especially important for mixed-type traits. That is, we can simply

“mask out” the fixed continuous traits when sampling latent parameters for binary traits.

Whereas the rejection sampling in Cybis et al. (2015) has to calculate the conditional dis-

tribution of latent dimensions given continuous traits at each tip. This cost-free “masking”

technique to condition on a subset of dimensions exploits properties of normal distributions

and can be shared with other dynamics-based sampler, like HMC. Taking all of these points

together, the optimized BPS provides a huge gain in efficiency.

Naturally, BPS may also be an efficient choice in situations where Φ itself has special

structures that facilitate quick matrix-vector multiplication. For example, inducing precision

matrices that are sparse or composed of sparse components is a common strategy for ana-

lyzing large spatial data (Heaton et al., 2019). Methods like the nearest neighbor Gaussian

process (Datta et al., 2016), integrated nested Laplace approximations (Rue, Martino, and

Chopin, 2009), and multi-resolution approximation of Gaussian processes (Katzfuss, 2017)

all achieve computational efficiency from sparsity in Φ. Whether BPS would be useful in

these scenarios, especially with mixed-type data, is an interesting topic for future research.

Our application provides important information on the complex association between

HLA-driven HIV gag mutations and virulence that was previously assessed by experimental

and epidemiological studies. To our best knowledge, this is the first study to examine essen-

tial HIV virus-host interactions while explicitly modeling the phylogenetic tree. Our setup

is also different from the original study (Payne et al., 2014) in that we attempt to identify

correlation between individual epitope escape mutations, virulence, and country of sam-

pling, instead of considering all mutations together or grouping them with particular HLA

types (e.g. HLA-B*57/58:01). While the latter may increase power to detect population-level

differences in escape mutation frequencies, our approach allows us to pinpoint particular mu-

tations contributing to virulence. Good consistency between the mutations that we associate

with reduced RC and literature reports on virological assays suggests that our approach may

complement or help in prioritizing experimental testing, and therefore further assist in the
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battle against HIV-1. Our method contributes to a general framework to assess correlation

among mixed-type traits in virology, but also more broadly in evolutionary biology.

One future improvement lies in the prior choice on across-trait correlation. The LKJ

prior works well for our N = 535, P = 24 data set, as it is noninformative as desired, and

correlation elements are well-mixed through No-U-Turn HMC. Under this choice, we view

correlations with 90% HPD intervals not covering zero as significant. We can adjust this

decision threshold based on resource availability for follow-up experimental studies. However,

with much larger P and when only a small portion of the observed traits are truly involved

in the underlying biology, it becomes vital to control for false positive signals, and one may

favor a systematic solution. For example, it may be preferable to put a shrinkage-based

prior on R that shrinks individual elements towards zero. Ideas like the graphical lasso

prior (Wang et al., 2012) and factor models with shrinkage prior on the loading elements

(Bhattacharya and Dunson, 2011) are potential directions to explore.

Lastly, as understanding the relationship among mixed-type variables is a common ques-

tion in different fields, our method suits a large class of problems beyond evolutionary bi-

ology. The optimized BPS sampler through dynamic programming serves as an efficient

inference tool for any multilevel (hierarchical) model (Gelman, 2006) with an additive co-

variance structure on a directed acyclic graph (Figure 3.1). The tree variance matrix Υ

that we use to describe the covariation of shared evolutionary history also arises from other

kinds of relationships. For example, additive covariance includes pedigree-based or genomic

relationship matrices in animal breeding (Mrode, 2014; Vitezica, Varona, and Legarra, 2013)

and distance matrices decided by geographical locations in infectious disease research (Barbu

et al., 2013). Intriguingly, our dynamic programming strategy also provides a way to invert

the N × N tree variance matrix Υ in O(N2) by piecing together the products Υ−1ei for

i = 1, . . . , N . While this seems likely a well-known result, we have failed to find precedence

in the literature. Finally, the phylogenetic probit model can be generalized to categorical

and ordinal data, which will only add to its broad applicability.
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3.8 Appendices

3.8.1 BPS details

BPS modification for conditional truncated MVNs. Here we consider modifying the

BPS to incorporate fixed dimensions that are the observed, continuous traits in our mixed-

type model. We partition x = (xb,xc) by latent and observed dimensions and then generate

samples from the conditional distribution p(xb |xc). To make progress, we parameterize

p(xb |xc) in terms of p(x) with partitioned mean m = (mb,mc) and precision matrix

Σ−1 =

Φbb Φbc

Φcb Φcc

 . (3.26)

With a similarly partitioned velocity v = (vb,vc), the distribution p(xb |xc) carries potential

energy

Ub | c(xb + tvb) =
t2

2
vᵀ
bΦbbvb + tvᵀ

bΦbb(xb −mb | c) + C, (3.27)
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where constant C does not depend on t. The conditional mean mb | c = mb−Φ−1bb Φbc(xc−mc),

so

Ub | c(xb + tvb)

=
t2

2
vᵀ
bΦbbvb + tvᵀ

b [Φbb(xb −mb) + Φbc(xc −mc)] + C. (3.28)

This expression is equivalent to masking out the dimensions of v in (3.14) that corresponds

to xc via the vector ṽ = (vb,0). To be explicit, we rewrite (3.28) as

Ub | c(xb + tvb) =
t2

2
ṽᵀΦṽ + tṽᵀΦ(x−m) + C. (3.29)

Therefore, adding this masking operation for v,ϕx,ϕv in Lines 1, 2, 5, 7 in Algorithm 1

allows sampling from the conditional truncated MVN p(xb |xc) without any additional cost.

Tuning ttotal for BPS. The total simulation time ttotal for the Markov process is a tuning

parameter in Algorithm 1. If ttotal is too small, the particle does not travel far enough from

the initial position, leading to high auto-correlation among MCMC samples. On the other

hand, an unnecessarily large ttotal would waste computational efforts without any substantial

gain in mixing rate. To achieve best computational efficiency, therefore, one would like to

choose a ttotal just large enough that x(ttotal) is effectively independent of x(0). To help find

such ttotal for BPS applied to truncated MVNs, we develop a heuristic based on the following

observations.

At stationarity, the BPS has a velocity distributed as N (0, I). In other words, we have

v(t) ∼ N (0, I) for all t ≥ 0 if starting from stationarity. In particular, the velocity along

any unit vector u would be distributed as 〈v(t),u〉 ∼ N (0, 1), so that E|〈v(t),u〉| =
√

2/π.

Now, the motion of the particle along u is given by 〈x(t),u〉 = 〈x(0),u〉 +
∫ t
0
〈v(s),u〉ds.

At the same time, for a MVN with covariance Σ, its high density region has a diameter

proportional to
√
λmax, where λmax denotes the largest eigenvalue of Σ. Therefore, in order
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to allow the particle to travel across the high density region, we would like it to move a

distance proportional to
√
λmax, that is, |

∫ ttotal
0
〈v(s),u〉 ds| ∝

√
λmax.

Since BPS is designed to suppress the random-walk behavior of more traditional MCMC

algorithms (Peters and de With, 2012), we expect the motion of the particle along u not

to change its direction frequently. Or equivalently, we expect the velocity along u, given

by 〈v(t),u〉, not to change its sign frequently. When there is no change in 〈v(t),u〉 during

[0, ttotal], we would have |
∫ ttotal
0
〈v(s),u〉 ds| =

∫ ttotal
0
|〈v(s),u〉| ds. This, combined with the

observation that E|〈v(t),u〉| =
√

2/π at stationarity, suggest that roughly, the particle

moves an average distance of
√

2/π during one unit of time. We so conjecture that there is

a choice of travel time ttotal ∝
√
λmax that achieves |

∫ ttotal
0
〈v(s),u〉 ds| ∝

√
λmax and good

mixing. This heuristic applies to a truncated MVN when assuming its high density region

diameter is comparable to that of the untruncated MVN. We find that BPS performance

is not overly sensitive to a specific choice of ttotal. After preliminary runs (Table A.1), we

choose ttotal = 0.01
√
λmax for our N = 535, P = 24 application, as it yields the maximum

median effective sample size (ESS) per hour run-time.

Table A.1: Effective sample size per hour run-time (ESS/hr) of latent parameters sampled
by BPS with different ttotal. We fix the tree and use the No-U-Turn sampler to sample
the across-trait covariance matrix. With ttotal = 0.01

√
λmax, the minimum, 5%, and 50%

percentile of ESS/hr are either larger or close to those with other ttotal values compared.

ttotal

ESS/hr percentile 5× 10−3
√
λmax 10−2

√
λmax 10−1

√
λmax

min 72 68 27
5% 227 428 357
50% 515 1050 885

3.8.2 Identifiability issue with a Wishart prior

We examine differences between assuming an LKJ + log normal priors on DRD and a

Wishart prior on Ω−1. For the Wishart case, we set the degree of freedom equal to P +
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1, so each correlation marginally follows a uniform distribution on [−1, 1] (Gelman et al.,

2013), and the Normal-Wishart conjugacy yields easy Gibbs sampling for Ω−1. Without

constraining the marginal variance of any latent dimension, the Wishart prior leaves the

model not parameter-identifiable and causes mixing problems, even with a small P = 8

(Figure A.2).
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Figure A.2: Trace plot of a representative Ω−1 element (top) in log scale and the latent
parameter with the least ESS when assuming a Wishart prior on Ω−1 (bottom).
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CHAPTER 4

Accelerating Bayesian inference of dependency

between complex biological traits

4.1 Introduction

An essential goal in evolutionary biology is to understand the associations between traits

observed within biological samples, or taxa, ranging from plants and animals to microor-

ganisms and pathogens such as human immunodeficiency virus (HIV) and influenza. This

task is difficult because taxa are implicitly correlated through their shared evolutionary his-

tory often described with a reconstructed phylogenetic tree. Here, tree tips correspond to

the taxa themselves, and internal nodes are their unobserved ancestors. Inferring across-

trait covariation requires a highly structured model that can explicitly describe the tree

structure and adjust for across-taxa covariation. Phylogenetic models do exactly this but

are computationally challenging because one must integrate out unobserved ancestor traits

while accounting for uncertainties arising from tree estimation. The computational burden

increases when taxon and trait counts grow large and becomes worse when traits include

continuous and discrete quantities. Zhang et al. (2021) show that their phylogenetic multi-

variate probit model provides a promising tool to learn correlations among complex traits

at scale when combined with an efficient inference scheme that achieves order-of-magnitudes

efficiency gains over the previous best approach (Cybis et al., 2015). Zhang et al. (2021)

demonstrate their method on a data set with N = 535 HIV viruses and P = 24 traits that

requires sampling from a truncated normal distribution with more than 11,000 dimensions.
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In this work, we significantly advance performance compared to (Zhang et al., 2021) and

solve more challenging problems including the (a) inference of across-trait partial correla-

tions that present clues for potential causal pathways and (b) integration of complex traits

with categorical outcomes.

To jointly model complex traits, the phylogenetic probit model assumes discrete traits

arise from continuously valued latent variables that follow a Brownian diffusion along the

tree (Cybis et al., 2015; Felsenstein, 1985; Zhang et al., 2021). Assuming latent processes

is a common strategy for modeling complex data and it finds uses across various fields

(Clark et al., 2017; Fedorov, Wu, and Zhang, 2012; Irvine, Rodhouse, and Keren, 2016;

Pourmohamad, Lee, et al., 2016; Schliep and Hoeting, 2013). For N taxa and P continuous

or binary traits, Bayesian inference for the phylogenetic probit model involves repeatedly

sampling latent variables from their conditional posterior, an (N×P )-dimensional truncated

normal distribution. For this task, Zhang et al. (2021) develop a bouncy particle sampler

(BPS) (Bouchard-Côté, Vollmer, and Doucet, 2018) augmented with an efficient dynamic

programming approach that speeds up the most expensive step in the BPS implementation.

However, BPS suffers from a major limitation — it does not allow joint sampling of the latent

variables X and the trait correlation R. Zhang et al. (2021) use a separate Hamiltonian

Monte Carlo sampler (Neal, 2011, HMC) to infer R and update the two sets of parameters

alternately within a random-scan Gibbs scheme (Liu, Wong, and Kong, 1995). Since X and

R are highly correlated by model assumption, the Gibbs scheme hurts efficiency.

Our solution utilizes a state-of-the-art Markov chain Monte Carlo (MCMC) method called

Zigzag-HMC (Nishimura, Dunson, and Lu, 2020). Zigzag-HMC can take advantage of the

same O(N) gradient evaluation strategy advanced by Zhang et al. (2021), yet allows a

joint update of X and R through differential operator splitting (Nishimura, Dunson, and

Lu, 2020; Strang, 1968) which generalizes the previously proposed split HMC framework

based on Hamiltonian splitting (Neal, 2011; Shahbaba et al., 2014). The joint sampling

scheme greatly improves the mixing of elements in R and thus provides reliable estimates
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of across-trait partial correlations that describe the conditional dependence between any

two traits, free of confounding from other traits in the model. As seen in our applications,

these conditional dependencies provide insights into potential causal pathways driven by real

biological processes.

We apply our methodology to three real-world examples. First, we re-evaluate the HIV

evolution application in Zhang et al. (2021) and identify HIV-1 gag immune-escape muta-

tions linked with virulence through strong conditional dependence relationships. Our findings

closely match with the experimental literature and indicate a general pattern in the immune

escape mechanism of HIV. Second, we examine the influenza H1N1 glycosylation pattern

across different hosts and detect strong conditional dependencies between glycosylation sites

closely related to host switching. Finally, we investigate how floral traits of Aquilegia flower

attract different pollinators, for which we generalize the phylogenetic probit model to ac-

commodate a categorical pollinator trait.

4.2 Methods

4.2.1 Complex trait evolution

We describe biological trait evolution with the phylogenetic multivariate probit model fol-

lowing Zhang et al. (2021) and extend it to categorical traits as in Cybis et al. (2015).

Consider N taxa on a phylogenetic tree F = (V, t) that is a directed, bifurcating acyclic

graph. We either know the tree a priori or infer it from a molecular sequence alignment

S (Suchard et al., 2018). The node set V of size 2N − 1 contains N tip nodes, N − 2

internal nodes and one root node. The branch lengths t = (t1, . . . , t2N−2) denote the child-

parent distance in real time. We observe P traits of complex for each taxon. The trait data

Y = {yij} =
(
Yc,Yb

)
partition as Yc, an N × Pc matrix of continuous traits and Yb, an

N × Pb matrix of discrete ones. For each node i in F , we assume a d-dimensional latent

variable Xi ∈ Rd, i = 1, . . . , 2N − 1, where d = Pc +
∑Pb

j=1 (mj − 1) and mj is the number
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of classes for the jth discrete trait. To relate latent variables to observed discrete traits, we

assume a threshold model for binary traits and a choice model for traits with more than two

classes. For a categorical trait yij, the possible classes are {c1, . . . , cmj
} with the reference

class being c1. Multiple latent variables xiji, j
′, . . . , xiji, j

′ +mj − 2 decide the value of yij.

We summarize the mapping from X to Y as

yij =



xij, if yij is continuous,

sign(xijij), if yij is binary,

c1, if yij is categorical and M = 0,

cm, if yij is categorical,m > 1, and M = xiji, j
′ +m− 2 > 0,

(4.1)

where M = max(xiji, j
′, . . . , xiji, j

′ +mj − 2) and sign(xij) returns the value 1 on positive

values and -1 on negative values. This data augmentation strategy is a common choice

to model categorical data (Albert and Chib, 1993). As a side note, for continuous yij the

corresponding xij is observed, and so Xi is actually a partially latent vector. Since in our

applications only a small fraction of yij is continuous, we omit “partial” to ease the notation.

The latent variables follow a multivariate Brownian diffusion process along F such that

Xi distributes as a multivariate normal (MVN)

Xi ∼ N
(
Xpa(i), tiΩ

)
, i = 1, ..., 2N − 2, (4.2)

where Xpa(i) is the parent node value and the d × d covariance matrix Ω describes the

across-trait association. The intuition behind tiΩ is that the further away a child node is

from its parent node (larger ti), the bigger difference between their node values. Assuming

a conjugate root prior X2N−1 ∼ N
(
µ0, τ

−1
0 Ω

)
with prior mean µ0 and prior sample size τ0,

we can analytically integrate out latent variables on all internal nodes. Marginally, then, the
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N × d tip latent variables X have the matrix normal (MTN) distribution

X ∼ MTNNd(M,Υ,Ω) , (4.3)

where M = (µ0, . . . ,µ0)
T is an N × d mean matrix and the across-taxa covariance matrix

Υ equals V(F ) + τ−10 J (Pybus et al., 2012). The tree F determines the diffusion matrix

V(F ) and τ−10 J comes from the integrated-out tree root prior, where J is an all-one N ×N

matrix. The augmented likelihood of X and Y factorizes as

p(Y,X |Υ,Ω,µ0, τ0) = p(Y |X)p(X |Υ,Ω,µ0, τ0), (4.4)

where p(Y |X) = 1 if X are consistent with Y according to Equation (4.1) and 0 otherwise.

Following Zhang et al. (2021), we decompose Ω as DRD such that R is the d×d correlation

matrix and D is a diagonal matrix with marginal standard deviations. Importantly, since

discrete traits only inform the sign or ordering of their underlying latent variables, certain

elements of D must be set as a fixed value to ensure that the model is parameter-identifiable.

Zhang et al. (2021) demonstrate the necessity of this DRD decomposition, which also al-

lows a non-informative prior (Lewandowski, Kurowicka, and Joe, 2009a, LKJ) on R. For

goodness-of-fit of the phylogenetic probit model we refer interested readers to Zhang et al.

(2021) where the explicit tree modeling leads to a significantly better fit.

4.2.2 A novel inference scheme

We sample from the joint posterior to learn the across-trait correlation R

p(R,D,X,F |Y,S) ∝ p(Y |X) × p(X |R,D,F )×

p(R,D) × p(S |F ) × p(F ),
(4.5)
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where we drop the dependence on hyper-parameters (Υ,µ0, τ0) to ease notation. We then

specify the priors p(R,D) and p(F ) as in Zhang et al. (2021). Assuming p(R,D) =

p(R)p(D) and an LKJ prior on R, we set independent log normal priors on D diagonals

that correspond to discrete traits, and assume a typical coalescent tree prior on F (King-

man, 1982). Zhang et al. (2021) use a random-scan Gibbs (Liu, Wong, and Kong, 1995)

scheme to alternately update X, {R,D} and F from their full conditionals (Suchard et al.,

2018). They sample X from an Nd-dimensional truncated normal distribution with BPS

and deploy the standard HMC based on Gaussian momentum (Hoffman and Gelman, 2014)

to update {R,D}. Instead, we simulate the joint Hamiltonian dynamics on {X,R,D} by

combining novel Hamiltonian zigzag dynamics on X (Nishimura, Zhang, and Suchard, 2021)

and traditional Hamiltonian dynamics on {R,D}. This strategy enables an efficient joint

update of the two highly-correlated sets of parameters. We first describe how Zigzag-HMC

samples X from a truncated normal and then detail the joint update of {X,R,D}.

4.2.2.1 Zigzag-HMC for truncated multivariate normals

We outline the main ideas behind HMC (Neal, 2011) before describing Zigzag-HMC as a

version of HMC based on Hamiltonian zigzag dynamics (Nishimura, Dunson, and Lu, 2020;

Nishimura, Zhang, and Suchard, 2021). In order to sample a d-dimensional parameter

x = (x1, . . . , xd) from the target distribution π(x), HMC introduces an auxiliary momentum

variable p = (p1, . . . , pd) ∈ Rd and samples from the product density π(x,p) = π(x)π(p) by

numerically discretizing the Hamiltonian dynamics

dx

dt
= ∇K(p),

dp

dt
= −∇U(x), (4.6)

where U(x) = − log π(x) and K(p) = − log π(p) are the potential and kinetic energy.

In each HMC iteration, we first draw p from its marginal distribution π (p) ∼ N (0, I), a

standard Gaussian and then approximate (4.6) from time t = 0 to t = τ by L = bτ/εc steps
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of the leapfrog update with stepsize ε (Leimkuhler and Reich, 2004):

p← p+
ε

2
∇x log π(x), x← x+ εp, p← p+

ε

2
∇x log π(x). (4.7)

The end state is a valid Metropolis proposal that one accepts or rejects according to the

standard acceptance probability formula (Hastings, 1970; Metropolis et al., 1953).

Zigzag-HMC differs from standard HMC insofar as it posits a Laplace momentum π (p) ∝∏
i exp (−|pi|) , i = 1, . . . , d. The Hamiltonian differential equations now become

dx

dt
= sign (p) ,

dp

dt
= −∇U(x), (4.8)

and the velocity v := dx/ dt ∈ {±1}d depends only on the sign of p and thus remains

constant until one of pi’s undergoes a sign change (an “event”). To understand how the

Hamiltonian zigzag dynamics (4.8) evolve over time, one must investigate when such events

happen. Before moving to the truncated MVN, we first review the event time calculation

for a general π(x) following Nishimura, Zhang, and Suchard (2021). Let τ (k) be the kth

event time and
(
x
(
τ (0)
)
,v
(
τ (0)
)
,p
(
τ (0)
))

is the initial state at time τ (0). Between τ (k) and

τ (k+1), x follows a piecewise linear path and the dynamics evolve as

x
(
τ (k) + t

)
= x

(
τ (k)
)

+ tv
(
τ (k)
)
, v

(
τ (k) + t

)
= v

(
τ (k)
)
, t ∈

[
0, τ (k+1) − τ (k)

)
, (4.9)

and

pi
(
τ (k) + t

)
= pi

(
τ (k)
)
−
∫ t

0

∂iU
[
x
(
τ (k)
)

+ sv
(
τ (k)
)]
ds for i = 1, . . . , d. (4.10)

Therefore we can derive the (k + 1)th event time

τ (k+1) = τ (k) + min
i
ti, ti = min

t>0

{
pi
(
τ (k)
)

=

∫ t

0

∂iU
[
x(τ (k)) + sv(τ (k))

]
ds

}
, (4.11)
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and the dimension causing this event is i∗ = argmini ti. At the moment of τ (k+1), the i∗th

velocity component flips its sign

vi∗
(
τ (k+1)

)
= −vi∗

(
τ (k)
)
, vj

(
τ (k+1)

)
= vj

(
τ (k)
)

for j 6= i∗. (4.12)

Then the dynamics continue for the next interval
[
τ (k+1), τ (k+2)

)
.

We now consider simulating the Hamiltonian zigzag dynamics for a d-dimensional trun-

cated MVN defined as

x ∼ N (µ,Σ) subject to x ∈ {map(x) = y}, (4.13)

where y ∈ RP is the complex data, map(·) is the mapping from latent variables x to y as

in Equation (4.1), x ∈ Rd and d ≥ P . In this setting, we have ∇U(x) = Σ−1x whenever

x ∈ {map(x) = y}. Importantly, this structure allows us to simulate the Hamiltonian zigzag

dynamics exactly and efficiently (Nishimura, Zhang, and Suchard, 2021). We handle the

constraint map(x) = y with a technique from Neal (2011) where the constraint boundaries

embody “hard walls” that the Hamiltonian zigzag dynamics “bounce” against upon impact.

To distinguish different types of events, we define gradient events arising from solutions of

Equation (4.11), binary events arising from hitting binary data boundaries and categorical

events arising from hitting categorical data boundaries.

We first consider how to find the gradient event time. Starting from a state (x,v,p), by

plugging in ∇U(x) = Σ−1x to Equation (4.11), we can calculate the gradient event time sgr

by first solving d quadratic equations

p = tΣ−1(x− µ) +
t2

2
Σ−1v, (4.14)

and then taking the minimum among all positive roots of Equation (4.14). When π(x) is a

truncated MVN arising from the phylogenetic probit model, we exploit the efficient gradient
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evaluation strategy in Zhang et al. (2021) to obtain Σ−1(x − µ) and Σ−1v without the

notorious O(d3) cost to invert Σ.

Next, we focus on the binary and categorical events. We partition x into three sets:

Scont = {xi : xi is for continuous data}, Sbin = {xi : xi is for binary data}, and Scat = {xi :

xi is for categorical data}. Since latent variables in Scont are fixed, we “mask” them out

following Zhang et al. (2021). Starting from a state (x,v,p), a binary event happens at time

sbd when the trajectory first reaches a binary boundary at dimension ib

sbd = |xib/vib | , ib = argmin i∈Ibin |xi/vi| for Ibin = {i : xivi < 0 and xi ∈ Sbin}. (4.15)

Here, we only need to check the dimensions satisfying xivi < 0, i.e., those for which the

trajectory is heading towards the boundary. At time sbd, the trajectory bounces against

the binary boundary, and so the ibth velocity and momentum element both undergo an

instantaneous flip vib ← −vib , pib ← −pib , while other dimensions stay unchanged.

Finally, we turn to categorical events. Suppose that a categorical trait yj = cm belongs

to one of n possible classes, and x1, x2, . . . , xn−1 the underlying latent variables. Equation

(4.1) specifies the boundary constraints. If m = 1, the n − 1 latent variables must be all

negative, which poses the same constraint as if they were for n − 1 binary traits, therefore

we can solve the event time using Equation (4.15). If m > 1, we must check when and which

two dimensions first violate the order constraint xijm− 1 = max(xij1, . . . , xijn− 1) > 0.

With the dynamics starting from (x,v,p), the categorical event time sjc is given by

sjc = |(xm−1 − xic)/(vm−1 − vic)| , ic = argmin i∈Icat |(xm−1 − xi)/(vm−1 − vi)| ,

for Icat = {i : vm−1 < vi and xi ∈ Scat},
(4.16)

when xijic reaches xijm− 1 and violates the constraint. To identify ic we only need to check

dimensions with vm−1 < vi where the distance xijm− 1− xiji is decreasing. At sjc, the two

dimensions involved (m − 1 and ic) bounce against each other such that vm−1 ← −vm−1,
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vic ← −vic , pm−1 ← −pm−1, pic ← −pic . Note sjc is for a single yj and we need to consider

all categorical data to find the actual categorical event time sc = minj s
j
c.

We now present the dynamics simulation with all three event types included, starting

from a state (x,v,p) with x ∈ {map(x) = y}:

1. Solve sgr, sbd, sc using Equations (4.14), (4.15) and (4.16) respectively.

2. Determine the actual (first) event time t = min{sgr, sbd, sc} and update x and p as in

Equations (4.9) and (4.10) for a duration of t.

3. Make instantaneous velocity and momentum sign flips according to the rules of the

actual event type, then go back to Step 1.

Based on the above discussion, Algorithm 2 describes one iteration of Zigzag-HMC on trun-

cated MVNs where we simulate the Hamiltonian zigzag dynamic for a pre-specified duration

ttotal. For a truncated MVN arising from the phylogenetic probit model, we adopt the dy-

namic programming strategy of Zhang et al. (2021) to speed up the most expensive gradient

evaluation step in line 3 and reduce its cost from O(N2d+Nd2) to O(Nd2). In brief, this

strategy avoids explicitly inverting Υ by recursively traversing the tree (Pybus et al., 2012)

to obtain N conditional densities that directly translate to the desired gradient.

4.2.2.2 Jointly updating latent variables and across-trait covariance

The N × d latent variables and d× d across-trait covariance are highly correlated with each

other, so individual Gibbs updates can be inefficient. The posterior conditional of X is trun-

cated normal and thus allows for the efficient Hamiltonian zigzag simulation as described

in Section 4.2.2.1. The conditional distribution for covariance components R and D has no

such special structure, so we map them to an unconstrained space and deploy Hamiltonian

dynamics based on Gaussian momentum. We use a standard mapping of R elements to real

numbers (Stan Development Team, 2018) that first transforms R to canonical partial corre-
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Algorithm 2 Zigzag-HMC for multivariate truncated normal distributions

1: function HzzTMVN(x,p, ttotal)

2: v ← sign(p)

3: ϕx ← Φ(x− µ)

4: tremain ← ttotal

5: while tremain > 0 do

. find gradient event time sgr
6: a← ϕv/2, b← ϕx, c← −p
7: sgr ← mini {minPositiveRoot(ai, bi, ci)} . “minPositiveRoot” defined below

. find binary boundary event time

8: sbd ← mini xi/vi, for i with xivi < 0 and xi ∈ Sbin

. find categorical boundary event time, nc = number of categorical traits

9: for j = 1, . . . , nc do

10: sjc ← min i |(xk−1 − xic)/(vk−1 − vi)| for i with vk−1 < vi and xi ∈ Scat

11: end for

12: sc ← minj s
j
c

. the actual event happens at time s

13: s← min {sgr, sbd, sc, tremain}
14: x← x+ sv, p← p− sϕx − s2ϕv/2, ϕx ← ϕx + sϕv

15: if a gradient event happens at ig then

16: vig ← −vig
17: else if a binary boundary event happens at ib then

18: vib ← −vib , pib ← −pib
19: else if a categorical boundary event happens at ic1, ic2 then

20: vic1 ← −vic1 , vic2 ← −vic2 , pic1 ← −pic1 , pic2 ← −pic2
21: end if

22: ϕv ← ϕv + 2viΦei
23: tremain ← tremain − s
24: end while

25: return x,p

26: end function
* minPositiveRoot(ai, bi, ci) returns the minimal positive root of the equation aix

2 + bix + c = 0, or else
returns +∞ if no positive root exists.
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lations (CPC) that fall in [−1, 1] and then apply the Fisher transformation to map CPC to

the real line. We then construct the joint update of latent variables and covariance via dif-

ferential operator splitting (Nishimura, Dunson, and Lu, 2020; Strang, 1968) to approximate

the joint dynamics of Laplace-Gauss mixed momenta.

We denote the two concatenated sets of parameters X and {R, D} as x = (xG,xL) with

momenta p = (pG,pL), where indices G and L refer to Gaussian or Laplace momenta. The

joint sampler updates (xG,pG) first, then (xL,pL), followed by another update of (xG,pG).

This symmetric splitting ensures that the simulated dynamics is reversible and hence con-

stitute a valid Metropolis proposal mechanism (Nishimura, Dunson, and Lu, 2020). The

LG-STEP function in Algorithm 3 describes the process of simulating the joint dynamics for

time duration 2ε via the analytical Hamiltonian zigzag dynamics for (xL,pL) and the ap-

proximate leapfrog dynamics (4.7) for (xG,pG). Because xG and xL can have very different

scales, we incorporate a tuning parameter, the step size ratio r, to allow different step sizes

for the two dynamics. To approximate a trajectory of the joint dynamics from t = 0 to t = τ ,

we apply the function LG-STEP m = bτ/2εc times, and accept or reject the end point fol-

lowing the standard acceptance probability formula (Hastings, 1970; Metropolis et al., 1953).

We call this version of HMC based on Laplace-Gauss mixed momenta as LG-HMC and de-

scribe one iteration of LG-HMC in Algorithm 3 where the inputs include the joint potential

function U(xG,xL). We use LG-HMC to update {X,R,D} as a Metropolis-within-Gibbs

step of our random-scan Gibbs scheme. The overall sampling efficiency strongly depends on

m, the step size ε and the step size ratio r, so it is preferable to auto-tune all of them. Ap-

pendix 4.6 provides an empirical method to automatically tune r. We utilize the no-U-turn

algorithm to automatically decide the trajectory length m (Hoffman and Gelman, 2014) and

call the resulting algorithm LG No-U-Turn Sampler (LG-NUTS). We adapt the step size

ε with primal-dual averaging to achieve an optimal acceptance rate (Hoffman and Gelman,

2014).
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Algorithm 3 One LG-HMC iteration

1: function LG-HMC(xG,xL,pG,pL, U,m, ε, r)

. Record the initial state

2: x0
G ← xG,x

0
L ← xL,p

0
G ← pG,p

0
L ← pL

3: for i = 1, . . . ,m do

4: xG,xL,pG,pL ← LG-STEP(xG,xL,pG,pL, ε, r)

5: end for

. Calculate the acceptance probability a, where KG and KL denote the kinetic energy

based on Gaussian or Laplace momentum and ‖·‖1, ‖·‖2 are the L1 and L2 norm.

6: K0
G ← (‖p0G‖2)

2
/2, K0

L ← ‖p0L‖1
7: KG ← (‖pG‖2)2 /2, KL ← ‖pL‖1
8: a← min{1, exp [U(x0

G,x
0
L)− U(xG,xL) +K0

G +K0
L −KG −KL]}

. Accept or reject

9: u← one draw from uniform(0, 1)

10: if u < a then

11: return xG,xL,pG,pL

12: else

13: return x0
G,x

0
L,p

0
G,p

0
L

14: end if

15: end function

16: function LG-STEP(xG,xL,pG,pL, ε, r)

17: xG,pG ← LeapFrog(xG,pG, ε)

18: xL,pL ← HzzTMVN(xG,pG, rε)

19: xG,pG ← LeapFrog(xG,pG, ε)

20: return xG,xL,pG,pL

21: end function

22: function LeapFrog(xG,pG, ε)

23: pG ← pG + ε
2
∇xG

log p(x)

24: xG ← xG + εpG

25: pG ← pG + ε
2
∇xG

log p(x)

26: return xG,xL

27: end function
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4.3 Results

We demonstrate the superior efficiency of our joint inference scheme on learning dependency

between traits under the phylogenetic probit model, as compared to the state-of-the-art BPS.

To illustrate the broad applicability of our method, we detail three real-world applications

and discuss the scientific findings. In Section 4.3.1 we apply our method to the HIV virulence

application of Zhang et al. (2021). The improved efficiency (shown in Section 4.3.2) allows

us to estimate the across-trait partial correlation with adequate effective sample size (ESS)

and to reveal the conditional dependence among traits of scientific interest. We use the same

HIV data set to demonstrate that LG-HMC and LG-NUTS outperform BPS (Section 4.3.2),

followed by two more LG-NUTS applications on influenza (Section 4.3.3) and Aquilegia flower

(Section 4.3.4) evolution. We conclude this section with MCMC convergence criteria and

timing results (Section 4.3.5).

4.3.1 HIV immune escape

In the HIV evolution application of Zhang et al. (2021), a main scientific focus lies on the

association between HIV-1 immune escape mutations and virulence, the pathogen’s ability

to cause disease. The human leukocyte antigen (HLA) system is predictive of the disease

course as it plays an important role in the immune response against HIV-1. Through its

rapid evolution, HIV-1 can acquire mutations that aid in escaping HLA-mediated immune

response, but the escape mutations may reduce its fitness and virulence (Nomura et al.,

2013; Payne et al., 2014). Zhang et al. (2021) identify HLA escape mutations associated with

virulence while controlling for the unknown evolutionary history of the viruses. However,

Zhang et al. (2021) interpret their results based on the across-trait correlation R which

only informs marginal associations that can remain confounded. Now armed with a more

efficient inference method, we are able to focus on the across-trait partial correlation matrix

P = {rij} that indicates the conditional dependency between two interested traits without
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confounding from other factors. We obtain P by transforming the inferred Ω through

Ω−1 = Ω−1 = {pij}, rij = − pij√
piipjj

. (4.17)

The data contain N = 535 aligned HIV-1 gag gene sequences collected from 535 patients

between 2003 and 2010 in Botswana and South Africa (Payne et al., 2014). Each sequence is

associated with 3 continuous and 21 binary traits. The continuous virulence measurements

are replicative capacity (RC), viral load (VL) and cluster of differentiation 4 (CD4) cell count.

The binary traits include the existence of HLA-associated escape mutations at 20 different

amino acid positions in the gag protein and another trait for the sampling country (Botswana

or South Africa). Figure 4.1 depicts across-trait correlations and partial correlations with

posterior medians > 0.2 (or < −0.2). Compared to correlations (Figure 4.1a), we observe

more partial correlations with greater magnitude (Figure 4.1b). They indicate conditional

dependencies among traits after removing effects from other variables in the model, helping to

explore the causal pathway. For example, we only detect a negative conditional dependence

between RC and CD4. In other words, holding one of CD4 and RC as constant, the other

does not affect VL, suggesting that RC increases VL via reducing CD4. The fact that RC

is not found to share a strong conditional dependence with VL may be explained by the

strong modulatory role of immune system on VL. Only when viruses with higher RC also

lead to more immune damage, as reflected in the CD4 count, higher VL may be observed

as a consequence of less suppression of viral replication. As such, our findings are in line

with the demonstration that viral RC impacts HIV-1 immunopathogenesis independent of

VL (Claiborne et al., 2015).

The partial correlation also helps to decipher epistatic interactions and how the escape

mutations and potential compensatory mutations affect HIV-1 virulence. For example, we

find a strong positive partial correlation between T186X and T190X. Studies have shown that

T186X is highly associated with reduced VL (Huang et al., 2011; Wright et al., 2010) and it
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(c) Conditional dependencies among mutations

Figure 4.1: (a) Across-trait correlation and (b) partial correlation with a posterior median
> 0.2 or < −0.2 (in color). HIV gag mutation names start with the wild type amino acid
state, followed by the amino acid site number according to the HXB2 reference genome and
end with the amino acid as a result of the mutation (‘X’ means a deletion). Country =
sample region: 1 = South Africa, -1 = Botswana; RC = replicative capacity; VL = viral
load; CD4 = CD4 cell count. (c) Conditional dependencies between HIV-1 immune escape
mutations that affect RC or VL. Node and edge color indicates whether the dependence is
positive (orange) or negative (blue).
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requires T190I to partly compensate for this impaired fitness so the virus stays replication

competent (Wright et al., 2012). The negative conditional dependence between T186X and

RC and the positive conditional dependence between T190I and RC are consistent with this

experimental observation. In contrast, with the strong positive association between T186X

and T190, the marginal association fails to identify their opposite effects on RC. Another pair

of mutations that potentially shows a similar interaction is H28X and M30X, which have a

positive and negative partial correlation with VL, respectively. These mutations have indeed

been observed to co-occur in gag epitopes from longitudinally followed-up patients (Olusola,

Olaleye, and Odaibo, 2020). Figure 4.1b keeps all the other compensatory mutation pairs in

Figure 4.1a such as A146X-I147X and A163X-S165X that find confirmation in experimental

studies (Crawford et al., 2007; Troyer et al., 2009).

More generally, when considering the viral trait RC and the infection trait VL, for which

their variation are to a considerable extent attributable to viral genetic variation (Blanquart

et al., 2017), we reveal an intriguing pattern. As in Figure 4.1c, when two escape mutations

impair virulence, and there is a conditional dependence between them, it is always nega-

tive. When two mutations have opposing effects on these virulence traits, the conditional

dependence between them (if present) is almost always positive, with one exception of the

negative effect between V168I and S357X. For example, T186X and I61X both have a neg-

ative impact on RC and the negative effect between them suggests that their additive, or

even potentially synergistic, impact on RC is inhibited. Moreover, they appear to benefit

from a compensatory mutation, T190X, which has been corroborated for the T186X-T190X

pair at least as reported above. Also for VL, the conditional dependence between mutations

that both have a negative impact on this virulence trait is consistently negative. Several of

these individual mutations may benefit from H28X as a compensatory mutation, as indicated

by the positive effect between pairs that include this mutation, and as suggested above for

H28X - M30X. This illustrates the extent to which escape mutations may have a negative

impact on virulence and the need to evolve compensatory mutations to restore it. We note
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that our analysis is not designed to recover compensatory mutations at great length as we

restrict it to a limited set of known escape mutations, while mutations on many other sites

may be compensatory. In fact, our analysis suggests that some of the considered mutations

may be implicated in immune escape due to their compensatory effect rather than a direct

escape benefit.

4.3.2 Efficiency gain from the new inference scheme

We demonstrate that the joint update of latent variables X and the covariance matrix

Ω significantly improve inference efficiency. Table 4.1 compares the performance of four

sampling schemes on the HIV immune escape example (described in Section 4.3.1) with

N = 535, Pb = 21, Pc = 3. We choose our efficiency criterion to be the per run-time ESS

for the across-trait correlation R = {σij} and partial correlation P = {rij} that are of

chief scientific interest. BPS and Zigzag-HMC only update X and we use the standard

NUTS transition kernel (i.e. standard HMC combined with no-U-turn algorithm) for the

Ω elements. LG-HMC employs the joint update of X and Ω described in Section 4.2.2.2.

LG-NUTS additionally employs the No-U-Turn algorithm to decide the number of steps and

a primal-dual averaging algorithm to calibrate the step size. We set the same ttotal for BPS

and Zigzag-HMC for a fair comparison. To tune LG-HMC, we first supply it with an optimal

step size ε learned by LG-NUTS, then decide the number of steps m = 100 as it gives the

best performance among the choices (10, 100, 1000). As reported in Table 4.1, it is indeed

harder to infer partial correlations than correlations and jointly updating X and Ω largely

eliminates this problem. BPS loses to the three other samplers and LG-HMC performs the

best in terms of ESS for rij, yielding a 5× speed-up. Without the joint update of X and

Ω, Zigzag-HMC is only slightly more efficient than BPS. While a formal theoretical analysis

is beyond the scope of this work, we provide an empirical explanation for the different per-

formances of BPS and Zigzag-HMC in Appendix 4.6. Compared to the manually optimized

LG-HMC, LG-NUTS has a slightly lower efficiency likely because the No-U-Turn algorithm
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requires simulating trajectory both forward and backward to maintain reversibility and this

process incurs additional steps (Hoffman and Gelman, 2014). In practice, we recommend

using the tuning-free LG-NUTS.

Table 4.1: Efficiency comparison among different sampling schemes. Efficiency is in terms
of minimal effective sample size (ESS) per running hour (hr) for correlation and partial
correlation matrix elements σij and rij. We report median values across 3 independent
simulations and all numbers are relative to the minimal per-hr ESS of rij using BPS (= 1∗).

min ESS/hr

Sampler σij rij

BPS 4.0 1∗

Zigzag-HMC 9.4 1.6
LG-HMC 5.1 5.0
LG-NUTS 5.3 4.2

4.3.3 Glycosylation of Influenza A virus H1N1

Influenza A viruses of the H1N1 subtype currently circulate in birds, humans, and swine

(Song et al., 2008; Trovão and Nelson, 2020; Webster et al., 1992), where they are responsi-

ble for substantial morbidity and mortality (Boni et al., 2013; Ma, 2020). The two surface

glycoproteins hemagglutinin (HA) and neuraminidase (NA) interact with a cell surface re-

ceptor and so their characteristics largely affect virus fitness and transmissibility. Mutations

in the HA and NA, particularly in their immunodominant head domain, sometimes produce

glycosylations that shield the antigenic sites against detection by host antibodies and so help

the virus evade antibody detection (Daniels et al., 2003; Hebert et al., 1997; Östbye et al.,

2020; Skehel et al., 1984). On the other hand, glycosylation may interfere with the receptor

binding and also be targeted by the innate host immunity to neutralize viruses. Therefore

there must be an equilibrium between competing pressures to evade immune detection and

maintain virus fitness (Lin et al., 2020; Tate et al., 2014). The number of glycosylations that

leads to this balance is expected to vary in host species experiencing different strengths of
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immune selection. Despite decades of tracking IAVs evolution in humans for vaccine strain

selection and recent expansions of zoonotic surveillance, the evolvability and selective pres-

sures on the HA and NA have not been rigorously compared across multiple host species.

Here, we examine the conditional dependence between host type and multiple glycosylation

sites by estimating the posterior distribution of across-trait partial correlation while jointly

inferring the IAVs evolutionary history.

We use hemagglutinin (H1) and neuraminidase (N1) sequence data sets for influenza

A H1N1 produced by Trovão et al. as described in Trovão et al. (2022). We scan all

H1 and N1 sequences to identify potential N-linked glycosylation sites, based on the motif

Asn-X-Ser/Thr-X, where X is any amino acid other than proline (Pro) (Mellquist et al.,

1998). We then set a binary trait for each sequence encoding for the presence or absence of

glycosylations at a particular amino acid site. We keep sites with a glycosylation frequency

between 20% and 80% for our analysis. This gives six sites in H1 and four sites in N1. We

include another binary trait for the host type being mammalian (human or swine) or avian,

so the sample sizes are N = 964, P = 7 (H1) and N = 896, P = 5 (N1).

The six H1 glycosylation sites consist of three pairs that are physically close (63/94,

129/163, and 278/289, see Figure 4.2). Sites 63 and 94 are particularly close to each other,

though distances will vary slightly with sequence. A negative conditional dependence sug-

gests glycosylation at two close sites may be harmful for the virus (63/94 and 278/289)

while a positive effect between two sites suggests a potential benefit (63/129 and 94/278).

We detect a negative conditional dependence between mammalian host and glycosylation

site 94 and 289. Avian viruses have a stronger tendency to have site 289 glycosylated (Fig-

ure 4.2). In N1, glycosylations are more strongly correlated than H1 (Figure 4.3). Two pairs

of glycosylation sites have a positive conditional dependency in between (50/68 and 50/389)

and two pairs (44/68 and 68/389) have a negative one. We omit a structural interpretation

since all sites but 389 are located in the NA stalk, for which no protein structure is available.

There is a positive conditional dependence between mammalian host and glycosylations at
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Figure 4.2: (a) Across-trait partial correlation among H1 glycosylation sites and host type
with a posterior median > 0.2 or < −0.2 (in color and number). (b) HA structure of a 2009
H1N1 influenza virus (PDB entry 3LZG) with six glycosylation sites highlighted. Site 278
and 289 are in the stalk domain and all others are in the head domain. (c) The maximum
clade credibility (MCC) tree with branches colored by the posterior median of the latent
variable underlying H1 glycosylation site 289. The heatmap on the right indicates the host
type of each taxon.
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credibility (MCC) tree with branches colored by the posterior median of the latent variable
underlying N1 glycosylation site 44 and 68.
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sites 44 and 68. None of the avian lineages has glycosylation site 44 while most swine and

some human lineages have it. Similarly, glycosylation at site 68 is present in most swine and

human lineages but only in avian lineages circulating in wild birds, not those in poultry.

4.3.4 Aquilegia flower and pollinator co-evolution

Reproductive isolation allows two groups of organisms to evolve separately, eventually form-

ing new species. For plants, pollinators play an important role in reproductive isolation

(Lowry et al., 2008). We examine the relationship between floral phenotypes and the three

main pollinators for the columbine genus Aquilegia: bumblebees, hummingbirds, and hawk

moths (Whittall and Hodges, 2007). Here, the pollinator species represents a categorical

trait with three classes and we choose bumblebee with the shortest tongue as the reference

class. Figure 4.4 provides the across-trait correlation and partial correlation. Compared to

a similar analysis on the same data set that only looks at correlation or marginal association

(Cybis et al., 2015), partial correlation controls confounding and indicates the conditional

dependencies between pollinators and floral phenotypes that can bring new insights.

For example, we observe a positive marginal association between hawk moth pollinator

and spur length but no conditional dependence between them. The marginal association

matches with the observation that flowers with long spur length have pollinators with long

tongues (Rosas-Guerrero et al., 2014; Whittall and Hodges, 2007). The absence of a con-

ditional dependence makes intuitive sense because hawk moth’s long tongue is not likely

to stop them from visiting a flower with short spurs when the other floral traits are held

constant. In fact, researchers observe that shortening the nectar spurs does not affect hawk

moth visitation (Fulton and Hodges, 1999). Similarly, the positive partial correlation be-

tween orientation and hawk moth also finds experimental support. The orientation trait is

the angle of flower axis relative to gravity, in the range of (0, 180). A small orientation value

implies a pendent flower whereas a large value represents a more upright flower (Hodges

et al., 2002). Due to their different morphologies, hawk moths prefer upright flowers while
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hummingbirds tend to visit pendent ones. Making the naturally pendent Aquilegia formosa

flowers upright increases hawk moth visitation (Hodges et al., 2002). These results sug-

gest that partial correlation may have predictive power for results from carefully designed

experiments with controlled variables.
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Figure 4.4: Across-trait correlations and partial correlations with posterior medians > 0.2
or < −0.2 (in color). BB = bumblebee.

4.3.5 MCMC setup and convergence assessment

We run all simulations on a node equipped with AMD EPYC 7642 server processors. For

every MCMC run, the minimal effective sample size (ESS) across all dimensions of X and

P after burn-in is above 100. As another diagnostic, for our two large-scale applications

(Section 4.3.3 and 4.3.1) we run three independent chains and confirm the potential scale

reduction statistic R̂ for all partial correlation elements falls between [1, 1.03], below the

common criterion of 1.1 (Gelman, Rubin, et al., 1992). To reach a minimal ESS = 100

across all P elements, the post burn-in run-time and number of MCMC transition kernels

applied for the joint inference are 21 hours and 1.3× 106 (HIV-1), 113 hours and 7.9× 107

(H1), 76 hours and 1.4× 108 (N1). These run-times suggest the difficulty of our large-scale
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inference tasks where besides the main challenge of sampling {X,R,D}, updating the many

tree parameters with Metropolis-Hastings transition kernels also takes a large number of

iterations.

4.4 Discussion

Learning how different biological traits interact with each other from many evolutionarily re-

lated taxa is a long-standing problem of scientific interest that sheds light on various aspects

of evolution. Towards this goal, we develop a scalable solution that significantly improves

inferential efficiency compared to established state-of-the-art approaches (Cybis et al., 2015;

Zhang et al., 2021). Our novel strategy enables learning across-trait conditional dependen-

cies that are more informative than the previous marginal association based analyses. This

approach provides reliable estimates of across-trait partial correlations for large problems,

on which the established BPS-based method struggles. In two large-scale analyses featuring

HIV-1 and H1N1 influenza, the improved efficiency allows us to infer conditional dependen-

cies among traits of scientific interest and therefore investigate some of the most important

molecular mechanisms underlying the disease. In addition, our approach incorporates au-

tomatic tuning, so that the most influential tuning parameters automatically adapt to the

specific challenge the target distribution presents. Finally, we extend the phylogenetic pro-

bit model to include categorical traits and illustrate its use in examining the co-evolution of

Aquilegia flower and pollinators.

We leverage the cutting-edge Zigzag-HMC (Nishimura, Dunson, and Lu, 2020) to tackle

the exceedingly difficult computational task of sampling from a high-dimensional truncated

normal distribution in the context of the phylogenetic probit model. Zigzag-HMC proves to

be more efficient than the previously optimal approach that uses the BPS (Section 4.3.2),

especially when combined with differential operator splitting to jointly update two sets of

parameters X and Ω that are highly correlated. The improved efficiency allows us to obtain
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reliable estimates of the conditional dependencies among traits. In our applications, we find

that these conditional dependencies better describe trait interactions than do the marginal

associations. It is worth mentioning that another closely related sampler, the Markovian

zigzag sampler (Bierkens, Fearnhead, Roberts, et al., 2019), or MZZ, may also be appropriate

for this task but provides lower efficiency than Zigzag-HMC (Nishimura, Zhang, and Suchard,

2021). While Zigzag-HMC is a recent and less explored version of HMC, BPS and MZZ are

two central methods within the piecewise deterministic Markov process literature that have

attracted growing interest in recent years (Dunson and Johndrow, 2020; Fearnhead et al.,

2018). Intriguingly, the most expensive step of all three samplers is to obtain the log-density

gradient, and the same linear-order gradient evaluation method (Zhang et al., 2021) largely

speeds it up.

We now consider limitations of this work and the future directions to which they point.

First, the phylogenetic probit model does not currently accommodate a directional effect

among traits since it only describes pairwise and symmetric correlations. However, the real

biological processes are often not symmetric but directional, where it is common that one

reaction may trigger another but not the opposite way. A model allowing directed paths is

preferable since it better describes the complicated causal network among multiple traits.

Graphical models with directed edges (Lauritzen, 1996) are commonly used to learn molec-

ular pathways (Benedetti et al., 2017; Neapolitan, Xue, and Jiang, 2014), but challenges

remain to integrate these methods with a large and randomly distributed phylogenetic tree.

Toward this goal, one may construct a continuous-time Markov chain to describe how dis-

crete traits evolve (O’Meara, 2012; Pagel, 1994), but with P binary traits the transition

rate matrix grows to the astronomical size 2P . Second, though our method achieves the

current best inference efficiency under the phylogenetic probit model, there is still room

for improvement. In the influenza glycosylation example, we use a binary trait indicating

the host being either avian or mammal (human or swine), instead of setting a categorical

trait for host type. In fact, we choose not to use a three-class host type trait because it
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causes poor mixing for the partial correlation elements. We suspect two potential reasons

for this. First, according to our model assumptions for categorical traits (Equation 4.1),

the latent variables underneath the same trait are very negatively correlated, leading to a

more correlated and challenging posterior. Second, in our specific data sets, the glycosyla-

tion sites tend to be similar in human and swine viruses, further increasing the correlation

among posterior dimensions. One potential solution is to de-correlate some latent variables

by grouping them into independent factors using phylogenetic factor analysis (Hassler et al.,

2021; Tolkoff et al., 2018). Finally, one may consider a logistic or softmax function to map

latent variables to the probablity of a discrete trait. This avoids the hard truncations in the

probit model but also adds another layer of noise. It requires substantial effort to develop

an approach that overcomes the above limitations while supporting efficient inference at the

scale of applications in this work.
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4.6 Appendices

Auto-tuning of r. We describe a simple heuristic to auto-tune the step size ratio r on the

fly. Let ΣG and ΣL be the covariance matrices for xG and xL respectively, then their mini-

mal eigenvalues λmin,G and λmin,L describe the variance magnitude in the most constrained

direction. Intuitively, for both HMC and Zigzag-HMC, the step size should be proportional

to the diameter of this most constrained density region, which is
√
λmin,G or

√
λmin,L. There-

fore we propose a choice of r =

√
λmin,L√
λmin,G

, assuming the two types of momenta lead to similar

travel distance during one unit time. It is straightforward to check this assumption. At

stationarity, HMC has a velocity vG ∼ N (0, I), so its velocity along any unit vector u

would be distributed as 〈vG,u〉 ∼ N (0, 1), and the travel distance E|〈vG,u〉| =
√

2/π.

For Zigzag-HMC, as 〈vL,u〉 does not follow a simple distribution, we estimate E|〈vL,u〉| by

Monte Carlo simulation and it turns out to be ≈ 0.8, close to
√

2/π.

We test this intuitive choice of r on a subset of the HIV data in Zhang et al. (2021) with

535 taxa, 5 binary and 3 continuous traits. We calculate the optimal r =

√
λmin,L√
λmin,G

≈ 2.5 with

ΣG and ΣL estimated from the MCMC samples. Clearly, r has a significant impact on the

efficiency as a very small or large r leads to lower ESS (Table 4.2). Also, an r in the order

of our optimal value generates the best result, so we recommend this on-the-fly automatic

tuning r =

√
λmin,L√
λmin,G

(Table 4.2).

Table 4.2: Minimal effective sample size (ESS) per running hour (hr) for partial correlation
matrix elements rij with different r (N = 535, Pb = 5, Pc = 3). ESS values report medians
across 3 independent simulations.

ESS/hr

r min median

0.1 32 266

1 106 771

10 118 855

100 25 110
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Zigzag-HMC explores the energy space more efficiently than BPS. In our expe-

rience, BPS tends to generate samples with high auto-correlation between their respective

energy function evaluations − log π(x). In other words, it slowly traverses the target distri-

bution’s energy contours even when the marginal dimensions all appear to demonstrate good

mixing. A similar behavior has also been reported by Bouchard-Côté, Vollmer, and Doucet,

2018, who introduce a velocity refreshment to address the issue. As we demonstrate below,

however, even velocity refreshments cannot fully remedy BPS’s slow-mixing on the energy

space.

We apply BPS and Zigzag-HMC to a 256-dimensional standard normal truncated to the

positive orthant (all xi > 0). We run both samplers for 2000 iterations where per-iteration

travel time is one unit time interval and repeat the experiments for 10 times with varying

initial values. For BPS we include Poisson velocity refreshments to avoid reducible behavior

and set the refreshment rate to an optimal value 1.4 (Bierkens, Kamatani, and Roberts,

2018). At every iteration we refresh Zigzag-HMC’s momentum by redrawing it from the

marginal Laplace distribution. Both samplers have no problem sampling from the target

distribution and the minimal ESS across all dimensions are 158± 25 (mean ± SD) for BPS

and 207 ± 21 for Zigzag-HMC, estimated from the last 1000 samples of the MCMC chains

across 10 runs. As a sanity check, the average sample mean and variance are (0.800, 0.365)

for BPS and (0.798, 0.363) for Zigzag-HMC, close to the analytical values — the univariate

marginal distribution of our truncated standard normal is a truncated normal with mean

2/
√

2π ≈ 0.798 and variance 1− 2/π ≈ 0.363 (Cartinhour, 1990).

However, Zigzag-HMC returns a clear win over BPS in the mixing of joint density (Figure

4.5). The sampling inefficiency for − log π(x) is less of a problem if one only needs to sample

from a truncated normal with a fixed covariance matrix, but we are keenly interested in

sampling the covariance matrix as a target of scientific interest. In this context, inefficient

traversal across energy contours harms the sampling efficiency for all model parameters

(Section 4.3.2).
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Figure 4.5: Trace plot of the log density of a 256-dimensional truncated standard normal
sampled by BPS and Zigzag-HMC for 1000 MCMC iterations.

We can provide an intuition for BPS’s slow movement in energy space. Assume the

d-dimensional parameter at the tth MCMC iteration is x(t) = (x1(t), . . . , xd(t)) ∈ Rd, t =

1, . . . , T , with T being the total number of iterations. For a truncated standard normal, its

log density log π(x) ∝
∑d

i x
2
i , and a high auto-correlation suggests log π(x) changes little

between successive iterations, that is, the squared jumping distances

JD =

[
d∑
i

x2i (t+ 1)−
d∑
i

x2i (t)

]2
, t = 0, . . . , T − 1

are small. We then decompose JD into two components

JD = J1 + J2,

J1 =
d∑
i

[
x2i (t+ 1)− x2i (t)

]2
,

J2 =
d∑
j 6=k

[
x2j(t+ 1)− x2j(t)

] [
x2k(t+ 1)− x2k(t)

]
, t = 0, . . . , T − 1,

(4.18)

where J1 measures the sum of the marginal travel distances and J2 the covariance among

them. We compare JD, J1 and J2 between BPS and Zigzag-HMC in the aforementioned ex-
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periments. Clearly seen in Table 4.3, BPS yields a much lower JD than Zigzag-HMC because

its J2 is largely negative, suggesting strong negative correlation among the coordinates.

Table 4.3: Squared jumping distance (JD) of log π(x) sampled by the bouncy particle sampler
(BPS) and Zigzag Hamiltonian Monte Carlo (Zigzag-HMC). We report the empirical mean
of J1 and J2 in their means and standard deviations (SD) across ten independent simulations
with T = 2000 samples. Both samplers have a per-iteration travel time 1.

BPS Zigzag-HMC

Quantity mean SD mean SD

JD 9 0.4 560 13.9
J1 558 18.4 564 2.2
J2 -549 18.3 -4 13.8
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CHAPTER 5

Hamiltonian zigzag got more momentum than its

Markovian counterpart

5.1 Introduction

MCMC based on continuous-time, non-reversible processes are fundamentally new methods

(Fearnhead et al., 2018), among which the two best studied examples are the bouncy particle

sampler (Bouchard-Côté, Vollmer, and Doucet, 2018; Deligiannidis, Bouchard-Côté, and

Doucet, 2019, BPS) and the Zigzag sampler (Bierkens, Fearnhead, Roberts, et al., 2019;

Bierkens, Roberts, Zitt, et al., 2019, ZZ). Following the successful application of BPS in

Chapter 3, we naturally consider if ZZ would be more efficient for posterior inference under

the phylogenetic probit model.

One known issue with BPS is its near-reducible behavior in the absence of frequent

velocity refreshment (Bouchard-Côté, Vollmer, and Doucet, 2018; Fearnhead et al., 2018).

In case of a high-dimensional independent normal, BPS achieves optimal performance when

velocity refreshment accounts for 78% of all the velocity changes (Bierkens, Kamatani, and

Roberts, 2018). However, such frequent velocity refreshment can lead to “random-walk

behavior”, hurting computational efficiency (Andrieu and Livingstone, 2019; Fearnhead et

al., 2018; Neal, 2011). ZZ on the other hand is provably ergodic without velocity refreshment

(Bierkens, Fearnhead, Roberts, et al., 2019). In addition to BPS and ZZ, we also explore

another Zigzag-HMC sampler that is a version of HMC (Neal, 2011; Nishimura, Dunson,

and Lu, 2020). How these samplers perform in practice stands as a critical research area
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(Bierkens, Fearnhead, Roberts, et al., 2019; Dunson and Johndrow, 2020; Fearnhead et

al., 2018). Early empirical results, while informative, remain limited to low-dimensional

examples (Bierkens, Fearnhead, Roberts, et al., 2019; Bierkens, Kamatani, and Roberts,

2018). Deligiannidis et al. (2021) shows the first position and velocity component of BPS

particle converges weakly to a randomized Hamiltonian Monte Carlo, but offers little insight

about why a randomized HMC appears as the limit.

In this chapter we focus on ZZ and Zigzag-HMC that are based on Markovian zigzag

(MZZ) and Hamiltonian zigzag dynamics (HZZ), respectively. The two types of dynamics

both have a “zig-zag” shaped trajectory and this intriguing similarity inspires us to inves-

tigate if there is a connection between the two methods. Indeed, we uncover a remarkable

connection between MZZ and HZZ — in the limit of increasingly frequent momentum re-

freshments, HZZ converges strongly to MZZ (Nishimura, Zhang, and Suchard, 2021). This

theoretical insight suggests that Zigzag-HMC may outperform ZZ on target distributions

with highly correlated parameters. As in Section 5.3, Zigzag-HMC indeed demonstrates su-

perior efficiency on highly-correlated synthetic MTNs as well as an 11,235-dimensional MTN

from the phylogenetic application in Zhang et al. (2021).

5.2 Similarity between ZZ and Zigzag-HMC

Details of Zigzag-HMC can be found in Chapter 4 so here we briefly describe the Marko-

vian zigzag process behind ZZ (Bierkens, Fearnhead, Roberts, et al., 2019). Recall that a

PDMP specifies the velocity changing event rate, transition at events, and the deterministic

dynamics between events (Section 2.4). To facilitate the comparison between two samplers,

we adopt the same notation for Zigzag-HMC as in 4.2.2.1. Let τ (k) be the kth event time

and
(
x
(
τ (0)
)
,v
(
τ (0)
))

with v ∈ {±1}d is the initial state at time τ (0). Between τ (k) and
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τ (k+1), x follows a piecewise linear path

x
(
τ (k) + t

)
= x

(
τ (k)
)

+ tv
(
τ (k)
)
, v

(
τ (k) + t

)
= v

(
τ (k)
)
, t ∈

[
0, τ (k+1) − τ (k)

)
, (5.1)

for t ≥ 0 until the next velocity switch event which occurs with Poisson rate

λi(x,v) = [vi∂iU(x)]+ := max{0, vi∂iU(x)}. (5.2)

Therefore the (k + 1)th event time is

τ (k+1) = τ (k) + min
i
ti, ti = min

t>0

{
− log ui =

∫ t

0

[
vi(τ

(k))∂iU(x(τ (k)) + sv(τ (k)))
]+

ds

}
,

for ui ∼ Unif(0, 1). (5.3)

The event causes an instantaneous velocity sign change at dimension i∗ = argmini ti such

that

vi∗(τ (k+1)) = −vi∗(τ (k)), vj(τ
(k+1)) = vj(τ

(k)) for j 6= i∗.

Then the position x continues its linear path as in (5.1) with the updated velocity.

We now compare the Markovian and Hamiltonian zigzag dynamics. By adding in a

velocity term, we could rewrite (4.11) as

ti = min
t>0

{
|pi
(
τ (k)
)
| =

∫ t

0

vi(τ
(k))∂iU

[
x(τ (k)) + sv(τ (k))

]
ds

}
. (5.4)

As one may notice, (5.3) and (5.4) appear to be very similar. Aside from the positive part

sign (+), the only difference is − log ui vs. |pi
(
τ (k)
)
| on the left side of the equation within

braces. By construction these two variables are equivalent in distribution

− log ui
d
= |pi

(
τ (k)
)
| ∼ Exp (1) . (5.5)
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In fact, for Hamiltonian zigzag, if we periodically refresh the momentum magnitude by

redrawing |pi
(
τ (k)
)
| from Exp (1) while keeping its sign, the dynamics converge to Markovian

zigzag when refreshment frequency → +∞. See Nishimura, Zhang, and Suchard (2021) for

a rigorous proof.

What does this connection tell us? Here is an intuitive interpretation. The momentum

variable of HZZ contains both magnitude and direction where the latter decides its velocity.

MZZ has no apparent concept of momentum but only a velocity constrained to {±1}d. The

equivalence between HZZ and MZZ under infinitely frequent momentum refreshment suggests

that MZZ is like HZZ with a “partial” momentum, since HZZ “forgets” its momentum

magnitude at the refreshment. Therefore the fully retained momentum information may

allow the original HZZ (without momentum refreshment) to travel longer distance and so

better explore the parameter space when strong dependency exists. Figure 5.1 visualizes

such a case where HZZ has traversed a high-density region while MZZ is still slowly diffusing

away from the initial position.

5.3 Two zigzags over multivariate truncated normal

We now compare the performance of ZZ and Zigzag-HMC on a variety of MTNs, where

analytical solutions for MZZ and HZZ are available. ZZ is tuning-free in this case, while

Zigzag-HMC requires periodic momentum refreshments pi ∼ Laplace (scale = 1) to ensure

ergodicity and the integration time T in-between refreshments remains a user-specified input.

Fortunately, the reversible HZZ can take advantage of the no-U-turn algorithm (NUTS) of

Hoffman and Gelman (2014) to automatically determine an effective T , and we call the

resulting sampler Zigzag-NUTS. This way, we only need to supply a base integration time

∆T and NUTS will then identify an appropriate T = 2k∆T , where integer k is the height of

the binary searching tree at which the trajectory exhibits a U-turn behavior for the first time.

Nishimura, Zhang, and Suchard (2021) provide an empirically optimal choice ∆T = 0.1λ
1/2
max
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Figure 5.1: Trajectories of the first two position coordinates of Hamiltonian zigzag with-
out momentum refreshment (left) and Markovian zigzag (right). The target is a 1,024-
dimensional normal distribution, corresponding to a stationary lag-1 auto-regressive process
with auto-correlation 0.99 and unit marginal variances. Both dynamics are simulated for 105

linear segments, starting from the same position xi = −1 for all i and same random velocity.
The line segment colors change from darkest to lightest as the dynamics evolve.

where λmax is the minimal eigenvalue of the covariance matrix Σ. We also include Zigzag-

HMC without NUTS in the comparison and choose T =
√

2λ
1/2
max as it yields the optimal

effective sample size (ESS) in the majority of cases.

We first consider MTN targets with compound symmetric covariance

Var (xi) = 1, Σ (xi, xj) = ρ ∈ [0, 1) for i 6= j, (5.6)

and all xi > 0 for i = 1, . . . , d. We test the algorithms under ρ = 0, 0.9, 0.99 and two

dimensions d = 256 and 1, 024. Table 5.1 summarizes the results. As xi are exchangeable,

we calculate ESS for the first coordinate and that along the principal eigenvector of Σ since

HMC typically struggles most in sampling from the least constrained direction (Neal, 2011).

As predicted, Zigzag-HMC demonstrates increasingly superior performance over ZZ as the

correlation increases, delivering 4.5 to 4.7-fold gains in relative ESS at ρ = 0.9 and 40 to

54-fold gains at ρ = 0.99. The efficiency gain is generally greater at the higher dimensions.
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Table 5.1: ESS per computing time — relative to that of Markovian zigzag sampler under
the compound symmetric MTN targets. We test the algorithms under different dimensions
and correlation values. ESS are calculated along the first coordinate and along the principal
eigenvector of Σ, each shown under the labels “x1” and “PC”.

Relative ESS per time

Compound symmetric ρ = 0 ρ = 0.9 ρ = 0.99

x1 x1 PC x1 PC

Case: d = 256
ZZ 1 1 1 1 1
Zigzag-NUTS 0.64 4.5 4.6 41 40
Zigzag-HMC 5.5 46 66 180 180

Case: d = 1,024
Zigzag-NUTS 0.57 4.7 4.5 54 54
Zigzag-HMC 5.6 56 85 300 300

We then consider a real-world 11,235-dimensional MTN target from the Bayesian phylo-

genetic multivariate probit model (see Chapter 3 for the model and posterior details). On

this real-world posterior, HZZ again outperforms its Markovian counterpart with a 6.5-fold

increase in the minimum ESS across the coordinates and 19-fold increase in the ESS along

the principal eigenvector of the 11,235 dimensional covariance matrix (Table 5.2). Appar-

ently, the joint structure, truncation, and high-dimensionality together make for a complex

target, which HZZ can explore more efficiently by virtue of its full momentum.

Table 5.2: Relative ESS per computing time under the phylogenetic probit posterior (d =
11,235).

Phylogenetic probit
Relative ESS per time

min PC

ZZ 1 1
Zigzag-NUTS 6.5 19
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CHAPTER 6

hdtg: An R package for high-dimensional truncated

normal simulation

6.1 Introduction

Sampling from a multivariate truncated normal (MTN) distribution is a recurring problem

in many statistical applications. The MTN distribution of a d-dimensional random vector

x ∈ Rd has the form

x ∼ N(µ,Σ) with l ≤ x ≤ u bounded, (6.1)

where µ and Σ are the mean vector and covariance matrix, and l,u ∈ Rd denote the lower

and upper truncation bounds. MTNs arise in various context including probit and tobit

models (Albert and Chib, 1993; Tobin, 1958), latent Gaussian models (Bolin and Lindgren,

2015), copula regression (Pitt, Chan, and Kohn, 2006), spatial models (Baltagi, Egger,

and Kesina, 2018; Tsionas and Michaelides, 2016; Zareifard and Khaledi, 2021), Bayesian

metabolic flux analysis (Heinonen et al., 2019), and many others. When the dimension

d is small, a standard rejection sampler (Geweke, 1991; Kotecha and Djuric, 1999) works

well and is a common choice. However, simulation from a larger MTN with hundreds or

thousands of correlated dimensions remains a computational challenge. Work towards this

goal include harmonic Hamiltonian Monte Carlo (Pakman and Paninski, 2014, Harmonic-

HMC), rejection sampling based on minimax (saddle point) exponential tilting (Botev, 2017,

MET), and the most recent Zigzag Hamiltonian Monte Carlo (Nishimura, Dunson, and Lu,

2020; Nishimura, Zhang, and Suchard, 2021, Zigzag-HMC) methods.
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The MET method provides independent samples but can suffer from low acceptance

rates and becomes impractical with d > 100, except in special cases like when the MTN has

a strongly positive correlation structure (Botev, 2017). Both Harmonic-HMC and Zigzag-

HMC are Markov chain Monte Carlo (MCMC) approaches that generate correlated samples,

but can nonetheless be highly efficient and scale to thousands or more dimensions. To

our knowledge, however, there is no general-purpose implementation of either method; the

tmg package provided by Pakman and Paninski (2014) is no longer available on CRAN,

and Zhang et al. (2022a) implement Zigzag-HMC for their phylogenetics applications in the

specialized software BEAST (Suchard et al., 2018). Therefore, we have developed the hdtg

R package for efficient MTN simulation. The package implements tuning-free Zigzag-HMC

and Harmonic-HMC. We provide performance comparisons among these two methods and

a MET implementation from the TruncatedNormal package (Botev and Belzile, 2021). In

most of the test cases with d > 100, Harmonic-HMC and Zigzag-HMC outperform MET. We

then conclude with some empirical guidance on which method to use in different scenarios.

6.2 Algorithm

We begin by briefly introducing Harmonic-HMC and Zigzag-HMC, both of which are variants

of HMC, an effective proposal generation mechanism exploiting the properties of Hamiltonian

dynamics (Neal, 2011). Harmonic-HMC and Zigzag-HMC follow the same general frame-

work. To sample x = (x1, . . . , xd) ∈ Rd from the target distribution π(x), the HMC variants

introduce an auxiliary momentum variable p and define an augmented target distribution

π(x,p) = π(x)π(p) in the joint space. They then propose the next state by first re-sampling

the momentum variable from its marginal and then simulating the solution of Hamiltonian

dynamics governed by the differential equations

dx

dt
= ∇K(p),

dp

dt
= −∇U(x), (6.2)
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where U(x) = − log π(x) and K(p) = − log π(p) are referred to as potential and kinetic

energies. The dynamics are simulated for a pre-set time duration T and the end state

constitutes a valid Metropolis proposal to be accepted or rejected according to the standard

formula (Hastings, 1970; Metropolis et al., 1953).

The most common versions of HMC use the momentum distribution π (p) ∼ N (0, I)

and rely on the leapfrog integrator to numerically solve (6.2), as its solutions are analytically

intractable in general settings. Harmonic-HMC takes advantage of the fact that (6.2) admits

analytical solutions when the target π(x) is an MTN. The solution follows independent

harmonic oscillations along the principal components of the covariance/precision matrix

(Pakman and Paninski, 2014); we thus refer to the algorithm as Harmonic-HMC. Truncation

boundaries are handled via elastic “bounces” against hard “potential energy walls” (Neal,

2011). We refer interested readers to Pakman and Paninski (2014) for details on Harmonic-

HMC.

Zigzag-HMC differs from the common HMC versions in that it deploys a Laplace mo-

mentum (Nishimura, Dunson, and Lu, 2020; Nishimura, Zhang, and Suchard, 2021)

π (p) ∝
∏
i

exp (−|pi|) , i = 1, . . . , d. (6.3)

The Hamiltonian dynamics then become

dx

dt
= sign (p) ,

dp

dt
= −∇U(x), (6.4)

where sign (pi) returns 1 if pi is positive and -1 otherwise. Because the velocity dx/ dt ∈

{±1}d remains constant until one of the pi flips its sign, the trajectory of these Hamiltonian

dynamics has a zigzag pattern, hence the name Zigzag-HMC. The zigzag dynamics also admit

analytical solutions under an MTN target and can handle the truncation in the same manner

as in Harmonic-HMC. We refer interested readers to Nishimura, Zhang, and Suchard (2021)

and Zhang et al. (2022a) for Zigzag-HMC algorithm details, including how to determine the
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time of a momentum sign change and of a bounce against truncation boundaries.

The simulation duration T , i.e. how long Hamiltonian dynamics is simulated for each

proposal generation, critically affects efficiencies of both Harmonic and Zigzag-HMC. For

Harmonic-HMC, Pakman and Paninski (2014) suggest setting T = π/2; when using this

fixed T , however, we observe inefficiencies in some of our examples in Section 6.4 due to

Hamiltonian dynamics’ periodic behaviors (Neal, 2011). We therefore randomize the du-

ration T , as recommended by Neal (2011), and draw it from a uniform distribution on

[π/8, π/2]. For Zigzag-HMC, we adopt the choice T =
√

2λ
−1/2
min based on the heuristics of

Nishimura, Zhang, and Suchard, 2021, where λmin is the minimal eigenvalue of the precision

matrix Ω = Σ−1. We compute λmin using the Lanczos algorithm (Demmel, 1997) as in the

mgcv package (Wood, 2017). We further implement the no-U-turn algorithm (NUTS) of

Hoffman and Gelman (2014) to automatically determine the integration time. With NUTS,

we only need to pick a base integration time ∆T which we set to 0.1λ
−1/2
min as recommended

by Nishimura, Zhang, and Suchard (2021).

6.3 Using hdtg

The hdtg package allows users to draw MCMC samples from an MTN with fixed or random

mean and covariance/precision matrix. In our current implementation, Zigzag-HMC accepts

the most commonly seen element-wise truncations as in Equation (6.1) while Harmonic-HMC

can handle a more general constraint

(Fx+ g)i ≥ 0, for i = 1, . . . ,m. (6.5)

Here the m×d matrix F and m-dimensional vector g specify the truncations and (·)i denotes

the ith vector element. As an example, one may use the following code to generate 1,000

samples from a 10-dimensional MTN with zero mean and an identity covariance matrix

truncated to the positive orthant:
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# set the random seed

set.seed(1)

# draw MTN samples using Zigzag-HMC

samplesZHMC <- zigzagHMC(n = 1000, mean = rep(0, 10), prec = diag(10),

init = rep(0.1, 10), lowerBounds = rep(0, 10),

upperBounds = rep(Inf, 10))

# draw MTN samples using Harmonic-HMC

samplesHHMC <- harmonicHMC(n = 1000, mean = rep(0, 10),

choleskyFactor = diag(10), precFlg = TRUE,

init = rep(0.1, 10), F = diag(10), g = rep(0, 10))

The arguments are:

• n: number of samples.

• mean: a d-dimensional mean vector.

• prec: the precision matrix.

• init: a vector of the initial value that must satisfy all constraints.

• lowerBounds: a d-dimensional vector specifying the lower bounds.

• upperBounds: a d-dimensional vector specifying the upper bounds.

• choleskyFactor: upper triangular matrix U from Cholesky decomposition of precision

or covariance matrix into UTU.

• precFlg: whether choleskyFactor is from precision (TRUE) or covariance matrix

(FALSE).

• F: the F matrix.

• g: the g vector.
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With a random µ or Ω, one can simply call zigzagHMC or harmonicHMC and pass the updated

µ and Ω as arguments. But a more efficient usage of Zigzag-HMC exists. zigzagHMC calls the

function createEngine (or createNutsEngine if using NUTS) to create a C++ object that

sets up truncation boundaries and SIMD (single instruction-stream, multiple data-stream)

vectorization. Therefore, we can avoid repeated calls of createEngine by reusing the C++

object, as in the following example where the 10-dimensional target MTN has a random

mean and precision:

set.seed(1)

n <- 1000

d <- 10

samples <- array(0, c(n, d))

# initialize MTN mean and precision

m <- rnorm(d, 0, 1)

prec <- rWishart(n = 1, df = d, Sigma = diag(d))[,,1]

# call createEngine once

engine <- createEngine(dimension = d, lowerBounds = rep(0, d),

upperBounds = rep(Inf, d), seed = 1, mean = m, precision = prec)

HZZtime <- sqrt(2) / sqrt(min(mgcv::slanczos(A = prec, k = 1,

kl = 1)[[‘values’]]))

currentSample <- rep(0.1, d)

for (i in 1:n) {

m <- rnorm(d, 0, 1)

prec <- rWishart(n = 1, df = d, Sigma = diag(d))[,,1]

setMean(sexp = engine$engine, mean = m)

setPrecision(sexp = engine$engine, precision = prec)

currentSample <- getZigzagSample(position = currentSample,

nutsFlg = F, engine = engine, stepZZHMC = HZZtime)

samples[i, ] <- currentSample

}
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6.4 Efficiency comparison and method choice

To assess the performance of Harmonic-HMC, Zigzag-HMC and MET, we compare them on

MTNs with a variety of correlation structures. The three examples are: 1) MTNs with its

covariance matrix Σ drawn from the uniform LKJ distribution (Lewandowski, Kurowicka,

and Joe, 2009b) as implemented in the rlkjcorr function from package trialr (Brock,

2020); 2) MTNs with a compound symmetric covariance matrix such that Σi,i = 1 and Σi,j =

0.9 for i 6= j; and 3) a real-world MTN that arises as a posterior conditional distribution in a

statistical phylogenetics model of HIV evolution (Zhang et al., 2021, 2022a). For simplicity,

we assume the truncation xi > 0 for i = 1, . . . , d in the first two examples. For the HIV

example, the truncation is determined by the signs of observed binary biological features.

We now specify our comparison criteria and the rationale behind them. A more efficient

MCMC algorithm takes shorter time to achieve a certain effective sample size (ESS). For

all three samplers considered, we compare their run-time to obtain the first one or 100

effectively independent samples (t1 and t100). We include both t1 and t100 because t100

reflects a practical run-time for simulation from a fixed MTN and t1 better captures the

pre-processing overhead that remains relevant in cases where Σ is random. Recall that the

main pre-processing costs are the Cholesky decomposition of Σ or Ω (Harmonic-HMC),

calculating the minimal precision matrix eigenvalue λmin (Zigzag-HMC), and solving the

minimax optimization problem (MET). Therefore we have

t1 = t0 + c

t100 = t0 + 100c,
(6.6)

where t0 and c are the pre-processing time required for each Σ update and the average run-

time per one effective sample. For simulation from a fixed MTN, t0 is a one-time cost and

so t100 serves as a better efficiency criterion. When Σ is random (e.g. the second example in

Section 6.3), if Σ changes its value k times, the total run-time to obtain one effective sample
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for each Σ is kt1 and so the t1 criterion would be more informative.

For Harmonic-HMC and Zigzag-HMC, we estimate the ESS using the coda package

(Plummer et al., 2006) and define n1 as the average number of MCMC iterations required

for one effectively independent sample. We approximate n1 by L/ESSmin, where ESSmin is

the minimal ESS across all dimensions and L is the chain length. We fix n1 = 1 for MET

as it generates independent samples. Therefore c in Equation (6.6) equals the average time

to complete n1 iterations after pre-processing. Table 6.1 reports our efficiency comparison

in terms of t1 and t100. We run each test on a quad-core Intel i7 4 GHZ equipped machine

with 32GB of memory.

Table 6.1: Efficiency comparison of Harmonic-HMC, Zigzag-HMC, Zigzag-HMC with NUTS
(Zigzag-NUTS), and MET sampling approaches across three example correlation structures.
We report t1 and t100 (in seconds), the run-time to obtain one or 100 effective samples.
In some cases MET takes more than two hours to generate 100 effective samples so the
results are not shown. We benchmark each test for three replications and report the average
run-time. Bold numbers are column minimums in each test.

d = 100 400 800 1600

t1 t100 t1 t100 t1 t100 t1 t100

L
K

J

Harmonic-HMC 0.004 0.34 0.17 13 0.95 82 16 1567
Zigzag-HMC 0.028 1.8 0.37 20 2.1 136 15 1098
Zigzag-NUTS 0.029 1.3 0.39 20 1.7 94 13 975
MET 4.3 42

C
S
0
.9

Harmonic-HMC 0.001 0.026 0.009 0.18 0.056 0.84 0.40 4.8
Zigzag-HMC 0.010 0.63 0.33 29 1.8 147 10 895
Zigzag-NUTS 0.035 3.2 1.3 129 6.9 689 20 1759
MET 0.13 0.20 5.1 5.7 39 40 296 302

H
IV

Harmonic-HMC 0.008 0.74 0.23 20 1.7 137 22 2185
Zigzag-HMC 0.013 0.65 0.22 14 0.98 40 3.9 225
Zigzag-NUTS 0.020 1.0 0.30 19 1.3 69 10 626
MET 0.060 0.084 2.7 3.5 22 40

The efficiency of all three methods strongly depends on the correlation structure. MET

fails to generate 100 effectively independent samples within two hours in a few higher di-
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mensional tests, while Harmonic-HMC and Zigzag-HMC/NUTS enjoy a t100 < 3600 sec-

onds across all tests. In the LKJ example, Zigzag-HMC/NUTS become more efficient than

Harmonic-HMC when d reaches 1600. Zigzag-HMC and Zigzag-NUTS tend to share similar

performance. While Zigzag-NUTS is the most efficient choice for the LKJ test (d = 1600),

Zigzag-HMC wins the test on an MTN from the HIV example (d = 800, 1600). On the

other hand, when Σ is compound symmetric with a high correlation of 0.9, Harmonic-HMC

consistently outperforms the other methods. When MET does function for a target MTN,

its t100 is close to t1, as solving the initial minimax optimization problem takes most of its

run-time.

In practice, we recommend running a quick efficiency comparison to decide which method

to use. Nevertheless we provide some general guidance on method choice for high-dimensional

MTN simulation:

• If d ≤ 100 or the correlation structure is strongly positive, use MET or Harmonic-HMC.

Harmonic-HMC may run faster but MET has the advantage of generating independent

samples.

• For all other cases, Zigzag-HMC/NUTS is presumably more efficient, although Harmonic-

HMC may outperform them when d < 1000.

• It is always worth trying MET which is free of MCMC convergence concerns. Since

our simulation only examines a few correlation structures, it is possible that MET can

handle other large MTNs.

A final point that needs consideration is that Zigzag-HMC/NUTS require Ω and if only Σ

is available, the method first inverts Σ. This is a one-time operation and likely negligible

cost when Σ is constant. The approaches does become expensive if Σ is random, as the

O(d3) inversion is necessary for each value of Σ. In practice, statistical models may be

parameterized in terms of Σ (Lachaab et al., 2006; Molstad, Hsu, and Sun, 2021) or Ω
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(Baltagi, Egger, and Kesina, 2018; Lehnert et al., 2019; Li, McComick, and Clark, 2020).

Harmonic-HMC carries a similar limitation since it requires a O(d3) Cholesky decomposition

of Σ or Ω, whichever is provided. Therefore, when d is large and the target MTN has

a random correlation structure, one may favor Zigzag-HMC/NUTS over Harmonic-HMC

especially if a closed-form Ω is at hand.

6.5 Conclusion

This article introduces the hdtg package oriented for efficient MTN simulation. In most of

our high-dimensional tests the implemented Harmonic-HMC and Zigzag-HMC algorithms

outperform the current best approach available in the TruncatedNormal package. To our

best knowledge, hdtg is the first tool that can generate samples from an arbitrary MTN with

thousands of dimensions. We discuss the usage of functions and provide practical suggestions

on method choice. We expect to see future large-scale statistical applications utilizing the

efficiency of hdtg.
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CHAPTER 7

Discussion

7.1 Achieved research goals

This dissertation aims to develop efficient statistical methods to learn the interaction between

complex biological traits from many evolutionarily related taxa. This long-standing prob-

lem is of great scientific interest as researchers are often interested in how one trait affects

another, as between-trait interactions can shed light on various aspects of evolution across

all sorts of organisms such as infectious disease pathogens, animals, and plants. Limited by

computational burdens, no previous approach can infer correlation between complex traits

with explicitly modeling or adjusting for the phylogenetic tree at the scale of applications in

this dissertation. My development mainly focuses on the posterior computation under the

phylogenetic probit model (Cybis et al., 2015; Zhang et al., 2021) where the computational

bottleneck is to sample from a high-dimensional MTN with a random covariance structure.

The advances in Chapter 3 and 4 push the scale limit to at least hundreds of taxa and > 20

traits. While the BPS method in Chapter 3 achieves order-of-magnitude speedup compared

to the previous best approach (Cybis et al., 2015), the Zigzag-HMC sampler in Chapter 4

largely outperforms BPS and stands as the current state-of-the-art inference framework for

complex trait evolution. I implement all the developed methods in the widely used BEAST

software (Suchard et al., 2018) to make them more accessible for researchers. I also create

the standalone R package hdtg that is the current most efficient tool for sampling from an

arbitrary large MTN.
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7.2 Advances in methodology

It takes two main ingredients to tackle the MTN simulation challenge — cutting-edge MCMC

methods like BPS, Zigzag-HMC, or ZZ, and the novel linear time gradient evaluation method

developed in Chapter 3. These samplers well represent recent developments in the MCMC

literature (Bierkens, Fearnhead, Roberts, et al., 2019; Bouchard-Côté, Vollmer, and Doucet,

2018; Nishimura, Dunson, and Lu, 2020), covering two of the most promising MCMC de-

signs that are continuous-time, non-reversible based methods (Fearnhead et al., 2018) and

Hamiltonian Monte Carlo (Neal, 2011). One essential feature shared by BPS, Zigzag-HMC,

and ZZ is that with a MTN target, we can analytically simulate their dynamics so avoid

the acceptance-rejection step which hurts efficiency. Nevertheless, without the linear time

gradient evaluation, none of these samplers is applicable in the phylogenetic probit model

context, as we would have to repeatedly invert a huge covariance matrix whose dimension

easily exceeds 10,000. Fortunately, by utilizing the tree traversal strategy in Pybus et al.

(2012), I develop a O(NP 2) gradient evaluation method to circumvent the need for matrix

inversion, making all three considered samplers suitable for phylogenetic probit model poste-

rior sampling. As discussed in Chapter 4 and 5, Zigzag-HMC turns out to be the best choice

not only because it is more efficient on a strongly correlated large MTN, but also because it

allows joint updates of latent variables and across-trait correlation, which is not feasible with

BPS and ZZ. In the end, Zigzag-HMC allows us to infer conditional dependencies between

traits of scientific interest and therefore investigate some of the most important evolutionary

molecular mechanisms.

One advantage of the BPS and Zigzag-HMC methods is they are tuning-free. This is

of practical importance as manual tuning MCMC step sizes on high-dimensional targets is

nontrivial and a poorly tuned MCMC can cause slow burn-in and poor mixing. I develop a

heuristic that uses the maximum and minimal eigenvalues of the target density’s covariance

matrix to quantify the “diameter” of the most and least constrained direction, and then
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choose an appropriate step size proportional to this diameter (Section 3.8.1 and 4.6). The

other part of the tuning solution is the No-U-Turn algorithm of Hoffman and Gelman (2014)

with the primal-dual averaging method (Nesterov, 2009) to decide the base step-size on the

fly.

Encouraged by the good performance of Zigzag-HMC, I develop the hdtg R package for

efficient MTN simulation. MTN simulation is commonly seen in a variety of statistical ap-

plications yet there is no implementation that can efficiently sample from a high-dimensional

MTN with an arbitrary and potentially random covariance structure. Besides Zigzag-HMC,

hdtg also implements the harmonic Hamiltonian Monte Carlo (Harmonic-HMC) by Pakman

and Paninski (2014), another HMC sampler specialized for sampling MTNs. Harmonic-HMC

is not suitable for posterior inference under the phylogenetic probit model as it requires an ex-

pensive Cholesky decomposition of the covariance or precision matrix. But without frequent

covariance changes, it performs well and in some cases outperforms Zigzag-HMC (Section

6.4). To date, the statistical literature contains few examples involving large MTN simula-

tion, likely due to the lack of a good computational tool, and researchers have developed

alternative methods (Chakraborty, Ou, and Dunson, 2021; Souris, Bhattacharya, and Pati,

2018). I hope hdtg can become one useful tool for statisticians.

7.3 Scientific insight

The large-scale phylogenetic applications in Chapter 3 and 4 feature two important infec-

tious disease pathogens, HIV-1 and H1N1 influenza. With help from my collaborators who

are experts in virus evolution, I interpret the inference results for their scientific meaning.

For the HIV-1 application in Chapter 3, I mainly focus on the across-trait correlation which

provides information on the complex association between HLA-driven HIV gag mutations

and virulence (Section 3.4.2). Thanks to the improved efficiency of the Zigzag-HMC method

developed in Chapter 4, I can then infer conditional dependencies between traits, which
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provide insight into potential causal pathways driven by real biological processes. For exam-

ple, the conditional dependence in RC-CD4-VL suggests that RC increases VL via reducing

CD4, a potential pathway that the marginal correlation fails to identify. I also reveal an

intriguing pattern that the conditional dependence between two escape mutations impairing

virulence is almost always negative, and if two mutations have opposing effects on virulence,

the conditional dependence between them is almost always positive. This illustrates that

under selection pressure, the viruses generally require multiple compensatory mutations to

restore virulence impaired by immune escape mutations. In the H1N1 application, I reveal

how the tendency of having certain H1 and N1 glycosylation sites varies in different hosts.

And the conditional dependence between glycosylation sites helps to identify glycosylation

pairs that are physically close and may be harmful or beneficial for the virus (Section 4.3.3).

The Aquilegia flower and pollinator co-evolution application in Section 4.3.4 also highlights

that the across-trait conditional dependence may well predict results obtained from carefully

designed experiments with controlled variables. In summary, the inference framework with

phylogenetic probit model may complement or help in prioritizing experimental testing, and

further assist in understanding many important evolutionary processes.

7.4 Limitations and future directions

I now consider the limitations of the methods developed in this dissertation and the future

directions to which they point. First, the standard Brownian diffusion assumes that latent

parameters at a child node have the same mean with its parent node, so we cannot detect if

certain node has a mean “shift” such that all of its descendant nodes tend to have a higher

or lower value of the corresponding trait. One way to adjust the Brownian diffusion model

is to allow every branch to have its own mean shift but this breaks model identifiability

(Gill et al., 2017), as different branch shifts can give the same likelihood. Gill et al. (2017)

develop a relaxed directional random walk model (RDRW) that restricts the mean shifts
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while retaining identifiability. For a tree triplet, they assume two possible cases — either

both child branches inherit the shift from their parent branch, or one child branch gets

a new value while the other inherits the parent shift. However, the RDRW model forces

shifts to be inherited by at least one of the two child branches. This is more for keeping

identifiability and not a natural assumption, and we can imagine cases where two branches

take very different shifts. Therefore a model between the arbitrary branch shift model and

RDRW would be more biologically realistic.

Second, the phylogenetic probit model only describes pairwise and symmetric correla-

tions, while the real biological processes are often not symmetric but directional. Although

there is no phylogenetic approach for learning a more expressive regulation network among

traits, methods like graphical models (Lauritzen, 1996) commonly used to learn molecular

pathways (Benedetti et al., 2017; Dobra et al., 2004; Neapolitan, Xue, and Jiang, 2014)

are worth exploring. Additionally, after obtaining the posterior distribution of across-trait

(partial) correlations, I use empirical thresholds like the high posterior density (HPD) in-

terval coverage or posterior median to identify correlations that are more likely from real

interactions. In cases where there is a large number of traits and only a few of them are

involved in the underlying biology, it is essential to control false positive signals and one

would prefer a systematic solution like putting a shrinkage-based prior on the correlations.

Extensive simulations would be required to choose a post-inference approach that achieves

high sensitivity and low false positive rates.

Finally, in both BEAST and the hdtg Package, I implement Zigzag-HMC for MTNs with

independent truncations, except that the latent parameters for categorical traits possess

truncation intervals depending on multiple dimensions (Section 4.2.1). Despite the fact

that independent truncations are the most commonly seen cases for MTNs, a more general

MTN class would provide greater modeling flexibility. For example, a MTN subject to

linear inequalities applies to Bayesian splines for inferring positive functions (Pakman and

Paninski, 2014). In the phylogenetic context, a MTN constrained to a polygon region can be
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used to model the geographical distribution of infectious disease pathogens or climate niche

information of birds.
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