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Abstract

Numerical aspects of initial stability analysis of a
cylindrical shell of non-constant parameters along the generator
and under nonsymmetrical loads are considered. Variational
approach based on Sanders’s and Donnell’s nonlinear eqguations
of thin, elastic shells is applied.

The problem is decomposed to determine : the stability vectors
in the axisal direction in the first step +» and the critical load
and the stability wvector in the circumferential direction in the
second step. The discretization is based on finite Fourier
representations and the finite difference method. To find the
approximate stability vector in the axial direction an auxiliary
preblem for axisymmetric loads 1s soclved. The error of the
method is defined and the effectiveness of the method is
estimated.

The decomposition leads to small and fast algorithms suitable

for personal computers. Shells with constant and stepped
thicknesses under wind loads are calculated as examples.
Tested algorithms shown considerable effectiveness and good

accturacy of results.






1 .INTRODUCTION.

Non—-axisymmetric loading complicates the numerical analysis
of the stability of cylindrical shells. Therefore, analyses are
mostly based orn the initial stability concept (Koiter [i23) and
additional attempts are made to reduce solution tasks and improve
efficiency of algorithms. This tendency is clearly evident,; for
example, in literature on the stability analysis of cylindrical
shells subjected wind loads.

Many papers concerning the shell stability problem under wind
loads employ Fourier representations to the eguations. For

example Almroth {13 and Maderspach [173 use these
representations for discretization of the equations in the axial
and circumferential direction. Fourier representations in the

circumferential direction are also combined with other methods in
the axial direction : with an expansion in Taylor series

{(Kundurpi et al. [143) and with a finite differrence method
{Sheinman et al. [193) . The method proposed in [193 is a
generalization of & method developed by Bushnell s 1 for

axisymmetrical problems.

Bushnell in [ 6,7 3 approximates a cylindrical shell by a
segment of a torus of a very large radius. The stability vector
is expanded in a Fourier series along a large circumference of
the torus which corresponds to the axial direction of the
cylindrical shell. Numerical integration is performed along the
small circumference of the torus. This method is an extension of
the approach used by Kalnins [10]3 +to solve linear static
problems.

In papers of Wang, Billington [21] and Langhaar,Millier [133
Fourier representations are combined with the approximate
stability vectors in the axial direction. These vectors are taken
from the stability problem for the same shell but
axisymmetrically loaded. The stability eguations are integrated
along a meridian and averaged equations of the problem are used.
The above method is based on Timoshenko’s eguations of shells
simplified by an assumption about inextensibility in the
circumferential direction, Wang et al. [22].

In the present paper a concept to decompose a problem is
treated as a more general approach, which do not have to be
combined with simplified variants of the shell theory and
averaged eguations. This approach is assumed to give a first

approximation of the eigenpair after which, upon the error
estimation; we decide whether the full eigenvalue problem have to
be solved. In cases when full analysis is necessary the
determined eigenpair can serve as starting values for

eigensolvers.
This approach is intended to allow for efficient tackling much
more true to engineering practice cases, when loads and shell
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parameters vary along a generator of a shell. For such cases two
dimensional discretizations [3,4,19] lead to programs which are

very large and ineffective. Expansions in Taylor series [141 or
trigornomeiric series [6,173 smooth obut variable data and can be
also ineffective when discontinuity of data occurs. The

cemi-analitical method from [15,21] does not allow to take this
variability into aeccount at all.

In the present paper the finite difference method is used to
descretize the problem in the axial direction thus a wvariable
distribution of parameters along & generator of a shell can be
modelled. As the problem is decomposed into small subproblems
very complicated forms of deformation may be concerned even in a
case when the analyses have to be carried ocut on a microcomputer.



2.INITIAL STABILITY EQUATIONS

In the present paper loads are treated as guasi-static and
deformation independent. Such ‘dead ’ loads and an elastic shell
are a conservative system the stability of which is assured by
static criteria based on the potential energy. The stability
equations are obtained from the condition

(2.1} & P =20
2

where Pz it is a second differential of the potential energy P.

Within the initial stability analysis the following assumptions

are made :

¢ 1) the rotational part of the prebuckling deformations 1g
neglected,

{1i) membrane forces for the critical configuration are functions
of linear strain measures.

These assumptions linearize the equations of the problem and

enable us to transform them into a generalized eigenvalue

problem.

*
Following the assumpilion ¢ i ) components ¢a ocf the

rotation wvector characterizing the critical configuration are
neglected in Pé .

Two variants of shell theories are used in this paper : the
theory of shallow shells of Donnell [ 9 1 and the theory of
moderately emall rotations of Sanders [ 18 1. The second
differential of the potential energy may be found for Donnell’s
equations in [ 12 3 and for Sanders’s equations in [ 20 3. For
the latter one it is additionally assumed that the normal
componen ¢3 of the rotation vector is a small quantity of the
same order as strains 6&8 and as the square of tangent

component ¢a of the rotation vector and consequently terms with
(¢§) are omitted. The second differentials Pz for both
theories differ only in a form of ¢a components of the

rotation vector :

h o af3Au h2
P2= i 2 H (saﬁ gky * 12 xaﬁ ”Ap) da
(2.2
*
+ 0 NP N g
A of3



where

£ = i {u + u )y + b W
of3 2z asf3 3rcx af?
*5~ " 2 Paip T Pple’
* ~ *
Naﬁ: Hwﬂ“ £
IS

NL_ 1

can” 2 %a ¥p

G = =W for Domnell’s theory
& o
- - 3 ,
¢a_ Wi + baB u for Sanders’s theory.
Ternsors £ and x are linear measures of strains and of
af? af3 %

changes of curvature, Naﬁ are membrane forces Haﬁ&p is the
elasticity tensor s h is a thickness of the shell, ¢ U, v b
are components of displacement vector u . Symbols with an
asterisk 7% ° are rvelated to the primary configuration. A
vertical stroke denotes a covariant surface derivative.

The assumption ¢ 11 ) allows to express the membrane forces

*
- . . a3
for the critical configuration N as
* <
(z.3) N CRNNNC
NCIE

where N f are the reference membrane forces taken from a
static, linear analysis for unit load.

Taking advantage of these assumptions in the initial
stability analysis we seek a value of *S characterizing the
configuration of a critical equlibrium . After s discretization
of Pz +*he =ehell can be treated as an elastic system of n
degress of freedom. From (2.1) we obtain a homogenious system
of n stabiliity equations :

(2.4) { Ko + A Ko)g =0

where

Ko ig an elastic stiffness matrix (symmetric and positive
definite)

Ko is an initial stress matrix (symmetric)

q is a vector of generalized coordinates which describe a

deformation of a shell.



The solution of above generalized eigenvalue problem 1is n

eigenpairs (kk, qk) where kk are eigenvalues and q, are
corresponding eigenvectors. The critical load Aer is defined as
gthe lowest xk while the corresponding vector q, is the

stability vector.

This kind of analysis may be interpreted L 8,11 1 in two
ways : as an uniguness analysis of a soclution of a linearized
static problem or as & stability analysis of this solution
{proved ornly for discrete systems and shallow shells ) . Aer is
correspondingly interpreted as : the point of bifurcation of the
static solution or as the point separating stable and unstable
parts of the solution ( when the Liapunrnov definition of the
stability and the energetic norm in the displacement space are
used ) . This kind of analysis does not answer a guestion about
the stability of the critical configuration 3 in a general case
it reguires an additional analysis, Koiter [ 13 3J.



3. METHOD OF DECOMPOSITION

The method of decomposition is intended to split the initial
stability preblem for nonsymmetric loads into two problems of
emall sizes : one to establish the stability vectors in the axial
direction and one to determine the critical load and the
stability vector in the circumferential direction.

Below we describe particular stages of this method.

3.a. Linear static problem

<

This analysis is to calculate & displacement vector u whgch

N o3
will be used to calculate reference membrane forces N

{exactly integrals related to these forces) . We adopt the
displacement vector u  and the load vector p in the forms :

N

(3.1 ulx,¢) = T u (x) t ()

™ ™
n=0O

wilth
u (x) = {w s U 5 V. 2 s t (¢ = diag( cos ne¢,; sin ng, cos ng )

™ ™ ™ n ™
s are axial and circumferential coordinates

(N+15 is a number of harmonics in the circumferential direction.

Then the discretized eguation of the linear static problem can
be decomposzed into eguations related to particular harmonics :

(3.2) Ken un = A pn n = 0s5...3N

where X is a load parameter. Sizes of particular tasks depend
pnly on used discrete model in the axial direction . In the
paper the finite difference method on a grid of R points is used.
A short description of a variant of this method is given in
Appendix.

<

Reference displacements un , TNECESSaETY to calculate the
(o3

3

reference membrane forces Na , are determined in the analysis
for A = 1,0 .

3.0. Auxiliary stability problem.

A purpose of this analysis is to establgsh the stabiligy

vertors in the axial direction. We generate NQB using only ue
i.e. zeroth harmonic of the reference displacements so the
membrane forces are axisymmetrical. . It can be also interpreted
as the analysis for the auxiliary axisymmetric loads.

If we take a stability vector in the form :



(3.3 Ulx.) = uj(x) tj(¢)

o]

n Mg

i

then the stability eguetion (2.4) decomposes intoc eguations
related to particular harmonics of representation (3.3)

(3.4 { Koj + X Koj ) un = 0 j=0s5...5sM

f solution of this eguation consists of (M+1) pairs { A} s u; 2.
A size of a particular task depends, as in the previous problem,
only on discretization in the axial direction. Here also the
finite difference method on a grid of R points was used.

The eigenvectors Wi will serve as approximate stability
vectors to solve the problem for nonsymmetric loads.

3.c. Stability problem for nonsymmetric loads.

In this analysis we determine the critical load and the
stability wvector in the circumferential direction for the

nornsymmetrical loads. All harmonics of un are now used to
ralculate the reference membrane forces.
The stability vector for this analysis is taken in the form :

M
(3.5 ul=s¢pr) = Z Q (x) g t (g
. b J J
j=0
where q. = L o s 3 s ¥ JT
3 3 3 J
Q = diag( W , ¥V , U )
} J 3 J
w (x) v o {(x) u (x)
W o= e , ¥V = R S , U = R R
J max w_ (x) J max v  {x) J max uw {(x)

Qj contains rezcaled eigenvectors from the auxiliary analysis ,
qj is the unkrnown stability vector for the nonsymmetric problem;

The stability equation is now the following :
(3.6) ( Ko + A Ko ) g= 0
with qa=]qg +...5 g JT
o M

Matrix relations to generate Ko and Ko are given in part 4 of
this paper.



A size of this problem is egual 3 (M+1) but there are additional
possibilities to reduce this size as not all harmonics distinctly
influence the critical eigenpair.

3.d. Control of error.

Because the approximate forms of the stability vectors in the
axial direction are used in the nonsymmetric problem it 1s
important to determine an error caused by this approximation.

Let us define the residusl vector ©

where

Ke arnd Ko are matrices of a full problem i.e. are obtained
by applying Fourier representations and the finite
difference discretization (3.3) directly to equation (2.4).

{ Ao ’ Ucr > is the critical eigenpair from the
decomposition analysis.

We transform our problem to the standard form of
gemeralized eigenvalue problem. Then r can be also expressed
as @

(3.8) r, = ( Ko - por Ko ) Uer

where

Ko = Ko - o Ko Fer = - 1/xer — £ s o is a shift.

-
-

Facterizstion of Ko into s s7 allow us to get a standard
eigenvalue problem and define an error :

{(3.%) r = ( Ko - yer I ) e

where

r=str_, uers= ST 4r , Ko=S' Ko ST

The accuracy with which yer approximates exact ¥j can be

ecstimated from the relation :

(3.10) min | »i = yer | = W r |l
J

10



and the accuracy with which ucr approximates uj can be estimated
from :

(3.11) W ter - oy uyj I < === . s = min | yi - per |
L
L&
where

{ i s wuj 2> are exact eigenpairs of the full problem,

hr Il = sgrt ¢ = | re 1% ).

Practically, for the error estimation the following formula is
used :

If the accuracy is not sufficient for our purposes it can be easy
improved. Im such case we can use approximate Acr  OT Ucr as
the staerting values for the subspace iteration method or for the
determinant search method and expect good convergence properties
of these algoerithms.

3.e. Effectiveness evaluation.

For an effectiveness evaluation the method of decomposition
will be compared with the full initial stability problem i.e.

when eguation ( 2.4 ) discretized by representation (3.3) is
splved directly. The additional analyses regquired by the method
of decomposition were juxtaposed in Table 3.1. Coefficients

which will be used t3 evaluate the effectiveness of these
analyses were also placed in this table. :

11



Table 3.1 . Additional analyses performed in the method of
decomposition.

caelculating forming solving error
integrals matrices eigenvalue estimation
problem o Ker problem
auxiliary - - - caux -
monsymmetric oint To ro onon -
Full - - - - gerr

1. Calculating integrals [ g1 3, [ dz 3, [ ds 3

We have to calculate ( M+1 ) integrals [ di 1, M+1) integrals

[ dz 31 and (M+1) (N+1) integrals [ daz 1, see Part 4 of this
paper. ¢ M+1 ) ie a number of harmonics of the stability
vector, ( N+1 ) is a number of harmonics of the static problem.
As the Newton - Cotes schema of numerical integration requires
about R operation for a grid of R points calculations of the
irmtegrals reguire ownt operations :

(3.13 pint = R ( M+1 ) ( N+3

2. Forming matrices.

We ascume that a number of operations neccessary to generate a
zingle elemernt of Ke and Ko does not depend on the method of

discretization. Consequently s we Ccan compare & number of
non—-zeroth elements (n.o.e) of basic matrices for both methods.
The comparisen is done for Donnell’s equations of shells and

taking into account symmetry of matrices.

(2.14a) ro = D:o-e Ko SR S
n.o.e Ke &5 R

(3.16b) ro = M:0:.2 Ko S .- S
m.o.e Ko & R (M+1)

iz



3. Solving of eigenvalue problems.

We assume that the following assumptions hold for both
methods :

a. the subspace iteration method is used to solve a generalized
eigenvalue problem

b. only one, the lowest eigenvalue is to be determined , p = 1

c. number of iteration vectors used is q = 2 p

d. ten iterations is required to find a solution.

Specifying proper formula from [ 2 1 we obtained a total number
of operations for the subspace iteration method :

(3.15) o =n (M + Bbm+ 144 ) a
where n is a number of equations , m is a band-width, & is a
number of analyses which have to be carried out. Evaluations feor

particular methods are placed in Table 3.2 .

Table 3.2 . Number of operations o for compared methods.

problem m n a o

auxiliar 1z 3R M+1 Caux

TCTISY M. 2 (M+12 3 (M+1) 1 onon

full 12 (M+1)3 3R (M+1) 1 ofull

paux = 3 ( M+1 ) R 1320

oron = 3 ( M+1 ) {9 (M+1:32+ 258 (M+1) + 144 )

pfull = 3 ( M+1 ) R { 144 (M+1)? + 1032 (M+1) + 144 3

: Usually, the subspace iteration procedures require Ko in a
form consistent with a form of Ko ( or in_ a lumped form ).

Therefore, the largest value of Ko and Ko half-band widths
have to be taken if a standard procedure is to be used.

13



4, Error estimation.

Calculations of the error defined in ( 3.12 ) requires
perr = 2 N M+ & n pperations. For our formulation it gives :

(3.1&) Gerr = 72 R ( M+1 )% + 12 R ( M+1 )

This number of operations is the same for both the full and the
decomposed problem.

5, Total effectiveness estimation.

Total estimation of effectivenese of the method obtained by

adding partial estimations described previously is given in
Table 3.3 for selected values of R and M.

Table 3.3 . Effectiveness coefficients for the method of
decompositicn for different number of points R and harmonics M .

R M --2L_- 100% --22__ 100%
ofwull ofull
10 10 5.97 &£.91
1000 10 4 .58 5.51
10 100 0.83 0.99
1000 100 0.0%9 0.25
where
o1 = Daux T Onon, 02 = D1 + Oint + Derr N = M+1 was

taken to this computations.

The first coefficienmt 1is to estimate effectiveness of the
eigenvalue analyses only. For M = 0 we have ofull = ODaux and
the second analysis ( nonsymmetric ) is not necessary at all.
The difference between the auxiliary and nonsymmetric analysis on
the one hband and the full analysis on the other hand increases
for increasing values of M and R .

The second coefficient in Table 3.3 compares numbers of all
operations for both methods including calculations of integrals
and error estimation. Only the number of operations required for
generating Ko and Ko is excluded. We estimate it in a
different way using (3.14) . For M+1 = 20 we have that

roe < 0.2 / R therefore for R = 20 both coefficients re and
ro are below ©0.01 , what means that a number of operations to
generate these matrices is relatively small.

14



4 .GENERATION OF BASIC MATRICES FOR NONSYMMETRIC PROBLEM.

Matrix relations for generating an elastic, stiffness matrix,
Ko, and an initial stress matrix, Kes are given for the Donnell’s
variant of shell equations.

tet us write the conditionm (2.1), from which we obtain the

stability equations, in the following form

(4.1 ‘ {éPZ} = {&U + {éUo) = {03
H 27 . .
(SUuy= & S { {Se 3 {NY + {Sx ¥ (M> ) r d¢ dx
G o
H 27 nLoT . °
{éua}= NS S LS T3 N ) v d¢ dx
o o
where U ie the elastic strain energy and U is the work of
(54
internal membrane forces. Other symbols are explained in
Appendix.

4.1. Measures of strains and internal forces,
variations of strain measures.

Using (3.5) we can write strain measures in the form of series :

(e >=% [3%] [B 1{q3 , {a 3»=% [&°3 [B 1 (q.>2
. 3 3 J . J J J
(4.2) J J
("= 2 55 o 1B 1 8% (8% o
4 L [ | 1 3 ]

v

where particular matrices and vectors depend on :

[@?J, t8%31, r2*3 - trigonometric functicns ,
J

4
J
[Bﬁ, [Bu], [B;] - rescaled eigenvectors 'in the axial direction

taken from the axiliary stability analysis,
{qj} - generalized coordinates defined in (3.3).

Internal forces and moments are determined using constitutive
relations for an elastics linear material

(4.3) {N> = n [C 1 L& ], {M: = i [C 3 L[a 1

15



(=]
The reference membrane forces (N} are calculated utilizing the
displacement vector obtained from the linear static analysis for
a unit load.

& 2 =1
(4.4) {N>=h [C 3 Z [&_ 3 [B_1
™ ial
< =] (o4 o (=] ’ <
T
where [B 1 = 1I1B 1 (g 2 {g > =L max w_ , max v ., max u J°
™ n ™ m ™ N n

Variations va strain measures calculated with respect to
vector {g > » x=0,...:N are the following :
X

£8e 3= [3°1 [B 3 £8g ¥ {&x% 3= [3°31 [B 1 {&q ¥
X X X X » X

(4.5)
s . 4 . i
foe™3=IT o A TB 3 1271 (2 3|5 f6q 3

L LI

—_

4.2. Elastic stiffeness matrix Ke

Let us express a variation of the strain energy as :

w

(4,89 (58U 3= ( £85£3° INY + {S22T {M> ) r d& dx

0 “ =
O« N

Substituting (4.3) and (4.35) after exploiting

27T
(&4.7) [C 3 t§f3= [@f] [c 1 , s [3%3 [@fj dgp = L¢3
X
O

we obtain

H
(50 3= 14éa ¥ r J ( h [BXJT [¢ 1 [C I [B I +
x
[}

(4.8 W2 = 7 -
2- B 1 [¢1 IC 1 [B 1 )dx {g_ ?
i1z x x * X

With the help of identities
tB1T 1 = [¢°1 [B 1 , (C 1 [B3J=¢(B>3 IC 1
X b4 X X p.4 ®

(4.9) _ -~
(8537 ¢ 1 = [¢*1 B73, [C 1B 3=1I[B 31IC]
X X x X o b4

16



and defining integrals in the axial direction

H H 3
~ ~ -+
(46.10) [dl =4 h [B J I[B73 dx » [d ]l =71 h_ [B+J [B +3 gx
1 X x 2 12 x X
O o]
we obtain
T
(4.11) {&Ur = L8g ¥ [k 1 {qg 3
X o X X

[ 1 =7 ([¢i] [d1] [(c 1 + [¢:3 [d23 [Czl)

The strain energy U is a trigonometric polynomial of the second

order. Therefore; the integral (4.7b) wvanishes for all harmonic
numbers 1 different than the xs to which the wvariation was
calculated. Due to this the elastic stiffeness matrix Ko 5

obtained by aggregating [ko 1 s is a one-banded matrix.
x

4,3, Initial stress matrix Ko

This matrix is obtasined from the variation of the functional
of work of membrane forces :

H 27 N ©
(4,127 {éUo} = X S J {Ss 7 (N> r d¢ dx
o o

Substituting (4.4) and (4.5.c) and taking advantage of identities

[C 1 2%1 = 8% rc 3
»n n

(4.13) :
< C)~ ~ 0~ ~ s
[C JI[B3J=1([B"3IC 3, [B™3 = [B"3 (3 2
™ i ka2l ™ k)
after a re-arrangement we obtain
T, 4T
{UO}— A {éqx} LJJ r ; : z o Aiix
Ty on
(4.14) 2z ) 2 H o, ~
{ S (&> [&°1 [& 3 de¢ ] [ S h LB 1 [B™J dx ) £tc 3
3 1 i} 1) n

(s o

17



Defining integrals
2

e, ) =+ &7 el 1221 do
(4,15 * o ! - "
H =
g1 =4 [B 1 [B ] dx
3 — 1) ksl
finally we have
. .. T
(4,180 (& = x {8ag } T L[k _ 1 {qg.>
(o4 x i (oY v
T ™~ .
te_ 3 =r |i] X A L¢J_m_[ ta, 3 Cc 3 |l
in
The subintegral of ¢ | is a trigonometric polynomial of
n
the third order . Therefore the initial stress matrix K 5

o

aggregated from sub-matyvices [ko‘J , is a multi— banded matrix;
L

if we only keep a numeration of unknowns which is optimal for the
linear analysis or for the auxiliary stability problem. Though
it is not pecssible to decompose the stability equation for this
analysis the size of the task is considerably diminished when the
stability vectors from the auxiliary stability problem are used.

i8



S.NUMERICAL EXAMPLES.

In this section two numerical examples are presented to assess
the performance of the method. They are calculated with the
program INSTAB written in FORTRAN and run on the IBM PC/AT
microcomputer.

Example 1. Shell of a constant thickness

A shell open at tops with a free upper and a clamped lower edges

was analyseds Fig.! . The shell has the following geometrical
and material characteristics :
r=40 [in] s H=120 [in3] s h =h =h =h =h =0.1064 [in]
1 2 3 4 5
E=3 10° [psil , »=0.3
A load distribution in the circumferential direction is shown in
Fig.2. Loads were assumed in the form :
(<
(5.1 C(¢g)= £ tc© cos ng
n=0 n
with
c =-0,.220 , =-0.338 c =-0.533 c =-0.471
o 1 2 3
c =—0.168%6 , c =+0.066 c =+0.055
4 5 S

Distribution of loads in the axial direction is constant.

At first, Ffor all harmonics of the 1load , linear static
analysis was done to determine the reference membrane forces. A
program applying Fourier representations and the finite
difference method for a displacement wvector and based on the
Sanders—Koiter’s variant of shell equations was used.

Later, the auxiliary stability analysis for axisymmetrical

load was performed. The finite difference model consisted of 11
uniformly distributed points . Analyses were executed for each
particular harmonic (n=15...:9) of the stability wvector. The
critical load Xmé2.108 was obtained with harmonic n=6. The

normalized stability wvector in the axial direction is shown in
Fig.3 (broken lines). The normalized displacement vector for the
axisymmetrical locad is also shown in this figure (continious
lines).

Finally the stability analysis for the nonsymmetrical loads was
done . For comparison we carried out this analysis for Donnell’s
and Sanders’s shell eguations. In Table 5.1 critical loads for
both wvariants are compared with results obtained by other
authors. The experimental critical load ( see [143 ) is egqual to
3.045. The obtained results are very close to results of

19



[14 1. They are better than results of the finite element
analysis (three dimensional degenerated elements S16) from paper
[3 1.

Table S.1. Criticasl loads Aecr foOr a shell of constant thickness

LOADS
Axisymmetric Wind

References PP [1413 [33 pp PP
Equations D 5 D R D S
Splution FR FR+ FR+ FE FR+ FR+

method 2dim. FD TP So S1é VAA VAA

Aer 2.03 2.108 3.857 4.69 3.860 3.927
rer fAexper O.6867 0.692 1.267 1.54 1.268 1.289
pp— present paper
D- Donnell’s S- Sanders’s R~ Reissner’s
FR- Fourier Representations 5 FD- Finite Differences
FE- Finite Element s TP Sp- Taylor Polynomial of 35th order

vAA- Vectors from Auxiliary Analysis

There is mo significant difference between results we obtained
for Donnell’s and for Sanders’s equations. The normalized

normal component wn of the loss of stability vector for

Donnell’s equaticons is shown in Fig.4 {broken lines). The form
of thie vector obtained from Sanders’s eguations was almost
identical. The normalized displacement vector for the static

problem is marked by a continious line in this figure.

Example 2. Shell of a stepped thickness.

Due to using the finite difference method in the auxiliary
problem the method can tackle shells with nonceonstant parameters
in the axial direction. fAs an example a shell with stepped
thickness was calculated. Thicknesses of strips decrease from the
bottom to upper edge, see Fig.1l :

h1=0.1596 Linl, h2=0.1330 Linld, ha=0.1064 Linld
h4=O.O798 Lind, h5=0.0532 Lind .
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Width of strips is d=24 [inl . The other parameters are the
same as in Example 1.

The auxiliary analysis for axisymmetric 1load 1s based on
Sanders’s shell equations while the analysis for nonsymmetric
loads is based on Donnell’s equations. The finite difference
model consists of 21 points and the placement of points preserved
a constant thickness within each range of integration. The
obtsined critical loads were kaé0.879 for symmetrical loads
and %br=0,980 for nonsymmetrical loads. Normalized components

W of the displacement vector (continious lines) and the

stability vector (broken lines) are shown in Fig.5 and Fig.6.

In simplified engineering analyses a shell with constant
thickness is often substituted for a shell with stepped
thickness 3 provided they both have egual average thicknesses.
As the shells from Example 1 and Example 2 have the same average
thicknesses we compare in Table 5.2 c¢critical loads for them. It
is apparent that the critical values for the stepped shell are
considerably lower and sthuss;the commonly used substitution is
not appropriate.

Table S.2. Critical loads Km>for shell with constant and stepped

thickness.

Loads
Shell Axisymmetric Wind
Constant 2.108 3.860
Stepped 0.87% 0.920

Let wus compare displacement vectors (continuous lines) and
stability vectors (broken lines) in Figures 3 and 35 and later in
Figures 4 and 6 for both shells. Normalized displacements and
stability vectors in the axial direction (Fig.3 and 5) have
different distributions which correspond however to different
thicknesses of the shells. The differences in normalized
displacements of upper edges of both shells (continious lines)
see Fig.4 and 6, are localized in the front area of a shell, next
to the symmetry plame of loads. The stability vector (broken
lines) for the stepped shell is characterized by a greater number
of emall waves also concentrated in the front zone. This
phenomenon can be explained by greater r/h parameter for upper
strips of the stepped shell then for the shell of constant
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thickrness. This parameter also effects that the differences
between critical loads for symmetrical and nonsymmetrical
analyses are smaller for the stepped shell then for a shell of

constant thickness .
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&. FINAL REMARKS.

The method of decomposition presented has the following
features :

a) it does not depend on shell equations and can be used with any
variant of eguations of thin, elastic shells - of the
Kirchhoff-Love type without modifications,

b) it allows one to take into account variable distribution of
parameters of & shell along the generator and anys; classical
boundary conditions - provided they are axisymmetrical.

t) a series of small tasks is solved instead of one large task.
Maximal size of a task 1 3 ¥ max {(number of finite difference
points or harmonicse of Fourier representations). Therefore the
method can be wused on microcomputers with short times of
execution even for large problems,

For many cases the critical eigenpair from the decomposition
analysis has satisfactory accuracy. In these cases the method is
much more effective than a standard method. However often the
eigenvalue analysis for the full stability eqguations will be
necessary. Previously obtained results can then be used as
starting values for the eigenvalue analysis and improve the
convergence properties of the eigenproblem solver. This is why
the effectiveness of the method of decomposition can be expected
to be better than the direct solution of the full eigenvalue
problem.
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8.APPENDIX.

8.6,.Strain measures.

PR | |T = | . . T
ter=] €00 %227 %42 ’ Cad=1 =20 227 ”12-!
{gNL}: l_ gNL, ENL , NL JT
11 z22 12
- T
!‘bi, © b, . bs 0 05 b 0
[BJ= | O +b_ O (B 3={ 0, b 0, 0,0
¢ s b , b 0, 0 b, O, Db
4 =S 4 <3
b 9 b 2 b 5 s O g O’ O [} O
_~ 1 2 3
[BN:‘: O 3 3 O '3 bp b s b s O »
i3 1 3
\?} L3 C’ L3 C‘ L} O‘ O [ O, b 3 b5
+ _ -
{BL]— diag (b s b? s ba) [BUJ— diag (b s b1o’ bu)
b 3 O b O b 3 b ] O
S 7
++
[B 1= b O 3 O [BL J= b7’ b 3 O
ba, 0 s O c s 05 b
E=2w , b=->-uU ., b=V , b=--v , b=%u
1 r L 2 r L 3 T 4 Z2r L S 2 t
2 . n -
b= *-W , b_=-W , b = = W
[+ 2 1 7 i 8 r v
r
b=l ww, b =WW, b =-2 W W
o 2 L 3 10 T3 11 r 1 3

Dots above letters mean differantiation with respect coordinate x.

8.B.Variations of strains

Variations are calculated with respect to {qx}=|_ & sBx: v, JT

corresponding to harmonic x. For example
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{$e 3= éax{s}*+ S_{ex 4 & (&>

3x4 3x1 Bx3x1 ¥ax1
. . NL
Analogically are defined [d% 1 and [ 3.
r < - T . ;s A AT
téqxlz L ’SOtx ,é{Sx gé}/x ‘J‘ s L J j: {1 5 O 4 C 3>
A =% (& + & ) where & , & are Kronecker’s deltas.
Lix 2 Jx X x X

E.C.Internal forces and moments.

=] N, N, ent®yT , o= | oMt M2, em*)T
3 [y s C 3 O [t O 3 o] s £ s (o] 9 Q 3 O 3 o]
1 2 . 1 2
tcC 1 = CZ $ C1 3 O [C 1=10 3 O C17 O O » C1; CS’ C
L V] ) O 9 CB Q 5 Ci’ O s o) 3 ng o] [ O 5 Ca

[ $ O 3 (0]

X
(cc1= | c., 0, 0 c =E/(1-v%) , c.=v c , c=2 (1-v) ¢
2 1 2 1 3 1
L Ca s O , O
where h  is thickness of shell, E 1is Young’s moduli, v 1is

Poisson’s ratio.

8.D.Matrices of trigonometric functions and integrals of
trigonometric polynomials.

[@fkdiag‘(cos i¢ , coS ig , sin i)
3 L. . . T
[273=| sin i¢ , cos i¢ , cos i¢ |
1
4

[®2 J=diag (sin i¢ , cos i¢ s sin i¢)

-

For calculations of integrels of trigonometric polynomials the
trigonometric identities for polynomials of 3rd degree and the
orthogonality conditions for trigonometric functions were
applied.

[¢n3=diag (cn, cC s s )

n ™
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ig} n
[¢21={ 0, c > s, 0,0 [¢fi1=f ¢ » 0, O
Q . Q s 0] s C s S < 3 O 3 O
™ ™ ™
1
!- ¢jin J: 2 l— étn—ékn ! étﬁ+ ékn ’ {Skn_ élh‘l [¢nj
with 1=i+3 + k=li-j} e 5. 6 are Kronecker’s deltas.
~ ~ in kn
27
c = J cos” ng¢ d¢ = { n=0 = c = 2n
° =0 D Cc =71
277 >
s = S sin ng d¢ = [ n=0 = s = O
H o ~
nEd > 5 = 7T

&.E.Finite difference operators.

Irn the finite difference model two kinds of points {A,B,C) and
{1,2,3,4) are distinguished, Fig.7. Areas of integration are
assigned to points (A,B,C3 and the finite difference operators
are defined in points {(A,B,C>. These operators are expressed by
means of values in points {1,2,3,43. The following operators were
used :

R

£(B) = X ( F(2r+f(3) ) £, (B) = 2
% 2A

£, (B)Y = -2— ( F(H-f(@)=F(3)+f(4) )
$73°4 Eﬁz

 F(3)-F(2)

where T is a component of the displacement vector.
The finite difference operators were generated using a& condition
of minimum of the error of expansion of f in the Taylor series
in a wvicinity of B , Liszka,Orkisz [ 16 1. The obtained
operators ensure a smooth solution of an eigenvalue problem for
shells with constart thickness 5 similarly as pperators of
Bushnell [ 7 1.

8.F .Integrals along a generator.

Integrals [dij, [dzl, [daJ were calculated with the

Newton-Cotes’s schema of a numerical integration. This schema 1is
based on a linear interpolation of a subintegral function for
uniformly distributed computational points.
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N

H H - 1 L-t 1
J dy = ——-— [ 0.5 (Z°+2 ) + X 2Z ]
o 1=2

L . -
where r=1l,...5R and Z are values of Z2 in points 1.
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Fig.3. Normslized generator displacements for n=0 (continuous

I%nes) and normalized stability vectors for n=6 (broken
Iines). Shell of a constant thickness.
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Fig.4. Normalized displacement f(continuous line) and normalized
stability vectors for the upper edge of the shell.
Shell of a constant thickness.
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Fig.5S. crmalized generator displacements for n=0 (continuous
lines) and normalized stability vectors for n=7 (broken
lines). Shell of a stepped thickness.
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Fig.6.

Normalized displacement

stability vectors for the upper edge of the shell.
Shell of a stepped thickness.

(continuous 1line) and normalized



Numeration of points and assignment of areas of integration.





