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CHAIN RECURRENCE IN SURFACE FLOWS

MICHEL BENAIM AND MORRIS W. HIRSCH
Department of Mathematics
University of California at Berkeley

Abstract. We investigate the topological and dynamical structure of internally
chain recurrent sets for surface flows having particularly simple limit sets, includ-
ing planar flows with finitely many equilibria. We verify a conjecture of Thieme
(1992) concerning the limit sets of planar asymptotically autonomous equations.

0. Introduction. A dynamical system in a compact metric space is chain recur-
rent if, crudely speaking, every orbit can be made periodic by allowing arbitrarily
small errors at arbitrarily large times. An equivalent definition is that the system
has no proper attractors or repellers. Examples include the restriction of a flow
to a compact alpha or omega limit set. Bowen (1975) studied homeomorphisms of
this type, showing that such a system can be identified with an omega limit set
in a larger space. This was generalized to flows by Franke and Selgrade (1976).
Conley (1978) studied the notion systematically, introducing many fruitful ideas,
and coining the term “chain recurrent”. The behavior of chain recurrence under
bifurcations was studied by Hurley (1983).

Closely related to Bowen’s fruitful technique of “shadowing”, chain recurrence
has become increasingly important in the analysis of dynamical systems, especially
in the presence of hyperbolicity properties. Much of this work has been further
developed in the recent systematic study of Akin (1993).

Several recent papers have connected chain recurrence and shadowing to divers
dynamic, stochastic and geometric phenomena:

¢ Random Perturbations and Invariant Measures: Ruelle (1981); see also Kifer
(1988);

e Asymptotically Autonomous Systems: Thieme (1992, 1993a, 1993b), Be-
naim and Hirsch (1993, 1994));

e Stochastic Approximations and Urn Processes: Benaim (1993), Benaim and
Hirsch (1993, 1994)); :

e Algebraic Topology: Hirsch and Pugh (1988);

e Reaction Diffusion Systems: Hirsch (1993).

In this paper a modest beginning is made toward elucidating the topological and
dynamical structure of internally chain recurrent sets for surface flows having par-
ticularly simple limit sets, including planar flows with finitely many equilibria. A
key step in the proofs is application of a general result due to Akin, Nitecki and
Shub, Theorem 3.1.

The results here enable us to develop elsewhere (Benaim and Hirsch, 1994) a
Poincaré-Bendixson theory for nonautonomous systems, including certain kinds
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2 MICHEL BENAIM AND MORRIS W. HIRSCH

of asymptotically autonomous equations, stochastic differential equations and sto-
chastic approximation processes. In particular we verify a conjecture of Thieme
(1992) concerning the limit sets of planar asymptotically autonomous equations
(see Section 2), which in fact inspired this paper.

Tt turns out that we need only certain dynamical consequences of planarity; with
these as hypotheses we obtain results for flows on arbitrary surfaces.

Notation and Definitions. Let & : R x X — X denote a flow in a metric space
X. We may write ®(t,z) = &z = z -t. The trajectory of z € X is the map
&% R — X,

t & =3(,z)=z-t.
ForYCc Xand I Cc RweputY I =&Y xI). The image of & is the orbit
of z, denoted by 7, or y(z); its closure is 7; = 4(z). The forward orbit of x is
74(x) = z - [0,00); the backward orbit is y_(z) = z - (—00,0].

H I C R is an interval and ®2|I is injective, then the set § = ®°I = x - is called
an orbit interval (closed, open, etc, according to the nature of I ). The endpoints of
§ are the images under ®” of the endpoints of I. The parameter length of § is the
distance between the endpoints of I (possibly oo).

Chain Recurrence. Let T and € be positive numbers. A (T, €)-chain of length m > 1
from p to g is a sequence of orbit intervals {§;}, i = 1,... ,m such that:

(a): the parameter length of §; is > T, ’

(b): the distance between the terminal endpoint of §; and the initial endpoint
biv1 18 < €

(c): a1 = p, bm = ¢, where a; denotes the initial endpoint of §;, and by, the
terminal endpoint of 6.

In this case we write p <7, g. When this holds for all T > 0,¢ > 0 we write p < g.
Point p is chain recurrent if p < p. If every point is chain recurrent then ®is a
chain recurrent flow. It was proved by (Conley, 1978) that a chain recurrent flow
is also chain transitive, meaning that p — ¢ for all p, ¢ € X, if and only if X is
connected. A subset L C X is internally chain recurrent provided L is a nonempty
compact invariant set of which every point is chain recurrent for the restricted flow
®|L. The notion of an internally chain transitive set is analogously defined.

Orbit Chains. Next we define a different type of “chain”. An orbit chain of length
m > 1is a finite sequence I' = {7;, i = 1,... ,m} of orbits such that: ~; goes from
an equilibrium (fixed point) e;—; to an equilibrium e;. That is, ej—1 = a(v;), the
alpha limit set of 7;, while e; = w(7;), the omega limit set of e;. The equilibria e;
are the nodes of the orbit chain.

If all ; are in a subset L we say I' is an orbit chain in L. We say the e; (4=
0,...,m) and the ; (i = 1,...,m) belong to I'. The support of I is the set
IT| = U, ¥. Each v; belonging to I' has a natural linear order induced by its
parameterization as a trajectory of the flow. We extend this to a closed transitive
reflexive relation on 7;, denoted by u < v, in the obvious way. For a given orbit
chain T we extend < to |T'| by writing I': u ~» v if either 4 < v in one of the ;, or
else u € J;v €75, and i < j.

To indicate that such an orbit chain I exists we write u ~ v. We may abuse
notation slightly by writing v : u ~» v if [ = {y}. When en, = €y we call ' an
orbit cycle. Note that the concatenation of two orbit cycles with a common node
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or a common orbit is again an orbit cycle after a suitable reordering. An invariant
set R is strongly chain recurrent if every point of R belongs to an orbit cycle or
periodic orbit. It is strongly chain transitive provided every pair of points belong to
a common orbit cycle or periodic orbit. If these orbit cycles and periodic orbits can
be found in R we say R is internally strongly chain recurrent or chain transitive.
The main technical tools concern a simple flow in a compact metric space, by
which we mean a flows having only a finite number of alpha and omega limit points.
These results are presented in Section 3.
1. Statement of Results on Surface Flows. In Section 2 we use the following
result to verify a conjecture of H. Thieme.

Theorem 1.1. Let M be an internally chain recurrent set for a planar flow, with
finitely many equilibria in M. Then M is internally strongly chain recurrent.

Most of our results are proved under the following Hypothesis 1.2:

Hypothesis 1.2. (STANDING ASSUMPTIONS)
® denotes a flow in a connected surface S with empty boundary; L C S is a
nonemptly compact, invariant set, having the following three properties:

H1: L is internally chain recurrent.
H2: Equilibria (fized points) in S are isolated.
H3: The alpha and omega limit sets of any nonperiodic orbit in L are equilibria.

For planar flows H3 is a consequence of H1 and H2 in view of Lemma 5.6 below.
For some results we further assume:

Hypothesis 1.3. (OCCASIONAL ASSUMPTION)

H4: Every nonconstant periodic orbit in L which preserves orientation, sepa-
rates S.

For planar flows (S C R2) this is a consequence of the Jordan separation theorem.!
Thus only assumptions H1, H2 are significant for planar flows. Hypothesis 1.2 is
assumed from now on.

Theorem 1.4. Under Hypothesis 1.8, L is internally strongly chain recurrent.

We denote by P C L the union of all the nonstationary periodic orbits in L.
Each connected component of P is chain transitive, but as points in P cannot be
in an orbit chain, we have to handle P and L \ P in different ways.

Theorem 1.5. Each component of P which is not a single periodic orbit is home-
omorphic to one of the following surfaces:

(i): an annulus or Mébius band, with or without boundary,
(ii): a torus,
(iii): a Klein bottle.

It follows that L\ P is compact.
We denote the boundary in L of a subset Z C L by 91, Z.

1H4 also holds when S is a subset of the projective plane.
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Theorem 1.6. (a): Every component of 8z(L \ P) is internally strongly chain
transitive. (b): Assume Hypothesis 1.3. Then every component of L\ P is internally
strongly chain transitive.

Theorem 1.5 is proved in Section 3 after topological preliminaries in Section
3. Theorems 1.4 and 1.6 are proved in Section 5. In the next section we present
examples, counterexamples and related results illustrating the main theorems.

. Application to Differential Equations; Discussion. Example: Asymptot-
ically autonomous systems A nonautonomous differential equation

d
d—”t” = f(t,z); t€ R, 7 € R™ (1)

is called asymptotically autonomous with limit equation

2 = 4(a) 2)
provided lim;—.oo f(t,z) = g(z) locally uniformly in z. We assume f and g are
locally Lipschitz.

H. Thieme (1992) conjectured that if n = 2 and system (2) has isolated equilibria,
then the limit set L of any bounded solution to equation (1) is a connected union of
equilibria, periodic orbits and supports of orbit chains of the flow of (2). In (Benaim
and Hirsch 1994) we show that, for any n, L is a compact, connected internally
chain recurrent set, whence Thieme’s conjecture follows from Theorem 1.1.

Example: A flow on the torus The following example illustrates the necessity
of Hypothesis 1.3 in Theorem 1.6(b). Consider the flow on the two-torus

T? = (R/2rZ) x (R/27Z) = S x S*
induced by the differential equation:

do
W= 50)+hw)

where f, g, h are 2r-periodic smooth nonnegative functions such that

f_l(o) n [—ﬂ', 7l'] = [—'”/2’ W/2]1

g_l(o) n [—7[', 71'] = [_7"’ ——7l'/2] u [1!'/2, 7!‘],
and
h~1(0) N [~=, 7] = {0}.

See Figure 1. This flow admits two equilibria:

p- = (-7/2,0) and p, = (7/2,0).
The set of periodic points P is the set of points p = (6,%) with —~7/2 < 6 < /2
and we have

A(T?\ P) = [{-n/2} x SYNU{r/2} x S} =067Ud™.

If p € Int(T2 \ P), a(p) = p+ and w(p) = p_. If p € 8%, a(p) = w(p) = p- and

if pe 8-, a(p) = w(p) = py. If p € Int(T? \ P) then a(p) = p; and w(p) = p-.
If p € 0 then a(p) = w(p) = p—; and if p € 97, a(p) = w(p) = p+. From

-
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these properties, it is easy to see that T is internally chain recurrent and satisfies
Hypothesis 1.2. But T2\ P is not chain recurrent. Indeed, T2\ P is a cylinder with
d% as attractor and 8~ as repeller.

ry

s
; A A
A A A '

0 é—— 3 4
: P~ P+
A A /

el : j
S N e T b Lo ®,
—TT 0 i

Example: Planar competitive systems. Consider the flow ¥ in the first quad-
rant R, of a planar competitive system

dz; )

d—; = z;Gi(z1,%2); 1 = 1, 2 (3)
where the C! growth rates G; : R? — R? satisfy Kolmogorov’s competition condi-
tion:

0G;

6—%S01f # J. 4)

Assume the system is dissipative, that is, there is a global attractor.

Theorem 2.1. If the equilibrium set is finite, then system (¥, R2,) admits a strict
Ligpunov function.

Proof By a result of Conley (1978) (see also Akin 1993) it suffices to prove that
the chain recurrent set is finite.

It is well known that the competition condition, together with dissipitavity, im-
plies every bounded semitrajectory converges (Hadeler and Glas 1983; Hirsch 1985).
Thus the flow is simple. Hence by Theorem 3.1, if x is chain recurrent then there
is an orbit cycle from z to z. If z is not an equilibrium we may assume the support
of such an orbit cycle is a Jordan curve C .

The reversed-time flow {©; = ¥_,} also leaves C invariant, and preserves the
vector order in the plane: z < y & z; < ¥;, (¢ = 1,2). But it is not hard to prove
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that an order preserving flow in the plane cannot have an orbit cycle other than an
equilibrium. O

Discussion: For general surface flows, the structure of compact chain recurrent
subsets is rather mysterious— even in the important special case of omega limit
sets for planar flows.2 The only general result known is the following (which is not
needed for our proofs):

Theorem 2.2 (Hirsch and Pugh (1988)). Let M be a compact invariant set for a
flow ® in a metric space X. Suppose there exists a nonstationary point p € M
which is chain recurrent for ®|M, and at which M is 1-dimensional. Then:

(a): There is an essential map from M to the circle.
(b): The first Cech cohomology group of M is nontrivial.
(¢): If X is homeomorphic to an open set in the plane then M separates X .

Thus nonstationary, 1-dimensional internally chain recurrent sets have nontrivial
topology. Unfortunately one cannot conclude that such a set must have nontrivial
fundamental group, as is shown by the solenoid attractor A for a Denjoy flow in the
2-torus 7': While the 1-dimensional Cech cohomology of A is free on two generators
(because T'\ A is an open 2-cell), its singular homology and fundamental group are
trivial. )

In contrast, Theorems 1.4 and 1.5 imply that under Hypothesis 1.2, a 1-dimen-
sional, internally chain recurrent set L contains at least one compact invariant set
homeomorphic to a circle: Either a periodic orbit, or an orbit cycle of minimal
length.

Although even with these strong hypotheses we do not have a general structure
theorem, from our results there emerges a clear picture of the dynamic connection
between two points z,y € L\ P. When the stronger Hypothesis 1.3 holds (in
addition to Hypothesis 1.2) then = ~ g, i. e., there is an orbit chain from z to
y. Hypothesis 1.2 by itself implies (by Theorems 1.4 and 1.5) that there is a finite
sequence £ = 1, Y1,--. ,Ln,Yn = Y Where x; ~+ v;, and z;, yi41 lie in the boundary
of a component of L \ P.

3. Chain Recurrence in Simple Dynamical Systems. Let & denote a flow in
a metric space X. The following definitions are taken from Conley (1978).

The omega limit set (respectively alpha limit set) of Y, denoted by w(Y’) (respec-
tively a(Y)) is defined as the maximal invariant set in clos(Y - [0, 00)) (respectively
closY - (—o00,0]), where “clos” denotes closure. ,

A flow ® in X is simple provided X is a compact metric space, and there is only
a finite number of alpha and omega limit points, necessarily constituting the set £
of equilibria.

In the remainder of this section ® denotes a simple flow in X.

Theorem 3.1. z < y if and only if z ~ v.

Corollary 3.2. Let L C X be a compact invariant sel. If L is internally chain
recurrent, then L is internally strongly chain recurrent.

2Hartman (1964) shows that a compact omega limit set for a planar flow with finitely many
equilibria is either a periodic orbit, or the union of equilibria and a countable family of nonperiodic
orbits. To this we can add that it contains an orbit cycle through all the equilibria, by Theorem
1.6(b). We lack a reference to this folk theorem.
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Corollary 3.3. If £ — y then x and y are in the same path component of X.
Consequently, if X is chain transitive (or chain recurrent and connected), then X
is pathwise connected.

Proof If z < y then z ~ y, and the support of an orbit chain from z to Y
contains a path from z to y. O

Proof of Theorem 3.1°% It suffices to prove that £ ~» y whenever z — y, since
the other implication is trivial. Asume x — y. The set of z such that z — z is
closed and invariant, and thus contains the alpha limit point ¢ of y. It therefore
suffices to prove z ~ g.
Consider the set
F={pe&:p~ g}
Set p = w(z) It suffices to show that p € F. Suppose p € F. We then have the
following situation:

(a): F is closed and open in €&,

(b): x> g€ F,

(c): the omega limit set (={p}) of z is disjoint from F.
This conditions constitute a special case of the hypothesis of Lemma 13(a) of Chap-
ter 5 of (Akin 1993), which the author calls an extension of a lemma of Nitecki and
Shub.? The conclusion of this Akin-Nitecki-Shub lemma, for this case, is that there
exists u € X with the following properties:

(d): z — u,

(e): w(u) € F,

(f): a(u) ¢ F.
But (e) implies u ~+ g, which implies a(u) € F, contradicting (f). Therefore p € F.
0.

Remark 8.4. For the special case of surface flows satisfying Hypotheses 1.2, 1.3,
there is a proof of Theorem 8.1 which avoids the Akin-Nitecki-Shub Lemma. It is
based on P. Hartman’s theorem on the finiteness of hyperbolic sectors (Hartman,
1964).

Define an equivalence relation R = R(®) in X as follows:
R={(u,v) EX XX :u~vandv~ u.}

Corollary 3.5. For a simple flow in a compact metric space X, the relation R is
closed in X x X.

Proof Follows from Theorem 3.1, because the relation z ~+ y is closed for any
flow. O

A nonempty compact invariant set A C X is an attractor if A has an open
neighborhood U in X such that w(U) = A; or a repeller if a(U) = A. An attractor
or repeller is proper provided it is not open in X.

The following proposition follows from sections 5 and 6 of (Conley 1978, Chap-
ter 2). ‘

3The proof was kindly supplied to us by E. Akin.
4This result is stated for homeomorphisms, but as Akin points out, the proof is designed so
that it applies equally to flows.
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Proposition 3.6. (i): Let = € X be a chain recurrent point, A C X an

attractor. If w(z) C A then z € A.

(ii): Let N C X be a compact set such that 87(N) C Int(N) for some T > 0.
Then w(N) is an attractor contained in Int(NV).

(iii): Let N C X be a compact set. Let A C X be the mazimal invariant set
contained in N. If A is nonempty and A is not an attractor, there exists
p € ON C A such that v_(p) C N and a(p) is a nonempty subset of A.

(iv): A chain recurrent flow has no proper attractor or repeller.

Corollary 3.7. Let K be a nonempty compact invariant set for a simple flow in
a compact metric space X. Then the set

Q={yeX:3z €K, z~y}
is an attractor.

Proof @ is invariant, and compact by Corollary 3.5. Let N C X be a compact
neighborhood of @ such that NN & C Q. Suppose v-(z) C N then, then there
exists an equilibrium w = a(z) € Q. Since z ~ w for some z € K it follows that
z ~+ 2, 50 z € Q by definition of @, whence y_(2) C @ by invariance.

This shows, first, that @ is the maximal invariant set in IV, and second, that @
is an attractor, by Proposition 3.6(iii). O

4. Topology of the Set P of Nonstationary Periodic Points. Throughout
the remainder of the paper, Hypothesis 1.2 is in force. We first prove Theorem 1.5,
restated here for convenience:

Theorem 4.1. Each component of P which is not a single periodic orbit is home-
omorphic to one of the following surfaces:

(i): an annulus or Mébius band, with or without boundary,
(ii): a torus,
(iii): o Klein bottle.

Proof Let C be a component of P which is not a single periodic orbit. It follows
from Theorem 4.3 that C is a surface embedded in S, perhaps with boundary.
Consider first the case where the surface C is orientable. From Proposition 4.3 we
see that the orbits in C constitute a foliation of C' by topological circles. Moreover
Remark 4.5 and orientability of C imply that this foliation is locally a product.

Denote by II : C — B the identification map which collapses each orbit in C to a
point. Give B the quotient space topology. It is not hard to prove from Proposition
4.3 and Remark 4.5 that B is a Hausdorff 1-dimensional manifold, and II is a locally
trivial fibration. As B is connected, it is homeomorphic to a circle, or an interval
(open, closed or half-open). Since we are assuming C is orientable, it follows that
the fibration is trivial. Thus C is homeomorphic to B x S1, so C is an annulus or
torus.

Now suppose C is nonorientable. Then C has a connected two-fold covering
space C which is orientable. The flow on C lifts to a flow on to which Proposition
4.3 applies. Therefore the previous argument shows that C is homeomorphic to
an annulus or torus, whence C, being nonorientable, is a Mdbius band or a Klein
bottle. O
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Lemma 4.2. Let A be an isolated nonstationary periodic orbit in L. Then A is a
component of L.

Proof Let N C L bea compact neighborhood of A which contains no equilibrium.
Then A is the maximal invariant set in V. To see this, let -y be any orbit in N. Then
no limit point of «y can be an equilibrium, so -y is periodic by Hypothesis 1.2, whence
4 C A. We claim A is an attractor for the flow in L. For otherwise Proposition
3.6(iii) leads to the impossible conclusion that A contains an equilibrium.

The same reasoning, applied to the time-reversed flow, shows that A is also a
repeller in L. The only way this can happen is for A to be open in L, showing that
A is a component of L. O

Proposition 4.3. Let A C L be a nonstationary periodic orbit; assume A is not
a connected component of L. Let J C S be a compact arc which is o local section
through a point p € A. Then p belongs to a closed arc I C J such that:

(i): I-R is a compact neighborhood of p in L;
(ii): every point of I is periodic;
(iii): p is an endpoint of I if and only if p € OL.

In particular, every neighborhood of A in L contains infinitely many periodic orbits.

Proof We identify J with a subinterval in R about 0, and p with 0. Let J; C J
be a smaller compact local section at p on which a Poincaré map g : J; — J is
defined. By choosing J; sufficiently small we assume that the iterates ¢* : J; = J
are defined for |k| < 2.

Let Ly = (LN Jy). We claim every point of L, is periodic. More precisely, the
second iterate g2 = g o g is the identity on L;. For g? is preserves the natural
linear order on J; (and h preserves that order if and only if S is orientable in a
neighborhood of A). Suppose z € L; is not fixed under g°>. Then (recalling that
points in J are identified with real numbers) we see that either |g%(z)| < |z| or
lg~2(z)| < |z|; we may assume the first inequality. Then g2(z) € Jy, since J; is an
interval containing z and 0. It follows that g**(z) € Ji, k = 1,2,3,..., and that
this sequence converges monotonically to a point y € Ly. It follows that y € w(z),
and therefore y is an equilibrium for the flow. But as no point of the local section
J is an equilibrium, no such z can exist. Thus g?|L; = Id.

Notice that p (identified with 0) is not the only point of Ly, because A # L.
Suppose there exists ¢ > 0 in L;. We claim the entire interval [0,¢] is in L. For
suppose not. Then there is an open subinterval D C [0, ¢]\ Ly with endpoints in L.
Since g? is continuous and injective, and has the endpoints of D as fixed points, it
follows that g> maps D onto itself. From this one can see that D - R, the union of
the orbits of D under the flow, is an invariant open annulus or Moébius band that
separates p from c. But this contradicts the assumption that L is connected.

If all points of L; are > 0, Proposition 4.3 is proved by setting I = [0,¢]. If all
points are < 0, a similar construction give an interval I = [—b,0]. If L; has points
of both signs then an interval of the form I = [—b, ¢] completes the proof. O

Corollary 4.4. If C C P is a connected component containing more than one
periodic orbit, then Ints(C) is not empty.
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Remark 4.5.

(1) It is easy to see from the proof of Proposition 4.3 that h = Id if and only
if the periodic orbit A preserves orientation; in this case the minimal period
function Per : P — R, assigning to each point of P its minimal period, is
a continuous at p.

(2) If A reverses orientation and A # P, then lim,_,, Per(z) = 2Per(p).

(3) Only finitely many periodic orbits in a compact subset of S can reverse orien-
tation. To see this, let Sy C S denote a compact surface (perhaps with bound-
ary) containing L. Any set of orientation reversing simple closed curves in
S represent linearly independent homology classes in the finite dimensional
vector space Hy(So; Z2). It follows that the number of such curves is bounded
by the first Betti number of Sy over Zs. (See e. g. Hirsch 1976, Chapter 9,
Lemma 3.9.)

Proposition 4.6. (a): The flow in OLP is simple. (b): P has only finitely
many components, and each component contains an equilibrium.

Proof It follows from Proposition 4.3(i, ii) that no point of 8P can be non-
stationary and periodic. Therefore the flow in d; P is simple by Hypotheses 1.2.
As every component of 8; P therefore contains an equilibrium, the number of such
components is bounded by the number of equilibria. O

Theorem 4.7. Assume Hypothesis 1.3. If L is connected, then P has only finitely
many components.

Proof For simplicity we assume the surface S is orientable; the general case
follows by lifting the flow to the orientable two-fold covering space. Since S is a
connected surface, there cannot be more than one subset homeomorphic to a torus
(and no such component if § is not compact); so we assume there are no such
components.

Assume P has infinitely many components. Since L has only one component,
the boundary in L of each component is nonempty, and therefore contains an equi-
librium by Proposition 4.6. Since the equilibria are finite in number, there is an
equilibrium ¢ € L and a sequence C; of distinct components of P, such that ¢ is in
the closure of each C;. It follows that no C; is a single orbit. Therefore by Theorem
4.1 and orientability, each C; is an annulus.

Let D C S be the interior of closed disk neighborhood D of ¢ which contains
no other equilibrium. We claim that no orbit in |JC; lies entirely within D. For
suppose that A C C; N D is an orbit. Replacing it with another orbit, we can
assume A C C; N D. Then A separates D into two disjoint connected open sets,
an open disk B and an open annulus A. Now ¢ must lie in B. For otherwise we
could find another periodic orbit A’ C B N C; which would surround an equilibrim
in D\ g, contradicting the definition of g. Therefore ¢ € B. This implies C; C B
for all § # i, because C; contains ¢ in its closure. Reasoning as before leads to the
contradiction that any orbit in C; surrounds an equilibrium in D \ g; this proves
the claim.

It follows that for each i there are sequences u;j, v;j € C; N 0D converging
respectively (as j — oo) to points a;, b; € 0D, and a positive sequence t;; — 00
(as j — o0) such that u;; - t;; = vij, and g -t € D for 0 <t < £;5. It follows from
continuity of the flow that a; - ¢, b; - (—t) € D for all ¢ > 0. Thereforea-t — ¢
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and b- (—t) — q as t — oco. We replace a; and b; by other points on their orbits, if
necessary, so as to have a; - t, b; - (—t) € D for all ¢ > 0. By shrinking D we may
assume a; # b;. ‘

Set H; = 74(ai) UpUy_(b;). This is an arc in D meeting 8D in {a,b}, and
separating D into two components. The component of D \ H; containing the arcs
Jij = 445+ [0,255],1 < j < o0, is called U;. The boundary of U; is the Jordan curve
H; U K; where K; C 8D is an arc joining a; and b;.

Because each arc J;; separates Uj, it follows that no forward orbit starting in
H; \ {a,b;} can converge to ¢ in U;; each such forward orbit must exit D. This
makes U; a hyperbolic sector at q (relative to the disk D) in the sense of (Hartman
1964). And it implies that U; and U; have disjoint interiors if ¢ # I. Because
Hartman proved that the number of sectors at g (relative to D) is finite, we have
reached a contradiction. Therefore there cannot be infinitely many components of
P. This completes the proof of 4.7. O

The closure P of the set of nonstationary periodic orbits also has a finite number
of components, each component @) being a torus, Klein bottle, or the closure of an
open annulus or open Mobius band. The closures of the latter two kinds of sets we
call the pieces of Q.

The combinatorics of how the pieces of @ fit together can be fairly complicated;
but the topology of @, and hence of P, seem to be comparatively simple. We
conjecture that @ is triangulable. We shall need the following results:

Proposition 4.8. (a): Each component Q of P is path connected. (b): Let A C P
be a component which is an open annulus or Mdbius band A. Then each component
of 8 A is path connected.

Proof Clearly A is path connected, and it is easy to see that there is a path
joining a point of A to a point of 8, A. Now 8L A is a compact invariant set disjoint
from P, and so ®]8, A is a simple flow by Proposition 4.6. Therefore Corollary 3.3
implies dp A is path connected. [J

Proposition 4.9. Assume Hypothesis 1.3. Let x,y € OP be two points in the
same component of P, and also in the same path component of S\ P. Then z, y
are in the same component of OP.

The rest of this section is devoted to the proof. We can ignore components of P
that are tori or Klein bottles, since there can only be one such component, equal to
S. Henceforth we assume every component of P is either an annulus Mébius band.

Each component of P is foliated by periodic orbits I'. In an annular component A
these orbits all isotopic. and each one separates A; that is, A\I" has two components.
In a M6bius component M there is a unique central orbit which reverses orientation,
and does not separate M; all others preserve orientation and separate.

Lemma 4.10. Let C a component of P and So a connected open set, C C SysubsetS.

(a): Suppose C is an annulus containing a periodic orbit I'. Then Sy \ C has
exactly two components, each containing ezactly one component of Sy \ T
(b): Suppose C is a Mébius band. Then Sy \ C is connected.

Proof (a) By hypothesis I" disconnects S, so it also disconnects Sy. From topol-
ogy (e.g. Hirsch 1976, Chapter 4, Lemma 4.4) we learn that So \ " has exactly
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two components, each having boundary C, and this property implies that each
component of Sp \ C lies in exactly one component of S\ I'.

Now let N be an open tubular neighborhood of I whose closure is compact in C.
Then it is easy to see that there is a retraction of Sp \ T onto Sp \ N. It follows that
So \ N has just two components, each contained in one of the two components of
So \I. Let {N;} be an increasing nested family of open tubuluar neighborhoods of
T" having compact closures in C, and whose union is C'. Denote the two components
of So \ N; by L;, R; so that {L;} and {R;} are increasing nested families. Now

S\l = ﬂ(so\N,-)
ﬂL,-UﬂR,-.

Each of the sets ), L;, [; R, being the decreasing intersection of compact connected
sets, is connected; and they are disjoint because L;, R; are disjoint.

(b) The proof is similar, IV; now being a Mbius band with central orbit I'. Then
N; \T is connected, so that Sp \ C is represented as the decreasing intersection of
compact connected sets ();(So \ V;). O

Let {C;} be a collection of components of P. Set Qg = |JCj.

Lemma 4.11. Let Sy C S be an open neighborhood of Q. If two points are sepa-
rated in So by Qo, they are separated by some C;, which must be an annulus.

Proof By induction on the number v of C;, the case v = 1 following from Lemma
4.11. Suppose v > 1. For each j let I'; C C; be an orbit, central if C; is a Mdbius
band. Set S; = So \ U;';ll ['; Let z, y be in different components of Sp \ Qo. If
z,y are in in different components of Sy, then by the induction hypothesis they are
separated by some annulus C;, 1 <j<v-1

For the rest of this proof, assume z, y are in the same component S, of S;. If
T, ¢ 8., then C, is disjoint from Sz, and thus S; is a connected subset of Sy
containing x, y.

On the other hand, suppose I, C S;. Then we apply Lemma 4.10 to C, C Sa:
(a) If C, is an annulus, there are just two components of Sz\C,, each containing one
one of the points z,y, and each contained in one of the two components of Sp \ C,.
Thus z,y are in different components of Sp \ T,,. (b) If C, is a M6bius band then
z,y are in the same component of Sz \ C, = Sy \ Qo, contrary to hypothesis. O

Lemma 4.12. Let Q be a component of P. If xz,y are in distinct components of
8Q, then there is an annular component A of Q@ N P such that z,y are in distinct
components of S\ T, for any orbit T’ C A.

Proof Assume no such I' separates z,y in S. Then by Lemma 4.11, no component
A of Q N P separates them.

Choose a decreasing family of compact subsets K5, each having connected in-
terior S; containing @, and with (| K; = P. Set Qo = @ N P. By Lemma 4.11, z,y
are in the same component of S; \ Qq, hence of K; \ Qo. Therefore they are in the
same component of ((K; \ @) =8P. O

Proof of Proposition 4.9 Let ¢ be the component of P which contains z,v.
Set Qo = QN P. Let f: [0,7] — Q be a path from z = f(0) to y = f(n). Let
g: [, 2r] = S\ P be a path from y = g(«) to z = g(2x). Fit f and g fit together
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to determine a map h: S — S. Let " be an orbit in an annular component A of
Qo- The mod 2 intersection number #(h,T') is 0, because I' separates S (compare
Chapter 4, Section 4 of Hirsch 1976). Since the image of f is disjoint from T, it
follows that #(g,I') = 0(mod 2).

This means that g can be perturbed slightly (but not at the endpoints) so as
to meet T in an even number of points (or be disjoint from T'), crossing I’ at each
point. From this it follows that the end points z,y of the arc g are in the same
component of S\ T.

Lemma 4.12 now implies that z,y are in the same component of dP. 0]

5. Internal Chain Recurrence in Surface Flows.
Proof of Theorem 1.6.
Lemma 5.1. 35(P) is internally chain recurrent.

Proof First remark that P being open in L (corollary 4.4) we have 9r(P) =
clos,(P) \ Int,(P) = P\ P Let p € 95(P), we have p = limp,, for some sequence
Pn € P. Let 7y, be the periodic orbit which contains p,. As v, is a compact subset
of L, we may extract from the sequence {y,} a subsequence which converge toward
a compact set C for the Hausdorff metric in L. By reindexing, we assume this
subsequence is again {y,}.

We claim that C C 8.(P). As v, C P, C C P. Suppose there exists £ € C N P.
Then according to Proposition 4.3 there exists a closed neighborhood of z, N, =
I -R C P consisting of periodic orbits. It follows that «,, C N, for n large enough.
Therefore p = lim p, € P. But this contradicts the assumption that p € P\ P.

To conclude the proof of the lemma, we now show that for all T > 0, € > 0 there
exists a (T, €)-chain from p to p of orbit intervals contained in 8z (P). By uniform
continuity of the flow on L, there exists 0 < a < €/2 such that d(z,y) < a implies
d(®4(z), ®:(y)) < €/2 uniformly in 0 < ¢t < 2T. Choose n large enough such that
1/n < €/2 and d(y,,C) < o. Since p, € v and v, is periodic, we may always
assume that p, = &1, (p,) for some T;, > T. We write T,, = kyt,, for some integer
kn>land T <t, <2T.

Define

Dijn = th" (p‘n)7 i= 0, .- 7kn-
Notice that po.n = Pn = Dk, ,n- Since d(yn, C) < a we can construct a finite periodic
sequence
pi €C,i=0,...k,
such that p§ = p = p;_ and d(p},pin) < @, i =0,... ,kn. We have
d(®:,, (9}), Pit1) £ (24, (9]), @1, (Pin)) + (B, (Piyn), Piy1)
< €/2+d(Pit1,n,Pi1) S€/2+a<e

As p! € C C 0(P) and 8, (P) is invariant, this proves that there exists in 9 (P)
a (T, €)-chain from p to p. O

Corollary 5.2. 01 P is internally strongly chain recurrent.

Proof The flow in 81 (P) is simple by Proposition 4.6. The flow in 8L(P), being
chain recurrent by Lemma 5.1, is strongly chain recurrent by Corollary 3.3. O.

Corollary 5.3. Each component of Or P is path connected.
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Proof Follows from Corollaries 5.2 and 3.3. O
Theorem 1.6(a) follows from Corollary 5.2.

Proposition 5.4. Under Hypothesis 1.8, L\ P is internally chain recurrent.

We argue by contradiction, starting from the assumption that @|(L \ P) is not
chain recurrent. We first prove: '

Lemma 5.5. If ®|(L \ P) is not chain recurrent, then there is a component U
of L'\ P which contains two disjoint components of O P belonging to the same
component of P.

Example 2 illustrates this lemma.

Proof We may assume some component U of ®|L\ P is not chain recurrent. Then
U contains a dual attractor-repellor pair (Z, Z*) for the flowin U,and ZCc U is a
proper attractor. Let B(Z) C L\ P be the basin of attraction of Z for the flow in
U\ P. Then Z* = L\ (P U B(Z)).

Since there are no proper attractors or repellors for the chain recurrent flow ®|L,
it follows that the compact invariant sets Y = ZNJLP and Y* = Z* NI P are
nonempty, and form a dual attractor-repellor pair for |0z P . But this flow too is
chain recurrent (Lemma 5.1). Therefore the disjoint sets Y, Y* are each unions of
components of drP.

Fix any two points yo € Y,y1 € Y*. Then gy ~ y; in the internally chain
recurrent set L. We assert that also yo ~» g1 in P.

To see this, observe that since Z is an attractor for the flow in L\ P, there is
a small € > 0 and a large T > 0 such that no (7',¢)-chain in L\ P leads from a
point in Z to a point on 87\ pB(Z). From this it follows that yo ~ 1 in P; and
this implies 3y, y1 are in the same component of P. O

To prove Proposition 5.4 we make the following simplifying assumptions, whose
justifications are either obvious or similar to earlier arguments. We assume that L
is connected. Therefore we may also assume, by Theorems 4.7 and 4.1, that P has
only finitely many components. And we assume that no component of P is a torus
or Klein bottle— for such a component would be all of S and there is nothing to
prove.

Now observe that by Proposition 4.9, every component of L\ P meets every com-
ponent of P in a single component of 8 P. This contradicts Lemma 5.5; Proposition
5.4 follows. By Corollary 4.4(a) the invariant set L\ P is compact. By Proposition
5.4, the flow ¥ = ®|(L\ P) is chain recurrent. This flow is simple by Hypothesis 1.2.
Therefore ¥ is strongly chain recurrent by Theorem 3.1. Theorem 1.6(b) follows.
O

Proof of Theorem 1.4. It suffices to prove that each of the two invariant subsets
P and L\ P are internally strongly chain recurrent. Since every point of P is
periodic, P is internally strongly chain recurrent. For L\ P we use Proposition 5.4
and Corollary 3.2. O

Proof of Theorem 1.1. First we verify Hypothesis 1.2(H3) for a planar flow: .

Lemma 5.6. Let M be an internally chain recurrent set for an arbitrary planar
flow. Then every alpha or omega limit point of any nonperiodic orbit in M is an
equilibrium.
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Proof Assume X is an open subset of the plane, M C X is internally chain
recurrent, and p € M is nonperiodic. Suppose there is a nonstationary point ¢ in
w(p). A theorem of Whitney (1933) shows that there exists a local section® J C §
through ¢: this means J is a compact arc containing ¢ in its interior, and for some
€ > 0, the map
h=@&|[-ee]xJ:[—€exJ—8

is a homeomorphism onto a neighborhood of g. This map (and sometimes its image)
is called a flow boz at q.

Since ¢ is an omega limit point of p the forward trajectory of p meets J infinitely
often.

Let to > 0 be such that ®;,(p) € J and define ¢; = inf{t > ¢ : 8:(p) € J}. Let
(0,z0) = A1 (®4,(p)) and (0,z1) = A~1(®4,(p)). The set

C = h(0 x [zo,1]) | J{®:(p) : 20 < t <11}

is a Jordan curve. Let K be the compact set whose interior is the unbounded
component of R2\ C, so that the boundary of K is C. It is clear from the definition
of R that no trajectory can leave K. Moreover, if T > ¢; — ¢y then ®7(K N L)
lies in the interior relative to L of K N L. Therefore by Proposition 3.6(ii) there
is an attractor A C Int(K). But implies that p € A. As p ¢ K, this attractor is
proper, contradicting Proposition 3.6(iv). Therefore ¢ is necessarily an equilibrium;
and similarly for alpha limit points of p. The conclusion of Lemma 5.6 now follows
since the equilibria are isolated and compact limit sets are connected. O
Theorem 1.1 now follows from Lemma 5.6 and Theorem 1.4. O.
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