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Abstract
Environmental factors like temperature, pressure, and pH partly shaped the evolution of life. As life progressed, new
stressors (e.g., poisons and antibiotics) arose as part of an arms race among organisms. Here we ask if cells co-opted existing
mechanisms to respond to new stressors, or whether new responses evolved de novo. We use a network-clustering approach
based purely on phenotypic growth measurements and interactions among the effects of stressors on population growth. We
apply this method to two types of stressors—temperature and antibiotics—to discover the extent to which their cellular
responses overlap in Escherichia coli. Our clustering reveals that responses to low and high temperatures are clearly
separated, and each is grouped with responses to antibiotics that have similar effects to cold or heat, respectively. As further
support, we use a library of transcriptional fluorescent reporters to confirm heat-shock and cold-shock genes are induced
by antibiotics. We also show strains evolved at high temperatures are more sensitive to antibiotics that mimic the effects
of cold. Taken together, our results strongly suggest that temperature stress responses have been co-opted to deal with
antibiotic stress.

Introduction

Organisms encounter and respond to myriad stressors [1, 2].
Stresses to bacteria can come in many different forms, such
as use of antibiotics [3, 4], changes in temperature [5],
variations in salt concentration or pH [6], or a lack of

nutrients [7]. Cellular responses to these stressors vary but
can range from specific subcellular mechanisms such as
efflux pumps that pump out toxic compounds [8, 9] and
outer membrane porins that regulate osmolarity [10] to
more global modulation that includes dormancy or quies-
cence under nutrient limitation [11].

Temperature and pressure gradients are stressors that
living organisms have needed to contend with since life first
evolved [12–15]. Indeed, phylogenetic evidence based on
ribosomal RNA sequences places the emergence of hyper-
thermophiles near the root of the tree of life [16, 17], so
sensing, responding, and adapting to pressure and tem-
perature must constitute some of the oldest adaptations
in nature. The heat-shock response machinery, which is a
mechanism for cells to deal with the noxious effects of high
temperatures, is present across all domains of life and is
highly conserved [18–21]. In contrast, the first antibiotics
are thought to have arisen more recently in evolutionary
history, between 2 billion and 40 million years ago [22].
Consequently, it seems likely that adaptive responses to
variations in environmental temperature evolved before
responses to antibiotics.

It seems possible that some of the mechanisms that
confer resistance to variations in temperature have been
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co-opted to deal with antibiotic stress as well, especially
since temperature and drugs harm many of the same cellular
components. For instance, high temperatures and antibiotics
(e.g., macrolides and aminoglycosides) both affect protein
synthesis and folding [23, 24]. In addition to functional
overlap, there are compelling reasons for cells to evolve a
relatively small suite of stress responses to multiple types
of stressors. Developing a novel stress response requires
investment in terms of genetic material (i.e., information),
protein production, time to evolve, and energy to support
simultaneous responses. Thus, it is inefficient for a cell or
organism to evolve an independent response for every sin-
gle stressor it encounters. Greater efficiency can be achieved
if cells can co-opt similar pathways to respond to different
stressors [25–27]. A prime example of this evolutionary
strategy in bacteria is the alternative sigma factor σS, which
regulates the expression of >70 genes that confer resistance
against stresses as diverse as temperature change, starva-
tion, pH, and DNA damage [28–30].

It is natural to ask which response mechanisms evolved
first, whether these original responses were co-opted to
respond to other stressors, and how much overlap exists
among how stressors affect bacteria. It has previously been
shown that heat-shock proteins are induced by some anti-
biotics [31], and that resistance to antibiotics can be
temperature-dependent [32]. Furthermore, selection of heat-
resistant Escherichia coli results in the evolution of resis-
tance to rifampicin, despite the drug being absent during the
selection process [33]. Additionally, overexpression of heat-
shock proteins increases short-term survival of bacteria
exposed to aminoglycosides [34]. Other stress responses,
such as those for nutrient starvation and oxidative stress,
have also been linked to the emergence of antibiotic resis-
tance [35].

Despite these intriguing, isolated subcellular studies,
we are unaware of any systematic, comprehensive study
of these overlaps and co-opting. Typically, the overlap
between cellular responses to stress has been studied by
isolating subcellular parts and attempting to piece together
the information involved to understand stress responses
at a whole-cell level. Here, we take a reverse and com-
plementary approach: by studying the effect of perturba-
tions on the whole system, we gain more insights into the
mechanisms of its specific parts. It is now feasible to
accomplish this with network-clustering methods that reveal
mechanism of action of antibiotics [36, 37]. For these
clustering methods, interactions between drugs are inferred
based on growth assays of bacteria exposed to antibiotic
combinations. Interactions between drugs are typically
characterized in one of three ways: additivity (drugs have
independent effects on growth), synergy (the drug combi-
nation is more potent for inhibiting growth than expected
based on their single effects), or antagonism (the drug

combination is less potent than expected based on their
single effects) [38]. Networks are then constructed in which
edges represent these interactions and nodes represent
drugs. Because drugs with similar functional effects in the
cell tend to have very similar interactions with other drugs,
clustering this network according to interaction profiles
(a procedure called monochromatic clustering) has been
shown to yield groups of drugs with the same mechanisms
of action [37]. The interaction profile of a drug can thus
reveal its functional effect in the cell.

In this paper, we generalize and extend the ideas of
monochromatic clustering. We develop a clustering method
for stressor interaction networks (SINs) to categorize non-
drug stressors that affect bacterial growth, and we use this
novel approach to reveal information about the shared effects
of temperature and antibiotics on the cell. To accomplish
this, we collect comprehensive data on bacterial growth in
the presence of each stressor separately, and when pairs of
stressors are present simultaneously. These measurements
are used to determine interactions between stressors and
construct a SIN. We then find groups of antibiotics that have
similar physiological effects to low- and high-temperature
stress by grouping stressors that interact similarly with other
stressors, as revealed through the SIN clustering analysis. In
this way, we systematically analyze overlap between stress
responses to temperature and antibiotics to assess the extent
that cellular responses to drugs co-opt and mimic the
responses to temperature, an ancient stressor.

Here, by systematically carrying out experiments and
performing network-clustering analysis, we determine the
overlap between the physiological effects of multiple classes
of antibiotics and those of six temperatures, ranging from
near normal to extreme, in E. coli. Moreover, we confirm
that temperature-response genes are involved in responding
to antibiotics by measuring genome-wide transcriptional
expression with a library of about 1800 strains that contain
fusions of green fluorescent protein (GFP) with E. coli
promoters. Finally, to assess the extent to which adaptation
to temperature confers antibiotic resistance, we evaluate the
cross-resistance to antibiotics of high-temperature-adapted
strains obtained in a previous study [33]. Our results all
provide evidence that elements of the low- and high-
temperature stress responses have been co-opted through
evolution to combat multiple classes of antibiotics.

Materials and methods

Bacterial strain

The study used BW25113, a derivative of the F-, λ-, E. coli
K-12 strain BD792 (CGSC6159) [39]. A single colony was
inoculated into 2 mL of LB media (10 g/L tryptone, 5 g/L
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yeast extract, and 10 g/L NaCl) and grown overnight
followed by resuspension in 25% glycerol, then aliquoted
into 50 μL and frozen at −80 °C. Cultures used for daily
experiments were started by adding 20 μL of thawed ali-
quots into 2 mL of LB media. The culture was incubated at
37 °C until it reached exponential growth phase and diluted
to maintain 104 cells per experimental condition.

Compounds and materials

A total of 12 antibiotics were included in the study as
representatives of all major drug classes. Gentamycin
(GEN), levofloxacin (LVX), tetracycline (TET), tobramycin
(TOB), erythromycin (ERY), ampicillin (AMP), clin-
damycin (CLI), streptomycin (STR), nitrofurantoin (NTR),
cefoxitin (FOX), and trimethoprim (TMP), all from Sigma
(St. Louis, MO); and ciprofloxacin (CPR) from MP Bio-
medicals (Santa Ana, CA). Stock solution at 20 mg/mL
of each antibiotic was stored in 50 μL aliquot at −20 °C
and each aliquot was only frozen and thawed once to
preserve potency.

Growth experiment

Drug concentrations were selected to partially inhibit
bacterial growth (10–50% inhibition) that were first deter-
mined by a 12-step concentration series of twofold at
each step in 96-well plates (Costar). A 5 mL stock solution
of each drug in LB media was made at 10-fold of their
respective concentrations (Table 1). For drug pair experi-
ments, 10 μL of each component drug was mixed into
96-well plates followed by the addition of 80 μL cell
inoculum; while 10 μL of LB media was added in repla-
cement of a second drug for single-drug experiments.

Replicate plates were prepared from the same antibiotic
stock solution to minimize variation and incubated at 300 r.
p.m. in parallel at various temperatures (22 °C, 25 °C,
30 °C, 37 °C, 41 °C, 44 °C, 46 °C). OD600 measurements
for cell density were taken after 4-h, 8-h, 12-h, and 24-h
growth. To examine the drug interaction clustering of
E. coli in a different external environment, we used LB
media without salt, prepared with 10 g/L tryptone, 5 g/L
yeast extract.

Relative growth and interactions

The relative growth under stressor x (presence of a drug or a
non-optimal temperature) is defined as wx ¼ gx

gφ
, where gx is

the growth of the bacterial culture under stressor x and gφ
is the growth of the culture at reference state φ—the culture
at its optimal temperature for growth in the absence of
antibiotics (41 °C in our study). Under the Bliss Indepen-
dence criterion [38], an interaction is additive if wxy=wxwy,
where wxy ¼ gxy

gφ
is the relative growth when stressors x and y

are both present. The deviation from additivity is defined as
εxy=wxy− wxwy. An interaction exists when this measure
is significantly nonzero. The sign of this measure deter-
mines the interaction type (εxy < 0 corresponds to synergy
and εxy > 0 to antagonism). The raw εxy is then rescaled by
appropriate reference values as in (Yeh et al. [37]) to yield a
rescaled measure, ~εxy. Its magnitude can be interpreted as
the strength of interaction (see Supplemental Information
for details).

Statistics of interaction effects

With the experimental procedure detailed above, four
measurements of the OD600 were taken at every time point,

Table 1 Antibiotics and doses
used for the antibiotic-
temperature SIN clustering
experiments

Compound Abbreviation Class/cellular target Dose (μg/mL)
E. coli

Dose (μg/mL)
E. coli LB no salt

Ampicillin AMP Cell wall synthesis inhibitor 1.2 1.4

Cefoxitin FOX Cell wall synthesis inhibitor 1.2 1.2

Levofloxacin LVX Fluoroquinolone, DNA gyrase
inhibitor

0.01 0.015

Ciprofloxacin CPR Fluoroquinolone, DNA gyrase
inhibitor

0.005 0.005

Nitrofurantoin NTR DNA damaging, multiple
mechanisms

2 1.6

Trimethoprim TMP Folic acid synthesis inhibitor 0.1 0.17

Tobramycin TOB Aminoglycoside 1.5 0.45

Gentamycin GEN Aminoglycoside 1 0.2

Streptomycin STR Aminoglycoside 2 0.6

Clindamycin CLI Protein synthesis inhibitor, 50S 40 25

Erythromycin ERY Protein synthesis inhibitor, 50S 50 20

Tetracycline TET Protein synthesis inhibitor, 30S 0.25 0.25

14 M. Cruz-Loya et al.



each one corresponding to a different experimental repli-
cate, for each stressor, and all possible pairwise combina-
tions. The OD (optical density) values were used as a proxy
that is proportional to the absolute growth (gx, gy, gxy, gφ).
We chose the point estimate ĝx to be the sample mean of the
four measurements of absolute growth under condition x.
The point estimate for each relative growth was taken
to be ŵx ¼ ĝx

ĝφ
and the point estimate for the interaction b~εxy ¼

~εðŵx; ŵy; ŵxyÞ (where ~ε refers to the rescaled interaction as a
function of the relative growths). We followed a parametric
bootstrap approach for constructing a 95% confidence
interval ~ε2:5;~ε97:5ð Þ for each interaction, with the assump-
tion that the OD measurements under each condition follow
a log-normal distribution.

Network of antibiotic and temperature effects and
monochromatic clustering

We constructed an interaction network where nodes repre-
sent the stressors (i.e., drugs or temperatures), and colored
edges represent non-additive interactions, with the edge
color corresponding to interaction type (red for synergy
and green for antagonism). The discretized interaction
(i.e., color) of an edge is defined to be

c ~ε2:5;~ε97:5ð Þ ¼
1 ðgreen=antagonismÞ ~ε2:5>~εref
�1 ðred=synergyÞ ~ε97:5<� ~εref

0 ðno edgeÞ otherwise

8

>

<

>

:

;

where ~εref ¼ 0:2 represents the limit for an interaction
to be considered approximately additive. The stressors
in the interaction network were clustered into monochro-
matic classes using a newly developed modification of the
Prism 2 algorithm [37]. For details about the clustering
algorithm, see the Supplemental Information.

Gene expression profile

We measured expression of about 1800 genes in E. coli
using a library with transcriptional fusions of GFP to
each promoter [40]. Strains were maintained in 15%
glycerol at −80 °C before inoculating and grown overnight
in LB medium with 25 μg/mL of kanamycin in 384 well
plates. Cultures were then transferred and pinned into 50 μL
of LB medium per well, followed by a 4-h incubation at
37 °C to allow growth up to exponential phase. To measure
differential expression at high temperature, cultures were
moved to 44 °C where OD at 595 nm and GFP fluorescence
(excitation, 480 nm; emission, 535 nm) were measured
every 2 h for 20 h using a programmable robotic system
(Thermo Cytomat). For expression profile with antibiotic
treatment, cultures were pinned into 30 μL of LB medium
before 4-h incubation, and another 30 μL of LB medium

with the corresponding antibiotic was added into the plates
(final concentration: STR at 4 μg/mL and TET at 1 μg/mL).
Controls were carried out at 37 °C without temperature
shift or addition of antibiotics. Antibiotics and control
conditions were measured using the same robotic system
and timeframe.

Determining over- and under-expressed promoters

The raw OD and GFP fluorescence measurements for
each strain in the promoter library were background-
corrected and normalized to yield a GFP/OD value that
is proportional to the total GFP fluorescence per cell.
The median-normalized GFP/OD values were used to
calculate log2-fold changes in promoter expression for
each experimental condition (44 °C, STR, TET) with
respect to the control condition (37 °C). Four replicates
were averaged to yield a final value of the log2-fold
change xcpt in gene expression (for each promoter p in
experimental condition c at time t). For more details,
see Supplemental Information.

As a measure of overall similarity between the gene
expression profiles of experimental conditions c1 and c2,
we calculated the mean absolute distance

dc1;c2 ¼
1
PT

X

p;t

xc1pt � xc2pt
�

�

�

�

of the respective log2-fold changes, where P and T are the
total number of promoters in the library and measured time
points, respectively.

For gene ontology (GO) term analysis, we determined
over-expressed (OE) and under-expressed (UE) pro-
moters as compared to control with the robust z-score
method, as in ref. [41]. Details are available in the Supple-
mental Information. The strains in the promoter library
were mapped to GO terms. GO terms of the “biological
process” category that are over-represented in the OE
and UE sets for each condition were found by ranking the
terms using the p-value from Fisher’s exact test.

Drug sensitivity profile for heat-adapted strains

We profiled the antibiotic sensitivity of 10 high-
temperature-adapted E. coli strains collected and described
by Rodríguez-Verdugo et al. [33]. In addition, we compared
their sensitivity profiles with their ancestor strain (E. coli
B genotype REL1206). Growth after 24-h was measured
through OD for each strain exposed to each of 12 drugs
under an 11-step concentration series with twofold
increase per step. Three replicates of these measurements
were obtained using the same methodology as described

Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature 15



in the Growth experiment section. IC50 values and
their associated credible intervals were determined by
fitting a five-parameter logistic model to the growth curve
for each strain. Details about the model and fitting can be
found in the Supplemental Information.

Results

Clustering of an antibiotic and temperature stressor
interaction network reveals overlap in their
physiological effects

To find groups of stressors (i.e., antibiotics and/or tempera-
tures) that have similar effects on E. coli physiology, we first
evaluate the interactions—synergy, additivity, or antagonism
—between each pair of antibiotics, and between each anti-
biotic and a range of growth temperatures (22 °C, 25 °C,
30 °C, 37 °C, 44 °C, 46 °C) (Fig. 1a, b). The maximum
growth in the absence of antibiotic was observed at 41 °C:
this optimum growth temperature was chosen as the
unstressed reference state for evaluating the relative growth
in the presence of each stressor. We evaluate the interactions
based on the 24-h growth of E. coli after exposure to the
corresponding stressors. We then construct a SIN (Fig. 1c)
where nodes represent the stressors and colored edges
represent interaction type (discretized based on a hypothesis
test, see Fig. 1c and Methods). The resulting network is
clustered to find monochromatically interacting groups,
which correspond to similar interaction profiles, using our

modified Prism 2 algorithm (Fig. 1d, see Supplemental
Information for details of the algorithm). These groups
consist of drugs/temperatures that have similar overall
interactions with other stressors, regardless of their interac-
tion type. Consistent with overlap in the mechanism of action
of specific drugs and the physiological effect of non-optimal
temperatures, we find that the evaluated temperatures cluster
with antibiotics in the following three groups (Fig. 2): (1) all
temperatures lower than the temperature for peak growth
cluster together, along with the fluoroquinolones (LVX,
CPR), which are DNA gyrase inhibitors, and with the 30S
protein synthesis inhibitor tetracycline (TET); (2) the tem-
perature 44 °C clusters with the DNA-damaging drug nitro-
furantoin (NTR) and with trimethoprim (TMP), an inhibitor
of the folic acid biosynthesis pathway that is responsible for
generating an essential DNA precursor; (3) the highest
evaluated temperature, 46 °C, clusters with the aminoglyco-
sides (GEN, STR, TOB), antibiotics that affect protein
translation proofreading [42]. We thus conclude that mono-
chromatic clustering successfully separated the antibiotics
according to their mechanism of action and/or grouped with
temperatures that have similar physiological effects.

To evaluate the robustness of our clustering results, we
also measure interactions in a different condition: LB
medium with no salt (Supplemental Figure 6). As before,
we find that high temperatures cluster with aminoglycosides
(GEN, STR, TOB) and TMP, but now they cluster in a
single group. Low temperatures cluster in a single group
with CLI, a 50S protein synthesis inhibitor, instead of
TET, LVX, CPR.

Fig. 1 Schematic illustration of the approach taken in this work.
a Growth is measured in the following conditions: reference growth gφ
at the optimal temperature (Topt= 41 °C) in the absence of drug, gx
at optimal temperature with drug, gy at experimental temperature Texp,
but no drug, and gxy at non-optimal temperature with drug. b The
growth of each experimental condition is converted to proportions wx,
wy, wxy by dividing by the reference growth. The difference between
wxy (observed growth) and the product of wx and wy (expected growth
under independence) is then used to classify the interaction between

drugs and temperatures into three cases: synergistic (red line), additive
(white or not shown), and antagonistic (green line), c which can
be represented as an interaction network. d Drugs and temperatures
can then be clustered into a functional class based on the mono-
chromaticity of interactions with a different class. This example shows
a drug-temperature interaction, but drug–drug interactions are obtained
similarly, by replacing the growth with no drug at Texp with the growth
under a second drug at Topt

16 M. Cruz-Loya et al.



Patterns in antibiotic and temperature interactions

We find that the distribution of the interactions between
all pairs of stressors at 24-h growth is trimodal (Fig. 3a),
with peaks that correspond to synergy (~εxy � �1), additivity
(~εxy � 0), and antagonism (~εxy � 1), similar to previous
work [37]. Ampicillin (AMP) and the aminoglycosides
(GEN, STR, TOB) are mostly antagonistic with tempera-
tures lower than the optimum (41 °C), and synergistic
or additive with higher temperatures (Fig. 3b). Ery-
thromycin and clindamycin (ERY, CLI) exhibit the
opposite pattern: they are mostly synergistic with lower
temperatures and antagonistic with temperatures near the
optimum or higher, with the exception of 44 °C. All inter-
actions were calculated using the mean growth under
each condition (see Methods). Using median values
yields similar results (Supplemental Fig. 1). The distribution
of interactions changes with different choices of growth
measurement time points (Supplemental Fig. 2). The 24-h
time point was chosen for the analysis since the
effects on growth and interactions of many of the stressors
are not apparent at earlier time points (Supplemental
Information).

Gene expression dynamics after exposure
to antibiotics and high temperatures

Next, we explore the molecular mechanisms involved in the
response to antibiotics by evaluating genome-wide transcrip-
tional dynamics after exposure to high temperature (44 °C)
and two representative drugs that clustered with temperatures:
TET (22–37 °C, cold cluster) and STR (46 °C cluster). To do
this, we measure fold changes in gene expression compared
to a control condition (37 °C) with a library of E. coli strains
containing GFP fused to more than 1800 promoters [40].
Consistent with the drug-temperature clusters, we find that the
overall gene expression at 44 °C is more similar to the
response to STR than to TET (Fig. 4a).

We also look at the expression of some canonical genes
from the heat-shock and cold-shock responses (Fig. 4b).
We find that cspA and cspG, main regulators of the cold-
shock response, are over-expressed only in response to
TET, while cspB and cspI are under-expressed. We find
that rpoH, the main regulator of the heat-shock response is
over-expressed compared to control only in the 44 °C
condition and is under-expressed upon exposure to TET.
However, chaperones involved in the heat-shock response

a b

Fig. 2 Monochromatic clustering of the interaction network.
a Unclustered interaction network. The nodes that correspond to drugs
are color-coded by their mechanism of action (Table 1), and the nodes
that correspond to temperatures are colored in a gradient from blue

(low) to red (high). The edges correspond to discretized interaction
type, as in Fig. 3c: synergy (red), antagonism (green), additive or
unknown (no edge). b Network clustered into monochromatic classes
by the modified Prism2 algorithm (Supplemental Information)
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(dnaJ, dnaK, groE, grpE) show increased expression under
both STR and TET. This indicates that components of the
heat-shock response are being activated in response to both
antibiotics, while the cold-shock response is activated only
for TET (a drug from the low temperature cluster). Ana-
lysis of gene ontology terms shows that genes involved in
the response to unfolded proteins, which is a well-known
effect of high-temperature stress, are induced in response to
STR (Fig. 4c).

Changes in antibiotic sensitivity for heat-adapted
E. coli strains

Our above experiments evaluate the overlap between the
existing responses of wild-type E. coli to antibiotics and
temperature. It is also of interest to evaluate if there is cross-
resistance between temperature-adapted strains and anti-
biotics. Previously, Rodríguez-Verdugo et al. [33] adapted
an E. coli strain for over 2000 generations at 42.2 °C and
showed the heat-adapted strains acquired resistance to
rifampicin. The resistance phenotype was mapped to
mutations in the rpoB gene [33]. We profile 10 of the heat-
adapted strains, their ancestor strain, and 3 different rpoB
mutants exposed to the antibiotics used in the clustering

experiment. As predicted from our clustering analysis, most
heat-adapted strains are as or more resistant to antibiotics
(NTR and TMP) that mimic the effects of high temperatures
(44 °C) (Fig. 5a, b). Resistance to aminoglycosides (which
clustered with 46 °C, a much higher temperature to the one
the heat-adapted strains were evolved on) was higher in
some temperature-adapted strains and lower in others.
Moreover, compared with the ancestor strain, most heat-
adapted strains are more sensitive to antibiotics that mimic
the effects of cold temperatures such as protein synthesis
inhibitors (CLI, ERY, TET) (Fig. 5a, b, Supple-
mental Fig. 5). These results are based on changes in IC50,
the antibiotic concentration that results in 50% growth.

Intriguingly, the same patterns were not observed for the
rpoB mutants exposed to some drugs (e.g., for ERY, CLI).
These mutants were not adapted at high temperature, sug-
gesting that there are additional adaptive mutations in the
heat-adapted strains besides rpoB.

Discussion

In this paper, we cluster interactions among drugs and
temperatures to infer that there are shared physiological

a

b c

Fig. 3 Interaction effects between antibiotics and temperature based on
growth after 24-h. The interaction effect (~ε) values are color-coded in a
gradient, from synergy (red) to additive (gray) and antagonism (green).
a Overall distribution of the mean estimated interaction effects across
all treatments. The distribution shows three clear peaks, corresponding

to strong synergy, additivity, and antagonistic buffering. b Matrix
heatmap of the mean interaction effects. Antibiotics with the same
mechanism of action show similar interaction patterns. c Matrix
heatmap of the discretized interaction types used for constructing the
edges of the interaction network

18 M. Cruz-Loya et al.



responses of E. coli to these stressors. Our SIN analysis
suggests that the stress responses to low temperatures
overlap with those of antibiotics that affect DNA gyrase and
a 30S protein synthesis inhibitor. In addition, the stress
responses to high temperatures overlap with those of drugs
that affect protein translation proofreading and drugs that
damage DNA. Due to this overlap, we conclude that cellular
responses to temperature stress have likely been evolutio-
narily co-opted to also respond to many classes of antibiotic
stress. Because pressure and pH are also ancient stressors,
we expect that responses to them may have also been co-
opted to deal with antibiotic stress. Our approach provides
a powerful basis for asking similar questions about other
environmental, chemical, or physical stressors that affect
the population growth of an organism.

We show that monochromatic clustering successfully
separates antibiotics and temperatures into groups that have

similar effects on bacterial physiology (Table 2). First, all
temperatures (22 °C, 25 °C, 30 °C, 37 °C) lower than the
optimum (41 °C, which results in the highest growth)
cluster with antibiotics that either affect the early stages of
protein synthesis (TET prevents the association of ami-
noacyl tRNAs with the ribosome [43]) or are DNA gyrase
inhibitors (LVX, CPR). This is consistent with the known
effects of low temperature. One of the main effects of cold
shock is translational block, which is thought to most likely
occur at the translation initiation step [44]. Some previous
reports have also shown that cold-shock induces the
expression of DNA gyrase and a transient increase of
negative supercoiling of DNA in E. coli [44–46]. Second,
the highest evaluated temperature (46 °C) clusters with the
aminoglycosides, antibiotics that affect protein translation
proofreading [42]. This leads to misfolding and aggregation
of defective proteins that mimic the well-known effects of

Fig. 4 Gene expression of E. coli after exposure to antibiotics and high
temperature. The gene expression response of E. coli was evaluated
with a library of 1870 fluorescent transcriptional reporters. a Mean
absolute gene expression distance between experimental conditions.
Lower numbers indicate conditions with more similar gene expression
profiles. b Gene expression of representative heat-shock and

cold-shock genes relative to control (37 °C) in response to experi-
mental conditions (44 °C, STR, TET). c Gene ontology terms in the
biological process category over-represented in the set of over-
expressed and under-expressed genes in each experimental condition
relative to control. Terms that are in bold occur in more than one
treatment
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high temperatures on protein stability and folding [21].
Finally, 44 °C clusters separately from 46 °C, with anti-
biotics that either damage nucleic acids or inhibit their
synthesis. This intriguing finding suggests the main phy-
siological effect of this temperature (compared to 41 °C)
could be due to effects on nucleic acids. This connection to
nucleic acids is suggestive given that the heat-shock protein
Hsp70 enhances repair of UV-induced DNA damage [47].
We speculate that this specific temperature clustering
separately from the aminoglycosides may be due to the
heat-shock response being able to partially combat protein
unfolding at 44 °C, but not 46 °C.

An important feature of the monochromatic clustering
framework is that it implicitly assumes each node (i.e.,
stressor) in the SIN belongs to a single cluster. This single
cluster assumption is likely a good approximation for
antibiotics as they tend to bind to specific cellular targets.
However, physical or environmental stressors, such as
temperature, can affect many cellular processes simulta-
neously. Because of this, the clusters in our study corre-
spond to consensus effects: these are informative summaries
of the dominant effects of the environmental stressor, but
could miss secondary effects that are not shared with the
other members of the cluster. Further theoretical and

a b

Fig. 5 Antibiotic sensitivity of high-temperature-adapted E. coli
strains. a Absolute change in the IC50 (µg/mL) relative to the ancestral
strain. Heat-adapted strains (red), rpoB mutant strains (purple). Error
bars represent 95% credible intervals (CIs). Gray region represents the
95% CI of ancestral strain. Drugs are grouped according to the clusters
of antibiotics and temperature in (Fig. 2). Conditions where the model
fit was poor were removed from the plots (Supplemental Information).

b Heatmap of log2 fold changes from the ancestral IC50. Heat-adapted
strains are denoted by HA, while rpoB mutant strains are denoted by
M. Positive numbers (yellow) indicate increased IC50 (more resis-
tance), while negative numbers (blue) indicate a decreased IC50
(higher sensitivity). Drugs are grouped in the same way as in a.
Missing conditions are shown in white

Table 2 Effects of temperature and antibiotics in cellular physiology

Temperature Antibiotics

High Low

DNA Decreased negative supercoiling Increased negative supercoiling CPR, LVX: DNA gyrase inhibitors
NTR, TMP: DNA damage

Protein Misfolding and aggregation Translational block ERY, CLI, TET: inhibition of translation
GEN, STR, TOB: increased errors in
translation

Cell membrane Increased membrane fluidity, damage
to membrane due to aggregation
of membrane proteins

Decreased membrane fluidity and
altered fatty acid composition

GEN, STR, TOB: damage to membrane
due to incorporation of misfolded
membrane proteins
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computational work could focus on relaxing the single
cluster assumption of monochromatic clustering to allow
temperatures to be grouped with multiple, potentially dis-
similar classes of antibiotics. This updated methodology
could allow a more nuanced approach, capable of breaking
down the effects of an environmental stressor in terms of
more targeted perturbations such as antibiotics, chemical
inhibitors, or gene deletions that are deleterious to different
cellular subsystems.

Indeed, some of the evaluated temperatures do have
similar interactions to antibiotics in different clusters
(Supplemental Fig. 5). Examples are the lowest tempera-
tures evaluated (22 °C, 25 °C). These temperatures have
similar interaction profiles to both the 30S (TET) and 50S
(ERY, CLI) protein synthesis inhibitors, while higher tem-
peratures that are still below the optimum (30 °C, 37 °C) are
only similar to the 30S inhibitors. This is reflected in (ERY,
CLI) being in a separate cluster from the low temperatures.
Interestingly, low temperatures cluster with CLI under no
salt conditions (Supplemental Figure 6), and a previous
report has shown cold-shock proteins are induced in
response to CLI [48].

Clinically, the impact of temperature on the effects of
antibiotics is also of interest because it suggests some
antibiotics could have increased or reduced effectiveness in
patients with fever or hypothermia. Previous work has
shown there is increased resistance to gentamicin (GEN) in
Francisella tularensis, Listeria monocytogenes, and Kleb-
siella pneumoniae at 26 °C when compared to 37 °C [32].
This increased resistance seems to be mediated by reduced
drug uptake. It has also been reported that streptomycin
(STR), tetracycline (TET), ampicillin (AMP), and cefoxitin
(FOX) have increased effectiveness at 46 °C compared to
37 °C in Pseudomonas aeuriginosa [49]. Our results are
consistent with both reports, as we found: (1) aminogly-
cosides (GEN, STR, TOB) are mostly synergistic with high
temperatures and antagonistic with low temperatures,
(2) synergy of beta-lactams (AMP and FOX) with high
temperatures, and (3) synergy of TET with 46 °C (but,
interestingly, with 22 °C as well). Some other antibiotics
(LVX, NTR, and TMP) also exhibit this curious pattern
of being synergistic with both temperature extremes and
either additive or slightly antagonistic with less stressful
temperatures. Further work is needed to obtain a more
detailed understanding of these interaction patterns.

Our transcriptional analysis shows that the overall
expression patterns of E. coli exposed to high temperature
are more similar to those induced by STR than those
induced by TET (Fig. 4a). We find that cspA and cspG,
main cold-shock response regulators in E. coli, have
increased expression in response to TET, but not STR or
high temperature (Fig. 4b). Other cold-shock regulators
(cspB, cspI) show decreased expression. It has been shown

that cold-shock genes are differentially induced depending
on the severity of the cold stress. In particular, cspA
expression is induced between 20–30 °C, while cspI is
induced between 10 and 15 °C [50]. These gene expression
results are in agreement with our drug/temperature clusters,
since the low temperature cluster contains temperatures
between 22 and 37 °C. We find that genes involved in the
response to unfolded protein (as determined by gene
ontology annotations), which commonly results from heat
stress, are overrepresented in the genes induced by STR, a
representative antibiotic that clustered with heat (Fig. 4c).
Interestingly, some heat-shock response genes that combat
unfolded protein stress (dnaK, dnaJ, groE, grpE) have
increased expression in response to both STR and TET.
However, the main heat-shock response regulator rpoH is
not over-expressed in response to either antibiotic (in fact, is
under-expressed in response to TET). Together, these
results suggest heat-shock genes participate in the response
to both antibiotics. However, they may be activated in a
different way than the canonical heat-shock response.

Our clustering and gene expression results show that
multiple antibiotics (particularly aminoglycosides, TET,
DNA gyrase inhibitors, and DNA-damaging antibiotics)
have similar overall effects in E. coli physiology to specific
low or high temperatures. This is consistent with compo-
nents of the stress response to temperature having been co-
opted over evolutionary time to deal with antibiotics that
disrupt similar cellular structures or functions to those
affected by low- and high-temperature stress. Moreover, we
show that this overlap between stress responses can be
related to the acquired cross-resistance of temperature-
adapted strains to specific groups of antibiotics.

Typically, the overlap between cellular responses to
stress has been studied by isolating subcellular parts and
attempting to piece together this information to understand
stress responses at the whole-cell level. Here, we take a
reverse, yet complementary approach: by studying the
effect of perturbations on the whole system, we gain more
insights into the mechanisms of its specific parts. Impor-
tantly, no aspect of this methodology is specific to anti-
biotics and temperature. Our SIN clustering method can be
used to evaluate shared responses among any combination
of physical, chemical, and/or biological stressors that affect
organismic growth.

In conclusion, we evaluate if the overlap between anti-
biotic and temperature stress responses is predictive of the
cross-resistance of high-temperature-adapted strains to
antibiotics (Fig. 5). We find that high-temperature-adapted
strains become more sensitive to protein synthesis inhibitors
(CLI, ERY, TET), drugs that either clustered with or are
similar to low temperatures. In contrast, the temperature-
adapted strains become more resistant to drugs that clus-
tered with 44 °C (NTR, TMP), but not necessarily to drugs
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that cluster with 46 °C (GEN, STR, TOB). Overall, these
results strongly suggest that seemingly novel drug resis-
tance is conferred to strains via adaptations they acquired
while being evolved at extreme temperatures. Specifically,
strains adapted to heat (42.2 °C) are more resistant to drugs
that damage DNA (which cluster with 44 °C, a similar
temperature), while also being more sensitive to drugs
that mimic the effect of cold. However, this pattern is not
universal, since the strains do not become more sensitive
to fluoroquinolones (LVX, CPR), which also cluster with
cold. Interestingly, the rpoB mutants do not follow the
same antibiotic resistance patterns as the temperature-
adapted strains, suggesting there may be more adaptive
mutations to temperature besides rpoB.
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