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GLOBAL STRONG SOLUTIONS FOR THE THREE-DIMENSIONAL

HASEGAWA-MIMA MODEL WITH PARTIAL DISSIPATION

CHONGSHENG CAO, YANQIU GUO, AND EDRISS S. TITI

Abstract. We study the three-dimensional Hasegawa-Mima model of turbulent
magnetized plasma with horizontal viscous terms and a weak vertical dissipative
term. In particular, we establish the global existence and uniqueness of strong
solutions for this model.

1. Introduction

1.1. Literature. In 1977, Hasegawa and Mima introduced a system in [10, 11] to
elucidate the drift wave turbulence in Tokamak, the most advanced magnetic con-
finement device. The three-dimensional inviscid Hasegawa-Mima equations can be
written as (cf. [2, 3, 10, 11, 17, 22]):

∂w

∂t
+ J(φ, w) +

∂φ

∂z
= 0, (1.1)

∂

∂t
(∆hφ− φ) + J(φ,∆hφ) + γ

∂φ

∂y
−
∂w

∂z
= 0, (1.2)

where J(f, g) = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

is the Jacobian and ∆h = ∂2

∂x2
+ ∂2

∂y2
is the horizontal

Laplacian. System (1.1)-(1.2) describes the coupling of the drift modes to the ion-
acoustic waves that propagate along the magnetic field. Here, φ is the electrostatic
potential, and simultaneously is the stream function for the horizontal flow in the
xy-plane. Moreover, w represents the normalized ion velocity in the z-direction, and
γ is a constant which is proportional to the density gradient.

Like the three-dimensional Euler equations of inviscid incompressible fluid, the only
conserved quantity for the 3D Hasegawa-Mima equations (1.1)-(1.2) is the kinetic
energy, and the global regularity problem is open. Nevertheless, by adding the full
viscosity to (1.1)-(1.2), Zhang and Guo [22] proved the global regularity and the
existence of global attractors for a viscous and forced 3D Hasegawa-Mima model
using standard tools from the theory of Navier-Stokes equations. On the other hand,
Cao, Farhat and Titi [3] proposed and studied an inviscid three-dimensional modified
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version of (1.1)-(1.2), the pseudo-Hasegawa-Mima equations:

∂w

∂t
+ u · ∇hw − U0L

∂ω

∂z
= 0, (1.3)

∂ω

∂t
+ u · ∇hω −

U0

L

∂w

∂z
= 0, (1.4)

with ∇h ·u = 0, for some constant U0, where u = (u, v)tr is the horizontal component
of the velocity vector field (u, v, w)tr, and ω = ∇h × u is the vorticity. The operator
∇h = ( ∂

∂x
, ∂
∂y
)tr is the horizontal gradient. In particular, the global well-posedness

of the weak solutions to (1.3)-(1.4) was established in [3]. Observe that ω in (1.3)-
(1.4) plays the role of the term ∆hφ− φ in (1.1)-(1.2). Therefore, system (1.3)-(1.4)
is a modified version of the Hasegawa-Mima equations (1.1)-(1.2), with the essential
difference that the term ∂φ

∂z
is replace by ∂ω

∂z
. Nevertheless, model (1.3)-(1.4) is simpler

than (1.1)-(1.2) in the sense that it has a nice mathematical structure. Indeed, adding
and subtracting (1.3) and (1.4) yield a three-dimensional coupled transport system
with collinear transport velocities in opposite directions leading to an intensified shear
in the vertical direction, which results in exponential growth in the relevant estimates
for (1.3)-(1.4) in [3].

It is worth mentioning other interesting models describing plasma turbulence. For
instance, Hasegawa and Wakatani proposed equations for a two-fluid model which
describe the resistive drift wave turbulence in Tokamak (cf. [12, 13]). The existence
and uniqueness of strong solutions to the Hasegawa-Wakatani equations have been
established by Kondo and Tani [14].

In the context of geophysical fluid dynamics, there are certain models resemble the
structure of Hasegawa-Mima equations (1.1)-(1.2). In particular, Charney [5] and
Obukhov [18] derived the following two-dimensional shallow water model from the
Euler equations with free surface under a quasi-geostrophic velocity field assumption:

∂

∂t
(∆hφ0 − Fφ0) + J(φ0,∆hφ0) + J(φ0, φB + βy) = 0. (1.5)

Here φ0(x, y) is the amplitude of the surface perturbation at the lowest order in the
Rossby number, and the equation z = φB(x, y) describes the given bottom topogra-
phy. F is the Froude number. One may refer to [20] for a derivation of model (1.5).
For the simple case when φB is a constant representing a flat bottom, (1.5) reduces
to the Hasegawa-Mima-Charney-Obukhov equation:

∂

∂t
(∆hφ0 − Fφ0) + J(φ0,∆hφ0) + β

∂φ0

∂x
= 0. (1.6)

Since (1.6) bears a close resemblance to the two-dimensional Euler equations, the
standard tools for handling the 2D Euler equations can be adopted to analyze (1.6).
Indeed, Guo and Han [7] proved the global existence and uniqueness of solutions for
(1.6). For other results concerning (1.6) see, e.g., Paumond [19], and Gao and Zhu
[6].
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It is worth mentioning that one may refer to the monographs [16, 20] as well as the
papers [8, 9] for other relevant geophysical models.

1.2. The model. Motivated by the Hasegawa-Mima equations and the Charney-
Obukhov equations mentioned in subsection 1.1, we introduce and study in this paper
the following three-dimensional Hasegawa-Mima model with horizontal viscous terms
and a weak vertical dissipative term:

∂w

∂t
+ u · ∇hw −

∂ψ

∂z
=

1

Re
∆hw, (1.7)

∂ω

∂t
+ u · ∇hω −

∂w

∂z
=

1

Re
∆hω + ǫ2

∂2ψ

∂z2
, (1.8)

∇h · u = 0. (1.9)

The velocity vector field (u, v, w)tr defined in Ω = [0, L]2 × [0, 1] satisfies the periodic
boundary condition with the horizontal velocity u = (u, v)tr. The stream function
ψ for the horizontal flow is defined as ψ = (−∆h)

−1ω with
∫

[0,L]2
ψdxdy = 0, and

ω = ∇h × u. We denote ∇h =
(

∂
∂x
, ∂
∂y

)tr

and ∆h = ∂2

∂x2
+ ∂2

∂y2
. The constant Re is

the Reynolds number.
System (1.7)-(1.9) bears a resemblance as the three-dimensional Hasegawa-Mima

equations (1.1)-(1.2) with the difference that Hasegawa-Mima equations are inviscid,
whereas model (1.7)-(1.9) is regularized by horizontal viscosity and a partial vertical
dissipation. The purpose of introducing and investigating (1.7)-(1.9) is to shed light
on the analysis of the inviscid Hasegawa-Mima equations (1.1)-(1.2).

Mathematically, the difficulty of establishing the global regularity for system (1.7)-
(1.9) lies in the following aspects:

(i) The physical domain is three-dimensional.
(ii) The regularizing viscosity acts only on the horizontal variables.
(iii) The system contains the troublesome term ∂ψ

∂z
.

Since the lack of the viscosity in the vertical direction provides great challenge for

establishing the global regularity, we impose a weak dissipative term ǫ2 ∂
2ψ
∂z2

in the

equation (1.8). Since ψ = (−∆h)
−1ω, we remark that, as a dissipation, ∂

2ψ
∂z2

is weaker

than the vertical viscosity ∂2ω
∂z2

. In a priori estimates conducted in section 2, the

dissipative term ǫ2 ∂
2ψ
∂z2

plays a vital role in controlling the terms −∂w
∂z

and −∂ψ
∂z

with
the help of an anisotropic Ladyzhenskaya type inequality (see Lemma 2.1).

1.3. Preliminaries. In this subsection, we introduce some preliminaries that will
be used later in our analysis. Recall the three-dimensional periodic space domain
Ω = [0, L]2 × [0, 1]. Throughout, the norm for the Lp(Ω) space, for p ∈ [1,∞], is
denoted by ‖f‖p. The inner product of f and g in the L2(Ω) space is denoted by
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(f, g) =
∫

Ω
fgdxdydz. As usual, the Sobolev space H1(Ω) = {f ∈ L2(Ω) : ∇f ∈

L2(Ω)}. In addition, we define the following Hilbert space:

H1
h(Ω) =

{

f ∈ L2(Ω) : ∇hf ∈ L2(Ω)
}

, (1.10)

that features the inner product (f, g)H1

h(Ω) = (f, g) + (∇hf,∇hg).
For sufficiently smooth functions f , g and u, with ∇h · u = 0, integration by parts

yields

(u · ∇hf, g) = − (u · ∇hg, f) , (1.11)

which immediately implies that

(u · ∇hf, f) = 0. (1.12)

Recall that the horizontal velocity u, the vertical vorticity ω, and the stream function
ψ for the horizontal flow have the following relations:

ω = ∇h × u = vx − uy, ω = −∆hψ, u = (ψy,−ψx)
tr, (1.13)

where
∫

[0,L]2
ψdxdy = 0. It follows that, if ω ∈ L2(Ω), then

(ω, ψ) = ‖u‖22. (1.14)

In addition, for sufficiently smooth functions f , u and ψ such that u = (ψy,−ψx)
tr,

observe that u · ∇hψ = 0, then apply (1.11) to deduce

(u · ∇hf, ψ) = − (u · ∇hψ, f) = 0. (1.15)

1.4. Main result. Before we state the main result of the paper, we give a definition
of a strong solution for system (1.7)-(1.9).

Definition 1.1. We call (u, w)tr = (u, v, w)tr a strong solution on [0, T ] for system
(1.7)-(1.9) if

(i) (u, w)tr has the following regularity:










u, w ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω));

∆hu, ∆hw, ωz, ∇hwz, ψzz ∈ L2(Ω× (0, T ));

ut, wt ∈ L2(Ω× (0, T ));

(1.16)

(ii) the equations below hold in the following sense:

∂w

∂t
+ u · ∇hw −

∂ψ

∂z
=

1

Re
∆hw, in L2(Ω× (0, T ));

∂ω

∂t
+ u · ∇hω −

∂w

∂z
=

1

Re
∆hω + ǫ2

∂2ψ

∂z2
, in L2(0, T ;H1

h(Ω)
′),

with ∇h · u = 0, where ω = ∇h × u, ψ = (−∆h)
−1ω with

∫

[0,L]2
ψdxdy = 0, and

(H1
h(Ω))

′ is the dual of the space H1
h(Ω), defined in (1.10).
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Now we are ready to state the main result of the paper: the global existence,
uniqueness, and continuous dependence on initial data of strong solutions for our
model (1.7)-(1.9).

Theorem 1.2. Let T > 0. Assume (u0, w0)
tr ∈ (H1(Ω))3, then system (1.7)-(1.9)

admits a unique strong solution (u, w)tr on [0, T ] in the sense of Definition 1.1 sat-
isfying the initial condition (u(0), w(0))tr = (u0, w0)

tr. Moreover, the energy equality
is valid for every t ∈ [0, T ]:

1

2

(

‖w(t)‖22 + ‖u(t)‖22
)

+

∫ t

0

[

1

Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ ǫ2‖ψz‖
2
2

]

ds

=
1

2

(

‖w0‖
2
2 + ‖u0‖

2
2

)

. (1.17)

In addition, the H1(Ω) norm of the solution (u, w)tr has a uniform bound independent
of T . That is,

sup
0≤t≤T

(

‖u(t)‖2H1(Ω) + ‖w(t)‖2H1(Ω)

)

≤ K,

where K is independent of T , but depends only on Re, ǫ, L, ‖u0‖H1(Ω) and ‖w0‖H1(Ω).
Furthermore, if {(un0 , w

n
0 )
tr} is a bounded sequence of initial data in H1(Ω) such that

(un0 , w
n
0 )
tr → (u0, w0)

tr in L2(Ω), then the corresponding strong solutions (un, wn)tr

and (u, w)tr satisfy (un, wn)tr → (u, w)tr in C([0, T ];L2(Ω)).

2. A priori estimates

In this section, we assume that system (1.7)-(1.9) holds for smooth functions and we
establish the following formal a priori estimates. However, as we will show in section
3, these formal estimates can be justified rigorously by establishing them first for the
Galerkin approximation system and then passing to the limit using the appropriate
Aubin compactness theorem.

2.1. Estimate for ‖w‖22+‖u‖22. Taking the L2(Ω) inner product of the system (1.7)-
(1.8) with (w, ψ)tr yields

1

2

d

dt

(

‖w‖22 + ‖u‖22
)

+
1

Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ ǫ2‖ψz‖
2
2 = 0, (2.1)

where we have used identities (1.12), (1.14) and (1.15). Integrating (2.1) over the
interval [0, t] yields

‖w(t)‖22 + ‖u(t)‖22 +

∫ t

0

(

2

Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ 2ǫ2‖ψz‖
2
2

)

ds = ‖w0‖
2
2 + ‖u0‖

2
2.

(2.2)
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2.2. Estimate for ‖ω‖22. Taking the inner product of (1.8) with ω yields

1

2

d

dt
‖ω‖22 +

1

Re
‖∇hω‖

2
2 + ǫ2‖uz‖

2
2 = (wz, ω), (2.3)

where (1.12) and (1.14) have been used. Thanks to (1.13), we have

(wz, ω) =

∫

Ω

wz(−∆hψ)dxdydz = −

∫

Ω

∇hw · ∇hψzdxdydz

≤ ‖∇hw‖2‖∇hψz‖2 = ‖∇hw‖2‖uz‖2 ≤
ǫ2

2
‖uz‖

2
2 +

1

2ǫ2
‖∇hw‖

2
2. (2.4)

Combining (2.3) and (2.4) implies

d

dt
‖ω‖22 +

2

Re
‖∇hω‖

2
2 + ǫ2‖uz‖

2
2 ≤

1

ǫ2
‖∇hw‖

2
2. (2.5)

By integrating (2.5) over the interval [0, t], we obtain

‖ω(t)‖22 +

∫ t

0

(

2

Re
‖∇hω‖

2
2 + ǫ2‖uz‖

2
2

)

ds ≤ ‖ω0‖
2
2 +

1

ǫ2

∫ t

0

‖∇hw‖
2
2ds

≤ ‖ω0‖
2
2 +

Re

2ǫ2
(

‖ω0‖
2
2 + ‖u0‖

2
2

)

, (2.6)

where the last inequality is due to (2.2).

2.3. An anisotropic Ladyzhenskaya type inequality. We state here the follow-
ing anisotropic Ladyzhenskaya type inequality which will be useful in subsequent a
priori estimates. It is worth mentioning that similar inequalities can be found in [4].
However, for the sake of completeness we present the proof of this technical lemma
in the appendix.

Lemma 2.1. Let f ∈ H1(Ω), g ∈ H1
h(Ω) and h ∈ L2(Ω). Then

∫

Ω

|fgh|dxdydz ≤ C (‖f‖2 + ‖∇hf‖2)
1

2 (‖f‖2 + ‖fz‖2)
1

2 ‖g‖
1

2

2 (‖g‖2 + ‖∇hg‖2)
1

2 ‖h‖2.

2.4. Estimate for ‖∇hw‖2. Taking the inner product of (1.7) with −∆hw yields

1

2

d

dt
‖∇hw‖

2
2 +

1

Re
‖∆hw‖

2
2

≤

∫

Ω

|u · ∇hw∆hw|dxdydz + ‖ψz‖2‖∆hw‖2

≤ C‖ω‖
1/2
2 (‖u‖2 + ‖uz‖2)

1/2‖∇hw‖
1/2
2 ‖∆hw‖

3/2
2 + ‖ψz‖2‖∆hw‖2,

where we have used Lemma 2.1 and the Poincaré inequality since
∫

[0,L]2
udxdy =

∫

[0,L]2
(ψy,−ψx)

trdxdy = 0 and
∫

[0,L]2
∇hwdxdy = 0.
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By employing the Young’s inequality, we obtain

d

dt
‖∇hw‖

2
2 +

1

Re
‖∆hw‖

2
2 ≤ C‖ω‖22(‖u‖

2
2 + ‖uz‖

2
2)‖∇hw‖

2
2 + C‖ψz‖

2
2.

Thanks to the Gronwall’s inequality, we have

‖∇hw(t)‖
2
2 +

1

Re

∫ t

0

‖∆hw‖
2
2ds ≤ C

(

‖∇hw0‖
2
2 +

∫ t

0

‖ψz‖
2
2ds

)

e
∫ t
0
C‖ω‖2

2
(‖u‖2

2
+‖uz‖22)ds

≤ C (‖w0‖2, ‖∇hw0‖2, ‖ω0‖2) . (2.7)

The uniform bound (2.7) is due to estimates (2.2) and (2.6).

2.5. Estimate for ‖wz‖
2
2 + ‖uz‖

2
2. We take the L2(Ω) inner product of (1.7)-(1.8)

with (−wzz,−ψzz)
tr. After conducting integration by parts, one has

1

2

d

dt

(

‖wz‖
2
2 + ‖uz‖

2
2

)

+
1

Re

(

‖∇hwz‖
2
2 + ‖ωz‖

2
2

)

+ ǫ2‖ψzz‖
2
2

≤

∫

Ω

|uz · ∇hwwz|dxdydz +

∫

Ω

|uz · ∇hψzω|dxdydz +

∫

Ω

|u · ∇hψzωz|dxdydz. (2.8)

Next, we estimate each term on the right-hand side of (2.8).
By Lemma 2.1 with f = ∇hw, g = uz and h = wz, and along with the Poincaré

inequality, we obtain
∫

Ω

|uz · ∇hwwz|dxdydz

≤ C‖∆hw‖
1/2
2 (‖∇hw‖2 + ‖∇hwz‖2)

1/2 ‖uz‖
1/2
2 ‖ωz‖

1/2
2 ‖wz‖2

≤
1

6Re

(

‖∇hwz‖
2
2 + ‖ωz‖

2
2

)

+ C
(

‖∆hw‖
2
2 + ‖uz‖

2
2

) (

‖wz‖
2
2 + 1

)

. (2.9)

Also using Lemma 2.1 with f = ω, g = uz and h = ∇hψz gives us
∫

Ω

|uz · ∇hψzω|dxdydz

≤ C‖∇hω‖
1/2
2 (‖ω‖2 + ‖ωz‖2)

1/2 ‖uz‖
3/2
2 ‖ωz‖

1/2
2

≤
1

6Re
‖ωz‖

2
2 + C

(

‖∇hω‖
2
2 + ‖uz‖

2
2 + 1

)

‖uz‖
2
2. (2.10)

In addition, due to Lemma 2.1 with f = u, g = ∇hψz and h = ωz, one has
∫

Ω

|u · ∇hψzωz|dxdydz

≤ C‖ω‖
1/2
2 (‖u‖2 + ‖uz‖2)

1/2 ‖uz‖
1/2
2 ‖ωz‖

3/2
2

≤
1

6Re
‖ωz‖

2
2 + C‖ω‖22

(

‖u‖22 + ‖uz‖
2
2

)

‖uz‖
2
2. (2.11)
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Apply estimates (2.9)-(2.11) to the inequality (2.8) yields

d

dt

(

‖wz‖
2
2 + ‖uz‖

2
2

)

+
1

Re

(

‖∇hwz‖
2
2 + ‖ωz‖

2
2

)

+ ǫ2‖ψzz‖
2
2

≤ C
(

‖∆hw‖
2
2 + ‖uz‖

2
2

) (

‖wz‖
2
2 + 1

)

+ C
(

‖∇hω‖
2
2 + ‖uz‖

2
2 + ‖ω‖22‖u‖

2
2 + ‖ω‖22‖uz‖

2
2

)

‖uz‖
2
2.

Thanks to Gronwall’s inequality, we obtain

‖wz(t)‖
2
2 + ‖uz(t)‖

2
2 +

∫ t

0

[

1

Re

(

‖∇hwz‖
2
2 + ‖ωz‖

2
2

)

+ ǫ2‖ψzz‖
2
2

]

ds

≤

(

‖∂zw0‖
2
2 + ‖∂zu0‖

2
2 + C

∫ t

0

(

‖∆hw‖
2
2 + ‖uz‖

2
2 + ‖ω‖22‖u‖

2
2‖uz‖

2
2

)

ds

)

exp

{

C

∫ t

0

(

‖∆hw‖
2
2 + ‖uz‖

2
2 + ‖∇hω‖

2
2 + ‖ω‖22‖uz‖

2
2

)

ds

}

≤ C(‖w0‖H1, ‖u0‖H1). (2.12)

The uniform bound (2.12) is due to (2.2), (2.6) and (2.7).

3. Rigorous justification of the a priori estimates and the existence

of strong solutions

This section is devoted to proving the existence of global strong solutions for the
model (1.7)-(1.9) by assuming the initial data (u0, w0)

tr ∈ (H1(Ω))3. We employ the
standard Galerkin method and use the analogue of the a priori estimates that were
established in section 2.

Let ej = exp (2πi[(j1x+ j2y)/L+ j3z]) for j = (j1, j2, j3)
tr. For m ∈ N, let

Pm (L2(Ω)) be a subspace of L2(Ω) spanned by {ej}|j|≤m. Also, for any L
2(Ω) function

f =
∑

j∈Z3 αjej, with αj = (f, ej), we write Pmf =
∑

|j|≤m αjej.

Let us consider the Galerkin approximation for our model (1.7)-(1.9):

∂twm + Pm (um · ∇hwm)− ∂zψm =
1

Re
∆hwm, (3.1)

∂tωm + Pm (um · ∇hωm)− ∂zwm =
1

Re
∆hωm + ǫ2∂zzψm, (3.2)

∇h · um = 0, (3.3)

um(0) = Pmu0, wm(0) = Pmw0, (3.4)

where um, wm ∈ Pm (L2(Ω)) and ωm = ∇h×um, ψm = (−∆h)
−1ωm with

∫

[0,L]2
ψmdxdy =

0.
For each m ≥ 1, the Galerkin approximation (3.1)-(3.4) corresponds to a first order

system of ordinary differential equations with quadratic nonlinearity. Therefore, by
the theory of ordinary differential equations, there exists some Tm > 0 such that
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system (3.1)-(3.4) admits a unique solution (um, wm)
tr on [0, Tm]. Since um and wm

have finitely many modes, they are smooth functions, and therefore all of the a priori
estimates established in section 2 are valid for the Galerkin approximate solution
(um, wm)

tr. In particular, the H1(Ω) norm of (um, wm)
tr is uniformly bounded for all

time. Hence, the Galerkin approximate solution (um, wm)
tr exists globally in time, in

particular, over [0, T ], for every T > 0.
Furthermore, by the a priori estimates in section 2, one has the following uniform

bounds for the sequence of the Galerkin approximate solutions.

um, wm are uniformly bounded in L∞(0, T ;H1(Ω)); (3.5)

∇hωm, ∆hwm, ∂zωm, ∇h∂zwm, ∂zzψm are uniformly bounded in L2(Ω× (0, T )).
(3.6)

Therefore, there exist a subsequence, denoted also by um, wm, ωm, ψm, and corre-
sponding limits, u, w, ω, and ψ, respectively, such that

um → u, wm → w, weakly∗ in L∞(0, T ;H1(Ω)); (3.7)

∇hωm → ∇hω, ∆hwm → ∆hw, weakly in L2(Ω× (0, T )); (3.8)

∂zωm → ∂zω, ∇h∂zwm → ∇hwz, ∂zzψm → ∂zzψ, weakly in L2(Ω× (0, T )). (3.9)

Moreover, due to the a priori estimates in section 2, we find that

sup
0≤t≤T

(

‖um(t)‖
2
H1(Ω) + ‖wm(t)‖

2
H1(Ω)

)

≤ K (3.10)

where K is independent of T , but depends only on parameters Re, ǫ, L as well as the
H1-norm, ‖u0‖H1(Ω) and ‖w0‖H1(Ω) of the initial data. Also thanks to the weak-∗ con-
vergence stated in (3.7), one has ‖u‖L∞(0,T ;H1(Ω)) ≤ lim infm→∞ ‖um‖L∞(0,T ;H1(Ω)) and
‖w‖L∞(0,T ;H1(Ω)) ≤ lim infm→∞ ‖wm‖L∞(0,T ;H1(Ω)). Therefore, we obtain from (3.10)
that

sup
0≤t≤T

(

‖u(t)‖2H1(Ω) + ‖w(t)‖2H1(Ω)

)

≤ K.

In order to obtain the strong convergence of the approximate solutions, we shall
derive uniform bounds for ∂twm and ∂tum. First, we claim that the sequence ∂twm is
uniformly bounded in L2(Ω× (0, T )). Indeed, for any function ϕ ∈ L4/3(0, T ;L2(Ω)),
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we use Lemma 2.1 to estimate
∫ T

0

∫

Ω

|(um · ∇hwm)ϕ|dxdydzdt

≤ C

∫ T

0

‖ωm‖
1/2
2 (‖um‖2 + ‖∂zum‖2)

1/2 ‖∇hwm‖
1/2
2 ‖∆hwm‖

1/2
2 ‖ϕ‖2dt

≤ C sup
t∈[0,T ]

(

‖ωm‖
1/2
2 (‖um‖2 + ‖∂zum‖2)

1/2 ‖∇hwm‖
1/2
2

)

·

(
∫ T

0

‖∆hwm‖
2
2dt

)1/4 (∫ T

0

‖ϕ‖
4/3
2 dt

)3/4

≤ C(‖u0‖H1 , ‖w0‖H1)‖ϕ‖L4/3(0,T ;L2(Ω)), (3.11)

where the last inequality is due to the a priori estimates (2.2), (2.6), (2.7) and (2.12).
Consequently, the sequence

um · ∇hwm is uniformly bounded in L4(0, T ;L2(Ω)). (3.12)

As a result, from (3.5)-(3.6) and (3.12), we obtain from (3.1) that the sequence

∂twm is uniformly bounded in L2(Ω× (0, T )). (3.13)

Next, we show that ∂tum is uniformly bounded in L2(Ω × (0, T )). Recall the
Hilbert space H1

h(Ω) = {f ∈ L2(Ω) : ∇hf ∈ L2(Ω)} associated with the norm
‖f‖2

H1

h(Ω)
= ‖f‖22 + ‖∇hf‖

2
2. For any function φ ∈ L2(0, T ;H1

h(Ω)), we apply Lemma

2.1 in order to estimate
∫ T

0

∫

Ω

|(um · ∇hωm)φ|dxdydzdt

≤ C

∫ T

0

‖ωm‖
1/2
2 (‖um‖2 + ‖∂zum‖2)

1/2 ‖∇hωm‖2‖φ‖
1/2
2 (‖φ‖2 + ‖∇hφ‖2)

1/2 dt

≤ C sup
t∈[0,T ]

(

‖ωm‖
1/2
2 (‖um‖2 + ‖∂zum‖2)

1/2
)

·

(
∫ T

0

‖∇hωm‖
2
2dt

)1/2 (∫ T

0

(

‖φ‖22 + ‖∇hφ‖
2
2

)

dt

)1/2

≤ C(‖u0‖H1, ‖w0‖H1)‖φ‖L2(0,T ;H1

h(Ω)), (3.14)

where we have used the a priori estimates (2.2), (2.6) and (2.12). Therefore, the
sequence

um · ∇hωm is uniformly bounded in L2(0, T ;H1
h(Ω)

′), (3.15)

where (H1
h(Ω))

′ is the dual space of H1
h(Ω). Consequently, according to (3.6) and

(3.15), we obtain from (3.2) that the sequence

∂tωm is uniformly bounded in L2(0, T ;H1
h(Ω)

′), (3.16)
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and thus

∂tum is uniformly bounded in L2(Ω× (0, T )). (3.17)

Then, we infer from (3.13) and (3.17) that there is a subsequence such that

∂twm → ∂tw, ∂tum → ∂tu weakly in L2(Ω× (0, T )). (3.18)

By (3.5), (3.13), (3.17), and thanks to the Aubin’s compactness theorem, we have,
for a subsequence, the following strong convergence holds:

um → u, wm → w in L2(Ω× (0, T )). (3.19)

Next, we show the convergence of the nonlinear terms in (3.1)-(3.2). Let η be a
trigonometric polynomial with continuous coefficients. For m larger than the degree
of η we have

∫ T

0

∫

Ω

Pm(um · ∇hωm)ηdxdydz

=

∫ T

0

∫

Ω

(u · ∇hωm)ηdxdydz +

∫ T

0

∫

Ω

((um − u) · ∇hωm) ηdxdydz. (3.20)

Since ∇hωm → ∇hω weakly in L2(Ω× (0, T )), um → u in L2(Ω× (0, T )), and ∇hωm
is uniformly bounded in L2(Ω× (0, T )), we can pass to the limit in (3.20):

lim
m→∞

∫ T

0

∫

Ω

Pm(um · ∇hωm)ηdxdydz =

∫ T

0

∫

Ω

(u · ∇hω)ηdxdydz. (3.21)

An analogous argument yields

lim
m→∞

∫ T

0

∫

Ω

Pm(um · ∇hwm)ηdxdydz =

∫ T

0

∫

Ω

(u · ∇hw)ηdxdydz. (3.22)

Therefore, due to (3.7)-(3.9), (3.18), (3.21) and (3.22), we pass to the limit for the
Galerkin approximate equations (3.1)-(3.3). It follows that

∫ T

0

∫

Ω

(

∂tw + u · ∇hw − ∂zψ −
1

Re
∆hw

)

ηdxdydzdt = 0, (3.23)

∫ T

0

∫

Ω

(

∂tω + u · ∇hω − ∂zw −
1

Re
∆hω − ǫ2∂zzψ

)

ηdxdydzdt = 0, (3.24)

∫ T

0

∫

Ω

(∇h · u)ηdxdydzdt = 0, (3.25)

for any trigonometric polynomial η with continuous coefficients.
By applying Lemma 2.1 as the arguments in (3.11), we can deduce that u · ∇hw ∈

L4(0, T ;L2(Ω)). Then, since ∂tw, ∂zzψ and ∆hw ∈ L2(Ω× (0, T )), one has

∂tw + u · ∇hw − ∂zψ −
1

Re
∆hw ∈ L2(Ω× (0, T )). (3.26)
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Also, using Lemma 2.1 as the estimates in (3.14), one may derive that u · ∇hω ∈
L2(0, T ;H1

h(Ω)
′). Since ∂zw, ∆hω, ∂zzψ ∈ L2(Ω× (0, T )) and ∂tω ∈ L2(0, T ;H1

h(Ω)
′),

we obtain

∂tω + u · ∇hω − ∂zw −
1

Re
∆hω − ǫ2∂zzψ ∈ L2(0, T ;H1

h(Ω)
′). (3.27)

On account of (3.26) and (3.27), we obtain from (3.23)-(3.25) that

∂tw + u · ∇hw − ∂zψ =
1

Re
∆hw, in L2(Ω× (0, T )); (3.28)

∂tω + u · ∇hω − ∂zw =
1

Re
∆hω + ǫ2∂zzψ, in L2(0, T ;H1

h(Ω)
′), (3.29)

with ∇h · u = 0.
It follows from (3.28)-(3.29) that

u, w ∈ C(0, T ;L2(Ω)). (3.30)

Due to (3.30) and (3.19), one has, for every t ∈ [0, T ], um(t) → u(t) and wm(t) → w(t)
in L2(Ω). In particular, um(0) → u(0) and wm(0) → w(0). On the other hand, by
(3.4), we find that um(0) → u0 and wm(0) → w0. As a result, (u, w)tr satisfies the
desired initial condition: u(0) = u0 and w(0) = w0.

Finally, due to the regularity of solutions, we can multiply (3.28)-(3.29) by (w, ψ)tr

and integrate the result over Ω× (0, t) for t ∈ [0, T ]. Then the energy identity (1.17)
follows.

4. Uniqueness of strong solutions

This section is devoted to proving that strong solutions for the system (1.7)-(1.9)
are unique and depend continuously on the initial data. Assume there are two strong
solutions (u1, w1)

tr and (u2, w2)
tr on [0, T ] in the sense of Definition 1.1. Set u =

u1 − u2 and w = w1 − w2. Therefore,

∂w

∂t
+ u · ∇hw1 + u2 · ∇hw −

∂ψ

∂z
=

1

Re
∆hw, in L2(Ω× (0, T )); (4.1)

∂ω

∂t
+ u · ∇hω1 + u2 · ∇hω −

∂w

∂z
=

1

Re
∆hω + ǫ2

∂2ψ

∂z2
, in L2(0, T ;H1

h(Ω)
′), (4.2)

with ∇h · u = 0.
Since u and w satisfy the regularity (1.16), we can multiply (4.1)-(4.2) by (w, ψ)tr

and integrate over Ω. By using (1.11), (1.12), (1.14) and (1.15), we obtain, for a.e.
t ∈ [0, T ],

1

2

d

dt

(

‖w‖22 + ‖u‖22
)

+
1

Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ ǫ2‖ψz‖
2
2

≤

∫

Ω

|(u · ∇hw)w1|dxdydz +

∫

Ω

|(u2 · ∇hψ)ω|dxdydz. (4.3)
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Next we estimate the two integrals on the right-hand side of (4.3).
Using Lemma 1 with f = w1, g = u and h = ∇hw, we obtain
∫

Ω

|(u · ∇hw)w1|dxdydz

≤ C (‖w1‖2 + ‖∇hw1‖2)
1/2 (‖w1‖2 + ‖∂zw1‖2)

1/2 ‖u‖
1/2
2 ‖∇hu‖

1/2
2 ‖∇hw‖2

≤
1

4Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ C
(

‖w1‖
2
2 + ‖∇hw1‖

2
2

) (

‖w1‖
2
2 + ‖∂zw1‖

2
2

)

‖u‖22.

(4.4)

Also, using Lemma 1 with f = u2, g = ∇hψ, h = ω, we have
∫

Ω

|(u2 · ∇hψ)ω|dxdydz ≤ C‖ω2‖
1/2
2 (‖u2‖2 + ‖∂zu2‖2)

1/2‖u‖
1/2
2 ‖∇hu‖

3/2
2

≤
1

4Re
‖∇hu‖

2
2 + C‖ω2‖

2
2(‖u2‖

2
2 + ‖∂zu2‖

2
2)‖u‖

2
2. (4.5)

Now, we combine the estimates (4.3)-(4.5) to deduce, for a.e. t ∈ [0, T ],

d

dt

(

‖w‖22 + ‖u‖22
)

+
1

Re

(

‖∇hw‖
2
2 + ‖∇hu‖

2
2

)

+ ǫ2‖ψz‖
2
2

≤ C
[

(

‖w1‖
2
2 + ‖∇hw1‖

2
2

) (

‖w1‖
2
2 + ‖∂zw1‖

2
2

)

+ ‖ω2‖
2
2(‖u2‖

2
2 + ‖∂zu2‖

2
2)
]

‖u‖22.

By Gronwall’s inequality, it follows that

‖w(t)‖22 + ‖u(t)‖22

≤
(

‖w(0)‖22 + ‖u(0)‖22
)

eC
∫ t
0(‖w1‖22+‖∇hw1‖22)(‖w1‖22+‖∂zw1‖22)+‖ω2‖22(‖u2‖22+‖∂zu2‖22)ds

≤
(

‖w(0)‖22 + ‖u(0)‖22
)

etC(‖w1(0)‖H1 ,‖u2(0)‖H1), (4.6)

for any t ∈ [0, T ]. In particular, if (u(0), w(0))tr = 0, i.e., the initial values of the two
solutions (u1, w1)

tr and (u2, w2)
tr coincide, then (4.6) implies ‖w(t)‖22 + ‖u(t)‖22 = 0

for all t ∈ [0, T ]. This completes the proof for the uniqueness of strong solutions.
To see the continuous dependence on the initial data, we let (ũ0, w̃0)

tr ∈ (H1(Ω))3

and take a bounded sequence {(un0 , w
n
0 )
tr} of initial data inH1(Ω) such that (un0 , w

n
0 )
tr →

(ũ0, w̃0)
tr in L2(Ω), and ‖un0‖H1, ‖wn0‖H1 , ‖ũ0‖H1 , ‖w̃0‖H1 ≤M for some M > 0. De-

note the corresponding strong solutions by (un, wn)tr and (ũ, w̃)tr, respectively. Then,
on account of (4.6), we have, for all t ∈ [0, T ],

‖w̃ − wn‖22 + ‖ũ− un‖22 ≤
(

‖w̃0 − wn0‖
2
2 + ‖ũ0 − un0‖

2
2

)

etC(‖w̃0‖H1 ,‖un
0
‖H1)

≤
(

‖w̃0 − wn0‖
2
2 + ‖ũ0 − un0‖

2
2

)

eT ·C(M).

It follows that (un, wn)tr → (ũ, w̃)tr in C([0, T ];L2(Ω)). This completes the proof for
the continuous dependence on the initial data with respect to the L2-norm for the
strong solutions.
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5. Appendix

We prove the anisotropic Ladyzhenskaya type inequality stated in Lemma 2.1.

Proof. It suffices to prove the inequality in Lemma 2.1 for smooth periodic functions,
and then pass to the limit using a standard density argument. Recall Ω = [0, L]2 ×
[0, 1]. For a fixed (x, y) ∈ [0, L]2 and for every z, σ ∈ [0, 1], we have

f 4(x, y, z) =

∫ z

σ

d

dξ

(

f 4(x, y, ξ)
)

dξ + f 4(x, y, σ)

= 4

∫ z

σ

f 3(x, y, ξ)fξ(x, y, ξ)dξ + f 4(x, y, σ)

≤ 4

∫ 1

0

|f(x, y, ξ)|3|fξ(x, y, ξ)|dξ + f 4(x, y, σ). (5.1)

Integrating (5.1) with respect to σ over [0, 1], we obtain

f 4(x, y, z) ≤ 4

∫ 1

0

|f(x, y, ξ)|3|fξ(x, y, ξ)|dξ +

∫ 1

0

f 4(x, y, σ)dσ,

and by Cauchy-Schwarz inequality, we have

f 4(x, y, z) ≤ 4‖f‖3L6
z
‖fz‖L2

z
+ ‖f‖4L4

z
. (5.2)

Here we denote

‖f‖Lp
z
=

(
∫ 1

0

|f(x, y, z)|pdz

)1/p

.

Now, if we denote ‖f‖L∞

z
= supz∈[0,1] |f(x, y, z)|, then the inequality (5.2) can be

written as

‖f‖L∞

z
≤ C‖f‖

3/4
L6
z
‖fz‖

1/4
L2
z
+ ‖f‖L4

z
. (5.3)

Thanks to the Hölder’s inequality and (5.3), we have
∫

Ω

|fgh|dxdydz

≤

∫

[0,L]2
‖f‖L∞

z
‖g‖L2

z
‖h‖L2

z
dxdy

≤ C

∫

[0,L]2

(

‖f‖
3/4

L6
z
‖fz‖

1/4

L2
z
+ ‖f‖L4

z

)

‖g‖L2
z
‖h‖L2

z
dxdy

≤ C

[

(
∫

[0,L]2
‖f‖3L6

z
‖fz‖L2

z
dxdy

)1/4

+ ‖f‖4

]

(
∫

[0,L]2
‖g‖4L2

z
dxdy

)1/4

‖h‖2

≤ C
(

‖f‖
3/4
6 ‖fz‖

1/4
2 + ‖f‖4

)

(
∫

[0,L]2
‖g‖4L2

z
dxdy

)1/4

‖h‖2. (5.4)
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Recall the Ladyzhenskaya inequality (see, e.g., [15]) in the three-dimensional peri-
odic domain Ω:

‖ϕ‖p ≤ Cp‖ϕ‖
6−p
2p

2 (‖ϕ‖2 + ‖ϕx‖2)
p−2

2p (‖ϕ‖2 + ‖ϕy‖2)
p−2

2p (‖ϕ‖2 + ‖ϕz‖2)
p−2

2p , (5.5)

for ϕ ∈ H1(Ω) and p ∈ [2, 6]. By (5.5), one has

‖f‖6 ≤ C (‖f‖2 + ‖∇hf‖2)
2/3 (‖f‖2 + ‖fz‖2)

1/3 , (5.6)

and

‖f‖4 ≤ C‖f‖
1/4
2 (‖f‖2 + ‖∇hf‖2)

1/2 (‖f‖2 + ‖fz‖2)
1/4 . (5.7)

By virtue of (5.6) and (5.7), we have

‖f‖
3/4
6 ‖fz‖

1/4
2 + ‖f‖4 ≤ C (‖f‖2 + ‖∇hf‖2)

1/2 (‖f‖2 + ‖fz‖2)
1/2 . (5.8)

Recall the Agmon’s inequality (see, e.g., [1]) in one dimension:

‖φ‖L∞([0,L]) ≤ C‖φ‖
1/2
L2([0,L])‖φ‖

1/2
H1([0,L]). (5.9)

By using (5.9), we obtain
∫

[0,L]2
‖g‖4L2

z
dxdy =

∫

[0,L]2

(
∫ 1

0

g2dz

)(
∫ 1

0

g2dz

)

dxdy

≤ C

[

∫ L

0

∫ 1

0

(
∫ L

0

g2dx

)

1

2
(
∫ L

0

(

g2 + g2x
)

dx

)

1

2

dzdy

]

·

[

∫ L

0

∫ 1

0

(
∫ L

0

g2dy

)

1

2
(
∫ L

0

(

g2 + g2y
)

dy

)

1

2

dzdx

]

≤ C‖g‖22
(

‖g‖22 + ‖∇hg‖
2
2

)

. (5.10)

By combining (5.4), (5.8) and (5.10), we conclude the proof of Lemma 2.1. �

Acknowledgment. The work of E.S.T. was supported in part by the ONR grant
N00014-15-1-2333.

References

1. S. Agmon, Lectures on elliptic boundary value problems, AMS Chelsea Publishing, Providence,
RI, 2010.

2. H. O. Akerstedt, J. Nycander, V. P. Pavlenko, Three-dimensional stability of drift vortices, Phys.
Plasmas 3 (1996), no. 1, 160–167.

3. C. Cao, A. Farhat, E. S. Titi, Global well-posedness of an inviscid three-dimensional pseudo-

Hasegawa-Mima model, Comm. Math. Phys. 319 (2013), no. 1, 195–229.



16 C. CAO, Y. GUO, AND E. S. TITI

4. C. Cao, E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one

entry of the velocity gradient tensor, Arch. Ration. Mech. Anal. 202 (2011), no. 3, 919–932.
5. J. G. Charney, On the scale of atmospheric motions, Geofys. Publ. Norske Vid.-Akad. Oslo 17,

(1948). no. 2, 17 pp.
6. H. Gao, A. Zhu, The global strong solutions of Hasegawa-Mima-Charney-Obukhov equation, J.

Math. Phys. 46 (2005), no. 8, 083517, 6 pp.
7. B. Guo, Y. Han, Existence and uniqueness of global solution of the Hasegawa-Mima equation, J.

Math. Phys. 45 (2004), no. 4, 1639–1647.
8. K. Julien, E. Knobloch, R. Milliff, J. Werne, Generalized quasi-geostrophy for spatially

anisotropic rotationally constrained flows, J. Fluid Mech. 555 (2006), 233–274.
9. K. Julien, E. Knobloch, Reduced models for fluid flows with strong constraints, J. Math. Phys.

48 (2007), no. 6, 065405, 34 pp.
10. A. Hasegawa, K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasma,

Phys. Fluids 21 (1978), 87–92.
11. A. Hasegawa, K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform

plasma, Phys. Rev. Lett. 39 (1977), 205–208.
12. A. Hasegawa, M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50 (1983), 682–686.
13. A. Hasegawa, M. Wakatani, A collisional drift wave description of plasma edge turbulence, Phys.

Fluids, 27 (1984), 611–618.
14. S. Kondo, A. Tani, Initial boundary value problem for model equations of resistive drift wave

turbulence, SIAM J. Math. Anal. 43 (2011), no. 2, 925–943.
15. O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-Verlag,

New York, 1985.
16. A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture

Notes in Mathematics, 2003.
17. J. D. Meiss, W. Horton, Solitary drift waves in the presence of magnetic shear, Phys. Fluids 26

(1983), 990–997.
18. A. M. Obukhov, Concerning the geostrophic wind, (Russian) Izvestiya Akad. Nauk SSSR. Ser.

Geograf. Geofiz. 13 (1949), 281–306.
19. L. Paumond, Some remarks on a Hasegawa-Mima-Charney-Obukhov equation, Phys. D 195

(2004), no. 3-4, 379–390.
20. J. Pedlosky, Geophysical fluid dynamics, Springer-Verlag, 1987.
21. M. Sprague, K. Julien, E. Knobloch, J. Werne, Numerical simulation of an asymptotically reduced

system for rotationally constrained convection, J. Fluid Mech. 551 (2006), 141–174.
22. R. Zhang, B. Guo, Dynamical behavior for the three-dimensional generalized Hasegawa-Mima

equations, J. Math. Phys. 48 (2007), no. 1, 012703, 11 pp.

Department of Mathematics & Statistics, Florida International University, Mi-

ami, Florida 33199, USA

E-mail address : caoc@fiu.edu

Department of Mathematics & Statistics, Florida International University, Mi-

ami, Florida 33199, USA

E-mail address : yanguo@fiu.edu

Department of Mathematics, Texas A&M University, College Station, TX 77843,

USA AND Department of Computer Science and Applied Mathematics, Weizmann

Institute of Science, Rehovot 7610001 Israel

E-mail address : titi@math.tamu.edu, edriss.titi@weizmann.ac.il


	1. Introduction
	1.1. Literature
	1.2. The model
	1.3. Preliminaries
	1.4. Main result

	2. A priori estimates
	2.1. Estimate for "026B30D w"026B30D 22 + "026B30D u"026B30D 22
	2.2. Estimate for "026B30D "026B30D 22
	2.3. An anisotropic Ladyzhenskaya type inequality
	2.4. Estimate for "026B30D h w"026B30D 2
	2.5. Estimate for "026B30D wz"026B30D 22 + "026B30D uz"026B30D 22

	3. Rigorous justification of the a priori estimates and the existence of strong solutions
	4. Uniqueness of strong solutions
	5. Appendix
	References



