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Abstract

In recent years, a number of models of lexical access based
on attractor networks have appeared. These models reproduce
a number of effects seen in psycholinguistic experiments, but
all suffer from unrealistic representations of lexical semantics.
In an effort 1o improve this situation we are looking at tech-
niques developed in the information retrieval literature that use
the statistics found in large corpora to automatically produce
vector representations for large numbers of words. This paper
concentrates on the problem of transforming the real-valued
cooccurrence vectors produced by these statistical techniques
into the binary- or bipolar-valued vectors required by attractor
network models, while maintaining the important inter-vector
distance relationships. We describe an algorithm we call dis-
crete multidimensional scaling which accomplishes this, and
present the results of a set of experiments using this algorithm.

Introduction

Our goal is to develop a connectionist model of lexical access
and word sense disambiguation that incorporates a more re-
alistic model of lexical semantics than current models. For
the most part, current connectionist models rely either on
hand-crafted vector representations of the meanings of words
(Kawamoto, 1993; Plaut & Shallice, 1993) or randomly gener-
ated vector representations (Cottrell & Plunkett, 1995; Plaut,
1995).

Hand-crafted representations may impose some structure
on the fields of the vector (Gallant, 1991; Plaut & Shallice,
1993) in an attempt to provide consistency, or they may be
built ad hoc (Kawamoto, 1993). These techniques are moti-
vated by the desire to relate the lexical representations used in
the simulation to real words, so that parallels may be drawn
to psycholinguistic experiments, and to the intuitions of re-
searchers. There are two main problems with hand-crafted
representations. First, they require lots of work to develop, so
that the number of words used in a simulation is limited. Sec-
ond, it is easy to develop a representation without specifying
what principles were important in its design.

Randomly-generated representations may be used to avoid
both of these problems. The motivation here is usually to
generate representations which maintain some interesting set
of distance relationships. The parameters can be adjusted to
achieve the set of relationships desired. The method is prin-
cipled and reproducible. Also, the number of vectors which
can be generated using this method is essentially unlimited.
Unfortunately, using this technique it is not possible to re-
late the representations to real words, so parallels to specific
psycholinguistic stimuli are not possible.
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Recently, a third method for generating vector represen-
tations of lexical semantics has been gaining acceptance
(Schutze, 1993). This method involves gathering word cooc-
currence statistics from a large text corpus. Across all oc-
currences in the corpus of word X, we can count how many
times word Y occurs nearby. This number is the cooccurrence
count for X and Y. If we gather cooccurrence counts for all
pairs of words which occur above a certain frequency, we are
left with a large cooccurrence matrix. The row of this matrix
corresponding to word X is a vector containing the number
of times each other word occurred near word X in the cor-
pus. Insofar as context can be represented by such a “bag
of words,” this row captures the average context in which
word X is seen. Various researchers have proposed methods
for refining and reducing the size of the initial cooccurrence
vectors. Our method of refinement is to replace each count in
the matrix with the mutual information between the row word
and column word, then use principal components analysis to
shorten the vectors to a reasonable size.

The claim has been made that cooccurrence vectors capture
something of the semantics of words. This claim is supported
by a number of experiments. Landauer & Dumais (1994),
used cooccurrence vectors to pass a portion of the TOEFL
(Test of English as a Foreign Language) exam, a test used
to evaluate a foreign student’s command of English for entry
to U.S. colleges and universities. The portion of the test
attempted requires the student to choose, from a short list of
words, the word which is most similar in meaning to some cue
word. To pass the test using cooccurrence vectors, the distance
between the cooccurrence vectors for each pair of words was
calculated, and the word which was closest to the cue word
was chosen. So the distance between the representations of
two words serves as a measure of semantic distance.

Schutze (1993) used cooccurrence vectors to tag the senses
of ambiguous words in a corpus of text. For each occurrence
of an ambiguous word of interest in the text, the cooccurrence
vector representations for all nearby words are summed to-
gether to produce a context vector. An automatic clustering
technique is used to separate these context vectors into groups.
All occurrences of the ambiguous word corresponding to con-
text vectors in a single group are tagged with the same sense.
This technique works as well as any automatic word disam-
biguation technique in the literature (89 to 95 percent correct
on a short list of words), competing favorably with techniques
which start with a more refined source of semantic information
such as an on-line thesaurus or dictionary.

Cooccurrence vectors have also been used to model se-



mantic priming. Lund, Burgess & Atchley (1995) present the
results of a comparison between a prediction of the size of the
semantic priming effect derived using the distances between
cooccurrence vectors, and a semantic priming experiment us-
ing human subjects. Both the prediction and the experiment
used the same set of materials, and show strikingly similar
results.

The success of cooccurrence vectors in a variety of semantic
tasks suggests them as a good representation in the develop-
ment of a model of lexical access. The method of generating
them is principled and reproducible, the representations can
be linked to specific words, and the number of words for which
such vectors can be generated is potentially unlimited. So this
method appears to combine the best of both the hand-crafted
and randomly-generated vector representations.

Unfortunately, there is a problem with the use of cooc-
currence vectors for connectionist modeling. A number of
recent, successful models of lexical phenomena (Kawamoto,
1993; Plaut & Shallice, 1993; Plaut, 1995) employ attractor
networks in their simulations. In these networks, the current
output does not rely solely on the input at the current time
step, but may be influenced by internal state which has devel-
oped over the course of many earlier time steps. The networks
are trained to build stable attractors into which activation will
settle over time, The time to settle can be measured in differ-
ent conditions, and compared to reaction time performance of
human subjects. This settling performance has been used to
account for a number of human priming results: frequency,
time course of activation of ambiguous words (Kawamoto,
1993), and semantic versus associative priming (Plaut, 1995).
Similar models also exist to explain the effects of neurological
damage such as deep dyslexia (Plaut & Shallice, 1993).

Attractor networks tend to work much better when the rep-
resentations to which they are trained to settle are bit vectors
rather than real-valued vectors. We will use the term bit vector
to refer to a vector whose elements may take on two values.
Most often, the two values are either O and 1, rcsultin% ina bi-
nary vector, or -1 and 1, resulting in a bipolar vector '. When
the representations to be stored are bit vectors, the extreme
values allowed by the squashing function can be chosen to
match those of the bit representation. In the extreme range,
a large change in the input to a node has little effect on the
output of the node. Thus these extreme ranges make good
places to build stable attractors.

So now, we finally get to the main point of this paper! If
cooccurrence vectors are to be used as the semantic represen-
tation in an attractor network model, we need a way to trans-
form the real-valued cooccurrence vectors into bit vectors.
This transformation must be accomplished while maintaining
the original distances between vectors in the real space. The
remainder of this paper is a report on our attempts to develop
an algorithm which performs this transformation, and the per-
formance results of the method which we have found most
effective. In the next section we look at possible cost func-
tions to be used by an optimization algorithm. The following
section discusses optimization algorithms. Next, we present
results of running our algorithm on a number of problems.

'Similarly, we will use the term bir space to refer to the space
spanned by a set of either binary or bipolar axes without specifying
which.
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Finally, we present our conclusions.

Cost Functions

An important constraint on the final representation is that it
contain as few bits as possible while still maintaining the
original distances between vectors. Thus we share, with the
multidimensional scaling (MDS) literature (Shepard, 1962;
Kruskal, 1964; Borg & Lingoes, 1987) the desire to represent
a large amount of data in a smaller space. MDS reproduces
a set of proximities (similarities or dissimilarities) defined on
some unknown space down to a lower number of dimensions.
MDS methods can be divided into metric and non-metric tech-
niques. Metric MDS assumes that the given set of proximities
are taken from a metric space. Non-metric MDS makes the
weaker assumption that the data was taken from a semi-metric
space (i.e. the triangle inequality does not necessarily hold).

The MDS formulation differs from our problem in that,
with MDS, the target space is real-valued, and the number of
dimensions in the target space is small. In our problem, the
target space is a bit space, and the number of bit dimensions
required to build an accurate reproduction of the original space
may be quite large. Despite the differences, we can easily state
our problem in the terms used in this literature.

Let P = {(i,7),1 < i,7 < n} be an ordered set of (z, j)
pairs that designates the vector pairs for which we have prox-
imities. We will index the elements of P by subscript as p;..
Let § = {é : by = prox(w;,w;),pr = (i,j)eP} be the
set of proximities between items w; and w; in the original
space, where 7 and j are designated by P. Then, given a dis-
tance metric in s-dimensional bit space, dist : B* x B* — R,
B = {0,1} or {—1, 1}, our goal is to produce a set of n
vectors, I/, such that C(6, d) is minimized, where d = {d; :
di = dist(vi,v;), pr = (i, 7)eP} isthe set of distances in the
new space corresponding to the és, and C is a cost function
which tells how good is the match between the s and the ds.
The cost function, C determines what it means for the original
distances to be preserved in bit space. Therefore, our choice
of a cost function is very important.

One fairly general specification of an MDS cost function is
the following.

2ok (dk - Jk)z
> di

If the original proximities, 6, are sorted so that Vk, é, <
k+1, and Jk is chosen to be the monotonically increasing
function on 6, which produces the smallest possible value in
the numerator of K, then K is the non-metric cost function
known as Kruskal's stress (Kruskal, 1964). This cost function
is one of the best known in the MDS literature, and may serve
as a good choice in non-metric applications.

If d). is chosen to be the regression function, which serves
as the best sum of squares prediction of dy given &;, then K
is a metric cost function (Borg & Lingoes, 1987 p.42), which
we will refer to as metric stress, or K,,. For our problem,
the proximities are derived from a metric space, so it makes
sense to use a metric cost function. We have found K, to be
useful when the distance metric in bit space, dist, is chosen
to be Euclidean distance. This should also work well with

K(d,8) =



other Minkowski metrics (including Hamming or city-block
distance), but we have not tried using these.

If, instead of using the regression function, we define
d; = 6k, then K is still a metric cost function, but con-
strains the final distances to match the original distances as
closely as possible. We will refer to this as the exact march
cost function, or A';. K, has proven to be a useful cost
function when both the distance metric in the original real
space, prox, and in bit space, dist, are the cosine of the angle
between two vectors?. This distance metric is used exten-
sively in the information retrieval literature, and works well
with our cooccurrence vectors. We have found that K, only
works well with the cosine metric when the number of bits in
the final representation is small compared to the number of
vectors being reproduced. If the number of bits in the final
representation is large, K, can be minimized by making all
the output vectors orthogonal to each other. K, avoids this
problem with the cosine metric by setting the slope of the re-
gression line to a constant 1. This is essentially equivalent to
minimizing the sum of squared errors®. The results reported
in the Results section are generated using K.

One advantage that K, and K, have over Kruskal's stress
is that they can easily be computed incrementally. Though the
time to calculate any of these cost functions from scratch is
O(n?m) where n is the number of vectors, and m is the width
of a vector. the time to calculate the change in cost when a
single bit is changed is O(n) for K, and K. This is a huge
advantage for algorithms which search by changing a single
bit at a time, such as those presented in the next section. It
may be that a similar savings can be achieved with Kruskal’s
stress, but the implementation is not obvious.

Search Algorithms

The cost functions described in the previous section allow us
to evaluate how good a set of bit vectors are in reproducing
the distance relationships in the original set of real vectors.
In this section we look at two algorithms for searching the
space of possible bit vectors for an optimal solution. Both of
these are discrete-space algorithms, meaning only pointsin the
final bit-space are considered as candidate solutions. We are
also considering continuous-space algorithms, which consider
points in real space as intermediate candidate solutions, but
we have had little success with these, to date.

The simplest discrete-space search method we have looked
at is a Monte-Carlo method we will call random-walk.
This algorithm maintains a current set of bit vectors, which
we will call the current configuration. At all times, the current
configuration contains the set of bit vectors which produce the
best cost function value so far. From the current configuration,

*Instead of cos(v,w), we actually use ‘_':_“’Jzﬂl Using this
function. large numbers mean the two vectors are far apart, which is
an assumption used in the denominator of K.

‘In the formula for K and K, the d function is chosen with
knowledge of the d,. If all output vectors are identical, and thus
all dy = 0, it is simple to choose a d function which minimizes the
numerator. The denominatoris included to penalize these degenerate
solutions. With [i'y., the d function is fixed, so there is no longer any
need for the denominator. Without the denominator, K is exactly
the sum of squared errors -‘.’Ek (da = t{k)z). The results reported in
this paper include the vestigial denominator.
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we search for a better configuration by randomly choosing a
single bit of a single vector and seeing what happens to the
cost function if that bit is flipped. If flipping the bit results
in an improvement in the cost function, then the flipped bit is
accepted into the current configuration and the search contin-
ues from this new point. If flipping the bit does not result in
an improvement, we stay with the current configuration and
continue looking at other randomly chosen bits. This kind
of iterative improvement continues until there exists no bit
which improves the current configuration. At this point the
algorithm halts, and the current configuration is returned as
the optimal set of bit vectors.

Though you can use a random bit vector as the initial con-
figuration, this algorithm runs faster if the initial configuration
is a fairly good one. For bipolar bits, we designate a field of
bits to correspond to each real-valued element of the original
vectors, and set every bit in the field to the sign of its ele-
ment. Similarly for binary bits, we set to 1 all bits whose
corresponding element is greater than 0.5, and the rest to 0.
This, then serves as our initial configuration. There is no con-
straint in the algorithm to maintain a correspondence between
elements in the original vectors and particular fields in the
new vectors. Nevertheless, imposing such a correspondence
provides a useful method for generating the initial configu-
ration. As an example of how much difference the initial
configuration makes, for the 144 bit problem presented in the
Results section, starting from a random initial configuration
required almost twice as much computation as starting using
the method presented here, and produced essentially the same
cost function value.

A related algorithm is the opt imal-walk algorithm. In
this algorithm, the current configuration is not changed until
all possible bit changes have been evaluated. The single bit
change which results in the largest improvement in the cost
function is accepted into the current configuration, and the
search continues from this new point. Like random-walk,
the algorithm completes when no more improvements can be
found. As you might expect, opt imal-wa 1k requires more
time to run than random-walk. We had hoped that the the
solutions it found might be better than random-walk, but
this does not appear to be the case. In one trial, we found
that opt imal-walk flipped about 1/3 the number of bits
as random-walk in the course of finding a solution, but
required 50 times as much time overall to run. The final
cost function value of the two solutions were almost iden-
tical, so random-wa 1k appears to perform well compared
to opt imal-walk while requiring much less computation.
The results reported in the Results section are gencrated using
random-walk.

Results

In this section, we present the results of running the
random-wa 1k algorithm using the cosine A’; cost function
on a set of cooccurrence vectors for 233 words which were
used as stimuli in Chiarello er al. (1990). We started with a
233 by 30000 matrix of cooccurrence counts collected from
Internet news groups by Keven Lund and Curt Burgess. We
refined this matrix by replacing each cooccurrence count by
its mutual information value, then used principal components
analysis to reduce each of the 233 vectors to 36 elements. We



0.15-
Z 0.10-
2
e
@
0.05-
00% 3 3 3 :
Bits Per Real-Valued Element
(a)
50000001
@0
=
£
= 4000000
o
C|
6]
,§ 3000000
o
5
<]
¥ 2000000
-
£
-
© 1000000
o8 3 3 3 ;
Bits Per Real-Valued Element
(b)
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have run the algorithm on other sets of vectors as well with
similar results.

Figure | (a) plots the minimum value of A'; achieved by a
single run of the random-walk algorithm at five different
bit vector sizes. The x-axis plots the number of bits in each
output vector per original real-valued vector element. Since
there were 36 real elements in the original vectors, there were
18,36, 72, 144 and 288 bits respectively in the output vectors
portrayed in this graph. Note that by adding more bits to
the output representation, we can reduce /' down to a value
somewhat above zero.

Figure 1 (b) plots the number of calculations of the cost
function required to generate the stress values in figure | (a).
This provides a good measure of how the algorithm is affected
by the output vector size. Using our incremental technique.
the time required for one calculation of the cost function does
not depend upon how many bits are included in the output
representation, so the dependency on output vector size is
simply an indication that that there are more bit combinations
to try out with the larger output sizes. On our SparcStation
20, the 18 bit problem required 24 seconds of CPU time to
solve. The 288 bit problem required 30 minutes of CPU time.

Figure 2 shows scatter plots of the final configuration for the
36 and 288 bit solutions. Here we plot the distances between
every pair of vectors in the original vector space versus the
distances between the corresponding vectors in the output
space. The horizontal lines in the plots occur because only
a limited number of distances are possible between vectors
in bit space. Regression lines are also plotted here. Note
that as I\, is reduced, the points plotted are pulled in tighter
to the regression line. The tightness of the 288 bit solution
serves as fairly convincing evidence that we are reproducing
the original distances.

We can visualize the success of our algorithm by looking
at cluster diagrams. The additive cluster trees (Sattath &
Tversky, 1977; Corter, 1982) shown in figure 3 are taken from
the original vector space, and the 288 bit vector space. The
tree from the original space is on the left. These clusters are
extracted from the larger trees which each contain 233 words.
Note that the algorithm has maintained the structure of the
original trees at two levels. First, these 13 words clustered
together in both trees. Second, at a finer level, each tree
contains 3 subclusters. Only two words, GOWN and SILK,
have changed subclusters between the two trees.

Conclusions

‘We have demonstrated an algorithm which is capable of trans-
forming real-valued vector representations into bit vector rep-
resentations while maintaining the intervector distance rela-
tionships. This algorithm is capable of generating both bi-
nary and bipolar vector representations. It also works with a
number of distance metrics, including cosine and Euclidean
distance. The algorithm is acceptably fast, and, as we have
shown, is capable of finding good solutions. We intend to
use this algorithm to help develop realistic semantic repre-
sentations towards the development of an improved attractor
network model of lexical access. One drawback to the cur-
rent method is that if new words are added, the algorithm
must be reapplied. We are currently investigating learning
maps between the two spaces that would generalize to nove!
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words.
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