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SOFTWARE Open Access

OrthoReD: a rapid and accurate orthology
prediction tool with low computational
requirement
Kai Battenberg1* , Ernest K. Lee2, Joanna C. Chiu2, Alison M. Berry1† and Daniel Potter1†

Abstract

Background: Identifying orthologous genes is an initial step required for phylogenetics, and it is also a common
strategy employed in functional genetics to find candidates for functionally equivalent genes across multiple species.
At the same time, in silico orthology prediction tools often require large computational resources only available on
computing clusters. Here we present OrthoReD, an open-source orthology prediction tool with accuracy comparable
to published tools that requires only a desktop computer. The low computational resource requirement of OrthoReD
is achieved by repeating orthology searches on one gene of interest at a time, thereby generating a reduced dataset
to limit the scope of orthology search for each gene of interest.

Results: The output of OrthoReD was highly similar to the outputs of two other published orthology prediction tools,
OrthologID and/or OrthoDB, for the three dataset tested, which represented three phyla with different ranges
of species diversity and different number of genomes included. Median CPU time for ortholog prediction per
gene by OrthoReD executed on a desktop computer was <15 min even for the largest dataset tested, which
included all coding sequences of 100 bacterial species.

Conclusions: With high-throughput sequencing, unprecedented numbers of genes from non-model organisms are
available with increasing need for clear information about their orthologies and/or functional equivalents in model
organisms. OrthoReD is not only fast and accurate as an orthology prediction tool, but also gives researchers flexibility
in the number of genes analyzed at a time, without requiring a high-performance computing cluster.

Keywords: Gene orthology, Phylogenetics, Gene evolution, Genome, Transcriptome

Background
As high-throughput sequencing has become more and
more accessible, bottlenecks in comparative genetics
now generally do not occur at the stage of generation of
new sequences, but rather at the stage of downstream
analyses that require large computational resources. One
of the first steps required for phylogenetic analyses of
genome-scale nucleotide or amino acid sequence data-
sets is determining an orthologous set of genes across
multiple species. Orthologs are defined as genes derived
from a common ancestral gene that have diverged from
one another by a series of speciation events, in contrast
to paralogs, which diverge following gene duplication

events [1]. There are numerous orthology prediction
tools, but most if not all tools share the common initial
step of calculating similarity scores using BLAST [2] or
BLAST-like algorithms within the sequence dataset. As
previously described [3], these tools can be categorized
as tree-building-based tools and non-tree-building tools.
Tree-building-based tools infer orthology according to
the reconstructed phylogeny of a subset of genes show-
ing high similarity among them, e.g., orthology analysis
using MCMC [4], OrthologID [5], and PoFF [3], while
non-tree-building tools infer orthology directly from the
similarity scores, e.g., OrthoMCL [6], HaMStR [7],
InParanoid [8], OMA-GETHOGs [9], and bidirectional
best hit (BBH) [10, 11].
In general, non-tree-building tools have the advantage

of being computationally less demanding i.e. they re-
quire fewer CPU (Central Processing Unit) hours and
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less memory. Particularly in prokaryotes, BBH, the sim-
plest of all non-tree-building methods, can generate reli-
able results [10, 11], but in plants and animals where
gene duplication is more common [12], BBH and other
non-tree-building tools can be less accurate [12] due to
the presence of multiple genes that are similar to the
gene of interest. Tree-building-based tools, on the other
hand, are considered more accurate since they are both
less sensitive to the effects of sometimes-misleading
similarity scores [3, 13] and more consistent with the
phylogenetic definition of orthology. At the same time,
tree-building-based tools are more computationally de-
manding. One approach to reduce the computational
demand of a tree-building-based tool is to reduce the
amount of data handled at one time.
Here we describe OrthoReD (Orthology predictions

from Reduced Datasets) (Fig. 1), a tree-building-based
orthology prediction tool designed to be executed on
desktop computers with accuracy comparable to other
published tree-building-based tools. The computational
requirement is minimized by 1) generating a reduced
dataset only for each gene of interest, and 2) limiting the
number of genes that enter the tree-building step.
To test the accuracy of OrthoReD, outputs of

OrthoReD were compared with those from two other
automated ortholog prediction tools, using three data-
sets representing fruit flies, plants, and bacteria. The
effects of changing parameter settings on the three
most time-consuming processes (BLAST, sequence
alignment, and tree-building) were also assessed to

determine the optimal balance between speed and ac-
curacy. In addition, the runtime for each of these
parameter adjustments was measured to assess the
impact of these adjustments not only on the output
but also on the speed of the analysis.

Implementation
OrthoReD overview
The framework of OrthoReD is a basic Perl script that
utilizes published and/or commonly used bioinformatic
tools. The program only requires an initial gene dataset
(as one or more FASTA files) with all genes labeled with
their species and a unique ID, but information about iso-
forms (splice variants) and the outgroup species within
the dataset can also be provided.
From within the initial dataset, OrthoReD searches for

orthologs for each gene of interest at a time (one-at-a-
time approach) rather than grouping all genes into
orthologous sets at once (all-at-once approach), as seen
for example in OrthologID [5] or OrthoMCL [6] (Step 1
in Fig. 1). Gene sequence(s) of interest is(are) provided
as a single query file in FASTA format. All following
steps are conducted only within the reduced dataset
generated according to the initial one-against-all com-
parison. This feature of reducing the dataset for the
downstream analysis is similar to the pipeline used for
building the phylogeny repository PhylomeDB [14, 15].
However, the purpose of this step is different in the two
pipelines: the pipeline for PhylomeDB performs this
process on a selected subset of species within the dataset

Fig. 1 OrthoReD overview. To determine the orthology of the gene of interest, gene of interest is used as a query for a BLASTP search against
the dataset (step 1). The BLASTP hits are screened to generate a reduced dataset (step 2). All-v-all BLASTP is conducted on the reduced dataset
(step 3) to generate pairwise similarity matrix used by MCL to separate the reduced dataset into clusters (step 4). Most likely phylogeny
is reconstructed for the members within the cluster of interest (step 5) and long branches are subsequently removed from the tree
(step 6). Finally, all members of the clade that share the most recent gene duplication event are returned as predicted orthologs (step 7)
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to define the phylogenetic scope and calibrate itself for
the downstream analysis. OrthoReD uses all species
within the dataset and directly uses the outcome for
orthology predictions.
Breaking down the enormous task of predicting all

orthologies within the initial dataset to a single gene at a
time allows OrthoReD to be executed on a desktop com-
puter and, more importantly, this allows the flexibility of
predicting orthology for any subset of genes within the
dataset that are particularly interesting to the user with-
out analyzing the entire dataset.
By default, OrthoReD conducts BLASTP searches by

using NCBI BLAST v2.40 [2] with parameter settings
optimized for orthology predictions with soft masking and
Smith-Waterman final alignment (parameter settings:
-db_soft_mask 21 -word_size 3 -threshold 11 -evalue 1e-
03 -use_sw_tback) [16]. Alternatively, similarity searches
can be conducted using AB BLAST v3.0 [17] or SWIPE
v2.0.12 [18]. The default parameters for AB BLASTP are
optimized for less sensitive but faster searches (parameter
settings: wordmask = seg matrix = BLOSUM62 E = 1e-
3 W = 3 T = 1000 postsw) according to [19]. AB BLAST
is implemented as an alternative method because AB
BLAST, compared to NCBI BLAST, generally allows the
user more flexibility in setting search parameters. (Simply
increasing T or W will drastically improve runtime of AB
BLASTP). SWIPE is also implemented as another alterna-
tive for potentially faster and more accurate similarity
search option (parameter settings: –evalue = 1e-03
–symtype = blastp).
The genes with e-values better than the minimum

threshold (default: <1e-3) in comparisons with the gene
of interest (“BLAST or SWIPE hits”, henceforth hits) are
screened further (Step 2 in Fig. 1). By default, a given hit
is retained if it meets the minimum level of sequence
similarity, which is calculated based on alignment length
and % sequence identity [20]. Alternatively, hits can also
be screened based on a user-defined minimum threshold
for alignment length and/or % identity.
Then, more importantly, an additional parameter, n, is

set to limit the number of genes per species passed on
to the next step. Although the similarity score between a
particular gene and the gene of interest is generally
correlated with likelihood that it is an ortholog, that par-
ticular ortholog may not show the highest similarity or
have the best e-value within the genome of another spe-
cies [12, 21]. On the other hand, similarity scores and
phylogenetic relatedness should broadly correlate [21].
Thus, it is unlikely that a given genome will have a large
number of non-orthologous genes (paralogs) that show
higher similarities to the gene of interest than the ortho-
log. Therefore, a parameter is implemented that will
keep only a number of gene sequences up to n (an inte-
ger defined by the user) best hits per species in terms of

BLAST e-values (all genes are kept upon a tie). This per-
mits screening of sequences that should be analyzed fur-
ther as potential orthologs. The optimal n is gene-
specific, but in practice a single n is set for each query
file. A query file can contain one or many genes, each
with potentially different optimal n. Tests for optimizing
n for queries with multiple genes are presented in
Results and strategies further discussed in the Discus-
sion. When isoform information for genes is available,
only one isoform with the best e-value is kept as a repre-
sentative of the gene.
Next, an all-against-all BLASTP search with the same

parameter settings as the initial similarity search is con-
ducted on the reduced dataset to generate a pairwise
similarity score matrix (Step 3 in Fig. 1). For any pair
within the reduced dataset without a significant level of
similarity (e-value <1e-3), a very large value (e-
value = 9e-1) is set in order to ensure that all pairs will
have a value assigned.
Because n (the maximum number of genes per species

allowed into the tree-building step) is a fixed threshold
applied to all species in the dataset, it is possible for
genes that are highly unlikely to be orthologous to be
present in the reduced dataset. The genes in the reduced
dataset are therefore separated into clusters using MCL
v14–137 [22] to remove such outliers based on the pair-
wise similarity score matrix generated in the previous
step (Step 4 in Fig. 1). That being said, because a gene
tree is a more accurate criterion for ortholog prediction
than similarity scores, the inflation rate of MCL, the par-
ameter that determines the inclusiveness of clusters, by
default is set to be the least stringent (parameter set-
tings: i = 1.2) to minimize the risk of erroneously remov-
ing orthologs at this step.
To prepare for tree-building (Step 5 in Fig. 1), a mul-

tiple sequence alignment (MSA) is generated with all
genes in the cluster of interest using MAFFT v7.273 [23]
with the accuracy-oriented parameter setting (parameter
settings: –localpair –retree 2 –maxiterate 1000) by de-
fault. However, the speed-oriented parameter setting
(parameter settings: –6merpair –retree 2 –maxiterate
1000) is used instead when 200 or more sequences are
aligned as recommended by MAFFT. The quality of the
MSA is ensured by limiting the sequences given to
MAFFT to a small number (less than n times the num-
ber of species included in the dataset) of highly similar
sequences, which also ensures a quick sequence align-
ment. Based on this MSA, the most likely gene tree is
reconstructed using RAxML v8.2.8 [24]. To generate the
gene tree as quickly as possible, the topology of the tree
is determined first (parameter settings: -f E -F -m PROT-
CATIAUTO), and the optimal branch lengths are esti-
mated subsequently (parameter settings: -f e -m
PROTCATIAUTO). The tree is then rooted by a gene of
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a user-defined outgroup. When multiple genes of an
outgroup are present in the tree, then it is rooted using
the outgroup gene that results in a sub-tree that includes
the gene of interest, but no outgroup gene, and with the
largest number of ingroup species (RT method [13]).
The most distant outgroup gene based on branch length
is selected upon a tie. In the highly unlikely event that
the two or more outgroup genes are equally distant from
the gene of interest, it is selected based on alphanumeric
order. When an outgroup is not provided or no out-
group gene is present in the gene tree (e.g. due to gene
loss or missing data), the tree is rooted at midpoint.
Because midpoint rooting may not orient the tree such
that the orthologs of the gene of interest form a single
clade, it is recommended to use an outgroup for better
accuracy.
Next, any long external and internal branches (default:

>2 substitution/site) in the generated tree are cut (Step 6
in Fig. 1) because the accuracy of the positioning of
these long branches can be difficult to assess for both in-
ternal [25] and external [13] branches, a difficulty de-
scribed in other ortholog identification pipelines [13].
Finally, the orthologous set of genes for the gene of

interest is determined by implementing a part of “Diag-
nostics Generator module” of OrthologID [5] (Step 7 in
Fig. 1). This final step determines whether each node in
the gene tree is a speciation event or a gene duplication
event. Traversing the tree from root to tip, at each node
it is tested to determine if there is an overlap in the spe-
cies represented by the genes in each of the sister clades
under the node. If any overlap is present, the node is
considered a gene duplication event, unless all genes
under the node are representing a single species, in
which case, the entire clade defined by this node is
treated as a single gene with multiple isoforms. This ap-
proach accounts for datasets where isoforms are in-
cluded without being labeled as such. When a given
node is determined to be a gene duplication event, all of
its ancestral nodes previously determined as speciation

events are overwritten as gene duplication events. Once
the status of all nodes is determined, all members of the
daughter clade of the most recent gene duplication event
experienced by the gene of interest that includes the
gene of interest is returned as a set of predicted ortho-
logs. Only the members of this clade are returned as
orthologs while others in the tree are discarded. When
isoform information for genes is available, all other iso-
forms of the predicted orthologs within the original
dataset are reintroduced as predicted orthologs as well.

Experimental datasets
Three datasets (FLY, PLANT, and ACTINO) were gener-
ated in order to assess the outputs and runtimes of
OrthoReD under different parameter settings (Table 1,
Additional file 1: Table S1). All species included in FLY
were within the genus Drosophila except for the out-
group, Lutzomyia longipalpis. Sequences for FLY were
obtained from OrthoDB [26, 27] and included all amino
acid sequences from 13 closely related species. All spe-
cies included in PLANT were within Rosids, a clade
within Angiosperms. Vitis vinifera, the most early-
divergent among the 12 species according to APG III
[28], was selected as the outgroup. Sequences for
PLANT were obtained from Phytozome v11.0 [29, 30]
and included all coding sequences (CDSs) from 12 spe-
cies. All species included in ACTINO were within
phylum Actinobacteria. Eggerthella lenta was selected as
the outgroup [31]. Sequences for ACTINO were ob-
tained from IMG [32, 33] and included all CDSs from
100 species selected according to Sen et al. [31].
These three dataset differ significantly in their overall

composition. Orthology prediction was expected to be
most straightforward for FLY, containing only closely re-
lated species. FLY was designed to test 1) how consistent
the output of OrthoReD is as compared to other ortho-
log prediction tools and 2) how changing parameter set-
tings for MSA building affects the output of OrthoReD.
PLANT, while having similar number of species as FLY,

Table 1 Dataset information

Fly Plant Actino

Number of taxa 13 11 100

Lis of taxa Drosophila ananassae, D. erecta, D. grimshawi,
D. melanogaster, D. mojavensis, D. persimilis,
D. pseudoobscur, D. sechellia, D. simulans,
D. virilis, D. willistoni, D. yakuba, Lutzomyia
longipalpis

Arabidopsis thaliana, Cucumis sativus,
Fragaria vesca, Glycine max, Mallus
domestica, Manihot esculenta, Medicago
truncatula, Phaseolus vulgaris, Populus
trichocarpa, Prunus persica, Vitis vinifera

See supplemental Table S1

Range of taxa Genus (Drosophila) Rosids Phylum (Actinobacteria)

Selected outgroup Lutzomyia longipalpis Vitis vinifera Eggerthella lenta

Number of sequences 194,469 532,305 444,382

Number of AA residues 92,515,839 215,684,745 146,754,746

Average sequence length 476 405 330
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had two aspects that should make orthology prediction
more complex than in FLY: First, the species included
were much more distantly related from each other than
in FLY, ranging across seven orders. Secondly, plant
genomes are known for high levels of gene duplication
[34]. PLANT was designed to test 1) how consistent the
output of OrthoReD is as compared to other ortholog
prediction tools and 2) how changing parameter settings
for BLAST and n each affects the output of OrthoReD.
ACTINO includes more than six times as many species
as FLY or PLANT, and was designed to test the impact
on the runtime of OrthoReD of a substantially larger
number of species.
All nucleotide sequences of PLANT and ACTINO

were translated into amino acid sequences using a cus-
tom Perl script. A small fraction of the nucleotide
sequences originally collected for the PLANT and
ACTINO datasets (<0.05% and <0.3%, respectively)
could not be translated reliably due to ambiguous read-
ing frames or premature stop codons. These sequences
were removed from the analyses.

Comparison of OrthoReD runtime and outputs
OrthoReD can be executed under different conditions
by adjusting parameter settings for each step. In general,
adjustments to improve accuracy will have the tradeoff
of reduced speed of orthology prediction. Therefore, for
efficient orthology prediction, the parameters need to be
set to achieve the maximum speed possible without a
significant loss of accuracy. The three most time-
consuming steps in OrthoReD (as in many tree-
building-based tools) in the order they appear in
OrthoReD are (1) the initial similarity search, (2) the
generation of the MSA (particularly in cases where one
or more sequence within the cluster of interest was
exceptionally long), and (3) the tree-building step.
Therefore, for each dataset, OrthoReD was executed

multiple times using different parameter settings for
similarity search (BLAST or SWIPE), MAFFT, and n to
compare the outputs and runtimes to assess the impact
of each adjustment.
The outputs for OrthoReD were also compared with

that of two other published orthology prediction tool:
OrthologID [5] and OrthoDB [26]. These two tools were
chosen based on their degree of similarity to OrthoReD.
OrthologID is a tree-building-based all-at-once approach
tool that shares the common final orthology determin-
ation step with OrthoReD. On the other hand, OrthoDB
is an example of non-tree-building all-at-once approach
tools which also include OrthoMCL [6] and HaMStR
[7]. OrthologID and OrthoDB thus represent very differ-
ent orthology prediction methods. For each dataset, only
one output generated under the default parameter set-
tings was used for OrthologID and OrthoDB.
For the FLY dataset, orthologs were predicted for all

Drosophila melanogaster genes (13,972 genes) under
four different conditions: ReD_s.aln with the default
conditions of OrthoReD (see section above, OrthoReD
overview), ReD_f.aln for speed-oriented sequence align-
ment, OID (OrthologID with default conditions), and
ODB (OrthoDB with default conditions) (see Table 2 for
parameter settings for each OrthoReD execution).
OrthoDB provided predicted orthology for all genes on
their website [27].
For PLANT, orthologs were predicted for all Arabidop-

sis thaliana genes (27,412 genes) under nine different
conditions: ReD_n5 through ReD_n10 with speed-
oriented MAFFT setting and n ranging from 5 to 10;
ReD_AB and ReD_SW using AB BLAST or SWIPE in-
stead of NCBI BLAST; and OID (OrthologID with default
conditions) (Table 2). Isoform information was available
for each A. thaliana CDS (35,382 CDSs were available for
the 27,412 genes). For a gene with multiple isoforms,
OrthoReD predicted orthology for all isoforms, and the

Table 2 Parameter settings for each OrthoReD execution on each dataset

Dataset Similarity search n* MAFFT options

ReD_s.aln FLY NCBI 4 –localpair –retree 2 –maxiterate 1000

ReD_f.aln FLY NCBI 4 –6merpair –retree 2 –maxiterate 1000

ReD_AB PLANT AB 5 –6merpair –retree 2 –maxiterate 1000

ReD_SW PLANT SWIPE 5 –6merpair –retree 2 –maxiterate 1000

ReD_n5 PLANT NCBI 5 –6merpair –retree 2 –maxiterate 1000

ReD_n6 PLANT NCBI 6 –6merpair –retree 2 –maxiterate 1000

ReD_n7 PLANT NCBI 7 –6merpair –retree 2 –maxiterate 1000

ReD_n8 PLANT NCBI 8 –6merpair –retree 2 –maxiterate 1000

ReD_n9 PLANT NCBI 9 –6merpair –retree 2 –maxiterate 1000

ReD_n10 PLANT NCBI 10 –6merpair –retree 2 –maxiterate 1000

ReD_n4 ACTINO NCBI 4 –6merpair –retree 2 –maxiterate 1000

*n: Maximum number of genes per species passed on after the initial similarity search
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union of the predicted sets of all isoforms was considered
the predicted set of orthologs for one gene. OrthologID
used the longest isoform as a representative to predict
orthology for the gene.
For ACTINO, orthologs were predicted for all Strepto-

myces coelicolor genes (8210 genes) under a single
condition: ReD_n4 (Table 2).
For a single gene of interest, the similarity between the

outputs under two different conditions was assessed by
the % identity of the two sets of predicted orthologs, cal-
culated as the number of genes in the intersection over
the number of genes in the union. OrthoReD uses an
outgroup to root the gene tree (Step 5 in Fig. 1) making
it unsuitable for predicting orthologs of the outgroup.
Therefore, any genes of the selected outgroup were
removed from the output comparison. The overall
similarity of outputs between different conditions was
assessed based on the average % identity of all genes
tested, or % genes with % identity above a threshold
(> = 90% or =100%).
Because the runtime on a computing cluster is

highly dependent on how heavily the cluster is used,
the runtime can be inconsistent from one instance to
another. Therefore, for each execution of OrthoReD
in the output comparison, an independent test of
OrthoReD was conducted in parallel with identical
parameter settings to measure the runtime. For this,
1000 D. melanogaster, A. thaliana, or S. coelicolor
genes were randomly selected without replacement
for each dataset. For each gene, the runtime was
measured as total CPU time, using the UNIX time
command. Total CPU time was calculated as the sum
of user and system CPU time. This runtime test was
conducted on a Mac Pro with OS X El Capitan
v10.11.6 operating system, with 3.33GHz 6-Core Intel
Xeon processor. Each runtime test was allocated 2
cores for processing.

Testing orthology predictions for optimal n for each
dataset
For each of the conditions for orthology prediction
tested in FLY, PLANT and ACTINO, the total number
of orthologs predicted was counted and the distribution
of predicted orthologs according to the initial BLASTP
(or SWIPE) e-values (Step 1 in Fig. 1) per species (gen-
ome) was calculated. For example, a predicted ortholog
was ranked 1 when this gene had the best e-value within
the genome, whereas if there were three other genes
with better e-values the ortholog was ranked 4. NCBI
BLASTP e-values generated by Step 1 of OrthoReD were
used for ranking outputs of OID and ODB. Along with
the ranking distribution, the total number of predicted
orthologs was also counted.

Merging of predicted orthologous groups
Because OrthoReD predicts orthology for each gene of
interest independently, predicted orthologous groups are
not mutually exclusive. Thus, upon predicting ortholo-
gies of multiple genes within the dataset, it is possible
that a given gene may be predicted as an ortholog of
more than one gene of interest.
To assess the degree of overlap across orthologous

groups predicted in each dataset, predicted orthologous
groups for ReD_s.aln on FLY, ReD_n10 on PLANT, and
ReD_n4 on ACTINO were each merged into non-
overlapping groups. We then measured the fraction of
merged groups that were identical to at least one of the
predicted orthologous groups, and measured the fraction
of genes of interest that were within such merged
groups.

Results
Comparison of outputs across different conditions
For the 13,972 genes of interest tested from the FLY data-
set, ReD_s.aln, ReD_f.aln, OID, and ODB predicted a total
of 156,223, 157,105 142,437, and 219,715 orthologs re-
spectively (Table 3). Outputs of ReD_s.aln and ReD_f.aln
were 96.4% identical on average, and 89.5% of the genes
had 100% output identity (Table 4). Outputs of ReD_s.aln
and OID were 88.3% identical on average and 68.6% of the
genes had 100% output identity (Table 4). Outputs of OID
and ODB were 80.5% identical on average and 56.2% of
the genes had 100% output identity (Table 4). ReD_s.aln,
generated output with 100% identity to either OID or
ODB for 74.7% of the genes tested, and with > = 90%
identity for 82.2% of the genes tested (Fig. 2).
For PLANT, outputs of ReD_n5–10 became more

similar to one another as n was increased: average %
identity between ReD_n5 and ReD_n6 was 82.3% but
this steadily increased up to 87.3% between ReD_n9 and
ReD_n10 (Table 4). The outputs of ReD_n5–10 also be-
came more similar to OID as n increased: Average %
identity was 60.5% for ReD_n5 and this steadily in-
creased up to 61.8% for ReD_n10. In general, however,
the outputs were less similar between OrthoReD and
OrthologID in PLANT than in FLY.
Between the three conditions with different similarity

searches, the average % identity was 77.9% between
ReD_n5 (NCBI BLAST) and ReD_AB (AB BLAST),
72.2% between ReD_n5 and Red_SW (SWIPE), and
71.0% between ReD_AB and ReD_SW (Table 4). In re-
spect to OID the average % identity for ReD_n5,
ReD_AB, and ReD_SW was 60.5%, 58.7%, and 59.8%
respectively.

Comparison of runtimes across different conditions
The minimum and median total CPU times were <1 min
and <15 min, respectively, under all conditions tested
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(Fig. 3). The maximum time (not shown on Fig. 3) var-
ied from one condition to another but was <150 min in
FLY, <210 min in PLANT, and <790 min in ACTINO.
Although wall-clock time (the actual time it takes for
OrthoReD to run to completion) varied depending on
the overall computer usage, the median wall-clock real
time was always <12 min.
Different aligning parameters to MSA generation

(ReD_s.aln and ReD_f.aln) generated nearly identical
results with <0.3 min difference at minimum, lower
quartile, median, and upper quartile. Median time of
ReD_AB and ReD_SW were each 14.0% and 22.2%
shorter than ReD_n5 with the same n. Among the con-
ditions that differed in n (ReD_n5–10), the total CPU
time steadily increased as n increased: For each addition
of n, the median total CPU time increased between 3.7–
19.7%, and between ReD_n5 and ReD_n10 the median
time increased by 76.4%.

Distribution of orthologs at each e-value rank under
different thresholds of n
For FLY, 99.2% of the predicted orthologs had e-values
that were ranked between 1(best e-value in the genome in
based on initial BLAST search with the gene of interest) –
and 3 (three other genes had better e-values) by both

ReD_s.aln and ReD_f.aln, and only 0.8% of the predicted
orthologs were ranked 4 (Table 3). The fraction of ortho-
logs predicted under OID and ODB ranked between 1
and 3 were 98.8% and 90.0% respectively (Table 3).
For PLANT, ReD_n5 through ReD_n10 showed that

the total number of genes identified steadily increased as
n was increased. On the other hand, fractions of ortho-
logs represented by the lowest rank steadily decreased
from 2.9% at rank 5 for ReD_n5 to 0.9% at rank 10
for ReD_n10. In both cases, the rate of change be-
came smaller as n increased. For instance, the lowest
rank representation dropped from 2.9% to 1.3% be-
tween ReD_n5 and ReD_n8, but only reached 0.9% at
ReD_n10 (Table 3). 11.0% of the orthologs predicted
by OID was ranked 11 or lower (Table 3).
For ACTINO, 92.8% of the predicted orthologs were

ranked 1, and 99.1% of the predicted orthologs were
ranked between 1 and 3 (Table 3).

Degree of overlap among orthologous groups
The degree of overlap among the predicted orthologous
groups generally correlated with the expected difficulty
of orthology prediction: FLY, with only closely-related
species, had the highest fraction of genes belonging to
merged groups that were identical to at least one

Table 4 Comparisons between outputs generated by different conditions of OrthoReD, OrthologID, and OrthoDB

Database FLY PLANT

Conditions Compared ReD_s.aln ReD_s.aln ReD_s.aln ReD_f.aln ReD_f.aln OID ReD_AB ReD_SW ReD_n5 ReD_n6 ReD_n7

ReD_f.aln OID ODB OID ODB ODB OID OID OID OID OID

average % id 96.4% 88.1% 81.2% 88.2% 81.4% 80.5% 58.7% 59.8% 60.5% 61.1% 61.2%

% 100% id 89.5% 68.1% 55.1% 68.3% 55.1% 56.2% 33.9% 36.1% 35.4% 36.4% 36.8%

% > =90% id 92.2% 76.7% 66.7% 76.8% 67.0% 67.1% 41.2% 42.6% 43.3% 44.4% 44.8%

Table 3 Total count of predicted orthologs and distribution of predicted orthologs at each e-value rank under different conditions
of ortholog prediction

Fly Plant Actino

ReD_s.aln ReD_f.aln OID ODB ReD_AB ReD_SW ReD_n5 ReD_n6 ReD_n7 ReD_n8 ReD_n9 ReD_n10 OID ReD_n4

Total count 156,223 157,105 142,437 219,715 489,574 424,334 514,093 519,680 524,341 531,003 534,538 537,454 295,966 169,860

1 94.0% 94.0% 95.4% 79.3% 76.6% 69.6% 75.8% 74.5% 73.4% 72.7% 72.2% 71.6% 66.6% 92.8%

2 3.9% 3.9% 2.7% 7.2% 10.7% 14.5% 10.7% 10.5% 10.3% 10.1% 10.0% 9.9% 8.7% 5.1%

3 1.3% 1.3% 0.7% 3.4% 6.3% 7.8% 6.4% 6.2% 6.0% 5.9% 5.8% 5.8% 4.6% 1.4%

4 0.8% 0.8% 0.3% 1.9% 3.9% 4.9% 4.2% 4.0% 3.9% 3.8% 3.7% 3.7% 2.8% 0.7%

5 0.0% 0.0% 0.2% 1.3% 2.5% 3.3% 2.9% 2.8% 2.7% 2.6% 2.5% 2.5% 1.8% 0.0%

6 0.0% 0.0% 0.1% 0.9% 0.0% 0.0% 0.0% 2.1% 2.0% 1.9% 1.9% 1.9% 1.3% 0.0%

7 0.0% 0.0% 0.1% 0.8% 0.0% 0.0% 0.0% 0.0% 1.6% 1.6% 1.6% 1.5% 1.0% 0.0%

8 0.0% 0.0% 0.1% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 1.3% 1.2% 0.8% 0.0%

9 0.0% 0.0% 0.1% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.0% 0.7% 0.0%

10 0.0% 0.0% 0.1% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.6% 0.0%

11+ 0.0% 0.0% 0.4% 3.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 11.0% 0.0%
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orthologous group (89.0%); ACTINO, with a larger
number of more distantly related taxa, showed a lower
fraction (82.1%); and PLANT, with distantly-related taxa
with known high degree of gene/genome duplications,
showed the lowest (68.4%) (Table 5). Over 90% of the
non-overlapping merged groups were identical to at least
one orthologous group in all conditions even in
ReD_n10 on PLANT.

Discussion
OrthoReD generates output comparable to published
tools.
The accuracy of results of any orthology prediction tool
ideally would be assessed based on the degree of similar-
ity to the “correct answer” i.e. the true phylogenetic trees
for the genes of interest. Since the true trees are un-
known, we assessed the accuracy of OrthoReD based on
the degree of similarity of results to two other com-
monly used orthology prediction tools, OrthoDB and
OrthologID.

OrthoDB was less stringent than OrthologID or
OrthoReD (Table 3), predicting >40% more genes as
orthologs than the other two tools tested. The higher
average % output identity and fraction of outputs with
> = 90% identity indicated that the output of OrthoReD
was more similar to that of OrthologID than to that of
OrthoDB. Moreover, while outputs of OrthologID and
OrthoDB had a higher fraction of identical output by
1.1%, outputs of OrthoReD and OrthoDB had a higher
average % identity by 0.7%. Furthermore, OrthoReD and
OrthologID generated the most similar pair of outputs.
These results indicated that 1) OrthoReD generates re-
sults of high similarity to OrthologID, and 2) when
OrthoReD predicts a given gene as an ortholog but
OrthologID does not, these genes are usually predicted
as orthologs by OrthoDB.
The highest average % identity of outputs by

OrthoReD and OrthologID in the PLANT was 61.8%,
which was substantially lower than 88.1% in the FLY.
These findings reflect the substantial difference in the

Table 4 Comparisons between outputs generated by different conditions of OrthoReD, OrthologID, and OrthoDB (Continued)

Database PLANT

Conditions Compared ReD_n8 ReD_n9 ReD_n10 ReD_n5 ReD_n5 ReD_AB ReD_n5 ReD_n6 ReD_n7 ReD_n8 ReD_n9

OID OID OID ReD_AB ReD_SW ReD_SW ReD_n6 ReD_n7 ReD_n8 ReD_n9 ReD_n10

average % id 61.3% 61.6% 61.8% 77.9% 72.2% 71.0% 82.3% 85.8% 85.7% 86.1% 87.3%

% 100% id 36.9% 37.4% 37.7% 58.1% 53.2% 51.3% 62.0% 69.0% 70.0% 71.0% 80.6%

% > =90% id 44.9% 45.5% 45.9% 65.4% 59.3% 57.8% 72.2% 77.8% 77.8% 78.8% 87.3%

Fig. 2 Output comparison between OrthoReD, OrthologID, and OrthoDB. The overall similarities of the outputs in two datasets (FLY and PLANT)
generated under different conditions are compared based on the fraction of genes of interest with % identity above a threshold. ReD_s.aln and
ReD_n10 (red) used OrthoReD, OID (blue) used OrthologID, and ODB (green) used OrthoDB to generate the output
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compositions of the two datasets: While FLY only in-
cluded species from the same genus except for the out-
group, PLANT included species from across seven
orders. With greater degree of divergence among the in-
cluded species, it is expected that different orthology
prediction tools will become less consistent. Further-
more, plants are particularly known for their high rate of
gene duplication [34], which leads to gene families with
relatively high sequence similarity among the members,
and makes orthology prediction more difficult. This
phenomenon was indicated in our tests by a relatively
large fraction of predicted orthologs with a low e-value
ranking (Table 3).

Optimization of n
Optimization of the value of n requires balancing loss of
efficiency (n too high) with the risk of false negatives in
orthology prediction (n too low). As found in the out-
puts of ReD_n5–10 on PLANT, lower n resulted in
fewer discoveries of orthologs along with lower similarity
to OID suggesting lower accuracy. On the other hand,

increasing n resulted in increased runtime, and can re-
sult in less accurate MSA, which leads to less accurate
orthology prediction.
We would expect that the exclusion of true orthologs

by reducing the value of n could lead to false negatives.
At the same time, reducing the value of n could also
alter the topology of the resulting tree, which might lead
to false positives. To address the impact of false positives
relative to the impact of false negatives due to lowering
the value of n, we counted the number of false positives/
negative orthologous gene predictions of ReD_n5–10
against OID on PLANT. We found that, as n decreases,
the number of false negatives increased whereas false
positives decreased (Additional file 2: Table S2). Thus
the primary risk of lowering the value of n is false nega-
tives rather than false positives.
In the cases of ReD_s.aln in the FLY, ReD_n10 in the

PLANT, and ReD_n4 in the ACTINO, the lowest rank
only represented <1%. Since it is unlikely that further in-
creasing n will result in a major improvement in finding
otherwise missed orthologs 4, 10, and 4 would be the

Fig. 3 Total CPU time for each condition of OrthoReD. Each box indicates the total CPU time incurred by different conditions of OrthoReD.
The line in the box indicates the median, upper and the lower ends of the box indicate the upper and the lower quartiles. The minimum
runtime is indicated by the lowest point on the line extended below the box (lowest quartile). The maximum runtime is not indicated

Table 5 The degree of overlap among the predicted orthologous groups under each condition

Number of genes Number of merged groups % Identical to Orthologous
group1

% Genes rescued2

FLY_ReD_s.aln 13,972 12,923 95.1% 89.0%

PLANT_ReD_n10 27,412 16,531 90.4% 68.4%

ACTINO_ReD_n4 8210 6933 92.7% 82.1%
1Fraction of merged groups that are identical to at least one orthologous group predicted from one gene of interest
2Fraction of genes of interest that belonged to the merged groups in C
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optimal settings for n in the FLY, the PLANT, and the
ACTINO respectively.
The difference in optimal n among the different data-

sets was consistent with the different degrees of preva-
lence of gene duplications among the organisms
included in the dataset. ACTINO with bacterial species
had the optimal n of 4 and >92% of the predicted ortho-
logs ranked 1, and FLY with only closely related species
also had the optimal n of 4 and >93% of the predicted
orthologs ranked 1. On the other hand, PLANT, the
dataset with the highest expected degree of gene dupli-
cation [34], had the largest optimum n.

Impact of adjusting BLASTP, MSA, and n on accuracy and
time
The similarity search parameters (NCBI BLAST, AB
BLAST, and SWIPE) can have a significant effect on
runtime particularly on larger datasets. In OrthoReD,
similarity search is implemented as the initial prelimin-
ary screening, and as the basis for MCL clustering. In
theory, neither of these processes is particularly sensitive
to the absolute values of the similarity searches, and our
results confirmed this. We found that the average %
identity of ReD_n5, ReD_AB, and ReD_SW with respect
to OrthologID ranged only by 1.8% (58.7–60.5%).
Considering the 22.2% shorter runtime of ReD_SW
compared to ReD_n5, the advantage of using SWIPE as
the similarity search tool becomes more significant as
the dataset becomes larger.
On the other hand, adjustments on the MAFFT

parameters only had a marginal effect, as shown by the
observation that ReD_s.aln and ReD_f.aln had very simi-
lar outputs and runtimes. The output of ReD_f.aln was
slightly (0.2% average % identity) more similar to both
OID and ODB than ReD_s.aln, but this might occur be-
cause OrthologID uses speed-oriented MAFFT for align-
ing over 500 sequences at once. In any case, since the
accuracy-oriented parameter setting is only recom-
mended with <200 sequences, it is unlikely that using
speed-oriented parameter settings of ReD_f.aln in all
cases will be preferred over ReD_s.aln under any
scenario.

Overlap between orthologous groups
Typically, the orthologous groups predicted by a single
execution of an all-at-once approach tool are mutually
exclusive. On the other hand, running OrthoReD on
large numbers of genes within a dataset can result in
non-mutually exclusive orthologous groups as we see
based on the fact that the number of non-overlapping
merged groups is substantially fewer than the number of
orthologous groups predicted by OrthoReD (Table 5).
This difference however does not necessarily reflect a
difference in the quality of orthology predictions

between an all-at-once approach and a one-at-a-time
approach.
The fact that a given gene can be found in multiple

orthologous groups by searching from a different gene
of interest as a starting point by OrthoReD indicates that
the phylogenetic signal is not sufficiently strong to elim-
inate all but one possibility. In such a case, separating all
genes into mutually exclusive orthologous groups by all-
at-once approach tools could give the false sense of con-
fidence in its prediction.

Future directions
We found that while the median CPU time for
ReD_n4 for the 100-species containing ACTINO was
only marginally longer than ReD_n10 for PLANT,
containing 13 species, the upper quartile was longer
in ReD_n4, reaching >70 min. This suggests that as
the number of species included in the dataset is
increased, the time becomes longer. One way to
maintain the efficiency of OrthoReD would be to in-
corporate additional screening methods to reduce the
number of sequences entering into the tree-building
step. For example, HMMER [35] could be imple-
mented between steps 4 and 5 as it is used in [36] to
generate a gene family profile. HMMER, given a MSA
and a dataset, will first make a hidden Markov model
(HMM) based on the MSA, and then searches for se-
quences within the dataset that fit the HMM. Cur-
rently, the parameter for MCL we use is as relaxed as
possible to minimize the risk of false negatives. Im-
plementation of HMMER after MCL should allow for
a more stringent parameter setting for MCL, giving a
smaller cluster of interest and subsequently rescuing
some genes based on the HMM. However it must be
noted that HMMER searches are most effective at
detecting sequences with conserved regions such as
functional domains. So upon the implementation of
HMMER into OrthoReD, the risk of false negatives
and the benefit of increased speed need to be
balanced.

Conclusions
Without requiring a high-performance computing
cluster, OrthoReD was able to generate results com-
parable to other published orthology prediction tools
with animal (FLY), plant (PLANT), and bacterial
(ACTINO) datasets that ranged in species relatedness,
prevalence of gene duplication, and number of
species.
Collecting orthologs is a step required in phylogenetic

analyses of gene sequences. A strategy commonly
employed in functional genetics is to apply orthology
prediction in silico to identify candidates for functionally
equivalent genes followed by in vivo confirmation (e.g.
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Isaacs et al. [37]). High-throughput sequencing has
already become widely available, and genetic manipula-
tion methods (e.g. Jiang et al. [38]) even for non-model
organisms, are being established rapidly. As such, there
is now an increasing need for identifying orthologs and/
or functional equivalents across the spectrum of
organisms.
Many of the automated orthology prediction tools

currently available are designed to analyze the entire
dataset at once. While such tools are powerful and
useful for orthology predictions, for example, of an
entire genome/transcriptome, large-scale analysis has
some limitations for studying a more focused subset
of the genome: time is spent predicting orthologies of
genes that are not a part of the subset of interest.
Because orthology prediction is dataset-specific, loss
in time can be exacerbated each time any sequence
included in the dataset is updated, requiring the
orthology predictions to be repeated.
In addition to accuracy as an orthology prediction tool,

OrthoReD offers flexibility: depending on the specific ex-
perimental design, OrthoReD can be executed on a sin-
gle gene of interest, on a subset of genes in a genome, or
on all the genes in the genome. This flexibility allowing
the user to only analyze the genes of interest, in turn, re-
ducing the time for analysis. Moreover, since OrthoReD
does not require an often costly high-performance com-
puting cluster, orthology predictions for focused portions
of high-throughput sequencing data are accessible to a
wide range of researchers.
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