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emergence has suffered from a lack of formalisms that could be used to guide discussions and
advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of
causal emergence based on information decomposition, which is quantifiable and amenable to
empirical testing. This theory relates emergence with information about a system’s temporal
evolution that cannot be obtained from the parts of the system separately. This article provides
an accessible but rigorous introduction to the framework, discussing the merits of the approach
in various scenarios of interest. We also discuss several interpretation issues and potential
misunderstandings, while highlighting the distinctive benefits of this formalism.

This article is part of the theme issue ‘Emergent phenomena in complex physical and
socio-technical systems: from cells to societies’.

1. Introduction
Emergence is a key concept in several challenging open questions in science and philosophy,
and a subject of long-standing debate. A distinctively controversial topic, research on emergence
has been characterized by differing assumptions and positions—explicit and implicit—about its
nature and role within science. At one extreme of the spectrum, reductionism claims that all that is
‘real’ can always be explained based on sufficient knowledge of a system’s smallest constituents,
and that coarse-grained explanations are mere byproducts of our limited knowledge and/or
computational ability. At the other extreme, strong forms of emergentism argue for a radical
independence between layers of reality, such that some high-level phenomena are in principle
irreducible to their low-level constituents.

Modern scientific practice is dominated by reductionist assumptions, at least in its overall
theoretical and philosophical commitments. At the same time, the hierarchical organization
and in-practice relative independence of the domains of different scientific disciplines (e.g.
physics, biology) suggests that some form of emergentism remains in play. There is, therefore,
a need to formulate principled, rigorous and consistent formalisms of emergence, a need that is
especially pressing for those topics where strong emergentism retains intuitive appeal—such as
the relationship between consciousness and the brain.

Riding on a wave of renewed philosophical investigations [1,2], recent work is opening a
new space of discussion about emergence that is firmly within the realm of empirical scientific
investigation [3–9]. This work is developing formal principles and analytical models, which
promise to facilitate discussions among the community of interested researchers. Moreover,
having a formal theory of emergence will allow scientists to formulate rigorous, falsifiable
conjectures about emergence in different scenarios and test them on data.

This article presents an overview of a recently proposed formal theory of causal emergence
[7] based on the framework of partial information decomposition (PID) [10]. By contrast with
other proposals, this approach is primarily mereological: emergence is considered to be a property
of part-whole relationships within a system, which depends on the relationship between the
dynamics of parts of the system and macroscopic features of interest. In what follows, we outline
the necessary mathematical background, present the core principles of the theory, and review
some of its key properties and applications.

2. Technical preliminaries

(a) An information-centric perspective on complex systems
Information theory is deeply rooted in probability theory, to the extent that the axiomatic bases
of both are formally equivalent [11]. Both approaches, in turn, are illuminated by the seminal
work of E. T. Jaynes on the foundations of thermodynamics [12], which proposes that probability
theory can be understood as an extension of Aristotelian logic that applies to scenarios of partial or
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incomplete knowledge. In this context, probability distributions are to be understood as epistemic
statements used to represent states of limited knowledge, and Shannon’s entropy corresponds to
a fundamental measure of uncertainty.

This perspective leads to principled and broadly applicable interpretations of information-
theoretic quantities. In fact, while information theory was created to solve engineering problems
in data transmission [13], modern approaches cast information quantities as measures of belief-
updating in statistical inference [14–16]. In this view, measuring the mutual information between
parts of a complex system does not require assuming one is ‘sending bits’ to the other over some
channel—instead, mutual information can be seen as the strength of the evidence supporting
a statistical model in which the two parts are coupled (although see [17] for an alternative
discussion). Furthermore, information-theoretic tools are widely applicable in practice, spanning
categorical, discrete and continuous, as well as linear and nonlinear scenarios. A variety of
estimators and open-source software is available, whose diversity in terms of assumptions and
requirements allows reliable calculations on a broad range of practical scenarios [18–20].

Together, these properties place information theory as a particularly well-suited framework to
study interdependencies in complex systems, establishing information as a ‘common currency’
of interdependence that allows one to assess and compare diverse systems in a principled and
substrate-independent manner [21–23].

(b) The fine art of information decomposition
Shannon’s information is particularly useful for the study of complex systems due to its
decomposability. For example, the information about a variable Y provided by two predictors
X1 and X2, denoted by I(X1, X2; Y), can be decomposed via the information chain-rule [24] as

I(X1, X2; Y) = I(X1; Y) + I(X2; Y|X1), (2.1)

where I(X1; Y) corresponds to the information provided by X1, and I(X2; Y|X1) refers to the
information provided by X2 when X1 is already known. Taking this idea one step further, the
PID framework [10] proposes to decompose each of these terms into information atoms as follows:

I(X1; Y) = Red(X1, X2; Y) + Un(X1; Y|X2)

and I(X2; Y|X1) = Un(X2; Y|X1) + Syn(X1, X2; Y),

}
(2.2)

where Red(X1, X2; Y) represents the redundant information about Y that is contained in both X1
and X2, Un(X1; Y|X2) and Un(X2; Y|X1) correspond to the unique information that is conveyed by
X1 or X2 but not the other, and Syn(X1, X2; Y) refers to the synergistic information that is provided
by X1 and X2 together but not by each of them separately. For example, consider our two eyes
as sources of visual information about the environment. The information that we still have when
we close either eye is redundant (e.g. information about colour), while the extra information we
derive from combining them (e.g. stereoscopic information about depth) is synergistic. For further
reading on PID, we refer the reader to refs. [10,25,26].

(c) Decomposing information dynamics: From PID toΦID
As a final piece of mathematical background, we now show how information decomposition
can be applied to the temporal evolution of a stochastic dynamical system. Let’s consider two
interdependent processes sampled at times t and t′ > t, and denote their corresponding values as
X1

t , X2
t and X1

t′ , X2
t′ , respectively. The information that these two processes carry together from t

to t′ is given by the time-delayed mutual information (TDMI), denoted by I(Xt; Xt′ ) where Xt =
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Figure 1. Schematic of the ΦID approach to causal emergence. (a) Lattice of ΦID information atoms, with atoms
corresponding to causal decoupling (G) and downward causation (D) highlighted. (b) Relationship between system variables
X t , supervenient variables Vt and emergent properties (cf. equation (3.2)). Images adapted from [7,27,28]. (Online version in
colour.)

(X1
t , X2

t ). By regarding X1
t and X2

t as predictors and the joint future state Xt′ as target, equations
(2.1) and (2.2) allow us to decompose the TDMI as follows:

TDMI = Red(X1
t , X2

t ; Xt′ ) + Syn(X1
t , X2

t ; Xt′ ) + Un(X1
t ; Xt′ |X2

t ) + Un(X2
t ; Xt′ |X1

t ).

However, this decomposition considers the future state as a single entity and, hence, cannot
discriminate between the various ways in which the predictors affect different parts of the target.

This important limitation is overcome by a finer decomposition, called integrated information
decomposition (ΦID) [27], which establishes information atoms not only in terms of the
relationship between the predictors, but also between the targets (see figure 1). For example,
information can be carried redundantly by X1

t , X2
t but received synergistically by X1

t′ , X2
t′ , which

corresponds to a ΦID atom denoted (in simplified notation) by Red → Syn.
By considering these dynamical information atoms, ΦID establishes a way of decomposing

PID atoms into a sum of finer ΦID atoms. In particular, each of the four PID atoms can be
decomposed into four ΦID atoms, which brings a decomposition of the TDMI into 4 × 4 = 16
distinct atoms. For more details about the interpretation of each of the ΦID atoms, and their
generalization to more than two time series, we refer the reader to refs. [27,28] (see figure 1).

3. Formalizing mereological causal emergence
The first step towards using ΦID to formalize causal emergence is to formalize the notion of
supervenience. For this purpose, one says that a variable Vt is supervenient on the state of the
system Xt if it is a (possibly noisy) function of Xt. This definition implies that to have a difference
in Vt it is necessary for some difference in Xt to occur.

Building on this definition, a supervenient feature Vt is said to exhibit causal emergence of order
k if it has predictive power about the future evolution of the underlying system Xt = (X1

t , . . . , Xn
t )

that is kth-order unique with respect to the state of each part of the system, i.e. if

Un(k)(Vt; Xt′ |Xt) > 0. (3.1)

The notion of kth-order unique information comes from a PID of n predictors, which generalizes
the case of two predictors discussed in the previous section [7, appendix A]. Intuitively, the
kth-order unique information Un(k)(Vt; Xt′ |Xt) is the information about Xt′ that Vt has access to
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and no subset of k or fewer parts of Xt has access to on its own (although bigger groups may).
Causal emergence is, therefore, defined as the capability of some supervenient feature to provide
predictive power that cannot be reduced to underlying microscale phenomena—up to order k.
Put simply, emergent features have more predictive power than their constituent parts. As an
example, consider a bivariate binary system in which the future depends on the parity (i.e. the
XOR) of the past [7, fig. 1]. The output of an XOR gate cannot be predicted from either input alone,
so a suitably defined feature Vt = X1

t ⊕ X2
t (where ⊕ denotes the XOR operator) will have greater

predictive power than the parts of the system, and thus qualify as an emergent feature.
Crucially, this framework accommodates the coexistence of supervenience and the irreducible

predictive power of emergence, which have been previously thought as paradoxical [29,30]. It
does so by leveraging the temporal dimension, such that supervenience is operationalized in
terms of instantaneous relationships (between the system and its observables) and emergence in
terms of predictive power across time. In this context, a feature could be supervenient without
being causally emergent, but not vice versa.1

One of the main consequences of this theory is that, under relatively general assumptions [7],
a system’s capability to display causally emergent features depends directly on how synergistic
the system’s dynamics are. Specifically, a system Xt possesses causally emergent features of order
k if and only if Syn(k)(Xt; Xt′ ) > 0 [7, theorem 1]. Intuitively, Syn(k)(Xt; Xt′ ) is the information about
the future evolution that is provided by the whole system, but is not contained in any set of k or
fewer predictors when considered separately from the rest.

This result has two important implications. First, the dependence of emergence on synergistic
dynamics suggests one can interpret the term Syn(k)(Xt; Xt′ ) > 0 as the emergence capacity of a
system. Second, we can use the formal apparatus of ΦID to decompose Syn(k) and distinguish
two qualitatively different types of emergence:

(i) Downward causation, where an emergent feature has unique predictive power over specific
parts of the system. Technically, a supervenient feature Vt exhibits downward causation
of order k over a subsystem of k time series Xα if Un(k)(Vt; Xα

t′ |Xt) > 0.
(ii) Causal decoupling, in which an emergent feature Vt has unique predictive power not

over any constituent of size k or less, but on the system as a whole. Technically, a
supervenient feature Vt exhibits causal decoupling of order k if Un(k)(Vt; Vt′ |Xt, Xt′ ) > 0.
This corresponds to ‘persistent synergies,’ involving macroscopic variables that have
causal influence on other macroscopic variables, above and beyond the microscale effects.

Further derivations show that a system has features that exhibit kth-order downward causation
if and only if D(k)(Xt; Xt′ ) > 0, and has kth-order causally decoupled features if and only if
G(k)(Xt; Xt′ ) > 0, where D(k) and G(k) are suitably defined ΦID-based functions (see [7] for details).
Moreover, the ΦID framework shows that this taxonomy of emergent phenomena is exhaustive,
as the emergence capacity of a system can be decomposed (see figure 1) as

Syn(k)(Xt; Xt′ ) =D(k)(Xt; Xt′ ) + G(k)(Xt; Xt′ ). (3.2)

In summary, these equations imply that causal emergence takes place when groups of variables
influence the future of the system together, but not separately. Hence, it is not just about counting
how many variables predict the system’s future state, but evaluating how they do it.

A final aspect of this theory worth highlighting is that it provides practical measures that are
readily computable in large systems. In general, the value of the terms in equations (3.1) and (3.2)
depends on a choice of redundancy function,2 whose estimation often requires large amounts
of data as system size grows. Fortunately, the ΦID formalism of causal emergence enables the
derivation of simple measures that provide sufficient criteria for emergence and are independent

1For example, the feature Vt = f (Xt) = X1
t is supervenient but not emergent, as it does not predict anything above and beyond

individual variables.
2Multiple redundancy functions exist, and ongoing work is exploring the strengths and weaknesses of different choices. For
more information, see [27] and the extensive PID literature.
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of the choice of redundancy function. Importantly, these measures are relatively easy to calculate,
as they avoid the ‘curse of dimensionality’ since they rely only on kth-order marginals, which
are much easier to estimate than the full nth-order joint distribution. This key feature allows
the framework to be applicable to a wide range of scenarios, as illustrated by the applications
reviewed in §5. More information about these measures can be found in [7].

4. Interpretation and remarks
Having considered the main technical elements of the formalism, this section discusses some key
aspects of its interpretation while clarifying some potential misunderstandings.

(a) Interventionist versus probabilistic causation
Some interpretations (e.g. [31]) of the presented framework place emphasis on its relation to
the Granger notion of probabilistic causation, as the definition of causal emergence is based on
predictive ability—as opposed to, for example, interventionist approaches to causality based on
counterfactuals, as proposed by Pearl & Mackenzie [32]. However, it is important to note that
the framework presented here belongs to neither the Granger nor Pearl schools of thought, and
admits both kinds of causal interpretation depending on the underlying probability distribution
from which the relevant quantities are computed. As a matter of fact, all the quantities described
in §3 and [7] depend only on the joint probability distribution p(Xt′ , Xt). If this distribution
is built using a conditional distribution p(Xt′ |Xt) that is equivalent to a do() distribution in
Pearl’s sense [32], and the system satisfies a few other properties,3 then the results of ΦID can
be interpreted in an interventionist causal sense. On the other hand, if the distribution is built
on purely observational data, then the decomposition obtained from ΦID generally should be
understood in the Granger-causal sense (i.e. as referring to predictive ability). In both cases, the
formalism developed here applies directly, and it is only the interpretation of the findings that
needs to be adapted.

It is also important to clarify that the reason why correlation between variables of a system
of interest often does not imply causation is because of hidden (i.e. unobserved) variables.
However, if all the relevant variables are measured, then Granger- and Pearl-type analyses
coincide. Therefore, we emphasize that while some results might not have an intervention-
type interpretation, this is not due to limitations of the formalism in principle but only due to
limitations of measurement in practice.

(b) Lack of invariance under change of coordinates
A possible objection to the framework outlined here is that it critically depends on the specific
partition of the underlying system, i.e. on how the parts are defined. Put differently, synergy
and unique information are not invariant under changes in the way the micro-elements are
construed—what is technically known as ‘change of coordinates’.4

It is important to remark that this lack of invariance is not a bug, but rather a feature
of our framework. Recall that our theory is fundamentally a mereological one—i.e. about the
relationship between the whole and its parts. Therefore, it is only natural that if the parts change,
quantification of the part-whole relationships observed in the system should change too. Put
differently, it is reasonable to expect that a mereological account of emergence should critically
depend on how the parts are defined, and that any conclusions should be able to change if those
parts change.

3Technically known as faithfulness and causal Markov conditions—see [33] for a detailed description.

4As a simple example, consider the XOR gate Y = X1 ⊕ X2, with X1, X2 i.i.d. unbiased coin flips, and the change of coordinates
(Z1, Z2) = (X1 ⊕ X2, X1). In this case, Syn(X1, X2; Y) = 1, while Un(Z1; Y|Z2) = 1, showing that information atoms are not
invariant under changes of coordinates in general.
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Following on from §2, we highlight that this property aligns well with the epistemic
interpretation of probabilities spearheaded by Jaynes [12]. If one embraces the idea that
probabilistic descriptions are representations of states of knowledge, then it follows that the
coordinates used to describe the system determine how the joint distribution ought to be
marginalized—which is also part of our state of knowledge. Then, it is to be expected that
changing the system’s coordinates should change any conclusions drawn from the relationship
between marginals—including causal emergence.

(c) On the order and scale of emergence
Although most of the empirical results from ΦID presented in the literature so far (reviewed in
the next section) correspond to emergence of order k = 1, it is important to highlight that the
formalism allows us to tune the value of k to detect emergence at various spatial scales. In fact,
being kth-order emergent implies that there is predictive ability related to interactions of order
k + 1 or more. In this regard, it is to be noted that a kth-order emergent feature is emergent
for all orders j < k, and hence increasing the order makes finding emergent features increasingly
challenging. As no system of n parts can display causal emergence of nth order,5 an interesting
question is to identify the maximum k at which emergence takes place—which establishes a
characteristic scale for that particular phenomenon.

A related potential misunderstanding is to believe that the ΦID framework for causal
emergence only concerns predictive ability at the microscale, without establishing a proper
comparison with a macroscale [8]. It is important to clarify that this approach to emergence is
established in terms of supervenient macroscopic variables, which may be considered emergent
depending on their dynamics and predictive power over the evolution of the system—not too
dissimilar from other approaches [5,8]. The fact that dynamical synergy enables the existence
of such emergent variables is not an assumption, but a consequence of the theory. Moreover,
this result enables a powerful method to characterize emergence: unlike other theories, the ΦID
approach to causal emergence can determine the overall capability of a system to host emergent
properties without the need to specify any particular macroscopic variable. Further, the ‘scale’ of
emergence is tuned by the emergence order k, which sets the measures to focus on high-order
interdependencies that do not play a role at scales smaller than k + 1 [27].

5. Applications
Despite its recent inception, the presented framework has already proven capable of providing
insights about a wide range of phenomena (see figure 2). In the following, we first present case
studies that demonstrate how the framework aligns with paradigmatic examples of putative
emergent behaviour, and then discuss recent results related to the human brain.

This framework provides two approaches to assess emergence in practice: one can (i) test if a
given feature of interest has emergent behaviour either directly with the definition (equation 3.1)
or via the practical criteria discussed at the end of §3, or one can (ii) calculate the capacity of a
system to host any emergent feature by computing its dynamical synergy. The latter approach is
more encompassing, but requires one to use a redundancy function (see §3) and usually scales
poorly with number of parts—making its calculation in large systems very challenging. The
former approach focuses on a particular feature, but circumvents those problems allowing one
to deal with large systems. In the following, the case studies reviewed in §5a use the practical
criteria (i.e. not requiring a choice of redundancy function), while most in §5b calculate dynamical
synergy (i.e. requiring a specific redundancy function).

5This mathematical fact implies that this framework does not support phenomena that are not describable by nth-order
interactions.
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Figure 2. Example published applications of theΦID approach to causal emergence. Examples include (a) Conway’s Game
of Life, (b) a bird flocking model, (c) macaque ECoG during motor control [7], (d) human resting-state fMRI brain activity [34]
and (e) human fMRI during loss of consciousness [35]. Images reproduced from [7,34,35] and the Neurotychodatabase. (Online
version in colour.)

(a) Confirming intuitions: emergence in the Game of Life and bird flocks
The efficacy of the presented framework to detect emergence was demonstrated in a paradigmatic
example of emergent behaviour: Conway’s celebrated Game of Life (GoL) [36]. In GoL, simple
local rules determine whether a given cell of a two-dimensional grid will be ON (alive) or OFF
(dead) based on the number of ON cells in its immediate neighbourhood. The simple GoL rule
nevertheless results in highly complex behaviour, with recognizable self-sustaining structures—
known as ‘particles’—that have been shown to be responsible for information transfer and
modification [22].

To study emergence in GoL, a ‘particle collider’ was considered in which two particles are
set in a colliding course, and the GoL rule is run until the board reaches a steady state [7]. The
emergent feature considered, Vt, was a symbolic, discrete-valued vector that encodes the type
of particle(s) present in the board. The ΦID framework (in particular, practical criteria discussed
in the previous section) provided a quantitative validation that particles have causally emergent
properties, in line with widespread intuition, and further analyses (validated with surrogate data
methods) suggested that they may be causally decoupled with respect to their substrate.

Another demonstration of the power of the framework and practical criteria was carried
out in a computational model of flocking birds [4,37], another often-cited example of emergent
behaviour whereby the flock as a whole arises from the interactions between individuals [7].
Here, the framework showed that the centre of mass can predict its own dynamics better than
what can be explained from the behaviour of individual birds (see figure 2).

(b) Causal emergence in the brain
Moving from simulations to empirical data, the ΦID framework for causal emergence was also
adopted to study how motor behaviour might be emergent from brain activity. Simultaneous
electrocorticogram (ECoG) and motion capture (MoCap) data of macaques performing a reaching

Neurotycho database
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task were analysed, focussing on the portion of neural activity encoded in the ECoG signal that is
relevant to predict the macaque’s hand position. Results indicated that the motion-related signal
is an emergent feature of the macaque’s brain activity [7].

In the human brain, functional magnetic resonance imaging (fMRI) makes it possible to study
non-invasively the patterns of coordinated activity that take place between brain regions. ΦID
has been recently adopted to advance the study of brain dynamics, moving beyond simple
measures of time series similarity (e.g. Pearson’s correlation or Shannon’s mutual information)
to ‘information-resolved’ patterns in terms of ΦID atoms. Remarkably, analyses of human fMRI
data have identified a gradient with redundancy-dominated sensory and motor regions at one
end, and synergy-dominated association cortices dedicated to multimodal integration and high-
order cognition at the other end [34]. Recapitulating the hierarchical organization of the human
brain, the synergy-rich regions of the human brain also coincide with regions that have undergone
the greatest amounts of evolutionary expansion [34].

In this analysis, the synergistic information is quantified in terms of G(k)(Xt; Xt′ ) (see equation
(3.2)) with k = 1 calculated over the joint dynamics of pairs of brain areas,6 which corresponds to
the capacity of those dynamics for causal decoupling (see §3). Therefore, the results reported in
[34] indicate that causal emergence (decoupling) increases both along the cortical hierarchy of the
human brain, and across the gap from non-human primates to humans.

Relatedly, there has been a long-standing debate on whether consciousness could be viewed as
an emergent phenomenon enabled by the complex interactions between neurons. The framework
presented here provides ideal tools to rigorously and empirically tackle this question. Moreover,
causal decoupling is one of the information atoms of a putative measure of consciousness known
as integrated information [27], which associates the ability to host consciousness with the extent
to which a system’s information is ‘greater than the sum of its parts’ [38]. Interestingly, analysis
of fMRI data showed that loss of consciousness due to brain injury corresponds to a reduction
of integrated information in the brain [35]. In this way, the more nuanced view on neural
information dynamics offered by ΦID holds the promise of further insights for our understanding
of consciousness as an emergent phenomenon [28].

6. Conclusion
This article presents a review of how recent developments on information decomposition
naturally lead to a formal theory of causal emergence. Although this mereological approach
to causal emergence is one of many within a rapidly growing field, it has already shown
wide applicability across diverse scientific questions. Therefore, the present review sought to
bring together the technicalities of the formalism, its interpretation, and results of its practical
application, so that each may inform the understanding of the other.

One special feature of this framework is how it allows practical criteria that are applicable to
relatively large systems, which opens a broad range of exciting future applications. However,
these tools require an explicit feature of interest, whose definition may not be clear in some
scenarios of interest (e.g. in resting-state fMRI data). This limitation can be avoided by calculating
the capacity of emergence of the dynamics, but the calculation of this scales poorly with the
system size—making the calculation of the emergence capacity of large systems (such as highly
multivariate brain data) currently unfeasible. Developing procedures to either identify emergent
features, or to efficiently calculate emergent capacity in large systems are important avenues for
future work.

We hope that the theoretical and empirical advances reviewed in this article may stimulate the
growing scientific interest on emergence, which may lead the way towards future breakthroughs
on major questions about the role of emergence in the natural world.

Data accessibility. This article has no additional data.

6The analysis focuses on pairs of areas because currently there is a lack of efficient estimators of G(k)(Xt; Xt′ ) for three or more
time series. Developing such estimators is an important avenue for future work.
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