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Mapping vegetation morphology types in a dry savanna ecosystem:
integrating hierarchical object-based image analysis with Random

Forest

Niti B. Mishra* and Kelley A. Crews

Department of Geography & the Environment, The University of Texas, 1 University Station, A3100,
Austin, TX 78712, USA

(Received 22 April 2013; accepted 30 November 2013)

Savanna ecosystems are geographically extensive and both ecologically and economic-
ally important, and require monitoring over large spatial extents. Remote-sensing-
based characterization of vegetation properties in savannas is methodologically
challenging, mainly due to high structural and functional heterogeneity. Recent
advances in object-based image analysis (OBIA) and machine learning algorithms
offer new opportunities to address these challenges. Focusing on the semi-arid savanna
ecosystem in the central Kalahari, this study examined the suitability of a hierarchical
OBIA approach combined with in situ data and an ensemble classification technique
for mapping vegetation morphology types at landscape scale. A stack of Landsat TM
imagery, NDVI, and topographic variables was segmented with six different scale
factors resulting in a hierarchical network of image objects. Sample objects for each
vegetation morphology class were selected at each segmentation scale and classifica-
tion was performed using optimal features consisting of spectral and textural features.
Overall and class-specific classification accuracies were compared across the six scales
to examine the influence of segmentation scale on each. Results suggest that the
highest overall classification accuracy (i.e. 85.59%) was observed not at the finest
segmentation scale, but at coarse segmentation. Additionally, individual vegetation
morphology classes differed in the segmentation scale at which they achieved highest
classification accuracy, reflecting their unique ecology and physiognomic composition.
While classes with high vegetation density/height attained higher accuracy at fine
segmentation scale, those with lower vegetation density/height reached higher classi-
fication accuracy at coarse segmentation scales. Contrarily, for pans and bare areas,
accuracy was relatively unaffected by changing segmentation scale. Variable impor-
tance plots suggested that spectral features were the most important, followed by
textural variables. These results show the utility of the OBIA approach and emphasize
the requirement of multi-scale analysis for accurately characterizing savanna systems.

1. Introduction

Savanna ecosystems are mixed tree-grass systems that cover over 40% of the global
terrestrial area (50% of Africa) and play a significant role in the global land–atmosphere
energy balance as well as carbon and nutrient cycles (Mistry 2000; Hill, Roman, and
Schaaf 2011). Especially in southern Africa, savannas are essential contributors to pro-
ductivity and biodiversity and also contain some of the largest remaining wildlife habitats
(Scholes and Walker 1993). Vegetation structure and landscape composition in savanna
systems is characterized as patchy, mainly as a result of high spatio-temporal variability in
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rainfall and fire history (Turner et al. 2003; Wiegand, Saltz, and Ward 2006). Besides
providing ecosystem goods and services, southern African savannas are also economically
significant as they offer the basis of economic activity by supporting high populations of
livestock as well as wildlife-based tourism (Werger 1973; Thomas and Sporton 1997).
Over the past two decades, many areas in the southern Africa savanna in general and the
central Kalahari region in particular have become the focus of attention of stakeholders
and government. These areas are perceived as large, untapped grazing resources with the
potential of pastoral agriculture that can be a source of both people’s livelihoods and
government revenue (Skarpe 1990; Thomas and Sporton 1997; Dougill, Thomas, and
Heathwaite 1999; Thomas and Twyman 2004). As a result, large parts of previously wild
and undisturbed areas are experiencing structural and functional changes in vegetation
characteristics, mainly due to changing land use, and altered fire regimes exacerbated by
climatic shifts (Werger 1973; Turner et al. 1993; Dougill, Thomas, and Heathwaite 1999;
Scholes et al. 2002). These changes are in turn affecting biogeochemical processes,
availability of habitat-related key structural resources (e.g. solitary nesting trees, foraging
grounds, and migration routes), and the overall ecological sustainability (Dougill,
Thomas, and Heathwaite 1999; Tews, Blaum, and Jeltsch 2004; Blaum, Rossmanith,
and Jeltsch 2007).

Sustainability of these fragile and dynamic systems needs ecologically informed
decision-making by land managers who require fundamental knowledge about the func-
tional attributes of vegetation assemblages (e.g. vegetation structure, cover, density).
These characteristics are also key variables in state and transition models used for
modelling these systems (Van Rooyen et al. 1990; Scholes and Walker 1993). However,
countries in southern Africa lack such geodata on vegetation and land cover at suitable
spatial scales. Field-based assessment, though of high quality, is limited in scope and
scale, especially considering systems that are extensive and wild. Further, vegetation
dynamics is the result of processes interacting at multiple spatial scales that require
monitoring at local to regional scales (Cramer et al. 2001; Xie, Sha, and Yu 2008).
Remote-sensing instruments provide valuable tools for this purpose and can not only
complement field measurements but also provide much larger spatial coverage (Elmore
et al. 2000; Wu and Marceau 2002). With the increasing number of remote-sensing
systems, images are available at multiple spatial scales, but with trade-off between spatial
resolution, temporal resolution, and swath area. Systems providing low-spatial resolution
images (>250 m, e.g. MODIS) have high temporal revisit and large swath area, making
them more suitable for regional-scale monitoring. While coarse-resolution images have
been able to yield high accuracy in ecosystems with homogeneous cover, they have been
found to produce much lower accuracy and high uncertainty in savanna systems, mainly
due to small patch size and heterogeneous classes with mixed vegetation (Latifovic and
Olthof 2004; Turner et al. 2004; Giri, Zhu, and Reed 2005, Mishra, Crews, and Okin
under review). Contrarily, very high-spatial resolution imagery (<10 m) provides the
required spatial detail but is limited by small swath area, large data volume, low temporal
frequency, and high data cost. Medium-spatial resolution imagery (20–30 m) (e.g.
Landsat, ASTER) represents a good compromise in this regard and has been favoured
for landscape-level applications in savanna systems (Ringrose et al. 2003; Schwartz et al.
2003; Seagle 2003; Davidson et al. 2008; Tangestani et al. 2008). Compared with low-
spatial-resolution imagery, results obtained with medium-resolution imagery are ecologi-
cally more meaningful as these allow one to infer landscape patterns and related
ecological processes (Opdam, Foppen, and Vos 2002; Newton et al. 2009). However, in
semi-arid savannas, inferring vegetation properties from medium-resolution imagery is
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also methodologically challenging for several reasons, e.g. expansive soil background
leading to swamping out of spectral contribution of plants, lack of a strong red edge, and
reduced absorption in visible wavelengths due to evolutionary adaptations of semi-arid
vegetation (Huete, Jackson, and Post 1985; Huete and Jackson 1988; Okin et al. 2001; Wu
and Marceau 2002).

Since savanna systems are often considered patch-dynamic systems, mapping vegeta-
tion properties in savannas may benefit from object-based image analysis (OBIA) rather
than the traditional per-pixel analysis approach (Spies, Ripple, and Bradshaw 1994;
Soranno et al. 1999; Steffan-Dewenter et al. 2002; Laliberte et al. 2004). Following the
OBIA approach, imagery is first segmented into objects representing a relatively homo-
geneous group of pixels by selecting desired scale, shape, and compactness criteria.
Segmentation is followed by sample selection and classification of segments into classes
of interest (Steffan-Dewenter et al. 2002; Benz et al. 2004). In savanna systems, important
OBIA advantages include (1) treatment of landscape consisting of relatively homogeneous
patches (or ‘objects’) is ecologically more suitable than individual pixels; (2) landscape
patches often depict scale dependency and, following the OBIA approach, landscape
objects can be generated at multiple segmentation scales that can provide added insight
into ecological processes (Strayer et al. 2003); (3) lower likelihood of ‘salt-and-pepper’
speckle, which is often an issue with per-pixel analysis; and (4) OBIA offers the
opportunity to add contextual, geometrical, and texture related features (Strayer, Ewing,
and Bigelow 2003). However, the OBIA approach has not yet been extensively tested in
natural landscapes where continuous variation in vegetation characteristics makes it
challenging to define boundaries between ‘objects’ (Soranno et al. 1999; Tallmon et al.
2003).

Unlike human-modified landscapes (e.g. urban areas), in heterogeneous natural systems,
landscape patches can vary in size, shape, and structure that may require characterization at
multiple spatial scales (Moustakas et al. 2009, Mishra and Crews 2013). Within OBIA, the
segmentation scale parameter used in segmentation controls the maximum allowable object-
level spectral heterogeneity and object size (Urban et al. 2002). Scale also affects the quality
of segmented objects, which in turn affects the final classification accuracy (Keyghobadi,
Roland, and Strobeck 1999; Yu et al. 2006). By manipulating the segmentation scale factor,
nested objects of different size can be created that could be further hierarchically classified
representing the output at multiple scales. While such a hierarchical classification approach
has been found appropriate for characterizing spatially heterogeneous natural systems such
as wetlands (Trzcinski, Fahrig, and Merriam 1999) and arid rangelands, its suitability for
characterizing vegetation morphology in dry savanna systems at the landscape scale merits
further investigation.

Determining suitable classification feature space is a crucial step before image classi-
fication, which ensures that the classes in question are discriminated effectively and with
sufficiently high accuracy (Knight and Morris 1996). Following OBIA, the availability of
hundreds of features (e.g. spectral, geometrical, textural, and contextual) makes it a time-
consuming and subjective process (Turner 1989). Specifically, the inclusion of textural
features in OBIA increases the processing time significantly, thus limiting its suitability
for landscape-scale mapping (Soranno et al. 1999). Very few previous studies have
examined which classification features are more appropriate for characterizing vegetation
morphology in xeric systems. Additionally, in low-niche differentiation environments
such as the semi-arid savannas, separability of vegetation classes and classification
accuracy may be enhanced by using more recently proposed non-parametric classification
algorithms (e.g. classification trees). The application of ensemble of classification trees
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(i.e. Random Forest, RF), as proposed by Breiman (2001), has been proved to be effective
for classifying remotely sensed data. Remote-sensing studies utilizing RF classification
have focused on the per-pixel classification approach and regional- to global-scale studies.
More recently, their application under the OBIA approach has been found to enhance
thematic depth and classification accuracy. Therefore, this study explored the utility of
OBIA combined with RF classification for mapping vegetation morphology types in the
semi-arid central Kalahari of Botswana. The study area is relatively understudied and
lacks landscape-scale environmental geodata due to accessibility and the dangers from
wildlife. The primary objective of this study was to utilize in situ information on
vegetation physiognomic characteristics to develop and map vegetation morphology
types using OBIA by determining the optimal segmentation scale and classification
features.

2. Site and situation

Part of the southern African semi-arid savanna system, the central Kalahari (between
21°–24° S and 22°–26° E) occupies the northern and central part of the larger Kalahari
sand basin. The area follows the Kalahari rainfall gradient, with its northern and the
western tips receiving up to 400 mm of rainfall whereas the rest of the area receives a
mean annual precipitation of 350 mm. The rainy season is between October and April,
during which rainfall is spatially discontinuous and temporally variable (Makhabu,
Marotsi, and Perkins 2002; Scholes et al. 2002). The study area covers 22,292 km2, of
which more than 70% falls within the protected area (i.e. the Central Kalahari Game
Reserve) and the rest is under private game farms and open-access commercial ranching
(Figure 1). Geologically, the area is dominated by the spread of nutrient-poor Kalahari
sand with sporadic outcrops of calcrete, sandstone, and schist of the Karoo sequence, with
an average altitude of 950 m (Fagan 2002). The topographical continuity is broken in the
northern part of the study area due to the existence of longitudinal dune systems marked
by comparatively much higher and denser vegetation. The natural water availability is
limited to small, short-lived accumulations in occasional pan depressions (Dougill and
Trodd 1999). The vegetation is characterized by a spatially complex and structurally
heterogeneous mixture of woody and herbaceous species occurring on a scale of few
metres, and exhibits temporally distinct phenological patterns. Notable broad-leafed
species in the area include Lonchocarpus nelsii, Terminalia sericea, Bauhinia petersiana,
Combretum hereroense, and Croton gratissimu. Important fine-leafed species include
Acacia erioloba, A. luederitzii, A. mellifera, A. erubescens, and Ziziphus mucronata
(Fagan 2002). Plant species diversity is relatively low for all plant communities and the
differences among communities are related to changes in species dominance rather than
occurrence of different species. Thus, vegetation boundaries based on plant species are
often unclear (Fagan 2002; Makhabu, Marotsi, and Perkins 2002). As in much of southern
Africa’s savannas, pans are geomorphologically distinct features with relatively flat
topography and clay-dominated soil. Pans are different from other bare areas in that
they are mostly contained within isolated sub-circular to sub-elliptical depressions that
retain rain water for much longer. In the study area, many pans (e.g. Deception pan,
Lethiahau pan) are remnants of ancient sand-choked drainage lines (also called fossil river
valleys). Pans are ecologically important as they provide mineral licks and relatively
nutrient-rich vegetation, attracting large herbivores and their associated predators and
concomitant tourism (Turner 2005). Therefore, accurate mapping of pan areas is important
for the overall planning and management of the central Kalahari region.

1178 N.B. Mishra and K.A. Crews
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3. Data and methods

3.1. Remotely sensed data and pre-processing

This study used terrain-corrected (Level 1T) Landsat 5 TM imagery acquired at 10:16
local time (08:16 UTC) on 9 May 2010. In the central Kalahari, May represents the
beginning of the dry season when trees and shrubs are still green, whereas herbaceous

km

Game Farm BoundaryCKGR Boundary

Study Area

Photo

N

Tracks

(a) (b)

0 255

N

km510

Central Kalahari Game Reserve

Study Area

Botswana Country Boundary

(c)

Photo + Transect

22° S22° S

21° S21° S

24° E23° E

23° E 24° E0 3015 60

Figure 1. (a) Location of Bostwana in southern Africa; (b) location of the study area in the central
Kalahari of Botswana; and (c) enlarged portion of the study area depicting the game reserve
boundary and game farms outside the protected area; the points are where field data were collected.
The background image used in this study is cloud-masked Landsat TM (band 4).
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vegetation contains no observable green biomass. Clouds in this imagery were manually
masked and surface reflectance was derived by radiometrically calibrating the imagery
using the ATCOR algorithm. ATCOR is an absolute atmospheric correction method that
applies an atmospheric look-up table based on a large database containing the results of
radiative transfer calculation from the MODTRAN-4 radiative transfer code (Pearson,
Turner, and Drake 1999). The optical depth of the atmospheric aerosols was calculated by
comparing modelled at-sensor radiance to measured radiance in the red band of areas with
dark, dense vegetation. This correction was then applied on each pixel to derive surface
reflectance. As an additional feature, the normalized difference vegetation index (NDVI)
was derived after calibrating Landsat TM imagery. An ASTER GDEM (Version 2)
representing the study area was also used to derive slope and aspect. At high spatial
resolution, GeoEye-1 and SPOT-5 images were available covering 1353 km2 (6%) and
15,821 km2 (70%) of the study area, respectively.

3.2. Field data processing and development of vegetation morphology classes

Field data related to vegetation physiognomy (i.e. structure and density) and species
composition were acquired following a transect-based approach during two field cam-
paigns conducted during 18 May–2 June 2011 and 11–28 May 2012 (coincident with the
calendar month of image acquisition). The location of these transects was determined
based on knowledge gained during a May 2010 reconnaissance trip and visual interpreta-
tion of high-spatial resolution imagery (i.e. GeoEye/SPOT). Transect locations were
spatially distributed with the aim of sampling all important vegetation morphological
types in the study area. Due to serious accessibility and safety issues (e.g. danger of
predator attack), these transects could not be established away from tracks except in the
pan and more open areas. Combining the fieldwork conducted during 2011 and 2012, data
were collected from 148 transects (Figure 1). At each of these transects, geographic
coordinates were recorded at the start and end points using a standard global positioning
system. Additional information included visual interpretation of the dominant vegetation
functional type (e.g. woody versus herbaceous), minimum, maximum, and average
vegetation height, dominant tree/shrub species, and images acquired with a digital camera.
These characteristics were also interpreted and recorded at 143 further locations where
setting up a transect was not possible due to high vegetation density and serious safety
issues (Figure 1).

In southern African savanna systems, at the spatial/spectral resolution of Landsat
imagery, vegetation physiognomic-structural aspects are the most important determinants
of pixel reflectance (Groffman et al. 2005). Hence, the development of vegetation
morphology classes was based on (1) vegetation physiognomy, (2) vertical and horizontal
agreement, (3) leaf type, and (4) phenology. The accurate representation of the typical co-
existence of trees, shrubs, and grasses in a savanna ecosystem requires consideration of
the layering system of vegetation structure. An important advantage of considering the
layering system in heterogeneous systems such as savannas is the independence of
geographic scale (Groffman et al. 1992). Thus, considering the layering system of
vegetation and the above-mentioned physiognomic characteristics recorded in field trans-
ects, the following five vegetation morphology classes were defined: (1) mixed deciduous
woodland with shrubs and herbaceous layer; (2) mixed (70–40%) medium-high shrubland
with open, short herbaceous layer; (3) mixed (40–10%) medium-high shrubland with
open, short herbaceous layer; (4) medium-tall grassland with medium-high shrubs; and (5)
pans and bare areas (Table 1).
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3.3. Object-based image analysis

3.3.1. Image segmentation and training object selection

The workflow of the methodology followed in this study is outlined in Figure 2. To
implement object-based classification, first, image segmentation was carried out in
eCognition Developer 8 software (Loreau, Mouquet, and Holt 2003). The raster stack
(six Landsat bands excluding the thermal band, NDVI, DEM, slope, and aspect) was
segmented using a multi-resolution segmentation algorithm. The multi-resolution segmen-
tation approach allows construction of objects of different size and enhances the response
of object generation to landscape patch structure in comparison with other approaches
(Naiman and Rogers 1997; Jules et al. 2002). Due to high structural heterogeneity in
savanna systems, meaningful spectrally homogeneous objects can occur at different
spatial scales (Naiman and Rogers 1997). Additionally, based on field information on
landscape heterogeneity, it was expected that optimal patch size would vary depending on
vegetation morphological characteristics. Hence, in this study objects were generated at
six segmentation levels with scale values ranging from 15 to 60, resulting in an average
object size of 20,358–408,625 m2 (Table 2).

Image
Segmentation

Extract object features
for ground plots

Landsat 6 bands,
NDVI, DEM, Slope,

Aspect
Landsat TM/ASTER
DEM pre-processing

Image
classification

(Random Forest)

Feature space
selection (FSO

tool/JM distance)

Accuracy assessment
/uncertainty analysis across

different object scales

Field data/GeoEye, SPOT
imagery

Develop vegetation
morphology classes

Final vegetation
morphology map

Training/testing
object selection

Figure 2. Schematic workflow of the study procedures.

Table 2. Segmentation parameters and associated object statistics for the six segmentation scales
considered in the study.

Level
Scale

parameter
Colour/
shape

Smoothness/
compactness

No. of
Objects

Mean area of object
(m2)

1 15 0.8/0.2 0.6/0.4 1,091,547 20,358
2 20 0.8/0.2 0.6/0.4 541,281 41,068
3 30 0.8/0.2 0.6/0.4 217,984 102,048
4 40 0.8/0.2 0.6/0.4 119,868 185,609
5 50 0.8/0.2 0.6/0.4 77,161 288,408
6 60 0.8/0.2 0.6/0.4 54,470 408,625
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Figure 3 shows the segmentation results for a subset area at the six segmentation
scales depicting how increasing segmentation scale value also increased the resulting
object size. Visual inspection of segmentation results confirmed that beyond a scale value
of 60, it was no longer possible to find representative homogeneous objects as the
likelihood of class mixture within the object increased with object size (Liu and Xia
2010).

Hence, segmentation was not conducted beyond a scale value of 60. The other
required segmentation parameters, shape and compactness, were kept at a constant
value of 0.2 and 0.4, respectively (Table 2). These values were selected as optimal
based on visual comparison of the results of several iterative segmentation runs. While
conducting segmentation, the input Landsat bands, DEM, slope, and aspect were given
equal weight while the NDVI layer was given higher weight compared with all other input
layers.

3.3.2. Training/validation object selection

For each segmentation scale, training and test objects for classification were selected by
(1) intersecting surrounding Landsat segments with specific field transects, and (2) more
objects in the neighbourhood of field transect locations were selected as samples through
interpreting and confirming their homogeneity in terms of vegetation physiognomy by
overlying them on high-resolution imagery (GeoEye/SPOT) (Figure 4(a)). To ensure
systematic geographic distribution of training/testing data, objects were divided between
calibration and validation datasets based on the object ID created systematically across the
image during segmentation. In most cases, sample objects derived with lower-scale values
were nested within objects derived from higher factor values. In semi-arid savannas, the
spatio-temporal pattern of rainfall determines the temporal dynamics of vegetation (Hill,
Roman, and Schaaf 2011). Hence, the suitability of the selected training/testing objects
was also validated by spatially overlaying them on the mean enhanced vegetation index
(EVI) value calculated from six years (2005–2011) of MODIS data (MOD13Q1 product)
(Figure 4(b)). Furthermore, to avoid the inclusion of any burned area in training/test data,
the MODIS burned area product (MOD45A1) (Foster, Fluet, and Boose 1999) was used.
Finally, for each scale, 843–1638 training/test objects with 68–631 objects per class were
selected. Compared with other classes the number of samples selected for pan areas was
higher because (1) many of the field tracks in central Kalahari follow the pan systems
(Figure 1), allowing easier access, and (2) due to their high albedo it was relatively easier
to visually distinguish pans on the high-spatial resolution imagery. Thus, while pans and
bare area represent a relatively small percentage of the total study area, the number of
validation and training samples selected for them was higher (Table 1).

3.3.3. Feature space selection for classification

For selection of optimal features to be used in classification, 41 spectral, shape, texture,
pattern, and contextual features were initially selected to include a sufficiently wide range
of features. To reduce the data dimensionality, Spearman’s rank correlation analysis
(Spearman 1904) was utilized to eliminate features with correlation coefficients above
0.9. Seventeen features were found to have correlations below this threshold value. The
selection of best features from these remaining features was based on Jeffreys–Matusita
distance (JM distance), which is a pair-wise measure of class separability based on the
probability distribution of two classes. JM distance has a finite dynamic range that allows
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easier comparison of class separability. For calculating JM distance, the SEATH tool was
used (Nussbaum, Niemeyer, and Canty 2006; Marpu et al. 2008). Using the sample data
for each class, a probability distribution is estimated based on mean and variance value.
Thresholds are determined by fitting a Gaussian probability mixture model to the fre-
quency distribution of a feature for the two classes. SEATH calculates class separability
and threshold for every two-class combination. This study calculated the largest average
JM distance (the mean of all two-class combinations) for every possible 9–17 feature
combinations. Combinations with a lower number of features always had lower JM
distance compared with those with more features, and selecting the lowest mean JM
distance for the nine candidates was deemed unsuitable. Hence, the feature combination
that resulted in the largest JM distance for the least separable pair of classes was selected,
which is an approach followed in previous studies (Swain and Davis 1978; Turner 1989).
This approach resulted in the final selection of 13 features (Table 3), of which four were
textural features calculated after Haralick, Shanmugam, and Dinstein (1973). The appro-
priateness of these features was also confirmed by comparing them to results of feature
space optimization (FSO), a feature selection tool available within eCognition (Loreau,
Mouquet, and Holt 2003).

3.3.4. Image classification and accuracy assessment

In this study, vegetation morphology types were mapped using the non-parametric
classifier, RF. The RF classifier builds multiple decision trees from bootstrap samples of
the reference data. Decision-tree classifiers have advantages over traditional classifiers in
that they make no assumptions about data distribution (e.g. normality) and can adapt to
non-linear relationships inherent in the data (Friedl and Brodley 1997). RF classification
has been employed in environmental remote sensing for a variety of applications includ-
ing land-cover mapping (Pal 2005; Sesnie et al. 2008), forest structural parameters,
biomass estimation (Baccini et al. 2004, Hudak et al. 2008), and mapping of invasive

Table 3. Overview of the selected features that were used in final image classification.

Features Description

Mean layer value The mean value represents the mean brightness of an image object within a
single band; used feature: Mean NDVI.

Ratios The amount that a given band contributes to the total brightness; used feature:
Ratio SWIR (Landsat TM band 6), Ratio NDVI.

Standard
deviation

The standard deviation of all pixels which form an image object within a band;
used feature: standard deviation aspect, standard deviation red, standard
deviation green, standard deviation blue, standard deviation NIR, standard
deviation GLCM (all bands).

Maximum
difference

Minimum mean value of an object subtracted from its maximum value. The
means of all bands belonging to an object are compared with each other and
the result is divided by the brightness.

Texture after
Haralick

GLCM (grey level co-occurrence matrix) calculated after Haralick, Shanmugam,
and Dinstein (1973) describes how different combinations of pixel values
occur within an object; used features (using the mean of all layers): GLCM
contrast, GLCM dissimilarity, GLCM standard deviation.

GLDV (grey level difference vector). The sum of the diagonals of the grey level
co-occurrence matrix; used features (using the mean of all layers): GLDV
Angular second moment.
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species (Lawrence, Wood, and Sheley 2006). In land-cover mapping studies, RF classi-
fication has been found to yield overall accuracies that are either comparable to or better
than other state-of-the-art classifiers such as neural networks and support vector machines
(Pal 2005). In RF classification, each decision tree uses a random subset of training data
and a random subset of input predictor variables, which reduces the correlation between
decision trees as well as the overall computational complexity. Roughly 2/3 of the data are
sampled with replacement while 1/3 are withheld from tree construction (also called ‘out-
of-the-bag’ or OOB samples). OOB samples are used to calculate the difference between
predicted versus observed samples based on which unbiased error matrix is calculated.
Final class prediction is determined by majority voting based on the ensemble of trees. RF
also calculates the measure of variable importance for individual classes and the classi-
fication as a whole. The variable importance measure allows determination of which of
the input features contribute most to class separation. Predictor variable importance plots
are generated based on a random permutation of the input variables, and the effect of the
permutation is quantified for each variable by the change in the OOB error (Breiman
2001). Those variables important for separating classes show significant change in OOB
error.

RF classification was implemented in the statistical package R using the
‘randomForest’ package (Liaw and Weiener 2002). The selected predictor objects were
converted to ESRI shapefile and the associated attribute table was exported for RF
classification in R. The parameters used for classification included: number of trees
(ntree= 500), minimum samples in terminal node (nodesize = 10), and sqrt(p) as the
number of variables randomly sampled as candidates at each split, where p is the number
of variables. After classification, the RF class predictions were written back to the
attribute table. The classification accuracy was accessed using independent sample objects
reserved for each class at each segmentation scale. Error matrices were calculated based
on the number of objects per class without considering object size. Accuracy matrices
reported include class-wise user’s and producer’s accuracy, overall accuracy, and kappa
statistic at each segmentation scale.

4. Results and discussion

4.1. Vegetation morphology type mapping

The vegetation morphology type mapping in this study was based on a vegetation survey
in the northern part of the Central Kalahari Game Reserve. In general, vegetation in the
study area represents a transition zone between tree savanna with mixed broad-leafed and
microphyllous (fine-leaved) species in the northern part that gradually changes to micro-
phyllous species-dominated areas in the south and south-west. The mapped vegetation
types for the whole study area are shown in Figure 5(a). Results show that vegetation
morphology class 3 (i.e. mixed (40%–10%) medium-high shrubland with open, short
herbaceous layer) was spatially the most dominant (covering about 60% of the area),
whereas vegetation morphology class 1 (i.e. mixed deciduous woodland with shrubs and
herbaceous layer) was least dominant (less than 1% of the total area). Vegetation mor-
phology classes 2, 4, and 5 covered 20.32%, 13.76%, and 3.03% of the area, respectively.
The spatial distribution of the different vegetation morphology types in the study area is a
reflection of the spatial heterogeneity in the ecological mechanisms (e.g. soil character-
istics, rainfall pattern, fire history) that influence savanna vegetation structure and com-
position. Vegetation morphology class 1 was present in the northern, northeastern, and
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(a)

(b)

0 1 2 km 0 1 2 km

0 1 2 km 0

Class 1: Mixed deciduous woodland with shrubs and herbaceous layer

Class 2: Mixed (70–40%) medium high shrubland with open short herbaceous layer

Class 3: Mixed (40–10%) medium to high shrubland with open short herbaceous layer

Class 4: Mixed tall grassland with medium-high shrubs

Class 5: Pans and bare areas

0.2 0.4 km

0 0.2 0.4 km

0

N
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24° E

24° E

22° S
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22° S
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(c)

 (i) Landsat RGB: 421  (ii) Classification output (iii) Inset GeoEye RGB: 421

23° E

Figure 5. Vegetation morphology type classification derived from Random Forest classification on
objects generated at segmentation scale value 40. Figure 5(a) shows a map of entire study area.
Figures 5(b) and (c) show two subset areas with different morphology types and are compared to
Landsat and GeoEye images.
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southeastern parts of the study area (Figure 5(a)). During the field campaign, it was noted
that the patches of vegetation morphology class 1 in the northern part of study area were
dominated by Terminalia prunioides mixed with Croton gratissimus and Acacia erioloba.
On the other hand, those in the south-eastern part of the study area were dominated by
Colophospermum mopane, with Lonchocarpus nelsii and Acacia luederitzii co-dominant.

Vegetation morphology classes 1 and 2 generally dominate the area known as the
northern Kalahari sandveld, which is topographically characterized by immobile longitudi-
nal sand dunes. Vegetation morphology class 3 dominates areas that are topographically
characterized as inter-dunal and plains with relatively shallow depth of sand. It also marks
the transition zone between relatively densely vegetated areas and more open areas with
predominantly herbaceous vegetation. Areas under vegetation morphology class 4 are
mostly plains with shallow sand forming the top layer. Pan areas (vegetation morphology
class 5) have dominant clay content and are found in the study area as either forming the
ancient fossil river valley systems or others that are randomly scattered. Pan areas are
characterized by the occasional occurrence of clumps of trees, also called ‘tree islands’, a
result of the complex interaction of longer water availability, fire history, and soil
characteristics.

4.2. Class separability

Class spectral separability analysis was conducted on the training samples of the vegetation
morphology classes studied using the 13 feature space variables finally selected. The
separability metric used was JM distance, which indicates a relative measure of how reliably
one class can be statistically separated compared with the remaining classes. The results of
this separability analysis are reported in Table 4. Class pair-wise JM distance separability
value is reported as being between 0–2, with 2 indicating complete separability. The result
of pair-wise separability analysis suggested high separability for most class pairs. The lowest
JM distance value was reported for the pairing of morphology classes 2 and 3 (i.e. JM
distance, 1.61). This could be attributed to the fact that the differentiation between these two
classes was established based on the percentage cover or shrub density as observed in the
field and from high-resolution imagery. However, in feature space, the two classes were
relatively similar even after using the optimally selected classification features. The highest
inter-class separability values are reported for morphology class 5 and all other classes. This
could be attributed to the very high surface albedo of pans and bare areas, and also to
significant delay in the growing season period and late green-up caused by a typical
flooding situation at the end of the rainy season. On the other hand, low class separability
between morphology classes 2 and class 3 could be attributed to their comparative similarity
in vegetation physiognomic characteristics.

Table 4. Jeffreys–Matusita distance class separability calculated for samples in the five vegetation
morphology classes using the 13 features used in final classification.

Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 – 1.71 1.96 1.99 1.99
Class 2 – 1.61 1.82 1.99
Class 3 – 1.68 1.99
Class 4 – 1.98
Class 5 –
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4.3. Segmentation scale versus classification accuracy

Results suggest that classification accuracy is sensitive to image segmentation scale, and
various key outcomes were noted in this response. Among the six segmentation scales
considered, the overall accuracy consistently increased from scale 15 to coarser scale
values, attaining the highest overall accuracy at a segmentation scale of 40 (i.e. overall
user’s and producer’s accuracy 87.05 and 83.69%, respectively; kappa = 0.82). However,
at segmentation scales higher than 40, classification accuracy again decreased (Table 5).
Furthermore, the observed sensitivity of classification accuracy to changing segmentation
scale was also class specific, because the highest classification accuracy for different
vegetation morphology classes was observed at different segmentation scales (Table 5).
For example, areas with comparatively dense vegetation (e.g. morphology class 1)
attained highest classification accuracy at the segmentation scale value of 15. In contrast,
in areas dominated by relatively open herbaceous vegetation (e.g. morphology class 4),
highest classification accuracy was observed at coarse segmentation scale values (i.e. 60).
Unlike other classes, the classification accuracy of vegetation morphology class 5 (repre-
senting pans and bare areas) showed least variation and was less affected by change in
segmentation scale (Table 5).

These results could be interpreted in the light of the spatial variability in the structural
and functional properties of the different vegetation morphology types in the central
Kalahari. The hierarchical segmentation approach used in this study is well suited for
this purpose. Results indicate that the highest overall classification accuracy was not
found at smaller segmentation scale values but at coarser ones. This could be attributed to
the fact that at coarser scale values, integration of spectral signature across a large number
of pixels increased the contrast among vegetation morphology types due to a reduction in
within-class spectral variation (Strayer, Ewing, and Bigelow 2003). However, at more
coarse segmentation scales (i.e. >40) the classification accuracy started to decrease,
apparently due to reduction in spectral contrast between classes due to class mixing.
Savannas are often considered patch-dynamic systems because the vegetation spatial
distribution resembles patchy shapes due to the influence of determinants such as high
spatio-temporal variability in rainfall pattern and fire history (Moustakas et al. 2009). For
accurately characterizing vegetation morphology in savannas, it is important that segmen-
tation output matches patch size and structure for different classes of interest prior to
classification (Gustafson 1998; Tallmon et al. 2003). This study compared segmentation
output using six different scale values. Although the highest overall classification

Table 5. User’s, producer’s, and average accuracy calculated for independent samples at six
segmentation scale outputs.

Scale Class

15 20 30 40 50 60

users prod users Prod users prod users prod users prod users prod

Class 1 86.31 83.65 87.65 83.71 86.9 80.88 83.67 79.07 83.01 75 79.71 71.07
Class 2 85.55 83.21 82.06 80.44 79.43 78.53 85.08 77.16 74.55 70.29 70.99 69.7
Class 3 80.43 76.81 84.13 81.03 85.78 90.45 88.33 89.58 85.13 87.93 84.77 86.58
Class 4 70 66.52 70.84 71.74 74.64 75.37 83.16 80.41 84.1 84.88 86.01 76.39
Class 5 93.01 90.7 94.51 90.59 95.29 88.51 95.03 92.24 95.94 92.2 91.8 89.44
Average
accuracy

83.06 80.17 83.83 81.50 84.40 82.74 87.05 83.69 84.54 82.0 82.65 78.63

Kappa 0.76 0.79 0.81 0.82 0.81 0.79
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accuracy was achieved at the scale value of 40, for different classes the highest class-
specific accuracies were achieved at different segmentation scale values. Thus, no single
scale values can be suggested as optimal for all classes. The optimal segmentation scale
(for which a given class attains highest classification accuracy) for vegetation morphology
class 1 was lower (i.e. 15) than for class 4, which attained the highest classification
accuracy at a larger segmentation scale (i.e. 50). These results could be attributed to the
fact that while patches of vegetation morphology class 1 are relatively small and woody
and occupy different longitudinal dune systems both topographically and pedologically,
vegetation morphology class 4 includes predominant herbaceous life forms that occupy
inter-dunal areas as well as plains that cover larger areas, with larger patch size. In
contrast, the classification accuracy of vegetation morphology class 5 (i.e. pans and
bare areas) was not sensitive to change in segmentation scale and was mapped with
high accuracy across all segmentation scales tested (Table 5). These results highlight that
segmented objects for pan and bare areas have low within-class spectral variability
compared with other classes, and are relatively homogeneous.

4.4. Variable importance of RF classification

Due to the availability of hundreds of feature space variables under the OBIA approach,
analysis can be very time consuming in terms of image processing and memory allocation.
Hence, selecting suitable feature space variables is critical for conducting OBIA-based
analysis over large geographical areas. This study highlights the most useful feature space
variables for mapping vegetation morphology types in dry savanna systems. Many of the
initial geometrical and contextual features were found to be highly correlated with each
other and were subsequently omitted. Based on the feature selection criteria explained in
Section 3, finally 13 features were selected for classification. Figure 6 depicts the class-
specific as well as the overall importance score of 13 variables for the classification
obtained at a segmentation scale value of 40 (for which highest overall classification
accuracy was observed). The variable importance plot depicts these 13 features in order of
decreasing importance for discriminating vegetation morphology type. Figures 6(a)–(e)
show class-specific variable importance while the overall variable importance is depicted
in Figure 6(f). Standard deviation of mid-infrared was the most important feature variable,
underscoring the distinguishability of savanna vegetation morphology types in a pedolo-
gical context. This result confirms the findings of previous studies based mainly on field
observation, emphasizing the subjacent soil properties as an important determinant of
savanna structure in the central Kalahari (van Rooyen and van Rooyen 1998; Fagan
2002). The presence of two texture-associated variables (grey-level co-occurrence matrix
(GLCM) contrast and GLCM standard deviation) among the top five variables (and total
of four texture-related variables among the 13 selected variables) shows the importance of
textural features in discriminating savanna vegetation morphology. These results suggest
that semi-arid systems, where different vegetation morphology types lead to subtle
differences in physiognomic characteristics, may exhibit a similar spectral response and
require inclusion of textural characteristics for effective discrimination. The class-specific
variable importance indicates the suitability of each feature for an increase in accuracy in
the random forest ensemble. For all classes the most significant classification feature was
spectral (i.e. mean NDVI or ratio NDVI), except for vegetation morphology class 4 for
which textural feature was the most significant (i.e. GLCM standard deviation).
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5. Conclusions

This study represents an application of OBIA for mapping vegetation morphology types at
landscape scale in an extensive and structurally heterogeneous semi-arid savanna ecosys-
tem. The objective was to accurately map the vegetation morphology types in the central
Kalahari by determining the optimal segmentation scale and best features for classifica-
tion. Results showed that the highest overall classification accuracy was recorded not at
the finest segmentation scale but at coarser scales. Furthermore, for different classes,
highest class-specific accuracy was achieved at different segmentation scales, highlighting
the fact that spatial heterogeneity in savanna systems requires multi-scale characterization.
The hierarchical OBIA approach adapted in this study was found to be suitable for this
purpose. This approach treats landscapes as relatively homogeneous mosaics of patches
that allow smoothing of local variability and enhancement of class separability. This

(a)

(d) (e) (f)

(b) (c)

Figure 6. Variable importance reported as mean decrease in class-specific and overall producer’s
accuracy from 500 trees in Random Forest classification. Those variables with higher mean decrease
in accuracy are considered to be more important for overall or class-level classification. Figures (a)–(e)
represent class-specific variable importance for morphology classes 1–5, respectively, and (f) depicts
variable importance for overall classification. All results are for classification conducted for
objects generated at segmentation scale 40. In each figure, the x-axis represents percentage decrease
in accuracy and the y-axis represents the variable name.
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approach is especially relevant in the semi-arid savanna systems with low niche differ-
entiation and where the complex interaction of biotic and abiotic determinants often
results in landscapes that should be treated as patches. Furthermore, the multi-scale
hierarchical approach was deemed suitable because in natural landscapes such as savanna
the optimal patch size for different morphology types is often unknown and is expected to
have a multi-scale character. Besides the spectral features, object-level texture features
were also found to be important for distinguishing savanna vegetation morphology types.
This could be attributed to the fact that vegetation morphology types in semi-arid systems
are often marked by subtle difference in vegetation physiognomy, and species composi-
tion has relatively similar spectral characteristics. Texture information is based on second
order statistics and provides the dimensionality needed for distinguishing these subtle
differences between classes.

The RF classification technique used in this study proved to be effective in terms of
classification error, overfitting, and variable importance measures. The bottom-up
approach of using in situ-derived vegetation physiognomic properties to derive classifica-
tion samples that could be coupled to advance classification techniques holds promise for
remote-sensing applications in savanna systems. The highest overall classification accu-
racy of 85.59% obtained at segmentation scale 40 was satisfactory for mapping vegetation
morphology types in semi-arid savanna, given the subtle physiognomic difference for
several classes. This study showed that in situ information combined with OBIA–RF
classification of multispectral imagery can be an effective method for mapping vegetation
morphology classes in semi-arid savanna systems at the landscape scale. The approach
allowed the evaluation and selection of several spectral, geometrical, contextual, and
textural features, and finally determination of a suitable analysis scale. The vegetation
morphology map created in this study is significant and provides the necessary environ-
mental geodata for the study area. It is expected to support a variety of ecological studies
such as understanding the spatio-temporal dynamics of habitat use by the wildlife, plant
function, and biogeochemical fluxes, and overall management of the area. The mapped
spatial distribution of vegetation morphology types may also serve as useful input to
models of climate and land-use change in the study area. This study can map vegetation
morphology types defined on the basis of vegetation physiognomic characteristics rather
than floristic/species aspects. Therefore, future related research should focus on applying
this technique to distinguish floristic classes in semi-arid savannas using both medium-
resolution (e.g. Landsat) and high-resolution imagery (e.g. GeoEye).
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