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SOME NUCLEAR PROPERTIES 

OF Bi206, Tl200, Tl201, Tl202, Inl09, InllOm, AND Inlll 

. .206 . 200 201 202 
The Nuclear Spms of B1 , Tl , Tl and Tl . 

The Nuclear Spins, Magnetic Dipole, and Electric Quadrupole, 

Interaction Constants of Inl09, InllOm and In 111 . 

Lawrence Louis Marino 

Lawrence Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

April 6, 1959 

ABSTRACT 

The atomic-beam magnetic-resonance flop-in technique using 

radioactive detection has been employed to measure the nuclear spins 

f B . 206 Tl200 Tl20 1 Tl202 I I 09 r· 11Om d I Ill I dd't· o 1 , , , , n , n , an n . n a 1 lL.on, 

the magnetic -dipole and electric -quadrupole interaction constants of 
1 0 9 11 Om 111 . . 

In , In , and In have been determ1ned. The s1gns of the 
110m . 

In constants have not been determ1ned. Results are: 

Isotope t 1/2 

Bi206 6.4d 

T 1200 26.1 hr 

Tl201 3.0 d 

Tl202 12.5 d 

Inl09 4.3hr 

In 110m 5.0hr 

Inlll 2.8d 

I 

6 

2 

I/2 

2 

9/2 

7 

9/2 

a 
(Me/sec) 

242.38(56) 

291.4(1.2) 

-301.4(1.3) 

241. 78(30) 

b 
(Me/ sec) 

462.1 (6.4) 

-112(16) for gi > 0 · 

120(17) for gi < 0 

455. 3(3.4) 
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Isotope production took place in the Crocker 60-inch cyclotron. 

Bismuth was prepared by bombarding lead with d~uterons. Thallium 

was, prepared by bombarding mercury with deuterons. Indium was 

produced by exposing silver to alpha particles. 

~hemical separation was employed in all cases to produce a 

satisfactory atomic beam. Signals were detected by collecting the 

radioactive atoms on sulfur-coated brass "buttons." These were 

then placed in scintillation counters containing sodium iodide (thallium­

activated) crystals. The counters were adjusted to be most sensitive 

. to the K·x-ray emitted following electron capture. 

The theory, experimental procedure, and data reduction are 

presented. 

• 
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I. THEORY 

The techniques of atomic beams, paramagnetic resonance, _and 

microwave spectroscopy as applied to the interaction of the nucl~us 

with the field due to the extra nuclear matter rest upon the following 
. d . 1 assumptions an propertles. 

1. The nucleus has a charge Ze and radius R = r 
0

A l/
3 

. 

2. Odd..;A nuclei obey Fermi-Dirac statistics (the sign of the 

wave function of a molecule is reversed if two identical nuclei in the 

molecule are interchanged). 

3. Even-A nuclei obey Einstein-Bose statistics. 

4. The nucleus has a spin angular momentum M =n r. 
5. The nucleus has a magnetic moment defined by 

= ; /fLo and a gyromagnetic ratio defined by 1 'YI = ~ rfti_. Also 

fl.I = ~J.rr/r. 
6. 

moments. 

Many nuclei have higher-ordered electric and magnetic 

The highest-ordered moment possible to observe is 2~, 
where k = 21 or 2J, whichever is smaller. From parity considerations, 

odd-k orders are ruled out for electric multipoles and even-k.orders 

are ruled out for magnetic multipoles. 

A. Magnetic Dipole Interactions 

with Internal and External Magnetic Fields 

The Hamiltonian is written 

-where BJ is the magnetic field at the nucleus due to the external 

electrons, 
-+ 
H 0 is the external magnetic field, 

-+ --.. 
-fl. I· BJ is the interaction energy of the nucleus with the 

magnetic field at the nucleus due to!the electrons, 

- -+ -fl. J. H 0 is the interaction energy of the electronic moment 

with the external: field, and 

-+ -

( 1) 

- fJ. I· H 0 is the interaction energy of the nuclear moment with 

the external field. 
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The minus signs are chosen so that the state of lowest energy 

occurs for the field and moment aligned parallel to ea<;:h other. 

This equation may be rewritten 

(2) 

where ha = and a is called the interaction constant. ..... -I J. J 

B. Weak External Field -.... -If H
0 

is small, the I · J · term in Eq. (2) predominates. I -and J are tightly coupled to form a resultant angular momentum 
......_,. -+ ...... -+ 

called F. ·In this case only the components of I· and J along F are 

effective. in their precession about the external field, since the com--ponents perpendicular to F average to 0 (Fig. 1). We may therefore 

. write Eq. (2) as 

~~hal: 1- gJ~o (1~ F){ff·-Ho)- g jJ. (f: :F)(F. lfo) (3) 

. \IFI \!Fl I 
0 

IFI IFI 

In the F, m representation (where m is the projection of F along the 

field direction), W(F, m) = ( Fm ldll Fm), and since 

.-.. ......,. ...... 
·F =I + J, 

I2= F 2 + 32 - 21. ff. 

J2= F2 + I 2 - 2i . . ff, 

F
2 

= I
2 + J 2 + zi · 1. 

Equation (3) becomes . 

. 2 

(4) 

(

F(F+ 1)- I(I+ 1) ~ J(J+ l)J 
W = ha 

~F(F+ I)+ J(J+ 1)- I(I+ I~ gJ + {F(F+·I)H(H I) -J(J +I)} gJ 

(5) 

. .. 
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MU-17220 

- -Fig. 1. Weak-field coupling of I and J. 
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Setting 

f
F(F + 1) + J(J + 1) - I(I + 1) }+ { F(F + 1) + I{I + 1)- J(J + 1)} 

gF = gJ 2F(F+ I) gl. 2F(F+ 1) , 
. (6) 

we have 

W _ h {F(F+ 1)- I(I+ 1)-J.(J+ 1)} H 
· · - a 2 - g FfJ.o Om4 (7) 

At H 0 = 0 we have 

6.W = h/.lv = W(F) - W(F- 1) = haF. (8) 

This equation is known as the interval rule and 6.v as .the hyperfine­

structure separation, i.e., the separation of two adjacent F levels at 

vanishing external magnetic field. 

G.· Strong External Field 
- -+ If H

0 
is large, I and J are decoupled and separately precess 

about H 0 .. F is no longer a.good quantum number, but the projections 
-+ -of I and J {denoted by mi and m J respectively) along the field direction 

are good quantum numbers (Fig. 2). 

The energy is then given approximately by 

where use has been made in the first term of the fact that only I and 
z 

J have nonzero diagonal matrix elements. z 

D. Intermediate Fields 

At intermediate fields in general, one cannot select an obvious 

representation in which the energy matrix is diagonaL If a representa­

tion can be found in which the off-diagonal terms are small compared 

with the diagonal terms, a perturbation technique may be employed. 

If such a representation cannot be found, then all elements of the 

matrix must be calculated and the secular equation solved in order to 

compute the energy levels. In.the latter method, solutions may be ob- {) 

tained accurately by high-speed computer techniques. All three 

methods of solution are illustrated. 
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MU-17221 

--+ --+ 
Fig. 2. Strong-~ield coupling of I and J. 
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Exact Solution 

For the case of J = 1/2. exact solutions of the energy matrix 

are possible. The Hamiltonian may be placed in the form 

d-e= -di z - c 

where 

LI=I-tii, 
X y 

L -J -tiJ, 
J- . X y 

( 10) 

(11} 

L'~ = J - iJ 
J X y 

Since m and H commute, the only nonzero matrix elements that 

occur in the energy matrix are those having the same m. The energy 

matrix is given in Fig. 3, where the ml' m J representation is used 

to order the elements. Appendix I contains some properties of matrices 

of this type. The matrix elements (mr m3 J~_lm'r m•3 ) may be 

calculated by using the relations 

(I, m 1 - 1 l L'~ I I, mi) = IT I -t mi )(I - mi-t 1 d 1/7 , 

(I, mi + 1 J LI J I, m 1) = [(I- mi) (I+ m 1 + 1 ~ 1/'f, 

(I. mi J Iz J I, mi ) 

and similarly for J. 

Next the matrix is diagonalized and the Breit-Rabi equation 

results after some manipulation: 

..6.W t:::..W 
2(2~-t 1) ± 2. ( 

4m 2)
1
/

2 

1 + 21 -t 1 X +X ' 

,where 

x= 

The positive square root in Eq. (13) is associated with the energy. 

level designated by F =I-t 1/2, and 'the negative square root with the 

energy level designated by F =I- 1/2. 

( 12) 

(13) 
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1.------.--- --- --- --- --
!, J/Z I I, J/Z 

m+J/Z, -J/ZJm+J/Z, -J/Z m-J/Z,J/ZJm+J/Z, -J/Z -- +--
m+J/Z, -J/ZJm-J/Z, J/Z m-J/Z,J/ZJm-J/Z,J/Z 

m+J/Z, -J/Z Jm+J/Z, -J/Z m-J/Z, J/Z Jm+J/Z, -J/Z 
---+---

m+l/Z, -J/Z Jm-J/Z, J/Z m-J/Z, J/Z Jm-J/Z, J/Z 

-1. -J/Z J-l, -J/Z -- --- --- -- - - ~----___, 

MU-17156 

Fig. :· Energy matrix for J = 1/2 in the m 1mJ representa­
hon. 

The terms are (mr mJ I HI m 1' mJ') . 



-12-

E. Some Properties of the Breit-Rabi Equation 

Weak-Field Limit 

It may be demonstrated that this equation gives the weak-field 

expression, Eq. (5) with F =I± l/2, by placing it in the form 

_ ha . 2 1/2 
W- - 4 - giJ.LomH0 ±(A+ BH0 +CH0 ) , 

where 

A =(~a)Z (I+ 1/2/, 
B= 

ham 
2 J.Lo(gi-gJ), 

and c = 
J.Lo

2 
2 

4 (gi- gJ) • 

and expanding the radical, retaining only first-order terms in H
0

. 

Strong-Field Limit 

( 14) 

Similarly it may be shown that the Breit-Rabi equation gives 

the strong-field expression, Eq. (9), by placing it in the form 

w =- ¥-- gi~O(mi+mJ)Ho±HofA+B(~J+ c~~JJ 1/2, 

( 15): 

where 

and · 

2 
J.Lo 

A= 4 

c = (
ha\ 2 2 2/ , (I+ 1/2) . . . . ··. 

Expanding the 

results in Eq. 

radical and retaining only first-ord~r terms. in(~ ) 

(9) with m
3 

= ± 1/2. 0 

' 

' 
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Energy-Level Diagram for I = 1/2, J = 1/2 

Some interesting information can be extracted from the Breit­

Rabi equation by forming 

d{W/ ,6.. W) mgi I 4m 2 -1/2 4m 
dx =1--) ±4(l+2I+l x+x) (2I+l + 2x). gi- gJ 

( 16) 

Setting Eq. (16) equal to zero, one can observe that form= 0, a min­

imum occurs at x = 0. Also 

b..WW = + 1/4 for F = 1/2 + 1/2 = !, 

b.~ =- 3/4for F = 1/2-1/2 = 0. 

Linearity of the Highest and Lowest m Levels 

For m = ±I we have 

= ± ~~2 - ~ ) X+ 1/4. 
\ gi- gJ 

It is apparent that for these levels the energies are linear in the 

magnetic field with slopes of ± {1/2 - _gi ) . This is expected 

(17) 

gi-gJ 
since no other levels of the same m exist to perturb the highest and 

lowest levels. 

Slopes of the Levels at Strong Fields 

In the Breit -Rabi diagram, where W /b. W is plotted against x, 

it can be shown that at strong field·s the slopes of the levels are equal 
-+ 

to m J' the projection of J along the field direction. 

From the strong-field Eq. (9), the following quantity may be 

formed: 

( 18) 

since H
0 

is large and '::' 2000, 

d{W I ,6.. W) 
dx -::- mJ. ( 19) 
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It may also be cqncluded from Eq. (7) that levels qf the same 

F have. equal frequency spacings at low field-. All the above features 

are apparent in the plot of the Breit-Rabi equation for I =. 1/2 = J in 

Fig. 4. 

F. Induced Transitions · 

Under the appropriate conditions, transitions between levels 

are possible. For reasons to be explained later, transition's "between 

the levels m = ·-I+ 1/2 and m = -I - 1/2, F = I+ J are very important. 

Placing these values in the Breit-Rabi Eq. (13) and subtracting the 

two energies results in the expression 

(20) 

where v is the frequency of the transition between the leve.ls noted. 

It is possible: to derive ~n alternate form for the frequency in 

terms of a series expansion. This is achieved by expanding the 

radical in the Breit-Rabi equation for each of the levels of interest and 

subtracting. The result is to third order in field: 

hv 

where 

f = 

At low fields, this becomes 

f2 + 21(21-1) 
(h.6.v )2 

1.4 gJ 

(21+ 1) 

(2!) 

(22) 

• 
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w 
f).W 

2.0 

F = I 

-2.0 0 

-15-

M 

1.0 
X 

ENERGY LEVELS 

t 
m =.!.. 

J 2 

2.0 

I =j_ J=j_ 2 I 2 

Fig. 4. Breit-Rabi drawing. 

3.0 

MU-12686 
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For two isotopes having J = l/2. two conclusions may be 

drawn from Eq. (22). 

(a) 
(2J2 + l) 

(211 + l) 
(23) 

i. e. at the same magnetic field, the lower spin will be at the higher 

frequency, assuming the g.Js are comparable. 

(b) At the same frequency, the lower spin will be at the lower 

field, again assuming g;s are comparable. 

H 1 gJ
2 

(21 1 + 1) 

H 2 -gJ
1 

(212 +1) 
(24} 

Much the same results occur fo:i.' J > 1/2. For this case, the 

energies at low fields are given by Eq. (7). If a transition among 

levels characterized by the same F value and .6.m = ± 1 is assumed, 

this equation becomes 

f.l.o 
v = gF -,:;,--- H . (25) 

For J = 3/2 usually transitions occurring in the two largest F levels 

are of interest. 

From Eq. (6) 

+ 3 21 
gF = gJ 21 + 3 + g1 21 + 3 • where the+ stands for F =I+ J; 

- 21+ 9 
g F = g J (~21,...+-:--:;-1 ")('""2...-1 +7-.;"3-r) 

F=1+J-l 

2(21 2 + 31- 3) 
+ g1 (21+ 1)(21+ 3) where the - stands for 

Bearing in mind that g1 << gJ' one may draw the same conclusions 

here as were drawn from Eqs. (23) and (24). 

(26) 

.. 
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G. Perturbation Calculations 

In the case of J = 3/2, I > 1/2, exact solutions of the secular 

equation do not exist in general. This plroblem may be attacked by 

utilizing a perturbation technique. A treatment up to and including 

second order was employed with some of the isotopes investigated. 

The Hamiltonian used is 

_ ... _... [3{i. J) 2 
+ 3/2(1· 1>- r

2 
1

2
] _ -- ... 1 -~-hal: 3 +hb 2I(2I-l)J(2J-l) - fLogJJ· Ho-fLogr ·Ho, 

(27) 

where the second term represents the interaction of the nucleus with 

the gradient of the electric field at the nucleus due to the electrons. 

It is called the electric quadrupole interaction energy. 

Equation (27) may be split into two parts: A zero.,.field part 

= df0 and a p~rturbing portion = '){•: 

~=deo+Je•, 

where 
o..o --+-- [3(i·J)

2
+3/2(i·J)-I

2
J

2
] 

d\..0 =hal· J +hb 21(21-1) J(2J-l) 

(28) 

and 

Choosing the F, m representation to work in, one can write the 

energy as 

0 1 2 
W = WFm + W'Fm + WFm' 

where the superscripts refer to the order of the perturbation, and 

= (F,m l~0 jF,m), 

= (F,mjjt jF,m ), 

::: 
(F, mj;}e' l F', m') (F', m' l '-t' l F, m) 

0 0 
WFm - W F'm' F,m 

(29) 
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The prime on the summation sign signifies that states of 

F' m' = Fm are not permitted in the sum. Were they to occur, the 

denominator would vanish,. making the second-order perturbing energy 

infinite. A similar consideration results in the "no-m-crossing rule, n 

which states. that levels of the same m cannot cross. ·Furthermore, 

the matriX elementS in W~m are nOnzerO Only for ;ril : m I and 

F'=F±l. 

Therefore the sum reduces to only two parts: 
. ' 

W2 _ (Fl~' l F+ 1) (F+ lj'J.e.' l F) + 
Fm 0 0 

WF WF+l 

(30) 

For J = 3/2 and I> J, four F levels are possible. 

They are designated as followS!: 

W(4) F =I+ 3/2, 

W(3) F =I+ 1/2, (31) 
W(2) F =I- 1/2. 

W(l) F =I- 3/4., 

0 1 2 To compute W , W , and W , where the Fm subscripts have 

been omitted, the following relations are required: 

[ 

2 2 J l/2 
(Fll· H lF-1)= -H (F+I+J+l){HJ+l-FHF-H-J)(F+J-I)(F -m) • 
· 0 4·F2 (2F-1)(2F+l) 

(Fll·H jF+l) = -H (F+I+J+2)(l+J-F)(F+I-J+l)(F+J-Hl){(F+I)
2
-m

2
} 

r j 
1/2 

O 4(F+l) 2 (2F+l)(2F+3} 

(32) 

and Eq. (4). 
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Pertinent results are: 

W0( 3) = ha(I.:. 3) _. hb(I+ 3) 
2 4! 

W0( 2 ) =-ha(I+ 4) _ hb(2I+ 3)(!-: 2) 
2 41(21- 1) 

Wo(l) = _ 3(1+ I) ha + (2!+ 3)(1+ l) hb; 
2 4!(2!- l) 

w 0 (4)- w 0 (3) 
=.6v43= 

(21 + 3) (a+ 2~ ) • h 2 

w 0 (3)- w 0 (2) (2! + 1) [ a - 2i(~1 - l ) ] = .6v = h 32 2 

w 0
(2)- w 0

(I) = L'. v = .!. [ (21 - l ) a - ( 21 + 3) b J 
h 21 2 2! 

W(4)~i W(4)m=-I-t 
h 

+ 3 . fJ.O 
H v = - 2!+3 

P'· -
oO· "'J h 

+ + 
- v + ov ' oO 

+ 2!2 

where 

(v~2 
and OV = 3 (I+ l) .6v 43 

W( 3)m=-:I+3/2W( 3)m=-I+l/2 = 
h 

v + ov , where,. 
oO 

(33) 

1 
(34) 

; 

(35) 

v = _(2I+9)gJ fJ.O H ar11.ov- = 2(!-l)(v;,)~ j_ 3I(2Hl)
2 

+ (2!-1)(2!+3)
3
]. 

oe (2I+3)(2I+l)h (1+1)(2!+9) L .6v43 I .6v32 

The results of this perturbation calculation are generally useful 

for regions immediately above that covered by the low-field expressions. 

The frequencies predicted for the two transitions rapidly become in­

accurate because of the effect of neglecting the higher-ordered terms. 

For two isotopes studied, it was observed that at a frequency of about 

100 Me/ sec the perturbation calculation to second order predicted a 
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frequency 1 Me/ sec lower than the more exart method outlined below. 

H. Numerical Methods 

Two programs utilizing the IBM 653 high-speed computer were 

constructed by Professor W. A. Nierenberg in order to permit more 

accurate analysis of experimental results. The following information 

is abstracted from Professor Nierenberg's program guides. 
2 

The first program discussed computes improved values of a 

and_ b (see Eq. (27}}, the uncertainties in each, the X 2 
of fit, and the 

quantity _(X1 - Xz}- f, where x1 - Xz is computed by the program and f 

is the input frequency. The input data are the frequency f of a transi­

tion observed; the magnetic field H' = (-gJ+ gi} ~O H; m 1, m 2; the 

energy levels x 1, X
2

; and the statistical weight 
1 

w - ¥ Further ..6.f is tl;le uncertainty of the 
. - (..6.f)2+ (~~} (..6.H)2. 

resonance peak, ~~ is the variation of frequency with magnetic 

field (estimated from the second program to be. described), and ..6.H 

is the estimated uncertainty of the magnetic field, computed from the 

estimated uncertainty in .the calibration frequency (to be described 

later). 

The Hamiltonian used is a slightly different form of Eq. (27): 

'Ji= al· j + b 3(I~J) 2 +3/2(I·J)-I(I+l)J(J+l) + H'J _ gif-10 
2I(2I-l) J(2J-l) - z h 

Hm. 

{36) 

The program does not include the gi term. It is a correction 

to be considered separately. 

The following relations already exhibited must be used to com­

pute the matrix elements involved: 

(F, mLI·JI F, m) : :: J (see Eq. (4) for the explicit form), 
(37} 

(see Eq. (32} for the explicit form). 
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One further relation is required: 

(F, mj Ql F, m) = {3/4 [ F(F+l)- I(I+l)- J(J+l)] [ F(F+l)- I(I+l)- J(J+l) + 1] 

1 
- I(I+l)J(J+l)} 2I(2I-l)J(2J-l) - bp' (38 ) 

where Q is written for the coefficient of b in Eq. (36 ). 

As an example, consider the case in which J = 3/2 and I is 

arbitrary. The matrix involved is shown in Fig. 5, where submatrices 

are illustrated only up to the point of repetition. If, in addition, we 

specify I, the entire matrix may be drawn. Figure 6 illustrates the 

case for I = 5/2, J = 3/2. For further facts about these matrices, see 

Appendix I. 

From Eqs. (36), (37), and (38), we observe that the diagonal 

elements of the matrix may be written 

A = a a + b b + H' c , 
p p p p 

and the elements one off the diagonal (the only nonvanishing ones), 

2 2 
E = e = (H') d . 

p p p 

These quantities were evaluated for J = 3/2, I arbitrary, and are 

listed below: 

a4 = 3/2 I 

a3 = 1/2 (I- 3) 

a2= -1/2 (I+4) 

al = -3/2 (I+ l) 

b4 = l/4 

b -- (I+3) 
3- ~ 

b _ -(2I+3)(I-2) 
2 - 4I(2I-l) 

b _ (I+ l ) ( 21+ 3) 
l- 4I (2I-l) 

(39) 

(40) 

(41) 

(42) 
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"m I+ 3/2 I+ 1/2 I-1/2 I- 3/2 

m' ~ I+ 3/2 I + 1/2 I I + 3/2 I - 1/2 I I+ 1/2 I I + 3/2 I - 3/2 I I - 1/2 I I+ l/2 I I + 3/2 

I 
I+ 3/2, I+ :¥2 I+:r' + 

:¥2 
I 
+ 

I+ I/ ~· 
I 
+ 

:¥2 
I 

1{2 

I-1/2 
f-'r 

+ 
1/2 

f-'1 
~2 . 
I -
:Yz 

7 
~ I-:¥2 

I 
+ 

1/2 
f-

I 
+ 
:¥2 

I+J/2, I+l/2 I 1+:¥2, I+l/2 

--+--
r+l/2, r+:¥2 I I+:¥2, r+:¥2 

I-1/2, I-1/zl I+ 1/2, I-1/2 I 
f---t- +--
I-J/2, I+J/2

1 

I+J/2, I+J/2 I+:¥2, I+J/2 -- ±-I r+J/2, r+:¥2 I r+:¥2, r+:¥2 

I-:¥2, I-:r'2j I-1/2, I-:¥21 1 

f----t--t-+--
I-:¥2, I-J/2 I-J/2, I-J/2 I+J/2, I-J/2 

f-- +-+--+-
I-J/2, I+J/2 I+J/2; I+J/2

1 

I+:r'2, I+J/2 f--+--t- -
I I I+J/2, r+:¥2 I r+:¥2, I+:¥2 

MU-17152 

Fig. 5. Energy matrix for J = 3/2, I arbitrary. 

Elements are (F,m IHI F'm') , where F and F' 
are indicated in the submatrices. Only submatrices up 
to the point of repetition are presented. 

• 
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3 2 I T 0 I -I I -2 I -3 I -4 
3 I 4 2 I 3 I 4 I I I 2 I 3 I 4 I I I 2 I 3 I 4 I I 2 3 4 2 3 I 4 3 4 4 

~lfW 3 4 4 4 ,. 
~~3 ~ Jj"T-.3f -r:; 
- J3 41 4""' 

I I I 2 r_l I 
ti21 2 2 1 3 2T_= 

123133143 
1- T T3 4T44 

I II 2 I 1 I 
j_zr22132_1_~ 
- .L? .ll_3 l.L ~ 

1 j3 4j4 4 

J-l_II2II _j__ 
J-1 ill li_3 u. -
1- 1231331~],.. 

T )34)44 

2 21 3 21 
ti3t3 3143 

13 4l 4 4 
33_1_4-H 

f-J 4"'j'4 4 
144 

MU-17153 

Fig. 6. Energy matrix for I = 5/2, J = 3/2 in the Fm 
representation. F values are indicated in the sub­
matrices.-
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3 
m 

(21+9) 
c3 = (21+1) (21+3) m •· 

c = 2 
- (21-7) 
( 21 - 1 ) ( 21+ 1 ) 

m 
(43) 

[ 

2 1 

d = 3! 1 ~ 4m j 
3 4 (It 1 ) ( 2i +3) 2 

d = ( 21- 1 ) ( 21+ 3) I 1 _ .4m
2 J 

2 4I(I+l) l (2H-l) 2 

3(!+1) [ 4m
2 J 

d 1 = 4I l - ( 2I- I ) 2 

(44) 

3 1 3 
A 4 = 2 I a + 4 b + ( 21+ 3) H' m 

(I 3) (1+3) (2!+9) I 

A3 = T a - -:rr-h + (21+1)(2!+3) H m 

(45) 
(1+4) (21+3)(1-2) (21·~7) 1 

A2 =--2- a- 41{21-1) b- (21-1)(21+1) H m 

3 (I+ 1 ){2!+3) 3 H' 
A1 =- 2 (1+ 1 ) a+ 4I(2I-l) b -(21-1) m 

1·31 4m · · (I ' [' 2 ] } 1/2 ' 
e 3 = ~ := ·14 (It 1) 1 ~ ( 21+ 3) 2. . .. H' 

e = «_. = {(2I-1)(2l+3). ·[ 1 _ 4m
2 J} 

2 2 4I (I+ 1) ' ( 21+ 1 ) 2 ' 

1/2 
H' (46) 

= .JE: = f3 (I+ 1) l1 4m2 ]} 1/ 2 
e 1 . 1 4I L - ( 21-1) 2 

H' 
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The positions of the elements in the largest submatrix are 

shown in Fig. 7, where the meanings of the subscripts are indicated 

by the same ordering as in Figs. 5 and 6. In addition, the eigenvalue 

X that diagonalize s the matrix has been included. 

The determinant D •. is defined as D . = I H - lX I, where H is n n n n 
the submatrix in question. It may be evaluated by the method of co-

factors: 

A -X l el 0 A
1 

-X el 

D4 = (A4 - X) el A
2

- X ez -e3 el A
2
-X 

0 ez A
3
-X 0 0 

In general, 

D = (A -X) D l - E 1D z• p p p- p- p-

where n
0 

= 1, E
0 

= 0 and D _1 = 0. 

The problem then is to solve for X from the equation 

D (a, b,X) = 0. 
p 

0 

ez ' 
(47) 

e3 

(48) 

{49) 

(50) 

(51) 

Newton's method is used. Initial values of a and b must be given, 

plus trial values of X (to aid in the root identification). An improved 

value of X is given by 

where oX is 

X' =X- oX, 

computed from 

D (a, b, X) = 
p 

aD (a, b, X) 
p 

ax 

(52) 

ox (53) 



-26-

e3 A4-X 
I I 

MU-17222 

Fig. 7. The largest submatrix for J = 3/2. 
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an 
and 

p 
--ax- is obtained from Eq. (50), as follows: 

an an 
p-1 

an 
p-2 p = (A -X) E D (54} ax p ax p-1 ax p-1" 

This procedure is repeated until the improved value of X approaches 

the exact value within the desired accuracy (nominally 0. 001 Me/ sec.). 

Once the energy of each level desired has been computed to the desired 

accuracy, the second part of the problem is undertaken. The task then 

is to find the minimum of the function 

N= L {fi - (X i - X i>} 2 . 1 2 
1 

(55) 

where i is the frequency observed at the ith observation. 

The procedure chosen is a quadratic method for minimizing a 

function of n variables. 
3 

In its general form, the function to be 

minimized is 

m 

f = 2: 
a=l 

where p is the statistical weight of the ath measure M . If the x. a a 1 

are trial values, then the next improved trial values are 

x. = x. - dx., 
1 1 1 

where the dx. are solutions of the linear equations; 
1 

. a 2f 
where the ox. ax. 

1 J 

n 

L 
i= 1 

dx. = 
1 

af 
ax. 

J 

form a matrix G of which the elements are 

G .. = 
1J 

(56) 

(57) 

(58) 

(59) 
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The standard 'deviation of x. 1 about its minimum value x.0 is 
1 1 

(60) 

where ~ .. is the cofactor of G ... lJ 1J This method is employed in prefer-

ence to .the more usual linear method since it is capable of convergence 

over a wide range of parameters, whereas the latter method does not 

guarantee convergence in a.ll cases. 

Applying Eqs. (57), (58), and (59) to Eq. (55), we arrive at 

the expressions 

a! - a ·•· o a, 

} b' = b 0 b, 

where oa and ob are given from the solution of 

2 -
a N oa, + 

a baa 

where 
2N 

a ·'---2-
a a 

G= 
a 2N 
a baa 

a~ 
ab2 

a2N 

aaab 

2 
a N. 
ab

2 

ob = aN 
aa ' 

aN ob ... 
8b' 

The derivatives appearing in Eq. (62) may be placed in the form 

(61) 

(62) 

(63) 

(64) 

•· 

.• 
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aN L (f i - X i + X i) ~ 
ax i axzi) 

= 2 
1 

+ aa . 1 2 aa a a 
1 

aN L (fi-X i + X i) 
( ax i ax i ) = 2 
- 1 + 2 
8b ab ab . 1 2 

1 

( 

2 i 2 i) a~ - 2 \ [(fi xi x i) ;.. a x1 a x2 
ma- ~ ' - 1 + 2 abaa + abaa + 

= aaab 

wi ' 

w. 
1 

(65) 

(66) 

w. 
1 

(67) 

ax2i )2j w. 

ab 
1 

(68) 

(69) 

The derivatives on the right-hand side of Eqs, (65) through (69) are 

written as 

ax 
a a 

(7 0) 



ax 
ab 

axaa 

ax 

a a ------------
an 

n 

ax 

ax 

axab ab - - ----------
an 

n 

ax 

ax 

aaab axab a a -- = 
aaab an 

.n 

ax 
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an 
n 

lfb" 
an 
ax 

+ 

+ 

+ 

n 

an 
n 

a a 

an 
n 

ab 

(7 1) 

(7 2) 

(73} 

. (7 4) 

The quantities on the right-hand side of Eqs. (70) through (74) may be 

computed from the matrix already treated in the first part of the 

program in the following way: 

.. 
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an an 
p p-1 

- = (A - X) ---=--- - E 
ax P ax P- 1 

an 
2 p- - D . 

p-1" (7 5} 
ax 

2 
a D 

2 
an 1 -~p-~ - 2 p- . 

ax
2 

ax 
. (76) 

an an 
1 _P = (A -X) p- ..- E 

aa p aa p-l 

an 
2 p- +a D · 

p p~l' 
(77) 

a a 

an an 
1 

an 
2 __ P = (A -X) p- - E __ P:_ + b D ; (78) 

a b P a b p-I a b P P- 1 

a 
2

n a 
2

n a 
2

n 
2 

aD 
1 --::::p~= (A -X} -~p_-l_ E ---;,p-- + 2a p- ; 

aa2 p aa 2 p-l aa2 p aa 
(79) 

· a 2n 
-~P--2 + 2b 

ab 2 P 
(80) 

ab 

a
2

n a 2n 
p-1 a

2
n p-2 an 

p-1 
an 

p-l. __ P= (A -X) - E +a + b p-1 ' aaab p aaab aaab p ab p 
a a 

(81) 

a
2

n a
2

n 
p-1 

a
2

n 
p-~-

an 
p-1 

an 
p-1 . __ P =(A -X) - E +a p-1 ' aaax . p a a ax a a ax a a p 

ax 

(82) 

a
2

n a
2

n p-1 a
2

n 
p-2 

an 
p-1 + b 

an p-1 p = (A -X) - E 
abax P abax 

p-1 
abax ab 

p 
ax 

(83) 
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Thus, to summarize, the program first diagonalizes the energy matrix 

using given values of a and b, plus a starting va1ue for X. It then 

uses this improved eigenvalue to compute the derivatives {all of which 

are calculated numbers) to determine improved values of a and b 

with their associated uncertainties. The starting value for the energy '-' 

levels are obtained from the second program. 

The second program computes the frequency of a desired 

transition for a number of magnetic fields, the energy levels from 

which the frequency is derived, the frequency divided by the field, and 

the variation of the frequency with field at the magnetic fields chosen. 

The input ii1.formation required is I, J, F
1

, m
1

, F 2, m
2

, b/a, and 

the field steps to be taken, .6.h. 

The Hamiltonian is that of Eq, (36) divided by a, 

~=I· j + b [ 3(l· J)
2

+3/2{i· J)-I(I+l)J(J+l) t+ H'J -gi ~o 
· a 2I ( 2I - I) J ( 2 J - 1) J z ah 

Hrn, 

(84) 

where 

H' = 

and again the gi terms are neglected. The calculation proceeds as in 

the first part of the first program. In addition the quantity 

an an 
1 __ P=(A -X) p-

aH' P aH' 

2 
an 

2 (E ) - p- + c D 
P aH' P p-l 

2H 1 d l D 2 p- p-

is calculated in order to compute the statistical weight for the first 

program,· since 

a£ 
= 

aH aH 

(85) 
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an 
n 

8H 
an 

n 
ax 

The X and H' are dimensionless. No starting value is needed for X. 

Since the program starts at magnetic field equal to zero, root identi­

fication is not difficult, provided small steps are taken (initially at 

least) in magnetic field. 

The second program is used to predict the frequency at which 

a particular resonance will occur and to give input information to the 

first program. The first program is used to calculate improved values 

of a and b and to see how well the expe'rimental data fit the functional 

form assumed. This is measured by x 2, the value of Eq. (55) at 

minimum. 

To Make gl Corrections to the Second Program 

L Enter the field table with (- + ) 
gJ gl 

H' = ha 

2. Extract the dimensionless frequency and convert to Me/ sec by 

multiplying by a. 
gr flo 

3. Apply the correction h H(m
1

- m
2

)v with the correct sign to 

arrive at the predicted frequency (for g
1 

> 0, 

gl flp 
v predicted = v program - --h- H [ m 1 - m2] ) 

To Make g1 Corrections to the First Program 

1. 
gr flo 

h H(m 1 - m 2 ) (for g1 > 0). Form v = v + 
program observed 

( -gJ +g~I) 
2. FormH' = h fl0 H. 

3. ~Use starting values of x 1 and x
2 

calculated from the second pro­

gram, assuming g
1 

> 0 and g
1 

< 0. 

If in a region of high enough field, the X 
2 

of fit will indicate which set 

of data fits best, g
1 

> 0 or g
1 

< 0. 
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I. Zero-Field Level Sequences 

Up to this point, the energy levels have been assumed to be in 

normal order at vanishing magnetic field, This is for J = 3/2, in 

order of decreasing energy F = I + 3/2, I+ 1/2, I - 1/2, I - 3/2, 

This sequence can be inverted if the nuclear moment is negative, 

L e., F = I - 3/2, I ,_ 1/2, I + 1/2, I + 3/2. Regardless .of the sign 

of the nuclear moment, it is even possible for these levels t<:> lie 

in almost any given order. The ordering at zero magnetic field is 

determined by the sign and magnitude of the ratio h/a = S: From 

Eq. (33) it is possible to determine the value of s at which any two 

levels will cross. Table I presents the level ordering for each of 

the critical values of s for J = 3/2, I > 3/2. The two levels crossing 

are indicated at the top of each column. The value of s at which the 

crossover occurs is listed next. Finally, the complete ordering is 

given between this critical point and the next. 

Table II lists the exact value of s and the energy at which 

levels cross for I = 3/2 to I = 9, where the energy is written as 

W' = W /ha. Figures Al through Al6 (Appendix II) present the 

information of Table II in graphic form. The intersections are given 

to the nearest tenth in s and W', 
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Table I 

Zero-field level sequences at critical values of ~ 

w =0 w42 w43 Nonnal w21 w31 w32 w41 nm order 

~ 
4I(21.:..1) 

-2I 0 
2I(2I-1) 41(21-1) 2I(2I-1) 

21(21-1) 
2I-3 21+3 21+5 3 

F 
I+l/2 1+1/2 !+3/2 !+3/2 1+3/2 1+3/2 I-3/2 

I-1/2 !+3/2 I+l/2 I+l/2 I-3/2 I-3/2 H-3/2 
level 

1+3/2 I-1/2 I-1/2 I·- 3/2 I+l/2 I-1/2 I-1/2 

sequence. I-3/2 I-3/2 I-3/2 I-1/2 I-l/2 I+l/2 I+l/2 

.• 

't 



W' nm 
s 

1=3/2 

2 

5/2 

3 

7/2 

4 

9/2 

5 

11/2 

6 

13/2 

7 

15/2 

8 

17/2 

9 

Table II 

Critical values of W' and s vs I. 

W'- W 
- ha 

W'41 I 21(21-1)1 W'32 21(21-1) 1w• 31 :141(21-1)~ w• 21 
3 I 21+5 

!1 21(21-llj W'43 
21+3 

I 

15/4 

6 

35/4 

12 

63/4 

20 

99/4 

30 

I 143/4 

l 42 
! 

195/4 

I 

I 
56 i 

jz55/4 I 
172 

1 323/4 

1 9o 
I 

-

6 

12 

20 

30 

42 

56 

72 

90 

110 

132 

156 

182 

210 

240 

272 

306 

·,: 

-9/4 2 

-3 ! 4 

-47/121 20/3 

-5 110 
-25/4 14 

-23/311 56/3 

-37/4 24 

I
. -11 1 3o 

• -155/12
1 

110/3 

; -15 44 I . 

I -69/4 52 

:::;: i'~~/3 
! 

-25 I 80 

~-335/1211272/3 
1 -31 

1
102 

' -15/8 3/2 -5/2 

l -13/6 8/3 -3 

1 -49/20 4 -7/2 

l -30/11 60/11 -4 

1 -3 7. -9/2 

-85/26 112/13 -5 

-99/28 72/7 -11/2 

-19/5 1 12 

-65/16! 55/4 

~-147/34,264/17 

1 -55/12! 52/3 

! -92/ 1 9 ! 364/ 1 9 

I -51/1o l 21 

! -75/14 160/7 
~ I 
j-247/44 i272/11 

~-135/23\612/23 

I -6 

~-13/2 

i -7 

l-15/2 

I -8 

i-17/2 

1 
-9 

-19/2 

1-10 
i 

1 3/2 

12/7 2 

5/2 5/2 

10/3 I 3 
21/5 7/2 

. 56/11 l 4 

6 1 9/2 

90/13 5 

55/7 . 11/2 

l 44/5 6 

t 39/4 1 13/z 

1182/17 l 7 
" l 
1 7o/6 1!15/z 

1 240/19 . 8 
I I l 68/5 j17/2 

1102/7 1 9 

-21 

-3 

-4 

-5 

-6 

I -7 

-8 
I 

-9 

-10 
-11 

-12 

-13 
l 

i -14 
l 
,-15 

-16 

-17 

-18 

W'42 

-"" 
-3 

-5/4 

-1/2 

0 

2/5 

3/4 

15/14 

11/8 

5/3 

39/20 

;j 49/22 

5/2 

.• 36/13 

85/28 

33/10 

-41(21-1) 
21-3 

-·oO 

-24 

-20 

-20 

-21 

-112/5 

-24 

-180/7 . 

.-55/2 

-88/3 

-156/5 

-364/11 

-35 

-480/13 

-272/7 

-204/5 

·~ 

I 
w 
0' 
I 
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I = 1, J. = 3/2 is a special case and is treated separately in 

Table III and in Fig. Al7 of Appendix II. 

Table III 

Critical values of W' and ~ for I = 1 

- 2I = -2 ~ = 0 
21{21-1) 2 -41(21-l)-

3 =3 21-3 - 4 

W' = 1 43 
Normal order W' = 32 =5/3 W' = 5/2 42 

I+l/2 1+3/2 1+3/2 I-1/2 

!+3/2 I+l/2 I-1/2 !+3/2 

I-1/2 1-1/2 I+l/2 I+l/2 

J. Shell Model of the Nucleus 

The experimentally determined nuclear spins are interpreted 

with the aid of the shell model of the nucleus. 
4

• 
5 

The concept of 

nuclear shells arises in much the same manner as the concept ·of 

electron shells in atomic spectra. Some evidence of nuclear shell 

structure is presented by: 

(a) The fact that the binding energies of nuclei are relatively large 

at the so-called proton or neutron magic numbers 2, 8, 20, 28, 50, 

82, 126 and 184. 

(b) The existence of delayed neutron emitters. This phenomenon 

occurs for isotopes having one neutron in excess of a closed shelL 

The s,mall binding energy of the odd neutron makes its emission 

possible if the nucleus is excited. Examples are 36 Kr 51 , 54Xe 83• 

and 
8
o

9
. 

(c) The fact that neutron absorption cross sections are small for 

nuclei having 50, 82, and 126 neutrons. 

(d) Natural abundance. 

The shell model predicts the magic numbers. It is based on 

the following observations and assumptions: 

(a) The magic numbers are the same for protons as for neutrons. 
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The nucleons. retain a degree of individuality, and therfore individual 

nucleon orbits may be considered. 

(b) The nucleons are assumed to be noninteracting. Each one moves 

in an average field of force that is spherically symmetric. 

(c) The sequence of energy levels predicted might be slightly different 

for protons and neutrons, since orbits of lower orbital angular mo­

mentum penetrate deeper into the nuclear core. The proton interaction 

with the repulsive Coulomb field is stronger in these orbits. There­

fore, nuclei with high numbers of protons tend to have neutron:s in the 

lower-angular-moment~m orbits. 

A potential function intermediate to the harmonic oscillator 

and the rectangular well predicts the magic numbers. The predominant 

feature of this model is the strong interaction of the nucleon spin and 

orbital angular momentum. Figure 8 presents the sequence of energy 

levels predicted for protons successively filling shells. Figure 9 

presents the same information for neutrons. The numbers in 

parentheses represent the total number of nucleons in all levels 

filled to that point in the figure. The numbers immediately to the 

left represent the degeneracies of the particular levels. 

-· 
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Fig. 8. Shell-model energy-level sequence for protons. 
Numbers in parentheses are total numbers of nucleons. 
The degeneracies are shown to the left. 
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II. MEASUREMENT TECHNIQUE 

Figure 10 is a schematic sketch of the apparatus. Three mag­

netic fields are involved. The A and B magnets supply inhomogeneous 

fields. The field gradient and field are both in the same direction. 

The C magnet provides a homogeneous field, also in the same direction 

as the A and B fields. An atom enters the A-field region from the 

oven 0. A force acts upon it as a consequence of the A-field in­

homogeneity, 

-+ 
F='llW= 

aw 
aH 

aH 
1fZ 

aH 
= f.leff az 

where f.leff is the effective magnetic moment of the atom. 

(87} 

From Eq. (9) it may be seen that this moment is of the order 

of a Bohr magneton. It is apparent that the effective moments are 

equal to the negative slopes of the lines on the energy-level diagram. 

Assume that the sign of the effective moment is changed by causing 

the atom to make a transition between the appropriate quantum states. 

The transition is caused by applying the proper radio-frequency to a 

hairpin in the C field (Appendix III). Then the atom is deflected in. a 

path bringing it toward the apparatus axis and reaches the detector D. 

If the effective moment does not change sign, then the atom is de­

flected further from the apparatus axis in the B field and strikes the 

pole tips. Thus, a signal appears at the detector if and only if a 

transition has occurred. The stop wire S serves to prevent the non­

magnetic molecules and high-velocity atoms from reaching the 

detector. The detector for radioactive species consists of sulfur­

coated brass "buttons" to which the atoms adhere. The buttons are 

then analyzed with a system consisting of a sodium iodide (thallium­

activated) crystal, photomultiplier, and pulse-height analyzer. The 

counting equipment, radio-frequency equipment, and electron bom­

bardment loader are discussed in the thesis of H. A. Shugart. 
6 

The 

apparatus design and construction are discussed in the thesis of 
7 

R. J. Sunderland. See Fig. 11 for a photograph of the apparatus. 
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Fig. 10. Schematic sketch of atomic-beam apparatus. 
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ZN-2135 

Fig. 11. Atomic beam apparatus. 
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Pi transitions were utilized. This type is characterized by the 

selection rule . .6. F = 0, D.m = ± 1. The beam passes through the hair-

. pin and at right angles to it. The oscillating magnetic field is per­

pendicular to the C field. For J = 1/2, the quantum numbers associ­

ated with the. transition are F = I+ l/2, m. = -I+ 1/2 - - I- 1/2. For 

J = 3/2, in the normal order, two transitions are possible, character­

ized by 

F = I+ 3/2 m = -I+ 1/2- - I- 1/2, 

(88) 

F = I+ 1/2 m = -I+3/2-- I+1/2. 

These transition frequencies were computed in Eqs. (20) and (35). 
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III. EXPERIMENTAL PROCEDURE 

The nuclear spin is determined from the weak-field approxi-

mation 

v = (89) 

where gF is defined in Eq. (6). For a particular transition 1 -., 

m 
1 

++ m
2

, there exists a unique frequency for a given spin I. Thus, 

buttons are exposed at frequencies corresponding to the probable spin 

values and the counting rate of each button is measured. All buttons 

save one will have the same counting rate. called the apparatus back­

ground, due to gas scattering in the apparatus. The button correspond­

ing to the spin, however, will possess a higher counting rate due to the 

appearance of a signal as described in the preceding section. 

As an equivalent to a direct measurement of the magnetic field 

in Eq. (89), the transition frequency of a calibration isotope, such as 

cesium or rubidium, is set at the desired value. These two materials 

are chosen because they are easily detectable with a hot-wire ionization 

detector. Their ground-state J value is equal to 1/2, so that the 

frequency is given by Eq. (22). 

Thus, we have 

gF 
v"X_ = -- (2I+ 1) v 1, 

gJ ca 
(90) 

where the gF refers to isotope x and the I and gJ are constants of the 

calibration isotope. Table IV presents the transition frequencies for 

bismuth isotopes when the transition frequency of Rb
85 

or Rb
87 

is set 

at 1 Me/ sec; here v + refers to the transition F = I+ 3/2, 

m = -I+ 1/2 ++ -I- 1/2, 

m = -I+3/2 ++-I+ 1/2. 

v refers to the transition F =I+ 1/2, 

Caution must be exercised in interpreting experimental results 

since, for high spins, the frequencies lie close together and certain 

transitions may not be resolved because of the resonance line width. 

Experiments are conducted at higher fields until the second-order terms 

in the field become important. At this point, the results of the 

perturbation calculation a:re useful (Eqs. (34) and (35)). The quantities 
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Table IV 

Transition frequency versus I for bismuth. 
+ -+F = !+312, m= -'1+112- -I-112; v--+ F.= I+ll2, m = -!+312- -!+112 v 

87 1 
'-' 

85 I vBi(Rb = 1 Me sec) vBi (Rb = 1 Me sec) 

I F + + 
v v v v 

0 . 312 4.9299 3.2866 

112 2 3.6975 2.4650 

512 2. 9580 1.9720 

1 312 3.6153 2.4102 

312 3 2.4651 1.6434 

312 2 2.4651 1. 6434 

2 712 2. 1129 1.4086 

2 512 1.8312 1. 2208 

512 4 1.8486 1.2324 

512 3 1.4379 0.9586 

3 912 1. 6434 1.0956 

3 712 1.17 39 0.7826 

712 5 1.4790 0. 9860 

712 4 0.9861 0.6574 

4 1112 1. 3446 0.8964 

4 912 0.8466 0. 5644 

912 6 1. 2324 0.8216 

912 5 0. 7 395 0.4930 

5 1312 1.137 6 0. 7 584 

5 1112 0.6549 0.4366 

1112 7 1. 056 3 0. 7042 

1112 6 0. 5868 0. 3912 

6 1512 0. 9861 0.6574 

6 1312 0. 5309 0. 3540 

1312 8 0.9243 0.6162 

1312 7 0.4842 0. 3228 

7 1712 0.8700 0. 5800 

7 1512 0.4446 0. 2964 

1512 9 0.8217 0.5478 

1512 8 0. 4107 0. 27 38 

8 1912 0. 7785 0.5190 

8 1712 ;0,3816 0. 2544 

17/2 10 0. 7 395 
Ji 

0.4930 

1712 9 0.3561 0. 2374 

9 2112 0. 7044 0.4696 

9 1912 0. 3336 0. 2224 



• 

+ v 
00 

-47-

+ and v may be calculated, ov and ov- are the shifts of the 
00 

resonances from the v 
00 

values and may be measured experimentally . 

Thus, .6.v43 and .6.v32 may be computed. Values of a and b may 

then be calculated from Eq. (34). When approximate values of a and 

b are known, the more useful IBM programs may be used. Another 

way of arriving at starting values of a and b exists. If the appro­

priate quantities are known for at least two isotopes of the element of 

inte:r:est, it is possible to predict approximate values of a and b for 

the isotope of interest. 

A Fermi-Segre type of relation connects·· a and g
1 

in the 

following manner: 
8 

where 

a= 

R = 
y 

n
3

(M/m)(L+ l/2)J(J+l) 

and a= 
2 

e 

nc 

Thus, for two isotopes of the same element, 

(92) 

A similar relation between the quadrupole moment Q and the quadrupole 

interaction constant b is 

(93) 
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·IV(: PREPARATION AND SEPARATION; RESULTS 

. :. ·.~; 
i. 

A. Bis:n:J:uth 
.•. 

Isotope Production 

The nuclear spin of (6.4-day)Bi 206 was investigated. Frigure • 
··9 10 11 . : 

12 presents a d'ecay scheme. · • ' In the references from which 

this is taken, an underlined spin means that it has_ been measured 

directly. A spin designated by its quantum number without any other 

modification means that its value has been determined uniquely by 
• ·~ .! 

other means. ·Parentheses indicate probable. spin values. Double 

arrows indicate that a level has been Coulomb-excited from the 

ground state. 

The isotope was produced in the Crocker 60-inch cyclotron 

by bombardment of 0.015-inch lead foils, measuring l-3/4 by 1-1/2 in .• 

with 24-Mev deuterons. The reaction is 

(26%)Pb
206 

(d, 2n)Bi 
206

. 

That this is the dominant reaction may be seen by reference 

to Fig. 13. The lead target was placed in the direct beam of the 

cyclotron and cooled with wate:r;. A 20-~a beam was allowed to strike 

the target for 3 hours. Since the activity was distributed most densely 

over the center of the foil, this portion was removed for the chemistry 

procedure. 

Chemistry 

The radioactive bismuth was separated from the lead by the 

method of internal electrolysis 
12 

(Fig. 14). The target, together with 

5 mg of bismuth, was dissolved with 60 ml of 20% nitric acid. The 

solution was heated gently and neutralized with about 20 ml of con-

. centrat~d ammonium hydroxide. Three ml of concentrated n,itric 

acid was .added and the volume increased to between 200 and 250 ml . . . . . r . . . . . 

of liquid. The lead anodes were surrounded with dialyzing tubing. 

These two compartments were filled with a 5% solution of lead nitrate 

acidified with nitric acid. The solution .containing the dissolved 

target was stirred and heated to.about .85° C and a platinum electrode 

inserted. The electrode and the two anodes were connected together. 

;i• 
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Fig. 12. Decay scheme of Bi206. 
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Fig. 14. The internal-electrolysis apparatus used to 
· separate bismuth from lead. 

ZN-2137 
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The bismuth plated out on the platinum and was introduced into the 

oven by snipping the wire, allowing it to fall into the oven below. 

Results 
4 

The electronic ground state of bismuth is s312
, therefore, 

two focusing 1r type transitions are possible. The ground-state 

properties are well known for stable Bi 209 . Its gJ value is 
13 

1.6433 ±. 0002. The results of a spin search are shown in Fig. 15. 

The transition 

F = 1512, m = -1112- -13/2 

is represented by v+ and 

F = 1 3 I 2, m = - 9 I 2 - - 11 I 2 by v . 

The presence of a signal at I = 6 is evident. This spin value 

was confirmed by taking a resonance sweep at a higher magnetic 

field (Fig. 16 ). The spin can be made plausible 
14 

by coupling the 

83rd proton in a h
9

1 2 level to the 123rd neutron in the f 5l 2 level. 

Nordheim Is weak rule 4 then predicts a large spin no higher than 

I = 7. The observed value agrees with that subsequently reported by 
. 15 16 

L1ndgren and Johansson. ' 

' 
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Fig. 15. Bi 
206 

spin search. 
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B. Thallium 

Isotope Production 
. 200 17 

The nuclear spms were measured for(26.1-hr) Tl , 

(3.0-day)TI201 , 18 and(l2.5-da) TI 202. 19 Figures 17, 18, and 19 
10 20-23 . 

present the decay schemes of these isotopes. ' The 1sotopes 

were produced in the 60-inch cyclotron by bombarding mercury with 

24-Mev deuterons. A beam current of 35 1-la for 3 hours was employ­

ed. The mercury was mounted in target form by placing droplets in 

small holes drilled in a standard aluminum external-target mount. 

The droplets were sealed in with successive teflon and aluminum 

gaskets. 

The following reactions occur: 

(23o/o) Hg 200 (d, 2n) Tl
200 

(26.1 hr), 

( 17o/o) Hg 199 (d, ln) Tl
200 

(26. 1 hr ), 

(13o/o) Hg
201

(d, 2n) Tl
201

(3 da), 

(23o/o) Hg
200

(d, 1n) Tl
201

(3 da), 

(13o/o) Hg
201

(d, 1n) Tl
202

(12.5 da), 

(30o/o) Hg
202

(d, 2n) Tl
202

(12.5 da), 

(17o/o) Hg 199 (d, 2n)T1 199 (7.4 hr), 

(10o/o) Hg 198 (d, 1n) Tl 199 (7.4 hr), 

(10o/o) Hg 198 (d, 2n) Tl 198m(l.9 hr), 

(10o/o) Hg 198 (d, 2n)Tl198 (5 hr), 

(.15o/o) Hg 196 (d, 1n)Tl197m(D.:S4 sec), 

(.15o/o) Hg
196

(d, 1n) Tl 197 (2.8 hr), 

(.15o/o) Hg 196 (d, 2n)Tl196 (4hr), 

(6.8o/o) Hg
204

(d, 2n)Tl
204

(4.1 yr), 

Evidence was also found for 

202 203 
(29.8o/o) Hg (dJp) Hg (48 da). 



-56-

( 4+ )-----------;--.--+-+-!-~ 

(4+) 

2+ 

0+ 
Hg200 

Fig. 17. 
200 

Decay scheme of Tl 

1.885 

1. 776 

1. 732 

1.660 

1.595 

1.575 

.947 

/ 
. 368 



.. 

(1/ z .. ) 

,I/ 

\~ 

Hg201 \II 

Fig. 18. 

'V 

-57-

0 

1/2 + 

.167 

.032 

.0015 

201 Decay scheme o£ Tl . 



H 
202 

g 
0 +·--------1-.L.-.....L.--

Fig. 19. 

-58-

.. 

0 

202 
Decay scheme of Tl . 



-59-

The composite decay of a chemistry sample is shown in Fig. 

20. Each target was allowed to "cool" for about 24 hours prior to 

an experiment in order to allow the shorter-lived isotopes to decay 

appreciably. 

Chemistry 

The boiling points of mercury and thallium are 357°C and 

1457°C, respectively, at atmospheric pressure, thus suggesting an 

evaporative method of separation. This was accomplished in an 

atmosphere of helium or argon with the glass apparatus sketched in 

Fig. 21. The target block was unloaded through narrow-tipped glass 

tubing into a test tube connected to a water aspirator. About 30 mg 

of thallium carrier was added and part of the mixture was introduced 

into the cup A. Stopcock B was opened and Stopcock C closed. 

Approximately one oven load of material was drawn down by means 

of a hypodermic syringe attached to point D via rubber tubing. Stop­

cock B was closed and Stopcock C opened. The oven load was then 

forced into the tantalum oven mounted at E by pressure applied with 

the syringe. The induction coils F were energized and the temperature 

of the oven raised until all the mercury was evaporated from the oven, 

leaving the radioactive thallium behind. The process was repeated 

until all the mercury was evaporated. The separation was performed 

in the cave shown in Fig. 22. 

Results 

The electronic ground state of thallium is 
2

P 1; 2 and therefore 

only one type of focusing transition exists. The 
2

P 3; 2 state lies 

7792 em -l above the 
2

P l/
2 

state and is not appreciably excited at 

the oven temperature (800°C) required to produce a beam of thallium. 

For Tl
200 

and Tl
202

, the transitions were found to be 
201 

F = 5/2, mF = - 3/2 .-.. -5/ 2; for Tl , F = J, mF = 0 _. -1. 

The results of one spin search are shown in Fig. 23. Spin 

buttons for I = 1/2 and I = 2 appear to have definite signals. The 

decays of the spins and fu~l-beam buttons (A and B fields off, stop 

wire off the apparatus axis) are shown in Fig. 24. It is evident that 

the I= 1/2 sample contains a pure 3-day activity, T1
201 

The 1=2 

sample starts to decay faster than both the full beam and I= 1/2 samples, 

indicating the presence of T1 200. 
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Fig. 20. Radioactive decay of a thallium chemistry sample. 
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Fig. 21. Sketch of thal~ium-separation apparatus. 
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Fig. 22. Cave used fo r t h e separation of thallium from 
mercur y . 

ZN-2136 
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Fig. 23. Thallium spin search. 
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It then decreases and its curve crosses the curve for the I = 1/2 

sample, suggesting the presence of Tl
202

. This latter point was 

verified by increasing the cyclotron bombardment time and letting 

the target decay for 5 days. before conducting the experiment. Figure 

25 presents the results of this run. The enhancement of 12-day 

activity on the I = 2 sample compared with the half-beam sample (A 

and B field on, stop wire off the apparatus axis) is apparent. All 

spins were checked for at least two values of magnetic field. Table 

V presents the results of two runs, after a haJf-life analysis was 

performed on each spin button to determine the amount of each isotope 

present at a common time. This was done via a program constructed ·· 

by H. B. Silsbee. The thesis of H. A. Shugart contains further de-

'1 6 ta1 s. 

Results 

Isotope 
and half life 

Run 95 
Tl200 27 h 

Tl201 3d 

Tl202 12 d 

Run 129 

Tl201 3d 

T 1202 12 d 

of thallium 

.Half. 
beam 

6.6(.6) 

18.5(.5) 

3.5(.1) 

123. 3(. 5) 

19.6(.2) 

Table V 

spin searches (counts per minute) 

Spin 

1/2 1 2 

(at 6..1 Me) (at 4. 0 Me) (at 2.4 Me) 

.. o.o (.4) 0.0(.2) 3.2(.3) 

7.9(.4) 0.0(.2) 0. 7 (. 3) 

0.4(.1) 0. 7 (.1) 1.4(.1) 

(at8.2Mc) (at 4. 9 Me) 

0.7(.1) L 1 (: 1) 

0.2(.1) L 8(.1) 

Hot -wire normalizations 1.2 1.0 

3 

(at 3. 5 Me) 

0. 8 (. 1) 

0.1(.1) 

1.0 

From this table and the decay curves, it may be concluded that I = 2 

for Tl
200 

and Tl
202

, I= 1/2 for Tl
201

. 
24

• 
25 

The measurement I = 1/2 

for T1
201 

is consistent with a 3s 1; 2 assignment for the 8lst proton in 

Tl l97 Tll99 2~ . Tl203 . Tl205 I 2 f Tl200 d Tl202. or , 1n , or 1n . = or an ' may 

be predicted by coupling the 119th neutron in a 3p
3

/ 2 level to the 81 st 

proton in the 3s 1; 2 leveL This spin value is identical to that of T1
204 

and Tll98. 26, ZJ 
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C. Indium 

Isotope Production 

The spins and the magnetic dipole and electric quadrupole 

moments were determined for ~.3-hr}In 109 , 28 (5.0-hr}InllOm, 29 and 

'( 8 d) I Ill 30 · 26 7 d 28 h d h , 2. - n . F1gures , 2 , an present t e ecay sc emes 
. 10 31-3~ 

of these 1sotopes. ' The isotopes were produced by bom-

barding 0.005- to 0.010-in. silver foil with 48-Mev a. particles in the 

Crocker cyclotron. The target type is the same as that described in 

the bismuth investigation. 

The reactions that occur are: 

(49o/o} Ag 109
(a., 2n}In

111
(2.8 d), 

(49o/o} Ag 109
(a., 3n}In

110
m(5 hr} and In

110
(66 min), 

107 110m 110 . 
(5lo/o} Ag (a., ln}In (5 hr} and In (66 mm}, 

(49%} Ag 109
(a., 4n}In109 (4.3 hr}, 

(5lo/o} Ag
107 

{a., 2n}In109(4.3 hr}, 

107 108m . 108 . 
(5lo/o} Ag {a., 3n}In (55 mm} and In (40 mm}, 

107 107 . 
{5lo/o} Ag {a., 4n}In . {30 mm}, 

{49o/o} Ag
109

{a., ln}In
112

(21 min, 25 sec, 15 min}. 

A 90-fJ.a beam was allowed to strike the target for 3 hours when 

. . h I 1 0 9 I 11 Om b . 1 d F th an exper1ment w1t n or n was e1ng p anne • or e 

experiments on In 
111 

alone, the target was exposed for 10 hours. Be­

fore the separation procedure was initiated, the targets were allowed 

to decay so that the short-half-life components would not be present 

in large quantities. This lag time was about 1-1/2 hours for runs 
. 1 0 9 11 Om 111 . w1th In and In , whereas for In exper1ments the target was 

not processed for about 1-1/2 days after bombardment. 
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./" . In 109m ( < 2m) 
------~~~~--~~ .658 

IT 
109 

.:J..Ll:..j . In ( 4. 3h) 0 
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Chemistry 

Chemical separation was accomplished by dissolving the 

center portion punched from the silver foil and about 25 mg of indium 

carrier in concentrated nitric acid. The silver was precipitated as 

. the chloride upon the addition of concentrated hydrochloric acid. 

After the precipitate was separated by centrifuging, about 15 mg of 

oxalic acid or potassium sodium tartrate was added to the supernatant 

for plating purposes. From a slightly acid solution~ the indium was 

electroplated onto a platinum electrode with a 0. 2 -amp plating current 

(8 amp/in. 
2

). At first, the electr~de was placed directly in either a 

carbon or a tantalum oven, which was then heated in the apparatus by 

electron bombardment. Later experimentation showed that a steadier 

beam resulted if the deposit was scraped from the electrode and 

placed in a carbon oven. A typical separation time was 1-l/2 hours. 

Recovery was about 50%. 

This procedure was later modified to produce a better deposit 

and to improve the yield. The modification consisted of using. a 

minimum amount of concentrated nitric acid to dissolve the target. 

This was evaporated to dryness and LO ml of distilled water added. 

After separation by centrifuging;the indium was precipitated as the 

hydroxide by the drop-by-drop addition of concentrated ammonium 

hydroxide. After centrifugation and pouring off of the supernatent, 

concentrated hydrochloric acid was added drop-by drop until the 

precipitate dis solved. At this point, there was about 3 ml of solution. 

Two drops of formic acid were added and the indium was electroplated 

onto a platinum wire at 0.080 amp (3 amp/in
2

). The separation time 

was about 3 hours and the recovery about 80%. 

Results 

The transitions observed for In1 09 and In Ill were 
110m 

F = 6, mF = -4-++ -5, and F = 5, mF = -3-++ -4. For In , the 

focusing transitions are F = 17/2, mF = -13/2 -++ -15/2, and 

F = 15/2, mF = -11/2-++ -13/2. The electronic ground state is 
2

P 1; 2 
but larger resonances were observed in the 

2
P 3/ 2 state. The fine 

structure is 2212 em -
1

. At the oven temperature required for a 
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stable beam, about 20% of the atoms were in the upper st'ate. It is 
I . 

·surmised that better results were obtained from this smaller portion 

of the beam because the gF for the 
2

P 3j 2 state is about 4/3, whereas 

for the 
2

P 1/ 2 state gF is about 2/3. The ground-state_ properties of 
115 . . . . . . 35 30 37 

In are well known. T:he ~J l:S ~~~343 ±, 0001. · • ' 

1. Indium-Ill Spin Results 

Th~_ results of spin ~~(l.rcpes are i~dice3.ted in Table VL I?e­

cause Runs 88 and 93 were made sever~l days after the bombardments~ 

the shorter-lived isotopeshaQ. decayed, leaving relatively' pure In 
111 

With only a single activity present in the beam, resonance indiCations 
' . ·: .·· ·' ··. .. . .· . -

must be determined on the_ basis of absolute counting rates. For Runs 

88 and 93 the spin-9/2 sigriab· are greater by an order of magnitude 

than those for other ha~f: .. integralve~:l'lle~. Decay curves for these 

resonances showed a si:rigle2.-8'...:qay componel'lt whiCh indidited that 
Ill . ·.·_·_, .-· .111. · 

In was responsible for the s1gnal. The In. resonance has been 

observed from 4. 8 to 7,8· Me/ sec to establish the linear Zeeman 
' 

dependence .of the ::resonance· frequencies on the low-transitio.n magnet-

ic field. 

2. -Indium-110m Spin Results 

W4en the target was processed immediately after bombardment, 
't t . d ~ dd'.. I. Ill 1 h, . . 1 d' I con aine In a .. Itlon to n severa ot er Isotopesa Inc u Ing 

. 1 09 · · · .. 11 {)m · 
4.3-hr In and 5.0-hr In.,··. Because of low counting rates, it 

is not possible to distinguish betwee~ 4. 3 and 5. 0 hour's by decay alone. 

H I. l O 9 ' t h -. h lf . ·1 . h '1 I ll Om ·. t h owever, n ·. _ mus ave a -Integra spin w I. e n · mus ave 
·, 

integral spin. This. informatip,\1- along. with an approximate half-life 
. . 

determination suffices to ·~stablish the identit.'y·of these short-lived 

isotopes .. 

Because in this work three isotopes contribute to the initial 

counting rates, each sample m_ay be analyzed for th~·;.f.'e'lativ.~:;~cbtnpo­

sition of short (~.3- and 5.0~hr) ~ctiv:ity.a.;nd long .(2.8-day)- activity. 

When this is done as shown in Table VII for Run 104, the ratio of 

short to long components of the counting r~te on the "half-be'am 11
· 

sample. (magnets on but ~top wire rer:noved) at zero time is 3.1. 



Table VI 

Table of initial counting rates of indium spin searchesa 

Spin 

Run 1 2 5/2 7/2 4 9/2 5 11/2 6 7 8 -- -- -- --
111 88(In only) 0.5(1) 0.8(1) 5.2(2) 

9 3 (In 111 only) 0.6(1) 6.6(2) 0.4(1) 

96 0.9(3)b 0.5(1) 0.8(1) 0.4(1) 2.3(2) 0.7(2) 0.4(1) 1.6(2) 

104 8.2(3) 1.9(2) 4.5(2) 3.5(2)c 

aThese rates (in arbitrary units) are corrected for counter background and normalized for 

variations in beam intensity within a single run. All runs were performed at different values of 

magnetic field. (The numbers in parentheses are the errors in the last digit.) 

bPoor normalization. 

cThe 
2

P 3; 2• F = 5, mF = - 3- -4 transition for I= 9/2 occurs at the same frequency as the 
2

P 3; 2• F = 19/2, mF =- 15/2- -17/2 transition for I= 8 within the line width. 

I 
-J 
VJ 
i 
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Table VII 

Composition analysis of samples from run 104. 

Counting rates are not corrected for variations in beam intensityo 

Short activity Long activity Ratio 
Sample counts/min counts/min short/long 

"Half-beam" 276 (3) 90 (2) 3, 1 (2) 

9/2 9. 9 (7) 5.6 (4) 1.8 (2) 

5 2. 6 ( 4) 1.1 (2) 2.4 (6) 

7 7.1 (1) 1.5 (2) 4, 7 (8) 

The spin- 5 sample, though very small in absolute counting rate, shows 

a similar ratio (2. 4) for an apparatus background sample, as wo u1d be 

expected. On the other hand, it is clear from Table VII that the spin-

7 sample contains an enhanced short component (In 11 Om). In fact, the 

short component on the spin-7 sample is 2. 7 times the apparatus back­

ground (spin-S sample), while the long components are essentially 

1 ( . 29) F h f. . f . 7 f I ll Om equa see F1g. . urt er con 1rmat1on o sp1n or n comes 

from information on Run 96. In Run 96 (Table VI) the normalized 

counting rate for spin 7 is 3. 7 times the average rate for the other 

integral spins. (In Run 104 the signal at "spin 8" is the 
2

P 3; 2 , F = 5, mF = -3 ~ - 4 transition for the 9/2 materiaL This 

signal supports the 9/2 assignment of In 109 and In
111

.) 

3. Indium-109 Spin Results 

The spin 9/2 button of Run 104 (Table VII) shows significantly 

more short activity (9. 9 counts/min) than a typical background sample, 

e. g., spin 5 with only 2.6 counts/min of short activity (also see Fig. 

29). The exposures were roughly equal, therefore the enhancement 

by a factor 3. 8 is attributed to a spin-9/ 2 signal from In 
109

. Likewise 

the composition of the I= 9/2 sample differs from that of the half-beam 

1 . h . d" h 1 . . h f I 1 09 
samp e 1n sue a way as to 1n 1cate t e re atlve enr1c ment o . n 

111 . 110m 
and In over In . 
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Fig. 29. Decay plot of spin samples from Run 104. 
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The signal also has about the expected magnitude, for if In
1 09 

. 110m 
and In· were produced more or less equally, the half-beam deter-

mination shows that each would contribute about 1. 5 times as much 

. . . 1 . . I lll Th b . d . f I l O 9 t I 111 th 1n1ha act1v1ty as n e o serve ratlo o n: o n on e 

spin-9/2 sample is 1.8 before any apparatus background corrections~ 

4. Remarks 
. I 111 109 Spm 9 2 for In and In . agrees with the simple shell-

4 38 
model prediction that the forty-ninth proton is in a g9/ 2 state. ' 

Spin 7 for In ll Om could arise from coupling of a g
9

/
2 

proton and a 

d5/2 neutron, which is predicted by the shell model in this region. 
4

• 
38 

. · 110m . 114m 116m 39,40 
The senes from In (I= 7) to In (I = 5) and In (I = 5) 

may then illustrate the transition from a d
5

/ 2 to an s 1; 2 level for the 

odd neutron. · 

The spins of all three isotopes were further confirmed by 

taking resonance sweeps at higher values of magnetic field. As in­

dicated under "Numerical Methods, 11 values of a and b may be 

obtained from these resonances. 

5. Interaction Constants 
a. InllOm 

From the resonance curves in Figs. 30 to 35, ·the values of 

th . ·t · t. t b . . d f I 11 Om Th . f th e 1n erac 1on cons ants are o ta1ne or n . e s1gn o e 

nuclear magnetic moment was not determined. 

For a positive magnetic moment we have 

a= 291.4(1.2) Me/sec, 

. b = -112(16) Me/sec. 

From this, we may compute 

s = -0. 384(55L 

fJ. = +10.4(1) nrn, 

-24 2 
Q = -0.290xlO em •. 

see Fig. 36 for an energy-level diagram for f.J.I > 0. 

.. 
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Fig. 30. InllOm (17/2, -13/2} ++ (17/2, -15/2} resonance. 
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Fig. 31. InllOrn (17/2, -13/2) ++ (17/2, -15/2) resonance. 
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Run 126 
In 110m 

( 17/2,-13/2)-(17/2,-15/2) 

Resonance 

H = 190 gauss 

~second sweep 

OL---~----------~--------~~~----------~ 69.0 69.5 70.0 

Frequency, Me I sec 
MU-17226 

Fig. 32. InllOm(17/2, -13/2)- (17/2, -15/2) resonance. 
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Fig. 33. In 110m (15/2, -11/2) ++ (15/2, -13/2) resonance. 
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Fig. 34. InllOm (15/2, -11/2)- (15/2, -13/2) resonance. 
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Fig. 35. In
110

m (17/2, -13/2)- (17/2, -15/2) resonance:;. 
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For a negative magnetic moment the corresponding quantities 

are 

a= -301.4(1.3) Me/sec, 

b= 120(17)Mc/sec, 

s = -0. 399(57) !J. = -10.7 ( 1 )nm, 

/ 

-24 2 
Q, = +0.311X10 em . 

The resonances in Fig. 35 are not as 11 c1ean 11 as those preceding, but 

their inclusion or omission does not change the results si'gnificant1y. 
b. In109 . 

Figures 37 to 42 present the data used to determine the inter-

. f I 109 R 1 actlon constants or n . esu ts are: 

For a positive magnetic moment; 

a= 242.38(56) Me/sec, 

b = 462.1 (6. 4) Me/ secg 

2 
X = 1.258, 

s = +1.907(27), 

!J. = +5. 53(6) nm 

-24 2 
Q = + 1. 20 X 10 · em ; 

For a negative .riRgnetic moment; 

a= -243.79(57) Me/sec, 

b = -469.8(6.6) Me/sec, 

2 
X = 2.449, 

s = +1.927(27), 

!J. = - 5. 57 ( 6 ) nm, 

-24 2 
Q = -1.22 X 10 em . 

It is concluded from the X 2 of fit that a positive moment best fits the 

data .. The energy levels are plotted in Fig. 43 for !J.I positive. 
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Fig. 37. 
109 111 

In ' (6, -4) - (6, - 5) resonance. 
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Run 118 
In 109, Ill 
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In (6, -4) ++- (6, -5) resonance. 
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In (6, -4} - (6, - 5} resonance. 
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Fig. 40. 109,111 
In (5, -3) ++ (5, -4) resonance. 
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Run 181 
In 109,111 

(5,-3)-(5,-4) 
Resonance 

H = 289 gauss 

143.4 .6 .a 144.0 .2 .4 .6 

Frequency, Me /sec 
MU-17234 

Fig. 41. In 109, 111 (5, - 3) -. (5, -4) resonance. 
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Fig. 42. 109 
In (5, -3) ++ (5, -4) resonance. 
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c. 

The experimental data for In111 are presented in Figs. 37 

through 41 and •44 through :46. The In lll resonances in Fig. 37 through 

41 were obtained by "decaying 11 the In 109 resonances. In Fig. 37, the 

resonances are unresolved at 45 gauss. In Figs. 38 and 39, the In Ill 

resonance is shifted upward in frequency from the In
109 

resonance 

curve, The lower resonance shown in Fig. 40 is unresolved. In Fig. 

41, the In lll resonance is shifted downward in frequency from the 
109 In resonance. Figures 44 through 46 present the results of runs 

on essentially pure In lll Resonance half widths vary considerably 

due to changes in the hairpin during the course of the investigation. 

Results are: 

For a positive magnetic moment 

a = 24L 7 8 (30) Me/ sec, 

b = 455. 3(3.4) Me/ sec, 

2 
X = 0.921, 

s = +1.883(14), 

fl = +5. 53(6) nm, 

-24 2 
Q = + L 18 X 10 em ; 

For a negative magnetic moment 

a = -243. 22(30) Me/ sec, 

b = -465.9(3.5) Me/sec, 

2 
X = 1.219, 

s = +1.916(15), 

fl= -5.56(6) nm, 

-24 2 
Q = -L 21 X 1 0 em . 

A positive magnetic moment fits the data best. 
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Run 212 
In''' 

( 6,-4 )-( 6,-5) Resonance 

H = 348 gauss 

Frequency, Me I sec 
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Ill . 
In (6, -4) ++ (6, -5) resonance. 
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Fig. 45. Ill 
In (5, -3) - (5, -4) resonance. 
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Fig. 46. In Ill (5, -3) .._. (5, -4) resonance. 
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The moments of the above three isotopes were calculated from 

Eqs. (92) and (93) by using the following data: 

In 
115 

a = 242.164807 (2~) Me/ sec. 
41 

' 113 
In 

Inll6m 

b = 449. 54568'(2.1) ~c/ sec, 
41 

l 
1-1 = +5.53441(66) • 

Q= Ll66Xl0'- 24 cm2• 42• 
37 

I . 

I = 9/2. , ' 

41 
a.= 24L 641 040{58) Me/ sec 9 · 

b = 443.41568(52) Me/ sec, 
41 

1 
1-1 = ~.52317(54) nm, 

Q 1 144 10
-24 2 42, .3] 

= ·• X em • . 

I = 9/2. 

4 7 39 
f.L = . nm. 

. 39 
fl.= 4.4 nm, 

I = 5. 40 
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APPENDIX I: 

Properties of Matrices Used in Atomic Beams 

I. Size: (2J + 1) (2I + 1). 

2. Size of largest submatrix: (2J + 1 ). 

3. Number of elements of largest submatrix connected by 6:.. F = 0: 

{2J + 1}. 

4. Number of elements of largest submatrix connected by b..F = ± 1: 

4J. 

5. Total number of nonzero elements of largest submatrix: 6J + l. 

6. Total number of zero elements of largest submatrix: 2J(2J - 1 ). 

7. Equivalent size of the doubly repeated submatrices: 2J(2J + 1). 

8. Total number of elements in all the doubly repeating submatrices: 

2J(2J+ 1)(4J+ l) 
3 

9. Number of elements of all the doubly repeated submatrices 

connected by b..F = 0: 2J(2J + 1 ). 

10. Number of e~ements of all the doubly repeated submatrices 

connected by b..F = ± 1: 4J(2J- 1 ). 

11. Total number of nonzero elements in all the doubly repeated sub­

matrices: 2J (6J- I). 

12. Total number of zero elements in all the doubly repeated sub-

matrices: 
2
/ [(2J+ 1 )(4J+ I) - 3(6J- I~ 

Equivalent size of the largest repeating submatrices: 

(2J+ I)[ 2(I- J)+IJ. 

14. Number of largest submatrices: 2(I- J) + l. 

15. Total number of nonzero elements in the entire matrix: 

21 ( 6 J + 1 ) + 2 J + 1. 

16. Total number of zero elements in the entire matrix: 

(2J+ I)[ (2J+ 1)(2I+ 1)
2 

-IJ - 2I(6J+ 1). 

All the above is for the case J <I. For I< J. replace I by J 

and J by I. 
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APPENDIX II: 

Zero-External Field Curves of W 1 vs s 
Zero-external-field curves of W' vs s for J = 3/2. I= 1 to 

I = 9 are shown in Figs. AI through Al7. 
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Fig. AI. I = 3/2, J = 3/2. 
Note: Intersections to nearest 1Oth. For exact nwnb'ers 
see. Table II. 
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Fig. A2. I ::: 2. J ::: 3/2. 



.102.· 

MU-17205 

Fig. A3. 1 = 5/2, J = 3/Z. 
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Fig. A4. 1 :::: 3, J :::: 3/2. 
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Fig. p.,.5. 
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Fig. A6. I = 4, J = 3/2. 
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Fig. A7. I = 9/Z, J = 3/Z. 
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Fig. AS. I = 5, J = 3/2. 
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Fig. A9. I = 11/2, J = 3/2. 
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Fig. A,lO. I = 6, J = 3/2. 
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Fig. All. I = 13/2, J = 3/2. 
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Fig. Al2. I = 7, J = 3/2 . 
.. 
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Fig. Al3. I = 15/2, J = 3/2. 
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Fig. Al4. I = a. J = 3/2 . 
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Fig. Al5. 1=17/2, J~3/Z. 
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Fig. Al6. I = 9, J = 3/2. 
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Fig. Al7. I= 1, J= 3/2. 

Note: Intersections to nearest lOth. For exact numbers 
see Table III. 
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APPENDIX III: 

Transition Probability for. a Spin-1/2 System 

In this section, an attempt is made to gain some insight into 

the concept of a resonant frequency causing the transition of a system 

from one quantum state to another. The system is a very simple one 

consisting of a particle whose angular momentum I = 1/2 may be 

aligned either parallel or antiparallel to a magnetic field H. The 
l 8 

treatment follows that by Ramsey. • 

Classical Treatment 

The particle precesses about H, due to the torque exerted, 

according to 

-+ 

n ~~ = ~ x if = v1 n 1 x ii. (;\l) 

where all symbols have been defined previously. 

A transformation may be made to a coordinate system :t;'otating 

about the field H via. the equation 

-- -di ar - -
dt = at + w X. I • (A2) 

where the left side refers to the fixed system and the right side to the 

rotating system; w is the angular velocity with which the coordinate 

system rotates. 

Equations (Al) and (A2) may be combined to give 

aT 
at 

-+ -where H = H + 
e 

-+ 
w 

-+ -YI I X He {A3) 

is the effective field seen in the rotating 

system, We now specify H more carefully. It is composed of two 

parts. One part is the external C field H 0, the other is a magnetic -field rotating with angular velocity w and is similar to the field in 
-+ 

the radiofrequency hairpin; w is chosen to rotate in the same direction 

as the spin precession. In a coordinate system fixed with respect to 

H
1 

there is no time variation of the magnetic field H
1

, Thus we have 



-+ ~ 
w = -wk. 
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The above relations are illustrated in Fig. Al8. 

Therefore, the effective field becomes 

(A4) 

(A5) 

b 
= - :> 

'Yr 
(A6) 

where b = J (w - w)2 + w 2 
0 1 

is the precession frequency of the 

particle about the effective field. 

Then we have WI = y!Hl and wo = 'YiHo = Lamour frequency of 

precession of the particle about H 1 and H 0 respectively (Fig. Al9a). 

We can also write 

cos e = 

sine= 

wo-w 
-b-

{A7) 

0 e = 90 and He = H 1, therefore I precesses only about H 1 
.and may change its orientation from "spin up" to "spin down. 11 By 

transforming to another coordinate system rotating about He with 

angular velocity = a, it· is possible to preserve the spin direction con­

stant in space. The resultant quantities are shown in Fig. Al9b. At 

resonance -H 1 = 0. y1 H = a and a = b. e · e 
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MU-17239 

' - -Fig. Al8. H 1 rotates with angular velocity w, wher2 w 
is in the direction of rotation of the rotating 
coordinate system. 
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Fig. Al9. Effective magnetic field in first rotating 
coordinate system {a) and the second rotating 
coordinate system (b). 

'.+ 
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Fig. A20. Time variation of I in its precession about the 
~ffective magnetic field H 0. The precession velocity 
1s a. 
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Variation of the Precession as a Function of Time 

At time t 1, I is parallel to H
0

. At time t 2, I has precessed 

a degrees from HQ. (Fig. 20). Setting e1 = 8
2 

= 0 and <J> 1 -<J> 2 =a (t 2 -t 1) 

in the well known relation 

we have 

Cos a -- cos 2
a + sl·n2

a cos[a(t ·- t )] u u 2 1 

Equation (A8) may be placed in the form 

2 i [a(t2-tl)] 
cos a = 1 - 2 sin e sin 2 . 

We may also write 

p1/2, 1/2 + p1/2, -1/2 = 1• 

p1/2, 1/2- p1/2, -1/2 =coso., 

where P 1; 2, 1; 2 is the probability that the particle 

and still has its spin u~ after a.time t
2

- t 1. 

Equations (A7), (A8) and (A9) yield 

w 2 
p 1 . 2 

1/2, -1/2 = 2 ( )2 Sln 
wl + wo-w 

= 1 
. 2 

s1n 

2 

(A8) 

} 
(A9) 

starts with spin up 

' 1 (A10) 
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Quantum-Mechanical Treatment 

The Hamiltonian used is 

where 

and 

Here 

a 
X 

~ .--. _,.. ......_ 
H = H O k + HI ( i cos wt + j sin w t) 

........ ....... ....... -+ 

I = a i + a j + a k. 
X y Z 

(
0 -i) 

a = 1/2 i 0 , 
Y. 

(All) 

(A12) 

(Al3) 

The primary equation comes from the formalism of time-dependent 

perturbation theory, 

·'!:: ~ = J.t "' lu a t 't'• 

where ljJ is a two-component eigenvector. 
\.. 

Thus, Eq. (A15) becomes 

iwt 
e 

Equation (Al7) may be reduced to the form 

That is, 

(
al./2 ) . 

a-1/2 

a.l/2 = 
i 

( w0a1/2 - w! e 
-iwt 

a-1/2 ), --z 

a. 
i ( .iwt 

a1/2 + wO a -1/2); -1/2= 2 w
1

e 

(A15) 

(Al6) 

(Al7) 

(Al8) 
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' l 
iw£' J 

a_
1

;
2

= A_
112

(t)e into Eq. (Al8) 

(Al9) 

(A20) 

(A21) 

A
1

;
2 

may be solved for by substituting A
1

;
2

= ent in the second de­

rivative of Eq. (A20) and solving the indicia! equation for n. 

The result is 

-i( w~wo )t +(i/2 rJ w
1

2+ (w-w
0

)2' t 

(A22) 

w-wo rJ 2 2' 
-i(_2_)t -(i/2 wl + (w-wo) t 

+C e 

One may evaluate C+ and C _ by recalling that at t = 0, A 1; 2 = 1, 

A_
112 

= o, andtherefore c+ + c_ = 1 andA1/ 2 (t = 0) = 0. 

The result is 

w-w 

c+ " l/2 (~ + Jwl2+ ~w-wo)2) 
(A23) 

c 

t 
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Putting Eqs. (A22) and (A23) into (Al9) results, after some manipulation, 

in l Jw/+2(wo-wl2 1 2 
2 

wl . 2 
al/2 = 1 - s1n 

2 2 ' w1 +(w
0

- w) 

(A24) 

l.j w1 
2 

+ ;w0 - wt •J 2 2 
wl . 2 

a -1/2 = s1n 
2 2 

w1 + (w0 -w) 

It may be observed by comparing Eqs. (Al 0) and (A24), that the 

classical and quantum-mechanical methods yield the same results. 

The progression of the probabilities as the resonance condition 

w=w
0 

is approached is presented in Fig. A2l. In Fig. A2la, the 

frequency w is far off resonance, and it can be seen that the probability 

of the spin's starting and remaining in the spin-up state is unity (shown 

by the dotted line). Of course then the probability of the spin's start­

ing in the spin-up state and ending in the spin-down state is 0 (rep­

resented by the solid line). 

The probabilities for I arbitrary were first calculated by 
. 43 

MaJor ana. 

Equations (Al 0) are not applicable as such to the beam of atoms 

effusing from the oven. To make them so, the probabilities must be 

averaged over the velocity distribution of atoms in the .beam. This 

distribution is written as 

(A25) 

where I(v) is the intensity of atoms with velocity v and I
0 

is the 

full beam intensity, 

I(v) dv. (A26) 
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A=t 
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T= 
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I 0 

V wl2 + <wo-wJ21 
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MU-17256 

Fig. A21. Transition probabilities as the resonance 
condition is approached. The dotted curve represents 

· the probability of the spin 1 s starting in the spin-up state 
and remaining in the spin-up state after a timet 
The solid. curve represents .the probability of the spin 
starting in the spin up state and ending in the spin 
down state after a time t. 
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From Eqs. (A7) and (AlO) we have 

0 2 (a.e) s1n --2v 
(A27) 

where f is the effective length of the oscillatory field region. 

Therefore 

p -!coO 
1/2, -1/2-

. 0 

__ J 2mkT Letting a 

yield 

where 

and af 
x= -

a 

2 
mv 

3 - 2kT 
v e 

0 2£} 0 2 
s1n o s1n (:;) dv 

(A28) 

v and y = -, one may integrate Eq. (A28) to 
a 

(A29) 

(A30) 

A table of I(x) may be found in Ramsey. 
1 

Figure A22 computed from 

that table, shows that there is an optimum value of field for which the 

probability of a transition is a maximum. For the theory and similar 
44 

curves for I > 1/2, the reader is referred to the thesis of R. Marrus. 
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Fig. A22. Transition probabilities as a function of magnetic 
field. 
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