UC Irvine UC Irvine Previously Published Works

Title

Analysis of 75 Candidate SNPs Associated With Acute Rejection in Kidney Transplant Recipients: Validation of rs2910164 in MicroRNA MIR146A.

Permalink

https://escholarship.org/uc/item/9f59j9tb

Journal Transplantation, 103(8)

Authors

Oetting, William Schladt, David Dorr, Casey <u>et al.</u>

Publication Date

2019-08-01

DOI

10.1097/TP.00000000002659

Peer reviewed

HHS Public Access

Author manuscript

Transplantation. Author manuscript; available in PMC 2019 December 16.

Published in final edited form as:

Transplantation. 2019 August ; 103(8): 1591-1602. doi:10.1097/TP.00000000002659.

Address for Correspondence: William S. Oetting, PhD, Department of Experimental and Clinical Pharmacology, 7-115 Weaver-Densford Hall, 308 Harvard Street SE, University of Minnesota, Minneapolis, MN 55455. Telephone: 612-624-1139, Fax: 612-624-6645, oetti001@umn.edu. DeKAF and GEN03 INVESTIGATORS Arthur Matas, MD, Department of Surgery, University of Minnesota, Minneapolis, MN, matas001@umn.edu; J. Michael Cecka, MD, UCLA Immunogenetics Center, Los Angeles, CA, mcecka@ucla.edu; John Connett, PhD, Division of Biostatistics, University of Minnesota, Minneapolis, MN, john-c@biostat.umn.edu; Fernando G. Cosio, MD, Division of Nephrology, Mayo Clinic, Rochester, MN, Cosio Fernando@mayo.edu; Robert Gaston, MD, Division of Nephrology, University of Alabama, Division of Nephrology, Birmingham, AL, rgaston@uab.edu; Roslyn Mannon, MD, Division of Nephrology, University of Alabama, Division of Nephrology, Birmingham, AL, rmannon@uab.edu; Sita Gourishankar, MD, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada, sitag@ualberta.ca; Joseph P. Grande, MD, PhD, Mayo Clinic College of Medicine, Rochester, MN, Grande. Joseph@mayo.edu; Lawrence Hunsicker, MD, Nephrology Division, Iowa City, IA, lawrencehunsicker@uiowa.edu; Bertram Kasiske, MD, Division of Nephrology, Hennepin Health, Minneapolis, MN, kasis001@umn.edu; and David Rush, MD, Health Sciences Center, Winnipeg MB, Canada, drush@exchange.hsc.mb.ca. William S. Oetting, Ph.D. Participated in research design Participated in the writing of the paper Participated in the performance of the research Participated in data analysis There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119). David P. Schladt, M.S. Participated in research design Participated in the writing of the paper Participated in the performance of the research Participated in data analysis There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119). Casey R. Dorr, Ph.D. Participated in the writing of the paper Participated in the performance of the research Participated in data analysis There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID (K01AI130409). Baolin Wu, Ph.D. Participated in research design Participated in the writing of the paper Participated in the performance of the research Participated in data analysis There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119). Weihua Guan, Ph.D. Participated in research design Participated in the writing of the paper Participated in the performance of the research Participated in data analysis There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119). Rory P. Remmel, Ph.D. Participated in research design Participated in the performance of the research Participated in the writing of the paper There is no conflict of interest with this co-author and the work presented in this paper. No direct support was received by this co-author David Iklé Ph.D. Participated in research design Participated in the performance of the research There is no conflict of interest with this co-author and the work presented in this paper. Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119) Roslyn B. Mannon, M.D. Participated in research design Participated in the writing of the paper There is no conflict of interest with this co-author and the work presented in this paper. No direct support was received by this co-author Arthur J. Matas, M.D. Participated in research design

Analysis of 75 Candidate SNPs Associated with Acute Rejection in Kidney Transplant Recipients: Validation of rs2910164 in MicroRNA *MIR146A*

William S. Oetting, Ph.D.¹, David P. Schladt, M.S.², Casey R. Dorr, Ph.D.^{2,3}, Baolin Wu, Ph.D. ⁴, Weihua Guan, Ph.D.⁴, Rory P. Remmel, Ph.D.⁵, David Iklé, Ph.D.⁶, Roslyn B. Mannon, M.D. ⁷, Arthur J. Matas, M.D.⁸, Ajay K. Israni, M.D., M.S.^{3,4,9}, Pamala A. Jacobson, Pharm.D.¹, DeKAF Genomics and GEN03 Investigators

¹·Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN

² Hennepin Healthcare Research Institute, Minneapolis, MN

³.Department of Medicine, Hennepin Healthcare, MN

⁴ Department of Biostatistics, University of Minnesota, Minneapolis, MN

⁵. Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN

⁶Rho, Chapel Hill, NC

⁷ Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL

⁸. Department of Surgery, University of Minnesota, Minneapolis, MN

⁹ Department of Epidemiology & Community Health, University of Minnesota, Minneapolis MN

Abstract

There is no conflict of interest with this co-author and the work presented in this paper.

No direct support was received by this co-author

Clinical Trial Notation: and .

Participated in the writing of the paper

Support for this project was received by the National Institutes of Health Genomics of Transplantation (5U19-AI070119), ARRA supplement (5U19-AI070119) and DeKAF (5U01-AI058013).

Ajay K. Israni M.D., M.S.

Participated in research design

Participated in the writing of the paper Participated in the performance of the research

Participated in data analysis

There is no conflict of interest with this co-author and the work presented in this paper.

Support for this project was received by the National Institutes of Health Genomics of Transplantation (5U19-AI070119) and ARRA supplement (5U19-AI070119).

Pamala A. Jacobson, Pharm.D.

Participated in research design

Participated in the writing of the paper

Participated in the performance of the research

Participated in data analysis

There is no conflict of interest with this co-author and the work presented in this paper.

Support was received by the National Institutes of Health NIAID Genomics of Transplantation (5U19-AI070119).

CONFLICT OF INTEREST The authors declare no conflicts of interest.

Background: Identifying kidney allograft recipients who are predisposed to acute rejection (AR) could allow for optimization of clinical treatment to avoid rejection and prolong graft survival. It has been hypothesized that part of this predisposition is caused by the inheritance of specific genetic variants. There are many publications reporting a statistically significant association between a genetic variant, usually in the form of a single nucleotide polymorphism (SNP), and AR. However, there are additional publications reporting a lack of this association when a different cohort of recipients is analyzed for the same SNP.

Methods: In this report we attempted to validate 75 common genetic variants, which have been previously reported to be associated with AR, using a large kidney allograft recipient cohort of 2,390 European-Americans and 482 African Americans.

Results: Of those variants tested, only one variant, rs2910164, which alters expression of the microRNA *MIR146A*, was found to exhibit a significant association within the African American cohort. Suggestive variants were found in the genes *CTLA* and *TLR4*.

Discussion: Our results show that most variants previously reported to be associated with AR were not validated in our cohort. This shows the importance of validation when reporting associations with complex clinical outcomes such as AR. Additional work will need to be done to understand the role of MIR146A in the risk of AR in kidney allograft recipients.

Keywords

Acute rejection; single nucleotide polymorphisms; SNPs; kidney; transplant; graft dysfunction

Introduction

Kidney allograft transplantation is the treatment of choice for end-stage kidney disease. Unfortunately, graft function decreases with the occurrence of chronic rejection (interstitial fibrosis/tubular atrophy; IF/TA). Acute rejection (AR) is a major risk factor for IF/TA and associated graft loss in kidney allograft recipients (1-3), particularly when renal function does not return to baseline. Clinical care of kidney allograft recipients could be greatly improved if individuals at risk for AR could be identified before transplantation, allowing for better individualized clinical care. AR is a complex event with several different presentations including early and late AR, antibody-mediated rejection (ABMR) and T cellmediated rejection (TCMR). Classification of AR is continually being updated based on new and emerging techniques in histopathology, based in part on the integration of new genetic biomarkers (4, 5). It has been hypothesized that some individuals have increased risk for AR due to the inheritance of specific genetic variants (6). To understand the impact of genetic variation on AR, numerous studies in the last several decades have been undertaken to identify genetic variants associated with AR (7-70). Table 1 shows 75 genetic variants, as single nucleotide polymorphisms (SNPs), previously reported to be associated with AR. Unfortunately, there are also many reports showing failed attempts to validate some of these variants (53, 71, 72).

In this report, we attempted to validate 75 variants previously reported in the literature to be associated with AR using DNA from combing two multicenter cohorts of kidney allograft recipients enrolled in genome-wide association studies (GWAS). The sample size of these

two cohorts combined is larger than most of the previous studies and the candidate-SNP approach instead of a genome-wide analysis can maximize our power to validate previous findings.

Materials and Methods

The design of the Deterioration of Kidney Allograft Function (DeKAF) Genomics and the Genomics of Transplantation (GEN-03) cohorts along with each participant's characteristics has been previously reported (73–75). For this analysis, the DeKAF Genomics and the GEN-03 studies were combined and the kidney transplant recipients with GWAS data were identified and divided into two sub-cohorts consisting of 2,390 European-Americans (EA) and 482 African Americans (AA) kidney allograft recipients and tested separately. Though self-reported race was available in the clinical information, subjects were separated into EA and AA sub-cohorts based on ancestry principal components. Subjects were enrolled at time of transplant and signed informed consents were approved by the Institutional Review Boards of the enrolling centers. This study is registered at www.clinicaltrials.gov (and).

Clinical information was obtained from the respective medical records (74, 75). Induction therapy was administered as per transplant center preference but mainly consisted of rabbit anti-thymocyte globulin (rATG), basiliximab or Campath-1H. Immunologically high-risk patients were more likely to receive rATG, such as those with donor specific antibody, pregnancies, or repeat transplants. AR was defined as time to first T-cell, antibody mediated, or mixed T-cell and antibody mediated rejection post-transplant as determined by the enrolling center and treating physician. Rejection was biopsy confirmed in 96% of the cases. The median time to first 12 month AR was 53 days and the median time to first all-time AR was 105.5 days. Both first 12 month AR and all time AR were used in the analysis.

Papers evaluating genetic variants associated with AR were identified through Pubmed. Variants which were shown to have a statistically significant association (p-value <0.05) with AR in solid organ transplantation patients were included in this study (6). The variants which were chosen from the literature for validation in this report are shown in Table 1. All but 6 variants were reported in studies using cohorts of kidney allograft recipients. Those six SNPs not identified in kidney recipients were reported in liver allograft recipients (rs9296068 in HLA-DOA; rs1063320 in HLA-G; rs1800796 in IL6; rs3757385 in IRF5; rs2476601 in PTPN22; rs3775291 in TLR3). Genotype information for this study was extracted from our previous study using a custom genome-wide Affymetrix Axiom Transplant Array chip created specifically for analysis of allograft recipients (71, 76). The 75 variants analyzed are located in 58 genes. For those variants which were not part of the GWAS chip, a proxy SNP was selected which was present on the chip and where genotypes were available. In all cases, the r^2 between the reported variant and the proxy SNP was 1.0 as determined by the SNP Annotation and Proxy Search program (SNAP) (77). All selected SNPs were tested for Hardy-Weinberg Equilibrium (HWE). SNPs with a HWE test p-value <0.001 or sample missing rate > 1% were replaced by imputation using the IMPUTE2 program (78). The imputation quality (info) score were above 0.95 for all but two SNPs (rs2426295 and rs2430561, info ~ 0.7 and 0.8, respectively).

Differences in baseline characteristics of recipients without AR vs. with AR were tested using t-tests for continuous variables and chi-sq tests for categorical variables.

Cox proportional-hazard models were used to test the association between each literature identified SNP and time to first AR per person in our cohort. SNPs were coded using an additive genetic model, *i.e.*, the number of copies of a reference allele. The at-risk time period began on the day of transplant and lasted until the earliest event of AR, death, graft failure, last date of follow up, or common close out date. For the outcome of AR in the first 12 months post-transplant, an additional censoring date of one year post-transplant was added. When testing a single SNP association, we stratified by transplant center, and adjusted for variables determined using model selection. We performed backwards model selection with a retention p-value of 0.10 on the outcome of all time AR, separately for AA and EA cohorts, using all of the variables listed in Table 2. For the EA cohort, the retained variables were: gender, primary cause of ESRD, need for dialysis in the first 14 days posttransplant, T- or B-cell crossmatch positive, plasmapheresis prior to transplant, greater than zero HLA mismatches, type of antibody induction, calcineurin inhibitor type at transplant, age at transplant, and donor age. For the AA cohort, the retained variables were: greater than zero % panel reactive antibodies, T- or B-cell crossmatch positive, plasmapheresis prior to transplant, smoking status, calcineurin inhibitor type at transplant, and SPK. Significance for an association between a SNP and AR was set at $p < 6.6 \times 10^{-4}$ (Bonferroni correction with 75 independent tests). Analyses were conducted using SAS v9.4 (The SAS Institute, Cary, NC, USA, http://www.sas.com).

Single SNP Cox proportional hazard models were used to the analysis of variants associated with time to death-censored chronic graft failure (DCGF). Backward selection with a retention p-value of 0.10 was performed separately for European-American and African-American cohorts. In the European-American cohort (DCGF events = 273), models were adjusted for gender, primary cause of ESRD, need for dialysis, cross T- or B-cell match, plasmapheresis prior to transplant, HLA mismatches, type of antibody induction, CNI at baseline, age and donor age. In the African-American cohort (DCGF events = 105), models were adjusted for PRA positive, cross T- or B-cell match, plasmapheresis prior to transplant, smoking status, CNI at baseline and SPK. Both cohorts were stratified by transplant center.

Results

Characteristics of the two cohorts are shown in Table 2. Significant differences (p<0.002) between recipients with and without AR for the EA cohort are, mean age at enrollment in years (p=0.0004), mean donor age in years (p=0.0014), plasmapheresis prior to transplant (p<0.0001), HLA mismatches (p<0.0001), type of antibody induction (p<0.0001) and calcineurin inhibitor type (p<0.001). Significant differences between recipients with and without AR for the AA cohort are, panel reactive antibodies (p=0.002), T or B cell crossmatch (0.0013), plasmapheresis prior to transplant (p<0.0013), and calcineurin inhibitor type at time of transplant (p<0.0002).

The results of the association analysis for the SNPs tested are found in Table 3. The only significant SNP was rs2961920 ($p=1.1\times10^{-4}$), a proxy for rs2910164, which is located in the

MIR146A gene. This SNP was only significant in the AA cohort for all-time AR. The variant was also marginally significant ($p=1.9\times10^{-3}$) for AR within 12 months. The hazard ratio (95% CI) for this variant for AR within 12 months was 2.28 (1.42–3.89) and for AR all time was 2.43 (1.50–3.48). A Kaplan-Meier analysis for AR by MIR146A genotype is shown in Figure 1. At 28 months, 85% of recipients heterozygous for the risk allele (C/A) were AR free whereas individuals homozygous for the risk allele (A/A), at 28 months, only 75% were AR free. This variant was not significant in the EA cohort (p=0.59; 12 months AR and p=0.45; all time AR).

There were two suggestive variants. In the EA cohort, SNP rs5742909 (p=0.0049; 12 months AR and p=0.012; all time AR) within the *CTLA4* gene and in the AA cohort, SNP rs10759932 (p=0.0089; 12 months AR and p=0.0046; all time AR) within the *TLR4* gene. All other tested variants were not significant (p > 0.02).

All variants were also tested against time to death-censored graft function (DCGF) using a Cox proportional hazard model (Table 1S). There were no significant associations with any of the variants, but suggestive associations were found in the AA cohort for SNP rs61527852 in the IL3 gene (p=0.0087; all time AR) and for SNP rs2961920 in the MIR146A locus in both the EA cohort (p=0.0046; all time AR) and the AA cohort but less significant (p=0.049; all time AR)

Discussion

Since the beginning of kidney allograft transplantation, there has been considerable reduction in occurrence of AR and improved treatments, resulting in an almost 95% graft survival rates for the first year after transplantation. Unfortunately, there remains an insidious rate of late graft dysfunction and loss and one of the major clinical problems in transplantation. The risk of graft loss has been shown to be increased in the event of AR (1). Being able to reduce AR events would improve graft survival. It has been hypothesized that some recipients are genetically predisposed to increased risk for AR (6, 79). Those genetic variants with the greatest impact on AR are within the human leukocyte antigens (HLA) related loci within the major histocompatibility complex (MHC) (80). HLA alleles are strong predictors of AR and matching HLA alleles between the recipient and donor organ greatly decreases the risk for AR. Though the HLA loci plays an important role in AR, other genes which impact the immune system also have genetic variation and these alleles may also impact AR risk. To this end, many variants within these genes have been reported for their association with AR.

In this analysis, 75 SNPs, previously reported to be associated with the risk of AR, were tested in our EA and AA cohorts of kidney allograft recipients. Only one of these SNPs was found to be significant; A SNP within the microRNA 146a in the AA cohort. In a previous report it was found that rs2910164 in the *MIR146A* gene was associated with lowest overall survival among 350 North Indian renal allograft recipients and a three-fold higher risk for AR (70). The hazard ratio was similar to the previous report on this variant, 2.43 vs. 2.63. In the previous report, the recipients were from north India and in our analysis the recipients with the significant p-value were within the AA cohort. The EA cohort was not significant

for this variant. We speculate that the lack of significance in the EA cohort may be the result of not having additional variants in other genes which were present in the north Indian and AA populations and act synergistically with rs2910164.

MIR146A has a number of targets, including mRNAs from genes involved in immune regulation including regulatory T-cells (81). An *in silico* analysis identified several target genes including an interleukin-1 receptor-associated kinase (*IRAK1*) gene, and TNFreceptor associated factor (*TRAF-6*) gene (70). MIR146A is thought to help modulate the immune system by suppressing inflammatory responses, in part through the NF- κ B signaling pathway. The variant allele has been shown to reduce the expression of this microRNA, possibly resulting in an enhanced inflammatory response to the allograft, increasing the risk of AR (82, 83). This variant has also been reported to be associated with type 2 diabetes with increased fasting glucose and HbA1C levels and cardiovascular disease risk factors such as increased diastolic blood pressure and triglycerides (84).

The three variants which exhibited suggestive evidence for an association with AR included SNP rs5742909 within the cytotoxic T-lymphocyte associated protein 4 (*CTLA4*) gene and SNP rs10759932 within the toll like receptor 4 (*TLR4*) gene. The CTLA4 gene plays an inhibitory role in T-cell signaling and the TLR4 gene product is a lipopolysaccharide receptor and plays a fundamental role in pathogen recognition and activation of innate immunity (85, 86). We also tested all variants for their association with DCGF, but none were significant.

There are many reasons for the high number of variants that did not replicate in this study (87, 88). For the most part, most of the published studies are underpowered. An additional source of error in replication may be differences between populations and clinical care. Also, six of these variants were identified in liver recipients and may not be important in kidney allograft recipients. In this analysis, we used recipients from a single multicenter study in which identical clinical variables were collected for all individuals in the cohort. Many of the published studies analyzed only single univariate associations and did not adjust for clinical characteristics which can improve the power of statistical testing. Additionally, the follow-up period to AR is often too short to see an impact of the variant on AR risk and no consideration is given to linkage disequilibrium. Additional reasons have been stated in a report which attempted to identify donor specific variants associated with long- and shortterm outcomes using a GWAS in renal allograft recipients (89). In this study a genome-wide association study was done on 2,094 renal transplant-pairs, but no variants outside of the HLA region were found to be statistically significant in a 5,866 replication cohort. The authors suggested that both phenotype heterogeneity and the lack of statistical power due to limited sample size is a possible cause of no statistically significant variants being identified. The AR phenotype is most likely both clinically and genetically heterogeneous making identification of associated variants unlikely unless larger populations are used.

Other variables which may impact AR and/or graft loss include subclinical rejection and immunosuppressant adherence. In both cases this information was not available from the published papers and we did not collect this data in our cohort so the inclusion of these

variables in our analysis was not possible, though both of these have been shown to be important in rejection risk and health of the allograft (90, 91).

The positive association of the MIR146A with AR provides a novel pathway to study and may provide additional genes and their variants as candidates for recipient risk for AR and possible therapeutic targets to reduce this risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

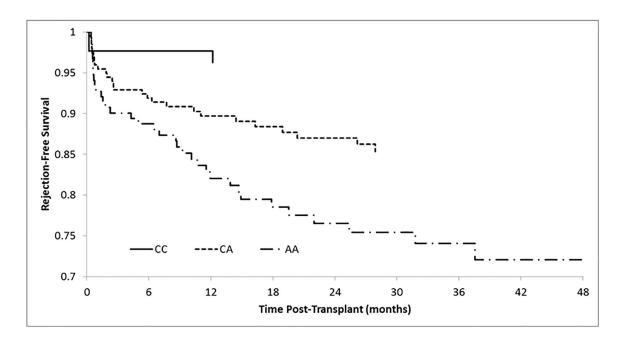
The authors wish to thank the research subjects for their participation in this study. We acknowledge the dedication and hard work of our coordinators at each of the DeKAF Genomics and GEN03 clinical sites: University of Alberta, Nicoleta Bobocea, Tina Wong, Adrian Geambasu and Alyssa Sader; University of Manitoba, Myrna Ross and Kathy Peters; University of Minnesota, Mandi DeGrote, Monica Myers and Danielle Berglund; Hennepin Healthcare, Lisa Berndt; Mayo Clinic, Tom DeLeeuw; University of Iowa, Wendy Wallace and Tammy Lowe; University of Alabama, Jacquelin Vaughn, Valencia Stephens and Tena Hilario. We also acknowledge the dedicated work of our research scientists Marcia Brott and Amutha Muthusamy. This study was supported by NIH/NIAID grants 5U19-AI070119, 5U01-AI058013 and K01 AI130409.

ABBREVIATIONS PAGE

IF/TA	interstitial fibrosis/tubular atrophy
AR	acute rejection
ABMR	antibody-mediated rejection
TCMR	T cell-mediated rejection
SNPs	single nucleotide polymorphisms
GWAS	genome-wide association studies
DeKAF	Deterioration of Kidney Allograft Function
EA	European-Americans
AA	African Americans
rATG	rabbit anti-thymocyte
SNAP	SNP Annotation and Proxy Search program
HLA	human leukocyte antigens
MHC	major histocompatibility complex

REFERENCES

 Matas AJ, Gillingham KJ, Payne WD, Najarian JS. The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation 1994;57:857–859. [PubMed: 8154032]


- 2. Paraskevas S, Kandaswamy R, Humar A, et al. Risk factors for rising creatinine in renal allografts with 1 and 3 yr survival. Clin Transplant 2006;20:667–672. [PubMed: 17100713]
- Lentine KL, Gheorghian A, Axelrod D, Kalsekar A, L'italien G, Schnitzler MA. The implications of acute rejection for allograft survival in contemporary U.S. kidney transplantation. Transplantation. 2012;94:369–376. [PubMed: 22836133]
- Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8:753–760. [PubMed: 18294345]
- Loupy A, Haas M, Solez K, et al. The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology. Am J Transplant. 2017;17:28–41. [PubMed: 27862883]
- Dorr CR, Oetting WS, Jacobson PA, Israni AK. Genetics of acute rejection after kidney transplantation. Transpl Int. 2018;31:263–277. [PubMed: 29030886]
- Grinyo J, Vanrenterghem Y, Nashan B, et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int. 2008;21:879–891. [PubMed: 18444945]
- Vu D, Tellez-Corrales E, Shah T, Hutchinson I, Min DI. Influence of Cyclooxygenase-2 (COX-2) gene promoter-1195 and allograft inflammatory factor-1 (AIF-1) polymorphisms on allograft outcome in Hispanic kidney transplant recipients. Hum Immunol. 2013;74:1386–1391. [PubMed: 23777936]
- Zhang G, Wang H, Wang F, et al. Gene polymorphisms of the renin-angiotensin-aldosterone system and angiotensin II type 1-receptor activating antibodies in renal rejection. Tohoku J Exp Med. 2007;213:203–214. [PubMed: 17984617]
- Ghisdal L, Baron C, Lebranchu Y, et al. Genome-Wide Association Study of Acute Renal Graft Rejection. Am J Transplant. 2017;17:201–209. [PubMed: 27272414]
- Kang SW, Park SJ, Kim YW, et al. Association of MCP-1 and CCR2 polymorphisms with the risk of late acute rejection after renal transplantation in Korean patients. Int J Immunogenet. 2008;35:25–31. [PubMed: 18186797]
- 12. Kruger B, Boger CA, Obed A, et al. RANTES/CCL5 polymorphisms as a risk factor for recurrent acute rejection. Clin Transplant. 2007;21:385–390. [PubMed: 17488389]
- Abdi R, Tran TB, Sahagun-Ruiz A, et al. Chemokine receptor polymorphism and risk of acute rejection in human renal transplantation. J Am Soc Nephrol. 2002;13:754–758. [PubMed: 11856781]
- Yigit B, Bozkurt N, Berber I, Titiz I, Isbir T. Analysis of CC chemokine receptor 5 and 2 polymorphisms and renal transplant survival. Cell Biochem Funct. 2007;25:423–426. [PubMed: 16598837]
- Cha RH, Yang SH, Kim HS, et al. Genetic interactions between the donor and the recipient for susceptibility to acute rejection in kidney transplantation: polymorphisms of CCR5. Nephrol Dial Transplant. 2009;24:2919–2925. [PubMed: 19561149]
- Pawlik A, Dabrowska-Zamojcin E, Dziedziejko V, Safranow K, Domanski L. Association between IVS3 +17T/C CD28 gene polymorphism and the acute kidney allograft rejection. Transpl Immunol. 2014;30:84–87. [PubMed: 24368148]
- 17. Han FF, Fan H, Wang ZH, et al. Association between co-stimulatory molecule gene polymorphism and acute rejection of allograft. Transpl Immunol. 2014;31:81–86. [PubMed: 24952299]
- Gao JW, Guo YF, Fan Y, et al. Polymorphisms in cytotoxic T lymphocyte associated antigen-4 influence the rate of acute rejection after renal transplantation in 167 Chinese recipients. Transpl Immunol. 2012;26:207–211. [PubMed: 22418270]
- Ruhi C, Sallakci N, Yegin O, Suleymanlar G, Ersoy FF. The influence of CTLA-4 single nucleotide polymorphisms on acute kidney allograft rejection in Turkish patients. Clin Transplant. 2015;29:612–618. [PubMed: 25981560]
- Duan Z, Zhang Y, Pan F, et al. Association between CTLA4 gene polymorphisms and acute rejection of kidney transplantation: a meta-analysis. J Nephrol. 2012;25:996–1002. [PubMed: 22307437]
- Misra MK, Kapoor R, Pandey SK, Sharma RK, Agrawal S. Association of CTLA-4 gene polymorphism with end-stage renal disease and renal allograft outcome. J Interferon Cytokine Res. 2014;34:148–161. [PubMed: 24313821]

- 22. Gendzekhadze K, Rivas-Vetencourt P, Montano RF. Risk of adverse post-transplant events after kidney allograft transplantation as predicted by CTLA-4 +49 and TNF-alpha –308 single nucleotide polymorphisms: a preliminary study. Transpl Immunol. 2006;16:194–199. [PubMed: 17138053]
- Gao JW, Zhou ZH, Guo SC, Guo YF, Guo F. A deeper understanding of the association between CTLA4 +49A/G and acute rejection in renal transplantation: an updated meta-analysis. Ren Fail. 2015;37:165–174. [PubMed: 25299395]
- Canossi A, Aureli A, Delreno F, et al. Influence of cytotoxic T-lymphocyte antigen-4 polymorphisms on acute rejection onset of cadaveric renal transplants. Transplant Proc. 2013;45:2645–2649. [PubMed: 24034013]
- Singh R, Kesarwani P, Ahirwar DK, Kapoor R, Mittal RD. Interleukin 8 –251T>A and Interferon gamma +874A>T polymorphism: potential predictors of allograft outcome in renal transplant recipients from north India. Transpl Immunol. 2009;21:13–17. [PubMed: 19189859]
- 26. Kim SK, Park HJ, Seok H, et al. Association studies of cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) gene polymorphisms with acute rejection in kidney transplantation recipients. Clin Transplant. 2014;28:707–712. [PubMed: 24654912]
- Quteineh L, Verstuyft C, Furlan V, et al. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin Pharmacol Toxicol. 2008;103:546–552. [PubMed: 19067682]
- Gervasini G, Garcia-Cerrada M, et al. A 3'-UTR Polymorphism in Soluble Epoxide Hydrolase Gene Is Associated with Acute Rejection in Renal Transplant Recipients. PLoS One. 2015;10:e0133563. [PubMed: 26230946]
- Heidenreich S, Junker R, Wolters H, et al. Outcome of kidney transplantation in patients with inherited thrombophilia: data of a prospective study. J Am Soc Nephrol. 2003;14:234–239. [PubMed: 12506156]
- Hocher B, Slowinski T, Hauser I, et al. Association of factor V Leiden mutation with delayed graft function, acute rejection episodes and long-term graft dysfunction in kidney transplant recipients. Thromb Haemost. 2002;87:194–198. [PubMed: 11858477]
- 31. Dabrowska-Zamojcin E, Czerewaty M, Malinowski D, et al. Ficolin-2 Gene rs7851696 Polymorphism is Associated with Delayed Graft Function and Acute Rejection in Kidney Allograft Recipients. Arch Immunol Ther Exp (Warsz). 2018;66:65–72. [PubMed: 28536887]
- 32. Yuan FF, Watson N, Sullivan JS, et al. Association of Fc gamma receptor IIA polymorphisms with acute renal-allograft rejection. Transplantation. 2004;78:766–769. [PubMed: 15371685]
- Ningappa M, Ashokkumar C, Higgs BW, et al. Enhanced B Cell Alloantigen Presentation and Its Epigenetic Dysregulation in Liver Transplant Rejection. Am J Transplant. 2016;16:497–508. [PubMed: 26663361]
- 34. Thude H, Janssen M, Sterneck M, Nashan B, Koch M. 14-bp ins/del polymorphism and +3142C>G SNP of the HLA-G gene have a significant impact on acute rejection after liver transplantation. Hum Immunol. 2016;77:1159–1165. [PubMed: 27664842]
- Tajik N, Salari F, Ghods AJ, Hajilooi M, Radjabzadeh MF, Mousavi T. Association between recipient ICAM-1 K469 allele and renal allograft acute rejection. Int J Immunogenet. 2008;35:9– 13. [PubMed: 18186794]
- Manchanda PK, Mittal RD. Analysis of cytokine gene polymorphisms in recipient's matched with living donors on acute rejection after renal transplantation. Mol Cell Biochem. 2008;311:57–65. [PubMed: 18165865]
- Morgun A, Shulzhenko N, Rampim GF, et al. Interleukin-2 gene polymorphism is associated with renal but not cardiac transplant outcome. Transplant Proc. 2003;35:1344–1345. [PubMed: 12826155]
- Park SJ, Yoon YC, Kang SW, et al. Impact of IL2 and IL2RB genetic polymorphisms in kidney transplantation. Transplant Proc. 2011;43:2383–1287. [PubMed: 21839273]
- Lee DY, Song SB, Moon JY, et al. Association between interleukin-3 gene polymorphism and acute rejection after kidney transplantation. Transplant Proc. 2010;42:4501–4504. [PubMed: 21168724]

- Poole KL, Gibbs PJ, Evans PR, Sadek SA, Howell WM. Influence of patient and donor cytokine genotypes on renal allograft rejection: evidence from a single centre study. Transpl Immunol. 2001;8:259–265. [PubMed: 11316069]
- 41. Lee HJ, Kim TH, Kang SW, et al. Association Interleukin-4 and Interleukin-4 Receptor Gene Polymorphism and Acute Rejection and Graft Dysfunction After Kidney Transplantation. Transplant Proc. 2016;48:813–819. [PubMed: 27234743]
- Yao J, Feng XW, Yu XB, et al. Recipient IL-6–572C/G genotype is associated with reduced incidence of acute rejection following liver transplantation. J Int Med Res. 2013;41:356–364. [PubMed: 23569034]
- Marshall SE, McLaren AJ, McKinney EF, et al. Donor cytokine genotype influences the development of acute rejection after renal transplantation. Transplantation. 2001;71:469–476. [PubMed: 11233912]
- Alakulppi NS, Kyllonen LE, Jantti VT, et al. Cytokine gene polymorphisms and risks of acute rejection and delayed graft function after kidney transplantation. Transplantation. 2004;78:1422– 1428. [PubMed: 15599305]
- 45. Sankaran D, Asderakis A, Ashraf S, et al. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int. 1999;56:281–288. [PubMed: 10411704]
- Haouami Y, Sfar I, Dhaouadi T, et al. Impact of Interleukin-17F Gene Polymorphisms in Outcome of Kidney Transplantation in Tunisian Recipients. Transplant Proc. 2018;50:110–114. [PubMed: 29407292]
- Kim CD, Ryu HM, Choi JY, et al. Association of G-137C IL-18 promoter polymorphism with acute allograft rejection in renal transplant recipients. Transplantation. 2008;86:1610–1614. [PubMed: 19077897]
- Wang J, Yang JW, Zeevi A, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther. 2008;83:711–717. [PubMed: 17851563]
- 49. Tinckam K, Rush D, Hutchinson I, et al. The relative importance of cytokine gene polymorphisms in the development of early and late acute rejection and six-month renal allograft pathology. Transplantation. 2005;79:836–841. [PubMed: 15818327]
- 50. Yu X, Wei B, Dai Y, et al. Genetic polymorphism of interferon regulatory factor 5 (IRF5) correlates with allograft acute rejection of liver transplantation. PLoS One. 2014;9:e94426. [PubMed: 24788560]
- 51. Salido E, Martin B, Barrios Y, et al. The PIA2 polymorphism of the platelet glycoprotein IIIA gene as a risk factor for acute renal allograft rejection. J Am Soc Nephrol. 1999;10:2599–2605. [PubMed: 10589700]
- Golshayan D, Wojtowicz A, Bibert S, et al. Polymorphisms in the lectin pathway of complement activation influence the incidence of acute rejection and graft outcome after kidney transplantation. Kidney Int. 2016;89:927–938. [PubMed: 26924055]
- Oetting WS, Zhu Y, Brott MJ, Matas AJ, Cordner GK, Pan W. Validation of genetic variants associated with early acute rejection in kidney allograft transplantation. Clin Transplant. 2012;26:418–423. [PubMed: 21919968]
- 54. Wang Z, Yang H, Si S, et al. Polymorphisms of nucleotide factor of activated T cells cytoplasmic 2 and 4 and the risk of acute rejection following kidney transplantation. World J Urol. 2018;36:111– 116. [PubMed: 29103109]
- 55. Misra MK, Mishra A, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Association of functional genetic variants of transcription factor Forkhead Box P3 and Nuclear Factor-kappaB with endstage renal disease and renal allograft outcome. Gene. 2016;581:57–65. [PubMed: 26794449]
- 56. Zolfaghari L, Solgi G, Nafar M, et al. Association of programmed cell death 1 and programmed cell death 1 ligand gene polymorphisms with delayed graft function and acute rejection in kidney allograft recipients. Iran J Kidney Dis. 2015;9:138–145. [PubMed: 25851293]
- Dullin R, Koch M, Sterneck M, Nashan B, Thude H. Association between a gain-of-function variant of PTPN22 and rejection in liver transplantation. Transplantation. 2015;99:431–437. [PubMed: 25073032]

- Yang H, Zhou Q, Chen ZM, Chen WQ, Wang MM, Chen JH. Polymorphisms in STAT4 increase the risk of acute renal allograft rejection in the Chinese population. Transpl Immunol. 2011;24:216–219. [PubMed: 21237270]
- Park JY, Park MH, Park H, Ha J, Kim SJ, Ahn C. TNF-alpha and TGF-beta1 gene polymorphisms and renal allograft rejection in Koreans. Tissue Antigens. 2004;64:660–666. [PubMed: 15546338]
- 60. Zhang XX, Bian RJ, Wang J, Zhang QY. Relationship between cytokine gene polymorphisms and acute rejection following liver transplantation. Genet Mol Res. 2016;15:gmr.15027599.
- Citores MJ, Banos I, Noblejas A, Rosado S, Castejon R, Cuervas-Mons V. Toll-like receptor 3 L412F polymorphism may protect against acute graft rejection in adult patients undergoing liver transplantation for hepatitis C-related cirrhosis. Transplant Proc. 2011;43:2224–2226. [PubMed: 21839239]
- 62. Ducloux D, Deschamps M, Yannaraki M, et al. Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int. 2005;67:2454–2461. [PubMed: 15882292]
- Hwang YH, Ro H, Choi I, et al. Impact of polymorphisms of TLR4/CD14 and TLR3 on acute rejection in kidney transplantation. Transplantation. 2009;88:699–705. [PubMed: 19741468]
- 64. Pawlik A, Domanski L, Rozanski J, et al. IL-2 and TNF-alpha promoter polymorphisms in patients with acute kidney graft rejection. Transplant Proc. 2005;37:2041–2043. [PubMed: 15964333]
- 65. Sanchez-Fructuoso AI, Perez-Flores I, Valero R, et al. The Polymorphism –308G/A of Tumor Necrosis Factor-alpha Gene Modulates the Effect of Immunosuppressive Treatment in First Kidney Transplant Subjects Who Suffer an Acute Rejection. J Immunol Res. 2016;2016:2197595. [PubMed: 27777962]
- 66. Azarpira N, Kazemi K, Darai M. Influence of p53 (rs1625895) polymorphism in kidney transplant recipients. Saudi J Kidney Dis Transpl. 2014;25:1160–1165. [PubMed: 25394431]
- 67. Pazik J, Oldak M, Dabrowski M, et al. Association of UDP-glucuronosyltransferase 1A9 (UGT1A9) gene polymorphism with kidney allograft function. Ann Transplant. 2011;16:69–73. [PubMed: 22210424]
- 68. Pazik J, Oldak M, Lewandowski Z, et al. Uridine diphosphate glucuronosyltransferase 2B7 variant p.His268Tyr as a predictor of kidney allograft early acute rejection. Transplant Proc. 2013;45:1516–1519. [PubMed: 23726609]
- Shahbazi M, Fryer AA, Pravica V, et al. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J Am Soc Nephrol. 2002;13:260–264. [PubMed: 11752046]
- Misra MK, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Genetic variants of MicroRNA-related genes in susceptibility and prognosis of end-stage renal disease and renal allograft outcome among north Indians. Pharmacogenet Genomics. 2014;24:442–450. [PubMed: 24978643]
- Oetting WS, Schladt DP, Leduc RE, et al. Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi-center cohort. Transpl Int 2011;24:1231–1238. [PubMed: 21955043]
- 72. de Mare-Bredemeijer EL, Mancham S, Utomo WK, et al. Genetic polymorphisms in innate immunity receptors do not predict the risk of bacterial and fungal infections and acute rejection after liver transplantation. Transpl Infect Dis 2013;15:120–133. [PubMed: 23240652]
- Oetting WS, Schladt DP, Guan W, et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. Am. J. Transplant 2016;16:574–582. [PubMed: 26485092]
- Israni A, Leduc R, Holmes J, et al. Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation. 2010;90:1401–1408. [PubMed: 21085059]
- 75. Pulk RA, Schladt DS, Oetting WS, et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics 2015;16:841–854. [PubMed: 26067485]
- 76. Li YR, van Setten J, Verma SS, et al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Medicine. 2015;7:90. [PubMed: 26423053]

- 77. Johnson AD, Handsaker RE, Pulit S, Nizzari MM, O'Donnell CJ, de Bakker PIW. SNAP: A webbased tool for identification and annotation of proxy SNPs using HapMap Bioinformatics. 2008;24:2938–2939. [PubMed: 18974171]
- Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics 2009;5:e1000529. [PubMed: 19543373]
- Goldfarb-Rumyantzev AS, Naiman N. Genetic prediction of renal transplant outcome. Curr Opin Nephrol Hypertens 2008;17:573–579. [PubMed: 18941349]
- 80. Sheldon S, Hasleton PS, Yonan NA, et al. Rejection in heart transplantation strongly correlates with HLA-DR antigen mismatch. Transplantation 1994;58:719–722. [PubMed: 7940693]
- Paterson MR, Kriegel AJ. MiR-146a/b: a family with shared seeds and different roots. Physiol Genomics. 2017;49:243–252. [PubMed: 28213571]
- Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105:7269–7274. [PubMed: 18474871]
- Alipoor B, Ghaedi H, Meshkani R, Omrani MD, Sharifi Z, Golmohammadi T. The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes. J Endocrinol Invest. 2018;41:557–566. [PubMed: 29058209]
- Alipoor B, Meshkani R, Ghaedi H, Sharifi Z, Panahi G, Golmohammadi T. Association of miR-146a rs2910164 and miR-149 rs2292832 variants with susceptibility to type 2 diabetes. Clin. Lab 2016;62:1553–1561. [PubMed: 28164605]
- 85. Adams AB, Ford ML and Larsen CP: Costimulation blockade in autoimmunity and transplantation: The CD 28 pathway. J Immunol. 2016;197:2045–2050. [PubMed: 27591335]
- Funami K, Matsumoto M, Oshiumi H, Inagaki F, Seya T. Functional interfaces between TICAM-2/ TRAM and TICAM-1/TRIF in TLR4 signaling. Biochem Soc Trans. 2017;45:929–935. [PubMed: 28630139]
- Pallet N, Thervet E. The genetics of kidney transplantation. Hum Genet. 2012;131:317–323. [PubMed: 21922316]
- Oetting WS, Wu B, Schladt DP, et al. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics. 2018;19:175– 184. [PubMed: 29318894]
- Hernandez-Fuentes MP, Franklin C, Rebollo-Mesa I, et al. Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study. Am J Transplant. 2018;18:1370–1379. [PubMed: 29392897]
- Doyle IC, Maldonado AQ, Heldenbrand S, Tichy EM, Trofe-Clark J. Nonadherence to therapy after adult solid organ transplantation: A focus on risks and mitigation strategies. Am J Health Syst Pharm. 2016;73:909–920. [PubMed: 27189855]
- Loupy A, Vernerey D, Tinel C, et al. Subclinical rejection phenotypes at 1 year post-transplant and outcome of kidney allografts. J Am Soc Nephrol. 2015;26:1721–1731. [PubMed: 25556173]

Figure 1. A Kaplan-Meier analysis of proxy SNP rs2910164 in *MIR146A* **for acute rejection** A Kaplan-Meier analysis for rejection-free kidney recipients based on the genotypes of MIR146A. The solid line represents the CC genotype, dashed line represents the CA genotype and the dash-dot-dash line represents the AA genotype. The A allele was found to be associated with a greater risk of acute rejection.

Table 1.

Candidate SNPs associated with acute rejection reported in the literature.

÷							14	13, 14, 15	17			19, 20	21, 22 23, 24							30								
Ref	٢	×	6	10	Π	12	13, 14	13,	16, 17	17	18	19,	21,	24	25	26	27	28	29	29, 30	31	32	33	34	35	36	37	38
Protein Change	p.Ser893Ala	p.Arg15Trp	3' UTR	5' of gene	5' of gene	5' of gene	p.Val64Ile	Intronic	Intronic	p.Ala198Thr	5' of gene	5' of gene	p.Thr17Ala	3' of gene	5' of gene	p.Phe421 =	Intronic	3' UTR	3' UTR	p.Arg534Gln	p.Ala258Ser	p.His166Arg	5' of gene	3' UTR	p.Lys469Glu	p.Phe105=	5' of gene	p.Asp391Glu
Nucleotide Change	c.2677T>G	c.43C>T	c.*86A>C	g.93048165G>T	c2582A>G	c471G>A	c.190G>A	c301+246A>G	c.243+17T>C	c.592G>A	c1722T>C	c319C>T	c.49A>G	c.1421G>A	c352A>T	c.1263C>G	c.219–237G/A	c.35A>G	c.97G>A	c.1601G>A	c.772G>C	c.500A>G	g.4470122T>G	c.*233C>G	c.1405A>G	c.315C>T	c385T>G	c.1173C>A
Position ††	87531302	31616154	148742201	93314999	34252769	35880776	46357717	46370444	203729789	122119472	203866221	203867624	203867991	203874196	73740307	133537858	99672916	27544557	46739505	169549811	134887245	161509955	33020918	29830972	10285007	112832813	122456825	37128579
Chrm	7	9	3	11	17	17	3	3	2	33	2	2	2	2	4	10	7	8	11	1	6	1	9	9	19	2	4	22
Gene	ABCB1	AIF	ATIR	DEUP1 (CCDC67)	CCL2	CCL5	CCR2	CCR5	CD28	CD86	CTLA4	CTLA4	CTLA4	CTLA4	CXCL8	CYP2E1	CYP3A5	EPHX2	F2	F5	FCN2	FCGR2A	HLA-DOA	HLA-G	ICAM1	ILIB	П.2	IL2RB
Proxy [†]	rs4148738			rs55637918					rs10490574									rs4149257										
SNP rs#	rs2032582	rs2269475	rs5186	rs10765602	rs1024611	rs2107538	rs1799864	rs1799987	rs3116496	rs1129055	rs733618	rs5742909	rs231775	rs3087243	rs4073	rs2515641	rs776746	rs1042032	rs1799963	rs6025	rs7851696	rs1801274	rs9296068	rs1063320	rs5498	rs1143634	rs2069762	rs228942

Author Manuscript

Ref	39	39	39	39	40	41	42	43	44, 45	44	7, 44	46	47	48	48	Ζ	49	50	51	52	52	52	52	29, 53	54	55	55
Protein Change	p.Gly250=	5' of gene	5' of gene	p.Pro27Ser	5' of gene	p.Gln576Arg	5' of gene	p.His161Arg	5' of gene	Intronic	Intronic	Intronic	Intronic	5' of gene	p.Leu59Pro	5' of gene	p.Arg52Cys	p.Gly54Asp	p.Gly57Glu	p.Ala222Val	Intronic	5' of gene	3' UTR				
Nucleotide Change	c.750C>T	c1285G>A	c1662C>A	c.79C>T	c589C>T	c.1727A>G	c636G>C	c237C>G	c1117A>G	c854T>C	c627A>C	c.482A>G	c368G>C	c.579+119G>A	c.580-106G>A	c.819+10T>C	c.115-483A>T	c811T>G	c.176T>C	c290C>G	c.154C>	c.161G>A	c.170G>A	c.788C>T	c.2663–32T>A	c798795delATTG	c.*126G>A
$\mathbf{Position}^{\dagger\dagger}$	37135396	132059422	132059045	132060785	132673462	27363079	22726627	22727026	206773552	206773289	206773062	52236941	112164265	128400698	128400645	49026677	68158742	128937250	47283364	52771925	52771482	52771475	52771466	11796321	51398762	102500998	35401887
Chrm	22	5	5	5	5	16	7	7	1	1	1	9	11	L	7	3	12	L	17	10	10	10	10	1	20	4	14
Gene	IL2RB	IL3	IL3	IL3	IL4	IL4R	IL6	IL6	IL10	IL10	IL10	IL17F	IL18	IMPDH1	IMPDH1	IMPDH2	INFG	IRF5	ITGB3	MBL2	MBL2	MBL2	MBL2	MTHFR	NFATC2	NFKB1	NFKBIA
Proxy [†]	rs2284033	rs657075	rs61527852	rs31480			rs1524107											rs3807307									rs8904
SNP rs#	rs228953	rs181781	rs2073506	rs40401	rs2243250	rs1801275	rs1800796	rs1800795	rs1800896	rs1800871	rs1800872	rs763780	rs187238	rs2278293	rs2278294	rs11706052	rs2430561	rs3757385	rs5918	rs7096206	rs5030737	rs180045	rs1800451	rs1801133	rs2426295	rs28362491	rs696

Oetting et al.

56 8 57 10

p.Arg620Trp 5' of gene

Intronic

c.76–34269T>C

12 --

PTPRO

rs7137890

rs7976329

PTPN22

rs12734919

p.Ala215Val

c.-1329A>G c.1858C>T

c.644C>T

241851281 186681619 113834946 15449705

2 _

PDCD1 PTGS2

rs2227982 rs689466 rs2476601

Transplantation. Author manuscript; available in PMC 2019 December 16.

SNP rs#	$\operatorname{Proxy}^{\dagger}$	Gene	Chrm	Position $\dot{\tau}\dot{\tau}$	Nucleotide Change	Protein Change	Ref
rs7574865		STAT4	2	191099907	c.274–23582A>C	Intronic	58
rs1800470		TGFB	19	41353016	c.29C>T	p.Pro10Leu	44, 59, 60
rs1800471		TGFB	19	41352971	c.74G>C	p.Arg25Pro	44, 49, 59
rs3775291		TLR3	4	186082920	c.1234C>G	p.Leu412Phe	61
rs4986790		TLR4	6	117713024	c.896A>G	p.Asp299Gly	62
rs10759932		TLR4	6	117702866	c1847T>C	5' to gene	63
rs1800629		TNF	9	31575254	c488G>A	5' to gene	6, 36, 44, 45, 59, 64, 65
rs1625895		TP53	17	7674797	c.672+62A>G	Intronic	66
rs17868320		UGT1A9	2	233669782	c2152C>T	5' to gene	67
rs6714486		UGT1A9	2	233671659	c276T>A	5' to gene	67
rs7439366		UGT2B7	4	69098620	c.802T>C	p.Tyr268His	68
rs699947		VEGFA	9	43768652	c2055A>C	5' to gene	69
rs1570360	rs3025007	VEGFA	9	43770093	c614A>G	5' to gene	69
rs2910164	rs2961920	MIR 146A	5	160485411	n.60C>G		70
rs11614913	rs4759316	MIR196A2	12	53991815	n.78C>T		70
rs3746444	rs3746436	MIR499A	20	34990448	n.73A>G		70

 \overline{r} -SNP was used as a proxy when a variant was not present in the genotyping chip

Transplantation. Author manuscript; available in PMC 2019 December 16.

 $\dot{\tau}\dot{\tau}$ - Assembly CRCh38.p7 used for nucleotide position

Author Manuscript

Author Manuscript

Author Manuscript

Table 2.

Characteristics and comparisons of European American and African Americans kidney transplant recipients with and without acute rejection; % (no. of recipients)

All No AR AR P-value is% (no. of recipients): 2.390 8.4% (1969) 17.6% (421) 0.831 panic/Latino 9.4% (13) 0.6% (11) 0.5% (23) 0.331 0.331 $c/Latino$ 0.6% (13) 0.6% (11) 0.5% (23) 0.331 0.079 $c/Latino$ 0.6% (13) 0.6% (11) 0.5% (23) 0.079 0.331 $c/Latino$ 0.6% (15) 0.6% (11) 0.5% (230) 0.079 0.079 $c/Latino$ 0.6% (15) 0.6% (11) 0.5% (230) 0.079 0.079 $c/Latino$ 0.6% (150) 5.0% (1220) 6.5% (120) 0.004 d 2.039 (14.7) 50.88 (14.3) 48.11 (15.9) 0.004 d 2.72% (551) 24.4% (481) 28.5% (120) 0.004 d 2.72% (560) 2.73% (572) 26.8% (111) 0.024 d 2.72% (571) 20.3% (120) 0.004 0.004 d 2.7				
 .4% (1969) 17.6% (421) .4% (1909) 99.5% (409) 0.831 6% (11) 0.5% (2) 6% (120) 66.5% (280) .0% (1220) 66.5% (280) .88 (14.3) 48.11 (15.9) 0.0004 .9% (10.0) of recipients): .3% (537) 26.8% (113) 0.024 .4% (481) 28.5% (120) 9% (135) 3.3% (14) .3% (537) 26.8% (113) 9% (130) 22.1% (93) .3% (539) 13.8% (58) 9% (76) 5.5% (23) 9% (76) 5.5% (23) 9% (1310) 72.9% (307) .5% (1310) 72.9% (307) .58 (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 		No AR A	AR	P-value
4% (1909) 99.5% (409) 0.831 6% (11) 0.5% (2) 0.031 6% (11) 0.5% (2) 0.079 .0% (749) 33.5% (141) 0.079 .0% (1220) 66.5% (280) 0.0004 .88 (14.3) 48.11 (15.9) 0.0004 .88 (14.3) 48.11 (15.9) 0.0004 .88 (14.3) 28.5% (120) 0.024 .4% (481) 28.5% (120) 0.024 .4% (481) 28.5% (120) 0.024 .4% (481) 28.5% (120) 0.024 .5% (135) 3.3% (14) 0.011 .5% (55) 13.8% (58) 9% (76) .5% (1310) 72.9% (307) 0.0014 .5% (1310) 72.9% (307) 0.0014 .5% (1310) 72.9% (307) 0.0014 .5% (1310) 72.9% (307) 0.316 .5% (1310) 72.9% (307) 0.316		85.3% (411) 1	14.7% (71)	
 4.4% (1909) 99.5% (409) 0.831 6% (11) 0.5% (2) 6% (120) 66.5% (280) .0% (1220) 66.5% (280) .188 (14.3) 48.11 (15.9) 0.0004 5.% (100) 5.% (113) 0.024 .3% (481) 28.5% (113) 9% (135) 3.3% (14) .3% (537) 26.8% (113) 0.024 .3% (420) 22.1% (93) .3% (58) 9% (76) 5.5% (23) 9% (76) 27.1% (114) .5% (1310) 72.9% (307) .5% (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 				
6% (11) 0.5% (2) (0% (749) 33.5% (141) 0.079 (.0% (1220) 66.5% (280) 1.88 (14.3) 48.11 (15.9) 0.0004 1.88 (14.3) 48.11 (15.9) 0.0024 1.4% (481) 28.5% (113) 0.024 1.4% (481) 28.5% (120) 9% (135) 3.3% (14) 1.3% (539) 2.7.1% (114) 1.3% (539) 2.7.1% (114) 0.011 1.5% (659) 2.7.1% (114) 0.011 1.5% (1310) 72.9% (307) 1.5% (1310) 72.9% (307) 1.5% (13.74) 43.89 (12.34) 0.0014 1.5% (13.74) 43.89 (12.34) 0.0014	99.5% (446) 99.	99.5% (381) 1	100% (65)	0.5593
 .0% (749) 33.5% (141) 0.079 .0% (1220) 66.5% (280) .88 (14.3) 48.11 (15.9) 0.0004 .88 (14.3) 48.11 (15.9) 0.0004 .3% (537) 26.8% (113) 0.024 .4% (481) 28.5% (120) 9% (135) 3.3% (14) 9% (135) 3.3% (14) 9% (76) 22.1% (93) .3% (58) 9% (76) 5.5% (23) 9% (76) 72.9% (307) .5% (1310) 72.9% (307) .58 (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 	0.5% (2) 0.5	0.5% (2)		
 (0% (749) 33.5% (141) 0.079 (0% (1220) 66.5% (280) (14.3) 48.11 (15.9) 0.0004 (14.3) 48.11 (15.9) 0.0004 (14.6) 26.8% (113) 0.024 (14.74% (481) 28.5% (120) (14.74% (481) 28.5% (120) (14.74% (481) 28.5% (120) (14.74% (481) 28.5% (120) (14.74) 28.5% (120) (14.74) 28.5% (23) (14.74) 22.1% (93) (14.74) 43.89 (12.34) 0.0014 (13.74) 43.89 (12.34) 0.0014 (13.74) 43.89 (12.34) 0.0014 				
 .0% (1220) 66.5% (280) .88 (14.3) 48.11 (15.9) 0.0004 ;% (no. of recipients): .3% (537) 26.8% (113) 0.024 .4% (481) 28.5% (120) 9% (135) 3.3% (14) .3% (20) 13.8% (58) 9% (76) 5.5% (23) 9% (76) 5.5% (23) 9% (76) 72.9% (307) .5% (1310) 72.9% (307) .58 (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 	37.1% (179) 36.	36.7% (151) 3	39.4% (28)	0.664
 .88 (14.3) 48.11 (15.9) 0.0004 .3% (537) 26.8% (113) 0.024 .3% (537) 28.5% (120) 9% (135) 3.3% (14) .3% (420) 28.5% (120) 9% (76) 25.1% (93) .3% (58) 9% (76) 5.5% (23) 9% (76) 72.9% (50) .5% (1310) 72.9% (307) .58 (13.74) 43.89 (12.34) 0.0014 .58 (13.74) 43.89 (12.34) 0.0014 	62.9% (303) 63.	63.3% (260) 6	60.6% (43)	
 50.88 (14.3) 48.11 (15.9) 0.0004 Disease: % (no. of recipients): 27.3% (537) 26.8% (113) 0.024 24.4% (481) 28.5% (120) 6.9% (135) 3.3% (14) 21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 3.3% (659) 27.1% (114) 0.011 33.5% (659) 27.1% (114) 0.011 33.5% (659) 27.1% (114) 0.011 16.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 .(1) 0.316 				
Disease; % (no. of recipients): 27.3% (537) 26.8% (113) 0.024 24.4% (481) 28.5% (120) 6.9% (135) 3.3% (14) 6.9% (135) 3.3% (14) 21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 3.9% (76) 72.9% (307) 3.3.5% (659) 27.1% (114) 0.0011 7.1.8% (13.74) 43.89 (12.34) 0.0014 3.1.1.5% (13.74) 43.89 (12.34) 0.0014 3.1.1.1.1.1	46.94 (12.2) 47.	47.17 (12.2) 4	45.56 (12.0)	0.301
 27.3% (537) 26.8% (113) 0.024 24.4% (481) 28.5% (120) 6.9% (135) 3.3% (14) 6.9% (135) 3.3% (14) 21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 3.9% (76) 72.9% (307) 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 (1) 0.316 				
 24.4% (481) 28.5% (120) 6.9% (135) 3.3% (14) 6.9% (135) 3.3% (14) 21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 3.35% (659) 27.1% (114) 0.011 33.5% (659) 27.1% (114) 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 (1) 0.316 	23.7% (114) 24.	24.6% (101) 1	18.3% (13)	0.218
 6.9% (135) 3.3% (14) 21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 3.9% (76) 72.9% (307) 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 (1) 0.316 	19.1% (92) 18.	18.0% (74) 2	25.4% (18)	
21.3% (420) 22.1% (93) 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.9% (76) 5.5% (23) 33.5% (659) 27.1% (114) 0 33.5% (1310) 7) 66.5% (1310) 72.9% (307) 3) 41.58 (13.74) 41.58 (13.74) 43.89 (12.34) .(1) 0.316	38.2% (184) 38.	38.7% (159) 3	35.2% (25)	
 16.3% (320) 13.8% (58) 3.9% (76) 5.5% (23) 3.35% (659) 27.1% (114) 0.011 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 (1) 0.316 	11.2% (54) 11.	11.0% (45) 1	12.7% (9)	
3.9% (76) 5.5% (23) 33.5% (659) 27.1% (114) 0.011 7) 66.5% (1310) 72.9% (307) 3) 41.58 (13.74) 43.89 (12.34) 0.0014 .(1) .(1) 0.316	5.2% (25) 4.6	4.6% (19) 8	8.5% (6)	
 33.5% (659) 27.1% (114) 0.011 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 .(1) 0.316 	2.7% (13) 3.2	3.2% (13)		
 33.5% (659) 27.1% (114) 0.011 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 (1) 0.316 				
 66.5% (1310) 72.9% (307) 41.58 (13.74) 43.89 (12.34) 0.0014 .(1) 0.316 	67.8% (327) 68.	68.9% (283) 6	62.0% (44)	0.251
3) 41.58 (13.74) 43.89 (12.34) 0.0014 .(1) 0.316	32.2% (155) 82.	82.6% (128) 3	38.0% (27)	
 3) 41.58 (13.74) 43.89 (12.34) 0.0014 				
.(1) 0.316	36.93 (13.93) 37.	37.01 (14.13) 3	36.52 (12.86)	0.788
.(1) .(1) 0.316				
	.(5) .(4)		.(1)	0.072
Female 53.4% (12/5) 52.9% (1041) 55.6% (234) 44.4% (44.4% (212) 42.	42.8% (174) 5	54.3% (38)	
Male 46.6% (1114) 47.1% (927) 44.4% (187) 55.6% 6	55.6%6 (265) 57.	57.2% (233) 4	45.7% (32)	

	European Americans	ericans			African Americans	icans		
Characteristic	ШV	No AR	AR	P-value	IIV	No AR	AR	P-value
Total	2390	82.4% (1969)	17.6% (421)		482	85.3% (411)	14.7% (71)	
Missing	(86).	.(87)	.(11)	0.125	.(62)	.(58)	.(4)	0.185
<= 24 h	96.5% (2213)	96.3% (1812)	97.8% (401)		80.7% (339)	79.6% (281)	86.6% (58)	
>24 h	3.5% (79)	3.7% (70)	2.2%(9)		19.3% (81)	20.4% (72)	13.4% (9)	
Prior Kidney Transplant; % (no. of recipients):	t; % (no. of recip	ients):						
No Prior Transplants	83.9% (2006)	84.8% (1669)	80.0% (337)	0.017	89.0% (429)	89.3% (367)	87.3% (62)	0.624
Prior Transplant	16.1% (384)	15.2% (300)	20.0% (84)		11.0% (53)	10.7% (44)	12.7% (9)	
Need for dialysis in the first 14 days post-transplant; % (no. of recipients):	irst 14 days post-	transplant; % (r	10. of recipients)	÷				
No Dialysis	92.8% (2217)	93.1% (1834)	91.0% (383)	0.119	83.2% (401)	84.9% (349)	73.2% (52)	0.015
Dialysis	7.2% (173)	6.9% (135)	9.0% (38)		16.8% (81)	15.1% (62)	26.3% (19)	
Panel Reactive Antibodies; % (no. of recipients):	es; % (no. of reci	pients):						
Missing	.(5)	.(5)		0.244				
Zero %	46.7% (1115)	47.3% (929)	44.2% (186)		56.2% (271)	59.1% (243)	39.4% (28)	0.002
Greater than zero	53.3% (1270)	52.7% (1035)	55.8% (235)		43.8% (211)	40.9% (168)	60.6% (43)	
T or B Cell Crossmatch; % (no. of recipients):	; % (no. of recipi	ents):						
Missing	.(37)	.(29)	.(8)	0.0027	.(2)	.(2)		0.0013
Negative	93.8% (2207)	94.5% (1833)	90.6% (374)		94.2% (452)	95.6% (391)	85.9% (61)	
Positive	6.2% (146)	5.5% (107)	9.4% (39)		5.8% (28)	4.4% (18)	14.1% (10)	
Plasmapheresis Prior to Transplant; % (no. of recipients):	Transplant; % (no. of recipients)						
Missing	.(129)	.(110)	(19).	<.0001	.(10)	(6).	.(1)	0.0013
No Plasmapheresis	97.2% (2198)	98.0% (1822)	93.5% (376)		97.2% (459)	98.3% (395)	91.4% (64)	
Plasmapheresis	2.8% (63)	2.0% (37)	6.5% (26)		2.8% (13)	1.7% (7)	8.6% (6)	
HLA mismatches; % (no. of recipients):	o. of recipients):							
Missing	.(18)	.(17)	.(1)	<.0001	.(1)	.(1)		0.582
Greater than zero	87.3% (2070)	85.7% (1673)	94.5% (397)		94.4% (454)	94.2% (386)	95.7% (68)	
Zero	12.7% (302)	14.3% (279)	5.5% (23)		5.6% (27)	5.8% (24)	4.3% (3)	
Type of Antibody Induction; % (no. of recipients):	tion; % (no. of re	cipients):						
Combination	2.6% (63)	2.1% (42)	5.0% (21)	<.0001	2.5% (12)	2.7% (11)	1.4%(1)	0.0046
Monoclonal	36.0% (861)	37.6% (740)	28.7% (121)		42.7% (206)	45.0% (185)	29.6% (21)	
None	2.2% (52)	2.4% (47)	1.2% (5)		1.7% (8)	1.7% (7)	1.4% (1)	

Author Manuscript

Author Manuscript

	European Americans	ricans			African Americans	icans		
Characteristic	Ш	No AR	AR	P-value	IIV	No AR	AR	P-value
Total	2390	82.4% (1969)	17.6% (421)		482	85.3% (411)	14.7% (71)	
Polyclonal	59.3% (1416)	58.0% (1142)	65.1% (274)		53.5% (258)	51.1% (210)	67.6% (48)	
Smoking status; % (no. of recipients):	f recipients):							
Missing	(06).	(80)	.(10)	0.678	(6).	.(8)	.(1)	0.179
Current	7.9% (181)	8.1% (152)	7.1% (29)		12.3% (58)	11.2% (45)	18.6% (13)	
Past	36.4% (837)	36.5% (691)	35.5% (146)		24.7% (117)	25.5% (103)	20.0% (14)	
Never	55.7% (1282)	55.4% (1046)	57.4% (236)		63.0% (298)	63.3% (255)	61.4% (43)	
Preemptive Transplan; % (no. of recipients)t:	6 (no. of recipien	lts)t:						
Not Preemptive	62.4% (1491)	62.3% (1227)	62.7% (264)	0.880	92.1% (444)	92.5% (380)	90.1% (64)	0.504
Preemptive	37.6% (899)	37.7% (742)	37.3% (157)		7.9% (38)	7.5% (31)	9.9% (7)	
Steroid Use at Day 14 Post-Transplant; % (no. of recipients):	st-Transplant; %	(no. of recipien	ts):					
On Steroids	60.6% (1448)	61.5% (1211)	56.3% (237)	0.047	58.9% (284)	58.2% (239)	63.4% (45)	0.408
Off Steroids	39.4% (942)	38.5% (758)	43.7% (184)		41.1% (198)	41.8% (172)	36.6% (26)	
Calcineurin Inhibitor Type at Transplant; % (no. of recipients):	pe at Transplant	; % (no. of recip	ients):					
Both	0.1% (2)	0.1%(1)	0.2% (1)	<.0001	0.2% (1)	0.2%(1)		0.0002
Cyclosporine	23.2% (555)	21.8% (429)	29.9% (126)		11.2% (54)	8.8% (36)	25.4% (18)	
None	2.0% (47)	1.6% (31)	3.8% (16)		3.1% (15)	2.7% (11)	5.6% (4)	
Tacrolimus	74.7% (1786)	76.6% (1508)	66.0% (278)		85.5% (412)	88.3% (363)	69.0% (49)	
Simultaneous Pancreas Kidney Transplant (SPK); % (no. of recipients):	cidney Transplar	nt (SPK); % (no.	of recipients):					
non-SPK	93.9% (2245)	94.1% (1854)	92.9% (391)	0.316	96.5% (465)	97.1% (399)	93.0% (66)	0.082
SPK	6.1% (145)	5.9% (115)	7.1% (30)		3.5% (17)	2.9% (12)	7.0% (5)	
Prior Non-kidney Transplants; % (no. of recipients):	olants; % (no. of	recipients):						
No Prior Transplants	87.5% (2091)	88.1% (1735)	84.6% (356)	0.045	96.1% (463)	96.6% (397)	93.0% (66)	0.146
Prior Transplant	12.5% (299)	11.9% (234)	15.4% (65)		3.9% (19)	3.4% (14)	7.0% (5)	
Cytomegalovirus Recipient/Donor Status; % (no. of recipients):	nt/Donor Status	; % (no. of recip	ients):					
Missing	.(76)	.(67)	(6).	0.199	.(12)	.(8)	.(4)	0.950
Recipient(-)/Donor(-)	28.0% (647)	27.5% (523)	30.1%(124)		8.1% (38)	7.9% (32)	9.0% (6)	
Recipient (+)	51.8% (1199)	52.7% (1002)	47.8% (197)		78.9% (371)	79.2% (319)	77.6% (52)	
Recipient(-)/Donor(+)	20.2% (468)	19.8% (377)	22.1% (91)		13.0% (61)	12.9% (52)	13.4% (9)	

Author Manuscript

Author Manuscript

Frequencies of tested alleles and P-values of SNPs for 12 month and all time acute rejection for both European-American and African-American cohorts adjusted for clinical factors.

GeneTAF12 month P-valueABCB1 0.558 0.65 ABCB1 0.558 0.65 ATIR 0.146 0.71 ATIR 0.301 0.14 CCL2 0.272 0.35 CCL2 0.272 0.35 CCL2 0.106 0.49 CCL2 0.098 0.18 CCL2 0.091 0.12 CCR2 0.74 0.49 CCR2 0.74 0.49 CCR3 0.74 0.49 CCR4 0.74 0.66 CCL3 0.74 0.62 CCL4 0.72 0.66 CTLA4 0.72 0.76 F2 0			Europe	European-American Recipients	ents	Africa	African-American Recipients	its
38 ABCB1 0.558 0.65 75 AIF 0.146 0.67 71R 0.301 0.14 0.67 918 DEUP1 (CCDC67) 0.100 0.12 111 CCL2 0.272 0.35 38 CCL2 0.272 0.35 64 CCR2 0.106 0.49 67 CCL2 0.272 0.35 67 CCL2 0.272 0.35 67 CCL2 0.18 0.49 67 CCR2 0.166 0.49 67 CCR3 0.414 0.42 67 CD28 0.144 0.42 68 CTLA4 0.031 0.017 69 CTLA4 0.301 0.034 61 CCY23A5 0.31 0.034 62 CTLA4 0.42 0.66 63 CTLA4 0.67 0.66 64 CYP2E1 0.31 0.67	SNP rs#	Gene	TAF	12 month P-value	All Time P-value	TAF	12 month P-value	All Time P-value
75 AIF 0.146 0.67 71R 0.301 0.14 0.67 918 DEUPI (CCDC67) 0.100 0.12 311 CCL2 0.272 0.35 328 CCL5 0.106 0.49 64 CCR2 0.108 0.18 65 CCR2 0.098 0.18 66 CCR2 0.091 0.42 67 CCR5 0.144 0.42 68 CCR4 0.184 0.42 67 CCR5 0.144 0.42 68 CCL44 0.801 0.17 69 CTLA4 0.74 0.62 74 CCL43 0.74 0.62 61 CTLA4 0.72 0.93 62 CTL44 0.72 0.96 63 CTL44 0.72 0.96 64 CCCL8 0.72 0.96 65 CTL44 0.72 0.96	rs4148738	ABCB1	0.558	0.65	0.98	0.756	0.19	0.051
ATIR 0.301 0.14 918 DEUP1 (CCDC67) 0.100 0.12 338 CCL2 0.272 0.35 34 CCL5 0.106 0.49 64 CCR2 0.166 0.49 87 CCR2 0.098 0.18 87 CCR2 0.098 0.18 87 CCR2 0.098 0.18 87 CCR2 0.098 0.18 87 CCR2 0.044 0.42 86 CTLA4 0.031 0.043 87 CTLA4 0.391 0.034 96 CTLA4 0.391 0.049 67 CVP3A5 0.367 0.366 68 CTLA4 0.391 0.34 66 CYP3A5 0.255 0.23 67 CYP2E1 0.892 0.666 67 CYP2A1 0.45 0.56 68 F2 0.24 0.57 69 </td <td>rs2269475</td> <td>AIF</td> <td>0.146</td> <td>0.67</td> <td>0.89</td> <td>0.103</td> <td>0.63</td> <td>0.65</td>	rs2269475	AIF	0.146	0.67	0.89	0.103	0.63	0.65
918 DEUPI (CCDC67) 0.100 0.12 811 CCL2 0.272 0.35 83 CCL5 0.166 0.49 84 CCR5 0.166 0.49 85 CCR5 0.098 0.18 87 CCR5 0.044 0.42 87 CCR5 0.444 0.42 86 CTLA4 0.43 0.48 87 CCR5 0.391 0.43 88 CTLA4 0.031 0.17 90 CTLA4 0.031 0.17 91 CCTLA4 0.391 0.034 41 CYP2E1 0.391 0.034 42 CYP2E1 0.391 0.034 43 CTLA4 0.391 0.034 441 CYP2E1 0.392 0.334 441 CYP2E1 0.392 0.334 45 CYP2E1 0.392 0.34 46 CYP2E1 0.392 0.34	rs5186	ATIR	0.301	0.14	0.15	0.054	0.25	0.41
11 CCL2 0.272 0.35 38 CCL5 0.166 0.49 64 CCR2 0.098 0.18 87 CCR5 0.098 0.18 55 CCR5 0.184 0.42 55 CD86 0.274 0.62 56 CTLA4 0.081 0.17 09 CTLA4 0.095 0.0049 5 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 7 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 7 CTLA4 0.391 0.034 6 CTLA4 0.392 0.66 6 CYP2E1 0.892 0.66 6 CYP3A5 0.255 0.23 6 CYP2E1 0.892 0.66 6 CYP2A 0.26 0.71 6 FCN2 0.114 0.23 /td>	rs55637918	DEUP1 (CCDC67)	0.100	0.12	0.51	0.303	0.36	0.075
38 CCL5 0.166 0.49 64 CCR2 0.098 0.18 87 CCR5 0.444 0.42 574 CD28 0.184 0.42 555 CD86 0.274 0.62 8 CTLA4 0.081 0.17 9 CTLA4 0.095 0.049 55 CD86 0.274 0.62 8 CTLA4 0.095 0.049 55 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 65 CTLA4 0.391 0.034 66 CTLA4 0.391 0.034 67 CYP2E1 0.892 0.23 68 F2 0.254 0.54 66 F7 0.266 0.077 67 F5 0.23 0.077 68 HLA-DOA 0.31 0.26 69 HLA-G 0.301 0.18 <t< td=""><td>rs1024611</td><td>CCL2</td><td>0.272</td><td>0.35</td><td>0.23</td><td>0.188</td><td>0.97</td><td>0.51</td></t<>	rs1024611	CCL2	0.272	0.35	0.23	0.188	0.97	0.51
64 CCR2 0.098 0.18 87 CCR5 0.444 0.42 554 CD28 0.184 0.42 55 CD86 0.184 0.62 8 CTLA4 0.081 0.17 09 CTLA4 0.095 0.049 53 CTLA4 0.095 0.049 63 CTLA4 0.031 0.17 7 CTLA4 0.391 0.034 74 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 6 CTLA4 0.392 0.23 6 CTLA4 0.332 0.23 6 CTLA4 0.331 0.45 6 CTLA4 0.254 0.54 6 F2 0.017 0.45 6 F2 0.21 0.23 74 </td <td>rs2107538</td> <td>CCL5</td> <td>0.166</td> <td>0.49</td> <td>0.44</td> <td>0.429</td> <td>0.21</td> <td>0.20</td>	rs2107538	CCL5	0.166	0.49	0.44	0.429	0.21	0.20
87 CCR5 0.444 0.42 574 CD28 0.184 0.48 55 CD86 0.274 0.62 8 CTLA4 0.081 0.17 09 CTLA4 0.095 0.049 5 CTLA4 0.095 0.049 5 CTLA4 0.391 0.034 43 CTLA4 0.391 0.034 5 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 6 CTLA4 0.391 0.034 6 CTLA4 0.392 0.66 6 CYP2E1 0.892 0.66 6 CYP3A5 0.21 0.45 66 CYP3A5 0.266 0.71 67 F5 0.214 0.25 68 HLA-DOA 0.507 0.26 69 FCN2 0.114 0.23 70 HLA-G 0.420 0.90	rs1799864	CCR2	0.098	0.18	0.31	0.173	0.74	0.94
574 CD28 0.184 0.048 55 CD86 0.274 0.62 8 CTLA4 0.081 0.17 09 CTLA4 0.095 0.0049 5 CTLA4 0.391 0.034 43 CTLA4 0.392 0.0049 5 CTLA4 0.391 0.034 6 CTLA4 0.392 0.066 6 CYP2E1 0.892 0.66 6 CYP3A5 0.254 0.54 65 F2 0.017 0.45 66 FCN2 0.114 0.23 67 F5 0.917 0.45 68 HLA-DOA 0.311 0.45 69 HLA-DOA 0.331 0.18 60 HLA-G 0.490 0.015 61 HLA-G 0.420 0.31 62 HLA-G 0.490 0.015 63 HLA-G 0.236 0.266 64 HLA-G 0.420 0.31 65 HLA-G 0.420 0.015 66 HLA-G 0.236 0.296 67 0.266 0.266 68 HLA-G 0.296<	rs1799987	CCR5	0.444	0.42	0.53	0.585	0.77	0.89
 55 CD86 0.274 0.62 8 CTLA4 0.081 0.17 09 CTLA4 0.095 0.0049 5 CTLA4 0.391 0.034 43 CTLA4 0.427 0.96 44 0.427 0.96 57 CTLA4 0.427 0.96 6 CYP3A5 0.058 0.21 57 EPHX2 0.392 0.66 6 CYP3A5 0.068 0.21 57 EPHX2 0.068 0.21 57 EPHX2 0.017 0.45 66 FCN2 0.114 0.23 74 FCGR2A 0.507 0.077 68 HLA-DOA 0.331 0.18 60 HLA-G 0.490 0.015 61 LA-DOA 0.301 0.76 62 HLA-DOA 0.301 0.76 63 IL2 0.301 0.76 	rs10490574	CD28	0.184	0.048	0.051	0.056	0.55	0.32
8 CTLA4 0.081 0.17 09 CTLA4 0.095 0.049 5 CTLA4 0.391 0.034 43 CTLA4 0.391 0.034 43 CTLA4 0.391 0.034 44 CXCL8 0.525 0.23 441 CYP2E1 0.892 0.66 57 EPHX2 0.368 0.21 57 EPHX2 0.265 0.21 57 EPHX2 0.254 0.54 63 F2 0.017 0.45 63 F2 0.017 0.45 64 FCN2 0.114 0.23 65 FCN2 0.114 0.23 66 HLA-DOA 0.301 0.18 67 HLA-DOA 0.331 0.18 67 HLA-DOA 0.236 0.29 67 HLA-DOA 0.236 0.29 67 MH 0.236 0.29	rs1129055	CD86	0.274	0.62	0.56	0.172	0.084	0.096
00 CTLA4 0.095 0.0049 5 CTLA4 0.391 0.034 43 CTLA4 0.391 0.034 41 CXCL8 0.427 0.96 6 CXP3A5 0.525 0.23 6 CYP3A5 0.668 0.21 57 EPHX2 0.892 0.66 6 CYP3A5 0.0017 0.45 65 F2 0.254 0.54 66 FCN2 0.114 0.23 67 F5 0.970 0.077 68 HLA-DOA 0.311 0.26 68 HLA-DOA 0.331 0.18 69 FCN2 0.114 0.23 61 HLA-G 0.490 0.015 63 HLA-G 0.490 0.015 64 HLA-G 0.236 0.29 65 HLA-G 0.236 0.29 66 HLA-G 0.201 0.16	s733618	CTLA4	0.081	0.17	0.26	0.141	0.53	0.14
 CTLA4 CTLA4 CTLA4 CTLA4 CTLA4 CTLA4 CYC2B CXCL8 C325 C33 CYP2E1 0.525 0.525 0.566 CYP3A5 0.666 CYP3A5 0.680 0.21 0.892 0.666 0.23 0.666 0.23 0.666 0.247 0.666 0.597 0.544 0.545 0.545 0.546 0.547 0.547 0.547 0.546 0.547 0.546 0.547 0.546 0.547 0.546 <li0.546< li=""> <li0.546< li=""> <li0.546< li=""> <li0.546< <="" td=""><td>rs5742909</td><td>CTLA4</td><td>0.095</td><td>0.0049</td><td>0.012</td><td>0.016</td><td>0.94</td><td>0.58</td></li0.546<></li0.546<></li0.546<></li0.546<>	rs5742909	CTLA4	0.095	0.0049	0.012	0.016	0.94	0.58
43 CTLA4 0.427 0.96 41 CYC2E1 0.892 0.66 6 CYP3A5 0.068 0.21 57 EPHX2 0.524 0.54 63 F2 0.017 0.45 64 F5 0.017 0.45 65 F1 0.331 0.077 66 FCN2 0.114 0.23 67 F5 0.970 0.077 68 HLA-DOA 0.331 0.18 70 HLA-G 0.420 0.900 63 ILA 0.235 0.015 73 ILB 0.235 0.26 64 ILAG 0.420 0.900 65 HLA-G 0.420 0.900 74 ILB 0.235 0.29	rs231775	CTLA4	0.391	0.034	0.018	0.399	0.27	0.13
CXCL8 0.525 0.23 41 CYP2E1 0.892 0.66 6 CYP3A5 0.068 0.21 57 EPHX2 0.068 0.21 66 CYP3A5 0.068 0.21 67 EPHX2 0.254 0.54 66 F2 0.017 0.45 74 F5 0.970 0.077 68 HLA-DOA 0.507 0.26 69 HLA-G 0.490 0.18 60 HLA-G 0.331 0.18 61 HLA-G 0.490 0.015 62 HLA-G 0.490 0.015 63 HLA-DOA 0.331 0.18 64 HLA-G 0.490 0.015 65 ILA 0.236 0.29 66 HLA-G 0.490 0.015 67 11.2 0.236 0.29	s3087243	CTLA4	0.427	0.96	0.85	0.200	0.53	0.63
41 CYP2E1 0.892 0.66 6 CYP3A5 0.068 0.21 57 EPHX2 0.254 0.54 63 F2 0.017 0.45 64 F5 0.017 0.45 65 F7 0.114 0.23 66 FCN2 0.114 0.23 67 F5 0.370 0.077 68 HLA-DOA 0.331 0.18 60 HLA-G 0.420 0.015 63 HLA-DOA 0.331 0.18 70 HLA-G 0.420 0.015 64 LLB 0.235 0.29 65 IL2 0.301 0.76	s4073	CXCL8	0.525	0.23	0.15	0.224	0.69	0.99
 6 CYP3A5 0.068 0.21 57 EPHX2 0.254 0.54 63 F2 0.017 0.45 75 0.017 0.45 74 FCGR2A 0.970 0.077 68 HLA-DOA 0.331 0.18 70 HLA-G 0.490 0.015 112 0.26 62 IL2 0.301 0.76 	s2515641	CYP2E1	0.892	0.66	0.80	0.395	0.82	0.68
 57 EPHX2 0.254 0.54 63 F2 0.017 0.45 75 0.970 0.077 96 FCN2 0.114 0.23 714 FCGR2A 0.507 0.26 68 HLA-DOA 0.331 0.18 60 HLA-G 0.490 0.015 112 0.236 0.29 62 HL2 63 HL3 64 10.10 0.25 65 11.2 0.301 0.76 	s776746	CYP3A5	0.068	0.21	0.050	0.694	0.67	0.56
 63 F2 0.017 0.45 F5 0.970 0.077 96 FCN2 0.114 0.23 74 FCGR2A 0.507 0.26 68 HLA-DOA 0.331 0.18 20 HLA-G 0.490 0.015 11 IB 0.422 0.90 53 IL2 0.301 0.76 	s4149257	EPHX2	0.254	0.54	0.41	0.787	0.44	0.19
F5 0.970 0.077 96 FCN2 0.114 0.23 74 FCGR2A 0.507 0.26 68 HLA-DOA 0.331 0.18 20 HLA-G 0.490 0.015 21 ILAB 0.336 0.26 23 ILA-DOA 0.331 0.18 24 ILA-G 0.422 0.90 53 ILJB 0.236 0.29 62 IL2 0.301 0.76	s1799963	F2	0.017	0.45	0.74	0.004	0.99	0.99
 FCN2 0.114 0.23 FCGR2A 0.507 0.26 HLA-DOA 0.331 0.18 HLA-G 0.490 0.015 ICAMI 0.422 0.90 1L1B 0.236 0.29 1L2 0.301 0.76 	s6025	F5	0.970	0.077	0.083	0.997	0.082	0.37
 74 FCGR2A 0.507 0.26 68 HLA-DOA 0.331 0.18 20 HLA-G 0.490 0.015 1CAM1 0.422 0.90 34 IL1B 0.236 0.29 62 IL2 0.301 0.76 	cs7851696	FCN2	0.114	0.23	0.37	0.220	0.19	0.55
 68 HLA-DOA 0.331 0.18 20 HLA-G 0.490 0.015 1CAM1 0.422 0.90 34 IL1B 0.236 0.29 62 IL2 0.301 0.76 	s1801274	FCGR2A	0.507	0.26	0.12	0.554	0.37	0.030
20 HLA-G 0.490 0.015 ICAMI 0.422 0.90 34 ILIB 0.236 0.29 62 IL2 0.301 0.76	rs9296068	HLA-DOA	0.331	0.18	0.094	0.539	0.94	0.22
ICAMI 0.422 0.90 34 ILIB 0.236 0.29 62 IL2 0.301 0.76	rs1063320	HLA-G	0.490	0.015	0.050	0.602	0.053	0.47
IL-IB 0.236 0.29 IL-2 0.301 0.76	rs5498	ICAM1	0.422	0.00	0.84	0.189	0.92	0.44
11.2 0.301 0.76	rs1143634	IL1B	0.236	0.29	0.11	0.140	0.60	0.099
	rs2069762	11.2	0.301	0.76	0.90	0.093	0.68	0.90

Author Manuscript
A

Je
12

Oetting et al.

		Europe	European-American Recipients	ents	Africar	African-American Recipients	ts
SNP rs#	Gene	TAF	12 month P-value	All Time P-value	TAF	12 month P-value	All Time P-valu
rs228942	IL2RB	0.176	0.25	0.42	0.095	0.22	0.19
rs2284033	IL2RB	0.425	0.65	0.94	0.430	0.76	0.44
rs657075	IL3	0.102	0.41	0.41	0.026	0.36	0.27
rs61527852	IL3	0.090	0.25	0.18	0.126	0.066	0.027
rs31480	IL3	0.221	0.71	0.82	0.145	0.77	0.36
rs2243250	IL4	0.143	0.98	0.78	0.657	0.92	0.84
rs1801275	IL4R	0.214	0.24	0.51	0.678	0.58	0.90
rs1524107	IL6	0.050	0.048	0.20	0.085	0.45	0.37
rs1800795	IL6	0.574	0.15	0.26	0.925	0.67	0.96
rs1800896	IL10	0.490	0.75	0.64	0.356	0.19	060.0
rs1800871	IL10	0.764	0.75	0.83	0.610	0.91	0.85
rs1800872	IL10	0.764	0.75	0.83	0.610	0.91	0.85
rs763780	IL17F	0.048	0.21	0.38	0.074	0.59	0.81
rs187238	IL18	0.270	0.11	0.094	0.215	0.67	0.83
rs2278293	IMPDH1	0.454	0.63	0.86	0.481	0.66	0.98
rs2278294	IMPDH1	0.350	0.88	0.67	0.425	0.84	0.52
rs11706052	IMPDH2	0.104	0.72	0.74	0.014	0.72	0.22
rs2430561	INFG	0.238	0.50	0.59	0.167	0.95	0.76
rs3807307	IRF5	0.476	0.68	0.95	0.293	0.041	0.052
rs5918	ITGB3	0.149	0.59	0.46	0.108	0.078	0.15
rs7096206	MBL2	0.779	0.20	0.51	0.844	0.66	0.58
rs5030737	MBL2	0.073	0.92	0.77	0.006	0.23	0.41
rs1800450	MBL2	0.134	0.67	0.75	0.034	0.75	0.50
rs1800451	MBL2	0.015	0.89	0.84	0.231	0.28	0.45
rs1801133	MTHFR	0.329	0.94	0.76	0.107	0.84	0.45
rs2426295	NFATC2	0.073	0.22	0.82	0.063	0.36	0.38
rs28362491	NFKB1	0.383	0.29	0.71	0.513	0.22	0.34
rs8904	NFKBIA	0.380	0.87	0.42	0.594	0.93	0.75
rs2227982	PDCD1	0.009	0.24	0.52	0.01	0.99	0.69
rs12734919	PTGS2	0.178	1.00	0.68	0.035	0.49	0.31

		Europe	European-American Recipients	ents	African	African-American Recipients	ts
SNP rs#	Gene	TAF	12 month P-value	All Time P-value	TAF	12 month P-value	All Time P-value
rs2476601	PTPN22	0.880	0.95	0.84	0.985	0.52	0.77
rs7137890	PTPRO	0.343	0.18	0.34	0.174	0.79	0.92
rs7574865	STAT4	0.773	0.00	0.84	0.845	0.94	0.68
rs1800470	TGFB	0.620	0.37	0.93	0.546	0.87	0.69
rs1800471	TGFB	0.077	0.47	0.42	0.067	0.89	0.96
rs3775291	TLR3	0.292	0.70	0.76	0.074	0.35	0.27
rs4986790	TLR4	0.052	0.30	0.19	0.070	0.95	0.78
rs10759932	TLR4	0.139	0.30	0.78	0.238	0.0089	0.0046
rs1800629	TNF	0.195	0.75	06.0	0.110	0.86	0.55
rs1625895	TP53	0.882	0.97	0.98	0.726	0.72	0.49
rs17868320	UGT1A9	0.060	0.46	0.50	0.025	0.79	0.54
rs6714486	UGT1A9	0.061	0.41	0.44	0.197	0.96	0.36
rs7439366	UGT2B7	0.462	0.48	0.19	0.706	0.068	0.17
rs699947	VEGFA	0.507	0.23	0.25	0.791	0.29	0.32
rs3025007	VEGFA	0.456	0.83	0.82	0.334	0.61	0.62
rs2961920	MIR146A	0.768	0.59	0.45	0.576	0.0019	0.00011
rs4759316	MIR196A2	0.558	0.84	0.68	0.604	0.96	0.95
rs3746436	MIR499A	0.189	0.48	0.69	0.165	0.43	0.38
TAF – Tested a	TAF – Tested allele frequency						

Transplantation. Author manuscript; available in PMC 2019 December 16.

.