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ABSTRACT OF THE DISSERTATION

Investigation of the limits of broadband robust matched-field
processing
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Localizing and tracking underwater targets is of interest to the study of

sound emitting marine life, physical or chemical phenomena affecting acoustic

wave’s propagation or to naval SONARS, to cite a few applications. Matched-

field processing (MFP) is a passive localization method based on comparing the

pressure fields received on an hydrophone array with synthesized fields coming from

hypothetical source locations. The best match between modeled and received sig-

nals yields an estimate of the source’s position. Successful localization requires

a number of conditions to be met. Low-frequency, loud signals propagating in a

steady well studied environment without presence of loud interferers have been

tracked over tens to hundreds of kilometers in the literature.
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This dissertation addresses MFP’s localization and tracking performance

at low signal-to-noise ratios, in the presence of environmental mismatch between

modeled and real propagating environments and/or for high frequency scenarios.

The issue of robustness and snapshot deficiency are addressed by implementing the

white noise constraint adaptive processor. Throughout most of the dissertation, a

comparison between conventional, minimum variance distortionless response and

white noise constraint algorithms’ localization performance is provided.

Broadband algorithms, processing frequencies both in a coherent and inco-

herent way are introduced to enhance MFP’s ability to detect low signal-to-noise

ratio sources. A technique to estimate and include the unknown source phase to

the processing is developed, and the extra-gain it provides is determined.

The enhanced sensitivity of MFP to environmental variability in high-

frequency scenarios is investigated using data emitted from multiple sources to

create replica vectors. A combination of robust adaptive MFP using the white

noise constraint method and coherent broadband processing was shown to yield

promising localization results in high-frequency scenarios for which MFP is typi-

cally problematic.
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Chapter 1

Introduction
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Understanding sound propagation in a media has received considerable at-

tention over the last fifty years and shown to be a valuable tool in a wide array

of disciplines ranging from biomedical [1, 2, 3, 4, 5], quality control [6, 7], com-

munication [8, 9, 10] and astrophysics [11, 12, 13], to name a few. Typically, an

array of sensors is deployed in or on the media and its output signal is processed

using knowledge of the environment and a propagation model to infer parameters

of interest. Since sound waves undergo much less dissipation than electromagnetic

ones in the water, acoustic naturally imposed itself as the method of choice to

communicate or study underwater phenomena [14, 15].

One important area of interest is the inverse problem of source detection,

characterization and localization. Beamforming methods were developed to es-

timate the angle of arrival of a signal [16, 17, 18]. The array is ”steered” in a

particular look direction by modeling an incoming plane wave signal at that angle.

The best match between various impinging angles and the received pressure field

yields an estimate of the source direction. In the ideal case of perfect knowledge

of the environment, the phases of the signal’s Fourier transform at the frequency

of interest match the ones of the synthetic plane wave at each element only when

the array is steered in the true source direction. The sum of the phase-corrected

elements’ response consequently reaches its maximum value, corresponding to a

peak in a beamformer power versus angle-of-arrival plot. A number of signal pro-

cessing techniques, called adaptive in that they incorporate the signal itself in the

modeling of the synthetic field are available to improve the signal’s detectability by

widening the main lobe, lowering the sidelobe level and canceling out interfering

signals [19, 20, 21, 22, 23].

Plane wave beamforming has been shown to experimentally detect acoustic

sources in somewhat simple, uniform, unbounded environments [24, 25, 26]. But

because of the presence of the reflective air/water/sediment interfaces, the ocean

is a bounded acoustic waveguide in which sound propagation from source to sen-

sors is altered by reflection, refraction and scattering. In effect, the wavefront is

distorted and plane wave picture is modified by multipath phenomena. Matched-

field processing (MFP) is a generalization from plane wave beamforming in which
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the complexity of the full field structure is taken into account in the propagation

model, and therefore exploited to better detect the source this time in range, depth

and azimuth [27, 28]. The array output can be visualized as a color plot of power

versus range and depth for fixed azimuth, called the ambiguity surface. The main

peak gives an estimate of the expected position of the source. Adaptive techniques

translate directly from plane wave beamforming to MFP.

Matched-field processing in realistic environments, being more often than

not complicated but somewhat predictable, can be used as a way to localize sources

but also infer information about the oceanic waveguide itself such as sound speed

profile or seafloor parameters [29, 30, 31]. The process can be done passively,

meaning that it uses the sound generated by the target itself to get an estimate

of its position, and is as a result minimally invasive. This processing is applicable

to concerns such as global warming by monitoring underwater temperature pat-

terns, detecting military threats, earthquakes, structural monitoring, leak testing,

biomedical imaging [2, 5, 3, 6, 7, 32, 33], etc.

While shown to successfully localize sources with great accuracy under the

right circumstances [28, 34, 35], MFP’s performance is highly dependent on a num-

ber of factors. The most obvious one is probably the inevitable mismatch between

true and modeled fields. Mismatch can come from the propagation model differing

from the actual signal’s characteristics, and an environment too simplified or erro-

neously estimated. Further, the aperture of the array may be too small to sample

the whole multipath structure. Low frequency signals are much more forgiving to

environmental errors. Higher frequency signals of the order of a couple kilohertz

only, on the other hand are typically problematic and subject to current research

[36, 37]. The strength of the source and its distance from the receivers is also

critical in the success of MFP. Both conventional and adaptive techniques exhibit

a signal-to-noise ratio (SNR) threshold, or minimum detectable level under which

localization becomes erroneous. The depth of the water column also affects MFP’s

performance, as shallow water environments lead to more complicated multipath

structures than deep water ones [38]. Finally, a more insidious source of failure is

linked to the concept of time scales. Indeed, the ocean is a variable environment.
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Internal waves, tides, biological processes, circadian temperature changes to name

a few are associated with a respective time scale. Monitoring and processing acous-

tic data beyond those times requires an explicit treatment of those phenomena in

the model to properly reproduce the received signals. Sources and interferers also

come with a time scale of their own. Targets are rarely static, and the faster they

move, the faster they cross the range-depth array processing resolution cells, re-

ducing the time length of data available to localize the source within a cell and

therefore degrading the signal processing performance.

Those factors limit the range-depth localization performance of MFP in dif-

ficult scenarios, however an alternative but important application of the technique

is the more forgiving classification of surface versus submerged sources, along with

an estimate of the receiver-source distance. Indeed, this information is not avail-

able using techniques like plane wave beamforming but is essential for many naval

applications, for example.

Scope of this thesis

A number of techniques are applied to mitigate the effects of unfavorable

factors, and extend MFP’s performance domain, making it more suited to real

life applications. These modifications to the algorithm are the subject of current

research, and the focus of this thesis project. Some alterations might help reduce

the sensitivity to a particular factor, but render it worse in another area. Care

must therefore be taken in assessing the potential main causes of failure first to

better choose the right compromise suited to the situation. For instance, applying

an adaptive method like the minimum variance directionless response (MVDR)

algorithm will dramatically improve the detectability of the signal by lowering the

background noise level and canceling out interferers. Unfortunately, the sensitivity

to any kind of mismatch is also greatly enhanced in the process, making it hardly

usable outside of the simulated world [17].

Chapter 2 introduces the relevant aspects of matched-field processing. Con-

ventional and adaptive techniques are introduced, as well as narrowband and
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broadband incoherent and coherent methods. All the possible combinations ob-

tained are compared using simulated and experimental data. The white noise

constraint adaptive method is shown to be more robust to environmental mis-

match and snapshot deficiency, while coherent broadband techniques increase the

detectability of a weak signal.

Chapter 3 is a published study on coherent broadband white noise con-

straint processing using simulated and experimental data to validate the algorithm.

The dynamic range bias obtained in snapshot deficient scenarios is investigated and

shown to be consistent with narrowband results presented in the literature.

Chapter 4 presents a soon-to-be-submitted paper on fully coherent matched-

field processing. A technique to extract the source signal spectrum’s phases from

the data is presented and the added processing gain offered is validated through

theory, simulation and experimental data.

Chapter 5 provides a soon-to-be-submitted study on how to mitigate the

effect of environmental fluctuations on high-frequency matched-field processing.

A singular value decomposition technique to extract the most stable features of

sound-speed perturbed replica vectors gave promising results on experimental data.

Finally, Chapter 6 presents the results obtained and provides related future

areas of research.
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In this chapter, the concept and implementation of matched-field process-

ing (MFP) is briefly reviewed. The notation and terminology used throughout the

remainder of the document is introduced. A description of the signal, array, waveg-

uide and propagation model is also provided. We then develop the formulations

describing the conventional MFP and two types of adaptive methods, the mini-

mum variance distortionless response (MVDR) and white noise constraint method

(WNCM). Simulated and real data outputs are presented to compare the different

methods’ ability to locate an acoustic source.

2.1 Measured and modeled acoustic field

2.1.1 Characterization of the measured field and environ-

ment

Acoustic targets are modeled as point sources emitting a usually broadband

signal from one point (Rs, Zs) in the waveguide, Rs being the horizontal distance

between the source and the array, and Zs the depth of the source. The origin of

the range axis is set at the receiver array’s position. The depth axis is pointing

downward, its origin being the water surface. Figure (2.1) displays the simplified

range-independent oceanic waveguide, where the fluid halfspace is infinite in the

horizontal direction and the surface and bottom planes are parallel. The air-sea

interface is considered to be a perfectly reflecting boundary, as opposed to the

semi-infinite bottom halfspace, where energy is allowed to be transmitted and lost.

The acoustic waves travel away from the source, undergoing reflections, refraction,

dissipation until they reach the vertical line array (VLA) where each element will

record the corresponding time series. Each time series is then Fourier transformed

and the data in the frequency bins associated to the signal’s bandwidth is extracted.

Let x
(i)
ω denote the complex field received on the hydrophone i at angular

frequency ω, N the number of hydrophones in the array, and L the number of

individual frequencies considered.

x(i)ω = S(ω)G(i)(0, zi, Rs, Zs, ω) +Q(i)(ω), (2.1)
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Figure 2.1: A typical ocean environment. The fluid halfspace and sediment

layers are infinite in the horizontal direction. A source is present at range Rs

from the vertical line array (VLA) or center of horizontal line array (HLA) and

depth Zs, where the origin of the depth axis is the air-sea interface. Each layer is

characterized by its density, sound speed and absorption as a function of depth.
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where S(ω) is the frequency dependent complex source spectrum, the expression

G(i)(0, zi, Rs, Zs, ω) the ocean waveguide’s Green’s function between the source

location and the element i of the receiving array, and Qi(ω) the complex noise

component corrupting the signal. This noise is a combination of sensor noise and

ambient noise.

For narrowband signals, the mean input signal-to-noise ratio (SNR) at the

array elements is defined as [1]:

SNRInput = 10log

(
1
N

∑N
i=1 |S(ω)G(i)(0, zi, Rs, Zs, ω)|2

1
N

∑N
i=1 |Q(i)(ω)|2

)
. (2.2)

To improve the signal’s detectability over noise, an array of hydrophones is

deployed instead of a single element. The amount by which the signal is enhanced

over the noise at the output of the array is referred to as array gain (AG):

AG =
SNROutput

SNRInput

. (2.3)

When the array is steered in the right direction, the signal is summed coher-

ently along the receivers, while the incoherent part of the noise adds incoherently.

The SNR at the output of the array becomes:

SNROutput = 10log

(∑N
i=1 |S(ω)G(i)(0, zi, Rs, Zs, ω)|2

1
N

∑N
i=1 |Q(i)(ω)|2

)
,

and the array gain is

AG = 10log (N) . (2.4)

2.1.2 Generation of the synthetic field

The Green’s function is the signature of the acoustic wave propagation from

one point in the waveguide to another, or in other words the impulse response of

the ocean channel between the two points. It includes the contribution attributed

to both direct-path and multipath components of the field.

In order to properly characterize and localize the source, the Green’s func-

tions between every point of the waveguide and each array elements must be
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constructed. This requires a comprehensive understanding of energy propaga-

tion along a waveguide, and a detailed knowledge of the environment itself. For

instance, a proper propagation model requires an estimate of the shape of the

ocean/sediment and sub-bottom interfaces, as well as the density, attenuation and

sound speed profiles in each layer. While a range independent stratified environ-

ment is often good enough to properly model the pressure field on the array, higher

frequencies, internal waves or sub-surface structures may require an estimate of

those parameters as a function of range as well. Additionally, the array elements

position has to be known with a precision of about λ/10, λ being a characteristic

wavelength of the signal sent.

Computing the Green functions of a system involves solving the frequency

domain wave equation, also known as the Helmoltz equation [2, 3]:

∆2G (r, z) + k2 (z)G (r, z) = −δ (r −Rs) δ (z − Zs) , (2.5)

where the wavenumber is defined as

k2 (z) =
ω2

c2 (z)
. (2.6)

The forcing term (delta functions) corresponds to a monochromatic point source

at (Rs, Zs).

For a range-independant environment unbounded in the horizontal direc-

tion, the wave equation can be separated, and the solution expressed as a product

of the depth dependent Green’s function g (kr, z, Zs) and horizontally traveling

plane waves eikrr, where kr represents the horizontal wavenumber.

G (r, z) =
1

4π2

∫ ∞
−∞

g (kr, z, Zs) e
ikr(r−Rs) dk. (2.7)

By substituting Eq. 2.7 into the wave equation Eq. 2.5, one can show that

the depth dependent Green’s function obeys:

d2g

dz2
+
(
k2 (z)− k2r

)
g = −δ (z − Zs) . (2.8)

The homogeneous version of Eq. 2.8 is an eigenvalue problem whose eigen-

vectors are called the vertical normal modes of the waveguide, Un. Hence the so-

lution of the wave equation is a product of standing waves in the vertical bounded
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direction and traveling waves in the infinite horizontal one. The modal functions

satisfy:
d2Un
dz2

+
(
k2 (z)− k2rn

)
Un = 0, (2.9)

subject to the pressure release surface and the boundary condition at the water-

bottom interface.

The normal mode representation of the wave equation’s far field solution in

a cylindrical coordinate system is written as:

G (r, z) =
iρ (Zs)

(8πr)1/2
e−

iπ
4

∑
n

Un (Zs)Un (z)√
krn

eikrnr. (2.10)

The eigenvectors or modes are orthogonal, and normalized according to:∫ ∞
0

Um (z)Un (z)

ρ (z)
dz = δm,n, (2.11)

where δm,n is the Kronecker symbol.

The associated eigenvalues are real and smaller than ω/cmin, where cmin is

the lowest sound speed in the water column. The number of propagating modes

in the waveguide is thus dependent on frequency, high frequencies involving more

modes than low frequencies.

Each mode travels along the waveguide at its own phase and group veloc-

ities, both functions of frequency as well. This implies that the normal modes

will disperse as they propagate. Hence, an array positioned several water depths

away from a source emitting an impulse signal will receive a smeared version of

the signal, longer than the original pulse due to dispersion in the waveguide.

The phase velocity of a mode is the horizontal velocity at which its phase

is displaced [3]. It is defined as

vn =
ω

krn
. (2.12)

It may not correspond to a particular physical entity, and is not the speed at which

the energy is propagating. The steeper the propagation angle the larger the phase

speed. For a horizontal propagation, the phase speed equals the speed of sound.

The group speed, on the other hand, is the horizontal velocity at which the

information and energy actually propagates down the channel. It is defined as

un =
dω

dkrn
. (2.13)
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The group speed is always less than or equal to the maximum speed of the sound

speed profile.

Equation 2.10 allows us to model the monochromatic acoustic field at (r, z)

coming from a point source at (Rs, Zs) provided that the layer depths, sound speed,

density and attenuation are known. Those field estimates can now be matched to

the received signal, giving its name to the matched-field processing technique.

2.2 Narrowband conventional MFP

2.2.1 Formulation of the algorithm

Matched-field processing is essentially performing a sum of correlations be-

tween modeled and measured acoustic fields over elements. Typically, the complex

field received on each hydrophone is stacked in a (Nx1) vector:

xω =
[
x
(1)
ω , x

(2)
ω , . . . , x

(N)
ω

]T
, (2.14)

where the notation T denotes the transpose operator.

This section introduces the basis of matched-field processing techniques at

a single frequency. The angular frequency dependance ω is therefore dropped from

the notation for clarity purposes, but will be reinstated in section 2.4 when multiple

frequencies are taken into account.

The modeled field on the array from a hypothetical source at (r, z) can be

written in a (Nx1) vector as well, commonly called the replica vector, or weight

vector w.

w (r, z) =
[
w(1), w(2), . . . , w(N)

]T
. (2.15)

The expression of the weight vector varies depending on the type of algorithm, but

the matched-field processor output is always expressed as:

P (r, z) = |wH (r, z)x|2

= wH (r, z)xxHw (r, z) , (2.16)

where H refers to the Hermitian transpose, or complex conjugate transpose opera-

tion. When the received time series are long enough, a better estimate of the signal
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can be obtained by averaging data segments. To do so, the received signal at each

element is divided into K 50% overlapped segments of data, and each segment

is Fourier transformed. If the source and environment are relatively stationary

for the whole duration of the K time segments, averaging the snapshots should

enhance the signal and average the noise down.

Therefore, the output of the matched filter is estimated in practice according

to:

P (r, z) = wH

[
1

K

K∑
q=1

xqx
H
q

]
w

= wHRw. (2.17)

where R is the cross-spectral density matrix (CSDM) of the ambient field.

Its rank is the number of snapshots K involved in the average. Since adaptive

algorithms often involve the inverse of the CSDM, R needs to be well defined. A

number of snapshots equal or bigger than twice the number of elements is usually

enough for the matrix to be invertible. When the ocean variability or source

motion prevents the acquisition of 2N segments, we are in a non-optimal, ”snapshot

deficient” scenario for which the inverse of the CSDM has to be estimated using

diagonal loading or subspace methods via singular value decomposition of R [4, 5].

Conventional MFP, introduced by Bucker [6, 7], is the most intuitive of all

algorithms. It compares the received data to the modeled one by correlating them,

or equivalently taking the inner product of the complex conjugated synthetic field

and measured one in the frequency domain.

The weight vector is given by the modeled Green’s function from Eq. 2.10

between a source at (r, z) and the array elements at (0, zi):

wConv (r, z) = d (r, z)

=

[
G (r, z1, z) , G (r, z2, z) , . . . , G (r, zN , z)

]T∣∣∣[ G (r, z1, z) , G (r, z2, z) , . . . , G (r, zN , z)
]∣∣∣ . (2.18)

The conventional MFP output at one frequency is described as:

PConv (r, z) = dH (r, z)Rd (r, z) . (2.19)
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2.2.2 Simulated and real data example using the SWellEx-

96 Experiment

Let us consider a relatively straightforward case of a strong source in a

shallow water environment emitting a low frequency single tone to a vertical array.

The SWellEx-96 experiment data set [8, 9] is a prime choice to study and compare

various MFP algorithms, in part because of the extensive study of the environment

conducted, providing us with an accurate description of the media, but also because

of the low ocean variability during the scope of the experiment. This data set will

be used later on in Chapter 4.

The experiment was conducted between May 10 and 18, 1996 near San

Diego, California. Two acoustic sources were towed along an isobath in 216 m of

water, transmitting multitones at various strength between 50 and 400 Hz. Three

types of arrays were deployed in the water to receive the signal. A vertical line

array (VLA), and a tilted line array (TLA) recorded 75 minutes of data, while two

horizontal line arrays (HLA North and South) recorded the last 50 minutes only.

The deep source (Zs = 54m) transmitted five sets of 13 tones simultane-

ously. The ”High Tonal Set” was projected at about 158 dB per frequency, the

second tonal set at 132 dB and each subsequent set 4 dB down from the previ-

ous one. Having multiple frequencies available in the signal sent is an asset, as

illustrated in Chapter 4, since it allows us to apply incoherent or coherent broad-

band processing techniques. Having several frequencies at various projected level

at hand is a particularly nice feature of this data set. This data gives the user

an unique opportunity to compare the algorithms’ ability to detect weaker and

weaker sources, which will be especially useful in Chapter 4.

Figure (2.2), extracted from [9] shows the experimental setup overlaid on

the site bathymetry. The various arrays’ position are given by the green stars, and

the source track by the blue line, marked at 5 min intervals. The source moved in

a straight line towards then away from the arrays. As apparent on Fig. (2.5), the

track passed about a km away from each array, and as far as 7 km for HLA North

and South and 8.5 km for VLA and TLA.

Figure (2.4) gives a schematic representation of the environmental parame-
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Figure 2.2: Source track and arrays’

position along the 75 min long transect.

Each blue dot represents the source’s

position every 5 min.
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ters available to model the acoustic field. The VLA spanned the second half of the

216.5m deep water column, with 21 elements equally spaced by 5.6 m between 94

m and 212 m depths. The seafloor is composed of three sediment layers. The first

one of 23.5 m thick has a compressional attenuation of 0.2 dB/kmHz, a linearly

increasing sound speed from 1572.368 m/s to 1593.016 m/s and a density of 1.76

g/cm3. It overlays a 800 m thick mudstone layer with a density of 2.06 g/cm3,

an attenuation of 0.06 dB/kmHz and sound speed from 1881 m/s to 3245 m/s.

Finally, the bottom halfspace has a 2.66 g/cm3, 0.02 dB/kmHz attenuation and

sound speed of 5200 m/s.

A conductivity-temperature-depth (CTD) survey was conducted to assess

the ocean’s variability during the week long experiment. Fifty-one CTD casts are

available, about one every 3 hours. Figure (2.3) shows the resulting sound speed

profiles in the water column versus depth. The thermocline is around 20 m depth.

The sound speed spread is only a couple m/s wide under the thermocline, and at

most 10 m/s in the surface layer over a week. The ocean environment is therefore

not only very well studied over the duration of the experiment, but also stable

enough to be well suited to low frequency MFP.

To demonstrate the feasibility of matched-field source localization and il-

lustrate the performance of conventional MFP at a single frequency, a simulated

SWelleX data set and environment is first implemented. The synthetic results

obtained will then be compared to the corresponding experimental results.

The lowest frequency of the high level set of tones (49 Hz) is chosen to

implement MFP. The simulated monochromatic source signal is created by adding

isotropic noise to the modeled acoustic field obtained from the normal mode equa-

tion Eq. 2.10 at Rs = 4250m and Zs = 54m. We set the number of snapshots to

be twice the number of elements, ie 42 snapshots. Therefore, we need to create

42 noise realizations and add them to the signal. The noise level is set such that

the signal-to-noise ratio at each element is 12.5 dB. The noise created is complex,

with a random phase and an amplitude following the Rayleigh distribution at each

element. The snapshots are then combined to create the cross spectral density

matrix, according to Eq. 2.17.
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We then set a grid in range and depth to study the match between the

simulated data and the replica field at each point. Typically, a spacing of at least

λ/10 in depth and a couple λ in range, where λ is the signal’s wavelength is required

to sample the search space adequately. In our case, λ = 30.6m, and the grid points

are set to be 0.5 m apart in depth (≈ λ/60) and 25 m apart in range (≈ 0.8λ) up

to 10 km from the array. The waveguide is therefore densely sampled. The replica

field is constructed for each grid point using the normal mode solution to the wave

equation Eq. 2.10, and matched to the data according to Eq. 2.17.

Figure (2.6) shows the simulated ambiguity surface obtained. The main

lobe is normalized to zero dB, and the dynamic range is set to display the results

between 0 and 10 dB down the maximum. The circle represent the position of

the simulated source, and the square the position of the conventional algorithm’s

maximum. As apparent on the figure, the MFP processor does localize the source.

However, some of the sidelobes are so high that it renders the localization ambigu-

ous, which is a typical result using conventional, narrowband MFP.

This simulated output is now compared to the real data one. The received

time series at each element are extracted at T = 30min and divided into 42

- 50% overlapped segments. The length of the snapshots must be chosen long

enough such that the spread of modes (due to dispersion) propagating at the

frequency of interest has fully travelled from the source to the array, and that

the frequency bin of the snapshot’s Fourier transform is small enough to limit the

signal’s contamination by noise. But the snapshots cannot be too long either, since

the environment, receivers and source have to remain somewhat stationary during

the total duration of the 42 - 50% overlapped segments. In our case, by inspection

of the lowest and highest group speeds of the modes at 49 Hz ( 1188 m/s and

1488 m/s respectively), the spread in time of arrival of the modes at the array is

t = 1.7s, or 2550 points sampled at fs = 1500Hz. We chose a snapshot length

of 213 = 8192 points, well above the time needed to capture the modes spread

and have a discriminating frequency bin, but small enough for the environment to

remain stable. The cross-spectral density matrix is then constructed the usual way,

and conventional MFP is applied to the data to determine the source’s position in
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Figure 2.6: Simulated conventional
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Figure 2.7: Real data conventional

MFP at 49 Hz.The circle represent the

position of the source, and the square

the position of the conventional algo-

rithm’s maximum.

range and depth.

Figure (2.7) displays the experimental ambiguity surface obtained, also nor-

malized such that the maximum is at 0 dB, and showing a 10 dB dynamic range.

The real data output is really close to the simulated one. The source is successfully

localized, demonstrating the robustness of the conventional algorithm to presence

of environmental mismatch between modeled and real scenarios. But as for the

simulated case, the presence of high sidelobes prevents an unambiguous source

localization.

While conventional MFP is relatively robust to the presence of mismatch

between the environment used to propagate the modeled pressure field and the

actual environment, it lacks resolution and displays sidelobes often too high to

localize the position of the source without ambiguity. This has been dealt in the
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narrowband beamforming/MFP literature by introducing adaptive algorithms.

2.3 Narrowband adaptive MFP

In this section, the minimum variance distortionless response (MVDR)

and white noise constraint method (WNCM) are presented, and their localiza-

tion performance is evaluated on modeled and experimental data obtained from

the SWellEx-96 experiment.

2.3.1 The minimum variance algorithm

Adaptive processors are non linear methods obtained by solving a con-

strained optimization problem. They use the data itself to construct optimum

weights. The Minimum Variance Distortionless Response (MVDR) [3, 10] pro-

cessor is the most widely known and used adaptive algorithm. As with every

matched-field processor, the MVDR output takes the form:

P (r, z) = wHRw. (2.20)

The weight vector is determined by solving

min
w

wHRw subject to wHd = 1, (2.21)

where d is the conventional weight vector at (r, z).

This optimization problem can be interpreted as a filter which passes the

look direction signal undistorted while rejecting noise and interferers.

Using the method of the Lagrange multiplier, we obtain the well known

solution:

wmvdr =
R−1d

dHR−1d
. (2.22)

Substitution into Eq. 2.20 yields the final expression of the MVDR power output:

Pmvdr (r, z) =
1

d (r, z)H R−1d (r, z)
. (2.23)

This algorithm enhances the resolution considerably in comparison to the

conventional processor, however this exceptional resolution capability comes with
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Figure 2.8: Simulated MVDR MFP
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sition of the simulated source, and the
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an increased sensitivity to slight mismatch between the modeled and actual envi-

ronment [2, 11, 12].

For comparison purposes, the same portion of simulated and received signal

as in Sec. 2.2.2 is used to generate the MVDR ambiguity surfaces. Since enough

snapshots are involved in the creation of the CSDM (twice the number of elements),

the matrix is well conditioned and invertible.

Figure (2.8) shows the simulated MVDR ambiguity surface obtained. As

expected, the optimization process allows the signal to pass undistorted while

minimizing the amount of noise and interferers. The background level has been

greatly reduced, and the median value of the ambiguity surface went from -6.7 dB

for the conventional to -10.4 dB for the MVDR. The sidelobe level is also lower

(6 dB down the maximum for the simulated MVDR compared to less than a dB
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down for the simulated conventional), rendering the algorithm more discriminating.

However, this increase in resolution also means that the environment needs to

be known with more accuracy. In fact, the MVDR algorithm is so sensitive to

any kind of mismatch that it is often not practical for experimental localization

purposes. Figure (2.9) shows the MVDR ambiguity surface obtained from real

data at 49 Hz. The sidelobes and background noise are indeed lowered and the

median value of the power output is now -9.3 dB instead of -5.7 dB obtained with

the conventional algorithm. But the source is now incorrectly localized, due to

imperfect reproduction of the pressure field.

A number of adaptive techniques inspired from the MVDR have been pro-

posed in the literature [13, 14, 15, 11, 16]. The concept is to modify the algorithm

such that the noise and interferers level are still reduced, but the high resolution is

relaxed, making the process more forgiving to uncertainties in the model. Robust-

ness has been enhanced by either (1) enlarging the search space or providing some

sort of environmental blurring [13, 17, 15, 16] or (2) constraining the algorithmic

cause of the instability [14, 11]. The white noise constraint method, described

in the next section belongs into the second category and is a good candidate for

robust experimental source localization.

2.3.2 White noise constraint method

Many sources of errors are uncorrelated from sensor to sensor, and hence

appear to the array like spatially white noise. Cox et al [14] showed that the

gain against uncorrelated noise is a measure of robustness, or in other words the

sensitivity of the algorithm to signal mismatch is equal to the reciprocal of the

white noise gain. This observation led them to introduce an inequality constraint

on the gain against spatially white noise. This modified MVDR, called White

Noise Constraint Method (WNCM) algorithm, consequently lost some of its high-

resolution characteristics along with its requirement for very precise knowledge of

the environment.
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The white noise gain is defined as:

Gw =
|wHd|
wHw

. (2.24)

The new optimization problem maximizes the gain against white noise in

an effort to reduce the sensitivity of the MVDR processor to mismatch:

min
w

wHRw subject to wHd = 1 and wHw ≤ δ−2, (2.25)

which yields:

wwncm (r, z) =
(R + εI)−1 d

dH (R + εI)−1 d
. (2.26)

The value of ε is such that the third inequality of Eq. 2.25 is satisfied.

For each position (r, z), the MVDR weight vector is implemented. If its

norm satisfies the inequality condition, no modification is made and the WNCM

weight vector is just the MVDR one. If on the other hand, the norm of the MVDR

weight vector is bigger than the constraint, increasing values of epsilon are added

to the diagonal of the CSDM, which corresponds to adding white noise to the

system, until the inequality constraint is satisfied.

Note that as ε gets bigger and bigger, R becomes negligible compared

to εI, and the WNCM weight vector approaches the conventional weight vector

d/
(
dHd

)
. In effect, the WNCM processor is dynamically transitioning between

the MVDR and conventional outputs at a different rate for each grid point. In

essence, it takes advantage of the conventional algorithm’s wide main lobe render-

ing it robust to mismatch while keeping the high resolution and low sidelobes of

the MVDR elsewhere.

A graphical illustration of the conventional, MVDR and WNCM weight

vectors implementation has been worked out by Maksym [11]. Let us assume that

the array is composed of two receivers only so all vectors are 2-dimensional, and

that the components are real for simplicity of visualization. Each vector can then

be mapped in the real (w1,w2) space. The signal vector received from the source

ds on each element is represented as the pink vector on Fig. (2.10).

Now consider the normalized weight vector of the conventional beamformer

d at (r, z) different from (Rs, Zs), represented in green on the figure. Since the look

position is different from the source location, those two vectors are not collinear.
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ds 

Figure 2.10: Construction of the MVDR weight vector. From the formulation

of the MVDR’s optimization problem in Eq. 2.21, the tip of the weight vector

is constrained to be along the dotted line such that its projection onto the look

”direction” is the conventional weight vector itself (in green) to satisfy wHd = 1,

but also such that its projection onto the data (in pink) is minimized.
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The aim is to find the location of the MVDR’s weight vector. To do so,

we look back to the formulation of the MVDR’s optimization problem, given in

Eq. 2.21. The constraint wHd = 1 constrains the tip of the MVDR vector to

be along the dotted line such that its projection onto the look ”direction” is the

conventional weight vector itself. The first part of the optimization minimizes the

projection of the weight vector onto the data. Hence the tip of the MVDR weight

vector is found to be at the intersection between the two dotted lines wHds = 0

and wHd = 1.

Let us consider the case of the WNCM processor. If the norm of the MVDR

weight vector for the specific look position (r, z) is smaller than the constraint set

by the user, then the WNCM weight vector is just the MVDR one. But if it is bigger

than the constraint, the right amount of white noise will be added to the CSDM

such that wHw ≤ δ−2. The tip of the weight vector is still constrained to be on

the dotted line wHd = 1, but the condition wHds = 0 is relaxed and the WNCM

weight vector’s tip is at the position along the wHd = 1 line which guarantees the

norm of the weight vector to be just under the value of the constraint, represented

in blue in the Fig. (2.11).

Let us now consider the case when the look position is chosen to be at the

closest grid point from the source location (Rs, Zs). In the presence of mismatch

between the modeled environment and the actual environment, and/or discrepancy

between the signal and model used to recreate its propagation, and/or use of a grid

which doesn’t coincide with the source’s position, the modeled conventional weight

vector will not be exactly collinear to the data one. As apparent on Fig. (2.11), the

closer the conventional weight vector gets to the signal vector (ie, the closer the look

position to the true source position), the bigger the norm of the MVDR’s weight

vector needs to be to still ensure its orthogonality to the signal. Because of the

presence of mismatch, the algorithm doesn’t recognize the signal as the information

of interest anymore, but interprets it as an interfering signal instead and proceeds

to cancel it. Restricting the growth of the weight vector’s norm is therefore an

efficient way to avoid the signal’s suppression, since the WNCM weight vector

does not lie on the line wHds = 0 anymore. As a result, the WNCM’s processor
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Figure 2.11: Construction of the WNCM weight vector. If the norm of the MVDR

weight vector is bigger than the constraint set by the user, the right amount of

white noise will be added to the CSDM such that wHw ≤ δ−2, and the WNCM

weight vector’s tip is found at the position along the wHd = 1 line which guar-

antees the norm of the weight vector to be just under the value of the constraint,

represented in blue. Signal suppression is therefore avoided in presence of environ-

mental mismatch.
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Figure 2.12: Simulated WNCM MFP

at 49 Hz, constraint set at 7 dB down

the maximum. The circle represent the

position of the simulated source, and

the square the position of the conven-

tional algorithm’s maximum.
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Figure 2.13: Real data WNCM MFP

at 49 Hz, constraint set at 7 dB down

the maximum. The circle represent the

position of the source, and the square

the position of the conventional algo-

rithm’s maximum.

is more robust to mismatch than the MVDR one.

The performance of the algorithm is estimated using the same simulated

and real data as in Sections 2.2.2 and 2.3.1. The value of the constraint δ2 is set

7 dB down the maximum. The simulated WNCM ambiguity surface obtained is

displayed on Fig. (2.12). The source is successfully localized and the simulated

output is really close to the MVDR’s one on Fig. (2.8). The median value of the

ambiguity surface, -10.9 dB is nearly equal to the MVDR’s one. Closer inspection

show that some of the sidelobes are a little higher than in the MVDR’s case,

because of the CSDM’s diagonal loading at those positions. In any case, both

MVDR and WNCM processors perform comparably in this case and are able to

locate the source.
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The application of the WNCM’s algorithm to experimental data is the real

test, since the MVDR processor failed to localize the source on Fig. (2.9), and the

conventional one did correctly assess its position, but with sidelobes so high that

it precluded confident localization (see Fig. (2.7)).

The WNCM’s output obtained using the data received on the array is given

on Fig (2.13). This time the low sidelobe characteristic of the MVDR processor

was not only maintained but improved (the median value is -15.8 dB). The widen-

ing of the main lobe due to the inequality constraint on the weight vector’s norm

allows the signal to pass through the algorithm, instead of being seen as an in-

terfering signal and cancelled out as in the MVDR case. As a result, the WNCM

is shown to be the most desirable method, since it is more robust to presence of

environmental mismatch than the MVDR processor, and more discriminating than

the conventional one.

The next section will extend these techniques to the broadband scenario,

and investigate the difference in performance between combining the multiple fre-

quencies coherently versus incoherently.

2.4 Broadband matched-field processing

Acoustic signals propagating in the ocean, would they be of natural or

man-made nature are rarely narrowband. Usually, a wideband signal or a set of

single-frequency tonals are received on the hydrophone array. This broadband

information is then available to enhance MFP’s localization performance.

There typically are two ways to combine information across frequency.

1. One can do an incoherent broadband processing [18, 19, 20], where single

frequency power outputs are averaged in an effort to lower the sidelobes and

increase the robustness of MFP to environmental uncertainties,

2. or one can exploit the cross-frequency complex information enlarging the

data space and providing an extra-processing gain, with the drawback that

these processors have to deal with the typically unknown complex spectral

properties of the signal sent.
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This section will present both techniques: incoherent and coherent, and

compare the results obtained using simulated and experimental SwellEx-96 data.

Different broadband processing methods, both in time and frequency domain will

be presented.

2.4.1 Incoherent MFP

When the source broadcasts a broadband signal, one can create an ensemble

of single-frequency ambiguity surfaces. Some of those power outputs might localize

the source correctly, while other frequencies might be more sensitive to mismatch

and show a maximum at the wrong position. In any case, those erroneous nar-

rowband results still contain useful information since a high sidelobe often occurs

at the true source position. Because the position of noise and signal sidelobes is

usually frequency dependent, as opposed to the main lobe, a common approach

proposed by Baggeroer et al is to incoherently average single-frequency ambiguity

surfaces to suppress ambiguous sidelobes [18].

The incoherent processing can be done in two ways. One can perform a

linear summation:

PIC linear (r, z) =
1

L

L∑
k=1

wH (k)R (k)w (k) , (2.27)

where L is number of single tones processed, or an addition in dB:

PIC dB (r, z) =
1

L

L∑
k=1

10log
[
wH (k)R (k)w (k)

]
. (2.28)

Since the dB scale produces comparable sidelobe powers [18], the summation in

dB is favored and will be used in the rest of the document.

Note that the frequency dependent phases of the source spectrum S(ω) in

Eq. 2.1 cancel out in the process of forming the narrowband CSDMs, and do not

need to be included in the replica vector for single-frequency and incoherent MFP

in order to match the data.

When the frequencies used in the averaging ensure that sidelobes have mi-

grated by a distance equal to their half width, the sum provides a 5log (L) gain in
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detectability [21] (as defined in Chapter 4) over narrowband results.

Czenszak and Krolik [22] have also shown through simulation that inco-

herent averaging increases robustness to mismatch over single frequency MFP

when the environmental uncertainties caused a frequency-independent shift of the

main lobe. Errors in channel depth and sediment parameters typically produce

peak shifts independent of frequency while incorrect sound speed profiles lead to

frequency-dependent ones.

2.4.2 Coherent MFP

Incoherent methods have been shown to lower sidelobe levels and increase

robustness to environmental mismatch in cases. But despite enlarging the data

space available to the processing, they still discard useful information by ignor-

ing coherence across frequencies. When considering frequencies coherently, we

increase the complexity of the impulse response between the source and receivers

in the waveguide, and thus decrease the source localization ambiguity. Conse-

quently, finding a way to combine the information across frequencies in a coherent

way is the subject of current research. Broadband coherent methods, however

are undoubtedly less computationally efficient than incoherent ones and have to

overcome the difficulty of accurately predicting the phases of the acoustic field.

The first papers on broadband coherent MFP considered time-domain type

of algorithms. Frequency domain methods were later developed in the literature.

This section will present an overview of time and frequency domain processors at

hand.

Time domain methods

C. S. Clay The earliest time-domain matched-field work has been credited to

Clay [23]. He proposed to match measured and modeled impulse responses of

transmission between the source and a receiver to estimate the source position. He

also extended the method to multiple receivers by cross-correlating filter outputs

of pairs of hydrophones. His technique however requires knowledge of the source

function, or S (ω) in Eq. 2.1.
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The method was applied to experimental data by Clay and Li [24, 25]. They

successfully located a source using a single receiver in an almost ideal laboratory

rigid waveguide [25]. They then added an hydrophone and introduced a deconvo-

lution technique [24]. A map of cross correlations of the deconvolved signals by a

theoretical impulse response gave the source location.

L. N. Frazer and P. I. Pecholcs Frazer and Pecholcs built on the already

existing work and introduced five new types of single hydrophone algorithms [26].

They noted that localization is possible with a unique sensor as long as a large

bandwidth of data is processed, suggesting a trade-off between number of elements

and frequencies available.

They considered different types of norms and presented new localizer fami-

lies, some of them requiring no a priori knowledge of the source function, instead

estimating it as well as the source position. Simulated results showed that the pro-

cessors worked best when the spectrum of the source was smooth. An extension

to multiple hydrophones is also provided.

R. K. Brienzo and W. S. Hodgkiss Clay’s time domain matched-field pro-

cessor was successfully applied to experimental data coming from a short range

(about 9 km) explosive source [27, 28]. Since low frequency acoustic energy has

been shown to be least attenuated when propagating through water [29, 30], the

direct arrival path was used as an estimate of the source waveform.

The effect of the experimental source waveform being very short (about

0.1s) but not quite an impulse function was investigated through simulations. It

was shown to produce additional structure in the processor output, not sufficient

to affect the source localization results in their case.

Y. P. Lee A couple years later, Lee successfully localized a long range broadband

source (21 km away) as well, using experimental data on a single hydrophone [31].

Using a frequency domain representation of the matched-filtered data for different

time delays, and estimating the singular value decomposition of the covariance

matrix obtained, the author was able to isolate the source’s impulse response from
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the dominant surface scattered energy.

P. Hursky, M. B. Porter and M. Siderius More recently, Hursky et al inves-

tigated the performance of time domain MFP at high frequency (above 1 kHz) [32].

Since high frequencies are increasingly sensitive to fluctuations and model uncer-

tainties, a number of techniques have been applied to overcome those limitations

and track sources up to several kilometers in range.

Two data sets were used to demonstrate high frequency localization feasi-

bility using one or two transducers. The source waveform is first assumed known

and correlated to the received signal to retrieve the channel impulse response. This

matched-filtered signal is then compared to a set of range/depth modeled impulse

responses to infer the position of the source. Recognizing that in most cases the

source waveform is not available for processing, the authors extended the method

by cross-correlating the signals received on two hydrophones, canceling out by

design the unknown source signature.

It was shown that tracking the source successfully required averaging suc-

cessive experimental impulse responses, using the envelope of the data (discarding

the phase information) and artificially increasing the bandwidth of the synthetic

signal to minimize the effect of mismatch.

Frequency domain methods

E. K. Westwood Westwood was the first to introduce a coherent broadband

matched-field processor operating in the frequency domain [33]. Similarly to the

time domain techniques, cross-correlated measured impulse responses between

pairs of receivers are matched against modeled ones, and the resulting complex

function is summed coherently over frequencies. It differs from the time domain

method introduced by Clay [23] in the sense that the output is not the maximum

of the time-domain cross-correlation anymore, but the coherent summation of the

single-frequency cross-correlations. The bandwidth on which the summation is

performed can be chosen so as to maximize SNR.

In the frequency domain, cross-correlating the receivers 1 and 2’s measured
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signals at angular frequency ω is written as:

X(12)
ω = x(1)ω x(2)∗ω , (2.29)

where ∗ is the complex conjugate operation. Similarly, the modeled cross-correlation

takes the form:

D(12)
ω = d(1)ω d(2)∗ω . (2.30)

The coherent processor output for two receivers is expressed as:

P
(12)
Westwood (r, z) =

|
∑L

k=1X
(12)
k D

(12)∗
k |(∑L

k=1 |D
(12)
k |

)1/2 (∑L
k=1 |X

(12)
k |

)1/2 . (2.31)

The principle is the same for N hydrophones, the sum is performed for each

of the N (N − 1) /2 pairs:

PWestwood (r, z) =
|
∑N

p=1

∑N
q=p+1

∑L
k=1X

(pq)
k D

(pq)∗
k |(∑N

p=1

∑N
q=p+1

∑L
k=1 |D

(pq)
k |

)1/2 (∑N
p=1

∑N
q=p+1

∑L
k=1 |X

(pq)
k |

)1/2 .
(2.32)

Note that since cross-correlation of measured spectra at the same frequency

are involved, the unknown source phases cancel out by design and do not need to

be estimated in this coherent scheme.

Also, the information coming from auto-spectra, or in other words the di-

agonal terms of the single frequencies CSDM has been discarded.

The method was applied to deep water experimental data, and the source

was successfully tracked up to 42 km away from the receiving array. Factors as

number of phones, array aperture and bandwidth used in the processing were

investigated. As expected, using more phones, wider bandwidth and bigger aper-

ture increased the quality of the localization. Adding the auto-correlation terms

to the processing was shown to yield significant degradation of the peak to side-

lobe/background levels, suggesting that those real terms might overpower the off-

diagonal complex ones without contributing positively to the localization. Finally,

the ambiguity surface obtained was found more discriminating than the incoherent

processor.
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S. P. Czenszak and J. L. Krolik Czenszak and Krolik followed the approach

of Westwood, and matched the cross-spectra of the field to modeled cross spectra

at different (r, z) [22]. This time, they used the auto-spectra information as well.

This allowed them to formulate the algorithm in a quadratic form similar to those

describing single-frequency MFP.

The cross-spectra information between pairs of elements at L frequencies is

stacked in a N ×N × L column vector:

x̃ =
[
x
(1)
1 x

(1)∗
1 , . . . , x

(1)
1 x

(N)∗
1 , . . . , x

(N)
1 x

(1)∗
1 , . . . , x

(N)
1 x

(N)∗
1 , . . . ,

x
(1)
L x

(1)∗
L , . . . , x

(1)
L x

(N)∗
L , . . . , x

(N)
L x

(1)∗
L , . . . , x

(N)
L x

(N)∗
L

]T
.

The cross-spectral density matrix involving the fourth order of the data is formed

the usual way, where x̃k is data snapshot number k:

R̃ =
1

K

K∑
k=1

x̃kx̃k
H . (2.33)

Similarly, a generalized weight vector w̃ (r, z) is implemented by stacking

modeled cross-spectra coming from an hypothetical source at (r, z), and the con-

ventional broadband coherent processor output is given by:

PCzenszak (r, z) = w̃HR̃w̃. (2.34)

Note that as for Clay and Westwood’s algorithms, the use of auto and cross-

correlations of data from pairs of receivers at the same frequency prevents the user

from having to estimate the unknown source phases.

One main advantage of formulating the coherent algorithm in the usual

quadratic from is that it is straightforward to apply any type of adaptive matched-

field processor. The authors recognized that a single-constrained adaptive proces-

sor as the MVDR in Sec. 2.3.1 would be very sensitive to mismatch, due to the

increased number of degrees of freedom. They suggested the use of the Minimum

Variance Environmental Perturbation Constraint algorithm (MV-EPC), previously

developed by Krolik for single frequency scenarios [15].
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The MV-EPC algorithm involves a set of linear constraints on modeled fields

obtained from randomly perturbed environments, such that the output signal-to-

noise ratio averaged over the ensemble of environmental realizations is maximized.

Simulated results demonstrated that the MV-EPC coherent broadband

method yielded a percentage of correct localization of more than 90% out of 50

Monte-Carlo realizations versus 30% using an incoherent averaging of single fre-

quency ambiguity surfaces. The side-lobe level was also lowered due to the extra

degrees of freedom available from the cross-frequency information.

Z-H Michalopoulou and M. B. Porter This algorithm referred to as the MP

algorithm is presented in detail because the next chapters will modify and adapt

it to particular scenarios. As in typical single-frequency or incoherent broadband

MFP scnenarios, Michalopoulou and Porter introduced a coherent algorithm based

on matching received and modeled fields rather than cross-correlated pairs of fields

[34]. However, the cross-frequency terms in the CSDM now include differences of

source spectrum phases at pairs of frequencies. Ignoring those unknown terms

in the implementation of the replica vector would implicity assume that the sig-

nal phase was constant accross frequencies. Such an hypothesis can result in a

degradation of the source localization performance rendering any coherent pro-

cessing detrimental to the process. The authors resorted to a normalization and

cancellation scheme to get around the issue.

As proposed by Czenszak and Krolik, the received signal accross elements

and frequencies is stacked in a N × L supervector.

x̆ =
[
x
(1)
1 , x

(2)
1 , . . . , x

(N)
1 , . . . , x

(1)
L , . . . , x

(N)
L

]T
. (2.35)

From this supervector, a “super” CSDM can be constructed in the usual

way, R̆ = E{x̆x̆H}. The MFP processor output can then be formulated as:

PMP (r, z) = d̆
H
R̆d̆,

PMP (r, z) = E

∣∣∣∣∣
L∑
k=1

dHk xk

∣∣∣∣∣
2
 . (2.36)
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Note that the position of the absolute value delimiters outside of the sum

over frequencies makes this algorithm a coherent one and generates cross-frequency

terms. In contrast, an incoherent algorithm sums absolute values of inner products:

PIncoh linear (r, z) = E

[
L∑
k=1

∣∣dHk xk∣∣2
]
. (2.37)

As developed in Sec. 2.1.1, the noise-free complex signal received on the

element i can be written as

x(i)ω = S(ω)G(i)(0, zi, Rs, Zs, ω), (2.38)

where S(ω) is the complex fourier transformed source signal at the angular fre-

quency ω, and G(i)(0, zi, Rs, Zs, ω) the ocean waveguide’s Green’s function between

the source location and the element i of the receiving array. Rewriting the output

of the algorithm reveal that the unknown source phase remains to be evaluated,

leaving the user with replicas mismatched with respect to the signal.

PMP (r, z) =
L∑
l=1

L∑
k=1

dHl xlx
H
k dk

=
L∑
l=1

L∑
k=1

S(l)S(k)∗dHl GlG
H
k dk. (2.39)

The MP method addresses this issue [34, 35] by scaling the phase of each

single-frequency subvector xω by the phase on the first phone, and normalizing the

subvector to unit length. This compensation procedure eliminates the unknown

source terms in high signal-to-noise scenarios since, if we denote the new subvector

by xω:

xω =


∣∣∣S(ω)G

(1)
ω

∣∣∣ ej(arg(S(ω))+arg(G
(1)
ω )

)
...∣∣∣S(ω)G

(N)
ω

∣∣∣ ej(arg(S(ω))+arg(G
(N )
ω )

)

 ,
we have,

xω =
1

α


∣∣∣G(1)

ω

∣∣∣ ej0
...∣∣∣G(N)

ω

∣∣∣ ej(arg(G(N )
ω )−arg(G(1)

ω )
)

 , (2.40)
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where α is a coefficient of normalization.

When the amount of noise imbeded in the signal is not negligible anymore,

the amplitude and phase normalization scheme described above does not cancel

the unknown source terms in the noise component. The MP algorithm therefore

carries an inherent mismatch when localizing low signal-to-noise ratio sources.

The authors applied the coherent broadband method to an experimental

data set, and showed that the MVDR coherent processor tracked nearly perfectly

the source in range and depth (in 90% of the cases) in comparison to 10% using

an incoherent dB average of MVDR power outputs.

The normalization scheme was revisited in a later paper [35]. When the

SNR is low at hydrophone number 1 the measurement of the phase is likely to

be corrupted by the phase of the noise leading to uncorrect cancellation of the

unknown source phases for the remaining hydrophones. A better choice would be

to normalize by the phase of the hydrophone exhibiting the highest SNR, but the

process is still subject to noise contamination. The authors proposed to use an

estimate of the phase at the first phone by averaging phases coming from several

snapshots instead.

T. Yang Yang recognized that deconvolving the received signal by the transfer

function of the waveguide would yield the original signal waveform [36]. How-

ever, the implementation of the transfer function requires knowledge of the source

position.

Incoherent average of single-frequency MFP outputs is implemented ini-

tially to estimate the source location. The transfer function at the given position

is then computed and used to infer the source waveform. A coherent broadband

processing approach is then made possible by adding the estimated source phases

to the replica vectors at each frequency.

The technique applied on noise-free simulated signal showed that the re-

constructed signal achieved a correlation of 0.998 with the original waveform, and

the coherent broadband ambiguity surface displayed lower sidelobes than the inco-

herent one, in accord with the theoretical processing gain expected from the extra

degrees of freedom generated by the cross-frequency information.
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G. J. Orris, M. Nicholas and J. S. Perkins Orris et al investigated coherent

multi-frequency MFP using experimental data [37]. They considered the unknown

source phases as free parameters to be determined using an otimization method.

MFP is therefore used in the context of an inversion problem, where a set of

environmental or source related parameters are scanned to give the best estimate

of the signal field.

The optimization problem is written as:

min
{arg(S(k))∈[0,2π)∀k=[1..L],r,z}

[1− 1

L (L− 1)

∑
nm

e−i(arg(S(m))−arg(S(n)))dHmRm,ndn], (2.41)

where Rm,n is the cross spectral density matrix obtained from the cross between

snapshots at frequencies ωm and ωn. Only the cross-frequency terms are considered

in this coherent scheme

To avoid being too computationally cumbersome and still give a reasonable

estimate of the source phase, the search has to be limited to a couple frequencies

only. Note that the phase outputted by the processor might differ from the actual

original source phase since the estimation is made after propagation of the signal

through the waveguide and corruption by noise.

The method was tested using five tonals of the real data set. The range

resolution was shown to be greatly improved in comparison with the incoherent

method, and the depth estimate was found close to the actual source depth, allow-

ing a more precise localization of the source. Additionaly, as much as five decibel

enhancement in the peak-to-sidelobe ratio at low SNR was achieved.

Comparison of the amount of data exploited by each coherent method

The broadband techniques presented in the previous section combine data

across frequencies in a slightly different manner. Not only the way the single

frequency outputs are treated varies from one method to the other, but some of

the techniques involve a direct comparison of the fields while other form cross-

correlations of pairs of fields at different elements. As a result, some of the algo-

rithms use a bigger portion of the data information available than the others.

To better visualize the amount of information exploited by each method, we
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look at the dimension of the CSDM associated. The simple case of a two receiver

array recording data at two single frequencies is considered. Only the frequency

domain broadband techniques introduced in Sec. 2.4.1 and 2.4.2 are involved in

the comparison.

Two main types of algorithms have been presented:

1. The methods matching complex fields at the elements to simulated fields at

hypothetical source positions, which typically have to deal with the unknown

source spectrum with application of a coherent processor (incoherent MFP,

Z-H Michalopoulou and M. B. Porter’s coherent MFP),

2. The ones matching correlations of pairs of receivers outputs to correlation

of pairs of receivers simulated outputs, where the source phase is cancelled

out by design (E. K. Westwood coherent MFP and S. P. Czenszak and J. L.

Krolik coherent MFP).

Figure (2.14) illustrates the amount of the coherent cross-spectral density

matrix exploited by the incoherent processor. The subscript designates the fre-

quency index and the superscript the element number. The cross-frequency in-

formation is ignored, and only the outer-product of the received field at single-

frequency is used.

In contrast, the coherent method developed by Z-H Michalopoulou and

M. B. Porter uses the full extent of the cross-spectral density matrix formed by

phase-correcting and normalizing the narrowband outputs to remove the unknown

source phases, as apparent in Fig. (2.15). The increase in data space provides more

resolution and a wider dynamic range between the main-lobe and background level

at the output of the processor.

The next type of algorithms uses the fourth-order moment of the data by

matching cross-correlations of pairs of receiver outputs. The data space is therefore

increased by the number of elements squared.

Figure (2.16) shows the portion of the corresponding CSDM used by E. K.

Westwood’s method. Only cross-correlations between different receivers are kept.

S. P. Czenszak and J. L. Krolik’s method, in contrast, uses the full fourth-

order moment CSDM, as seen on Fig. (2.17).
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Figure 2.14: Coherent cross-spectral density matrix for the two-receiver array,

two frequencies processed scenario obtained by forming the outer product of the

received field. The portion of the data matrix involved in the incoherent processing

is shown in blue. Half of the available information is exploited by the incoherent

algorithm.
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Figure 2.15: Coherent cross-spectral density matrix for the two-receiver array,

two frequencies processed scenario obtained by forming the outer product of the

received field. The portion of the data matrix involved in the algorithm developed

by Z-H. Michalopoulou and M. Porter is shown in blue. As opposed to the inco-

herent method the cross-frequency information is exploited by the algorithm. Note

that the data has however been modified to discard the unknown source spectrum’s

information.
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Figure 2.16: Coherent cross-spectral density matrix for the two-receiver array,

two frequencies processed scenario obtained by forming the outer product of the

correlated field between pairs of receivers. The portion of the data matrix in-

volved in the algorithm developed by Z-E. K. Westwood is shown in blue. The

autocorrelations are excluded from the processing.
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Figure 2.17: Coherent cross-spectral density matrix for the two-receiver array,

two frequencies processed scenario obtained by forming the outer product of the

correlated field between pairs of receivers. The portion of the data matrix involved

in the algorithm developed by S. P. Czenszak and J. L. Krolik is shown in blue.
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While using a bigger portion of the information available in the data offers

additional opportunity over more traditional methods like the incoherent algo-

rithm, the increased data space also comes with a larger snapshot requirement.

Indeed, at least twice the dimension of the CSDM number of snapshots have to be

accumulated to form a well-defined invertible CSDM, suitable for adaptive MFP.

During that time, the acoustic sources and interferers have to remain in a single

range-depth resolution cell to avoid smearing of the main-lobe over continuous

cells. This hypothesis, already strained for traditional methods can become prob-

lematic as the data space dimension becomes larger. Sensitivity to environmental

mismatch is also aggravated.

Hence, using the fourth-order moment of the data is theoretically advan-

tageous but not very practical. Methods correlating the modeled and received

acoustic fields (ie using second-order moment of the data) are therefore favored in

the rest of this dissertation.

Conventional coherent and incoherent broadband results

Amongst the diverse coherent methods presented in this chapter, we chose

to study the one developed by Michalopoulou and Porter (MP). Its simple formu-

lation in the frequency domain and use of the field information as opposed to cross-

correlations between receivers makes it readily comparable to single-frequency and

incoherent multi-frequency techniques already described. It is also straightforward

to extend the MP coherent method to any kind of adaptive processing.

In this section, we compare the performance of conventional incoherent

and coherent MP broadband MFP to single-frequency MFP, using simulated and

experimental data. To be consistent with the single-frequency study of Section

2.2, the same portion of the SWellEx-96 experiment is processed, this time using

the full 13 high level set of tonals.

Both simulated and experimental results are explored. Complex source

spectrum terms are introduced in the simulated signal for each frequency, and as-

sumed unknown for the rest of the processing. The same environment and param-

eters detailed in Sec. 2.2.2 are used to create the broadband conventional coherent



48

Range (m)

D
e

p
th

 (
m

)

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

20

40

60

80

100

120

140

160

180

200

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Max

Source

Student Version of MATLAB

Figure 2.18: Simulated incoherent

conventional MFP output obtained by

dB-averaging 13 single-frequency out-

puts. The circle represent the position

of the simulated source, and the square

the position of the conventional algo-

rithm’s maximum.
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Figure 2.19: Real data incoherent

conventional MFP output obtained by

dB-averaging 13 single-frequency out-

puts. The circle represent the position

of the source, and the square the po-

sition of the conventional algorithm’s

maximum.

and incoherent ambiguity surfaces. Figures (2.18) and (2.19) display the simulated

and experimental localization results obtained while incoherently averaging in dB

the 13 single-frequency ambiguity surfaces.

Comparing those results to the simulated and experimental single-frequency

ambiguity surfaces obtained by processing data at 49Hz in Figs. (2.6) and (2.7)

show that averaging outputs in frequency does not affect the background and

median level too much, but does lower the sidelobe level significantly, by 3 to 5 dB

in this case. This is consistent with the assumption that averaging the narrowband

ambiguities in dB should provide an additional gain over narrowband processing

of 5log (L) = 5log (13) = 5.6dB in this case [21]
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Figure 2.20: Simulated coherent con-

ventional MFP output obtained by us-

ing the MP algorithm. The circle rep-

resent the position of the simulated

source, and the square the position

of the conventional algorithm’s maxi-

mum.
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Figure 2.21: Real data coherent con-

ventional MFP output obtained by us-

ing the MP algorithm. The circle rep-

resent the position of the source, and

the square the position of the conven-

tional algorithm’s maximum.

The same portion of the real and synthetic data is now processed coherently

accross frequencies, using the MP conventional matched-field algorithm. Figures

(2.20) and (2.21) show the simulated and experimental coherent ambiguity surfaces

obtained.

The additional gain obtained by processing the frequencies coherently rather

than incoherently is quite noticeable, since the the basal noise level, sidelobes and

median levels are reduced by 5 to 8 dB.

In the MP algorithm, additional frequencies are stacked in a big ”supervec-

tor” and in effect increase the dimension of the CSDM as if more array elements

were present. When the array is steered at the true source position, the signal
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is summed coherently along the receivers but also accross frequencies, while the

incoherent part of the noise adds incoherently. A formal study of the extra pro-

cessing gain associated is provided in Chapter 4. The ”coherent gain” was shown

to be a function of the input SNR, and reach a maximum of N × L for high SNR

scenarios.

We found an additional processing gain of about 10 dB using the MP co-

herent algorithm over narrowband processing and 5 dB using the MP coherent

algorithm versus an incoherent average of the single-frequency outputs. This is

consistent with the theoretical 10log (L) = 10log (13) = 11.1dB and 5log (L) =

5log (13) = 5.6dB at high input SNR.

This dissertation work aims at enhancing broadband coherent MFP’s per-

formance (1) in presence of environmental mismatch, (2) for weak sources and (3)

in high frequency scenarios. The white noise constraint algorithm is combined with

coherent broadband techniques in a published study presented in Chapter 3, in an

effort to increase robustness to model mismatch and mitigate the snapshot defi-

ciency issue. Chapter 4 investigates localization at low signal-to-noise ratio and

introduces a ”fully-coherent” broadband algorithm to detect weak sources. Fi-

nally, Chapter 5 applies the coherent broadband methods to localization of high-

frequency sources, and proposes a singular value decomposition technique over

perturbed propagating environments to mitigate the effect of sound speed fluctu-

ations in the medium.
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3.1 Abstract

Adaptive matched-field processing (MFP) is not only very sensitive to mis-

match, but also requires the received sound levels to exceed a threshold signal-

to-noise ratio. Furthermore, acoustic sources and interferers have to move slowly

enough across resolution cells so that a full rank cross-spectral density matrix

can be constructed. Coherent-broadband MFP takes advantage of the temporal

complexity of the signal, and therefore offers an additional gain over narrowband

processing by augmenting the dimension of the data space. However, the sensitiv-

ity to mismatch is also increased in the process, since a single constraint is usually

not enough to achieve robustness and the snapshot requirement becomes even more

problematic. The white noise constraint method, typically used for narrowband

processing, is applied to a previously derived broadband processor to enhance its

robustness to environmental mismatch and snapshot deficiency. The broadband

white noise constraint theory is presented and validated through simulation and

experimental data. The dynamic range bias obtained from the snapshot-deficient

processing is shown to be consistent with that previously presented in the literature

for a single frequency.

3.2 Introduction

Adaptive matched-field processing (MFP) is extremely sensitive to environ-

mental mismatch [1, 2]. For example, the minimum variance distortionless response

(MVDR) method of using a borehole constrained optimization requires accurate

environmental model parameters and array elements localization. The procedure

also involves a matrix inversion of a well conditioned sample cross spectral density

matrix (CSDM). Single constraints, leading to high resolution processors, become

problematic for a combination of large arrays with some mismatch[3]. Robust pro-

cessors attempt to overcome the mismatch problem while keeping the benefits of

the adaptive algorithms[4, 5, 6, 7]. The white noise constraint method (WNCM)[7]

has been localizing sources in many challenging environments without the require-

ment of seeking more accurate environmental information. Further, it has been
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effective in dealing with so-called ”snapshot-deficient scenarios” in which targets

and interferors move across resolution cells before enough data vectors, or snap-

shots, can be recorded at the array and combined to construct a full rank CSDM

[8, 9].

Adaptivity also requires a threshold signal-to-noise ratio (SNR) [10]. There-

fore, coherent broadband MFP, which involves an extra-processing gain from using

multiple frequency data analogous to the coherent gain associated with more array

elements, potentially offers additional opportunities over single frequency process-

ing. However, we can expect adaptive coherent broadband MFP to have even

greater mismatch sensitivity since there is a larger data space (frequency × num-

ber of array elements) subject to the same single constraint. In addition, the

snapshot requirement[8] for constructing the larger CSDM, which is typically al-

ready strained for practical single frequency scenarios, becomes problematic. In

this paper, we apply the white noise constraint method to a coherent broadband

processor to develop a robust[7] coherent broadband MFP processor suitable for

snapshot deficient scenarios.

Broadband matched-field methods can be exploited in either the frequency

or time domain. In the time domain, for example, Clay[11] proposed to match

measured and modeled impulse responses of transmission between the source and

a receiver. This technique, which requires knowledge of the source function, was

used by Li et al on laboratory data [12, 13] . Brienzo and Hodgkiss[14] also suc-

cessfully applied it on experimental data coming from an explosive source. The

unknown source wave form was estimated from the direct path arrival, and the

additional processing gain it procures demonstrated. Frazer and Pecholcs[15] gen-

eralized the method and introduced new algorithms requiring no knowledge of the

source function, instead estimating it as well as the source location. More recently,

Hursky et al [16] tracked a high frequency source in range and depth by match-

ing correlations of impulse response function between receivers, canceling out by

design the unknown source waveform.

In the frequency domain, a common approach proposed by Baggeroer et al

is to incoherently average single-frequency ambiguity surfaces to suppress ambigu-
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ous sidelobes[10]. Coherent broadband processors, in contrast, take full advantage

of the complexity of the signal by keeping the complex cross-frequency inner prod-

ucts. These processors have to deal with the typically unknown complex spectral

properties of the source and can be divided into two categories:

1. Matching a first moment quantity such as pressure that consequently involves

sample data covariance matrices,

2. Matching a second moment quantity such as data correlations between re-

ceiver element pairs and therefore involves estimating fourth moment quanti-

ties from data (with an increased data requirement from [frequency× number

of array elements] to [frequency × (number of array elements)2] for accurate

estimation).

Actually, the latter category was first treated in the literature by Westwood,

who developed an algorithm which sums correlations of modeled and experimental

cross-spectra coherently over frequency [17]. No knowledge of the source spec-

trum is assumed, but it can be easily incorporated in the algorithm when known.

The method was applied successfully to a shallow water experimental data set

characterized by strong multipaths [18]. This method was further generalized by

Czenszak and Krolik [19], who introduced an algorithmic procedure involving the

fourth-order statistics of the data so that the cross-spectral density matrix of the

received data is matched to a set of weight matrices using the magnitude squared

Frobenius matrix inner product. Their purpose was to combine the higher mo-

ment analysis with its large data and computational requirements with the earlier

developed environmental perturbation constraint method[5]. The latter’s addi-

tional constraints resulted in a more stable, though extremely lengthy processing

procedure.

The first category builds on standard algorithms already well-known from

frequency domain processing. Michalopoulou and Porter[20, 21] proposed a pro-

cessor in which the data is stacked over frequencies in a ”supervector” and matched

to a modeled one. While the tranfer functions are treated coherently, one should

note that this processor is really only semi-coherent, since the unknown phases
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across frequency are removed in the construction of the supervector. The pro-

cessing allows for including the source amplitude, if known. Orris et al further

considered those unknown phase relationships as free parameters that may be de-

termined using a global functional minimization algorithm, again with increased

computational complexity [22].

In parallel, an extensive amount of work has been done to address the

conflicting issues of resolution and robustness to environmental mismatch. High

resolution was achieved by developing optimal processors resulting from the solu-

tion of a constrained optimization problem. These adaptive algorithms, such as the

the MVDR processor [23], use the data to construct optimum weights. While very

efficient at suppressing noise and interfering signals, the MVDR is more vulnerable

to any kind of mismatch between the modeled and real pressure fields than a con-

ventional processor [7]. Furthermore, it requires a sufficient number of snapshots

to construct an invertible CSDM. This is often problematic for a moving target

because of the opposing requirements of high resolution producing small resolu-

tion cells versus the necessity of building up a CSDM from sufficient snapshots in

a single cell.

Again there are two categories of dealing with environmental robustness:

1. Enlarge the search space or provide some sort of environmental blurring[4,

5, 6, 24],

2. Constrain the algorithmic cause of the instability[3, 7].

The WNCM [7], which constrains the array gain against uncorrelated noise,

performs particularly well in dealing with both robustness and snapshot-deficient

data. For the latter aspect, the dynamic range bias of snapshot-deficient process-

ing has been addressed in the literature[8, 9] and must also be considered in the

broadband case.

This paper combines the coherent broadband method introduced by Porter

and Michalopoulou (herein referred to as MP) with white noise constrained MVDR

processing. In Sec. 3.3, we first provide an overview of incoherent and coher-

ent MP processors . We then apply the MVDR/WNC method in section 3.4.
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We also illustrate the resulting performance using data from the Hudson Canyon

experiment[25]. In section 3.5, we show that the dynamic range bias from the snap-

shot deficient processing is consistent with previous single frequency literature[8, 9]

and that the processor has a SNR threshold. We evaluate the robustness of the

processor to slight environmental mismatch as the source moves in range in section

3.6. Finally, section 3.7 provides a summary and discussion.

3.3 Formulation of the coherent MP model

Amongst the diverse coherent broadband algorithms introduced in the lit-

erature, the coherent MP model has been chosen in this study because it is readily

applicable to adaptive MFP, and the results obtained using the MVDR processor

on real data are promising[20] .

Let x
(i)
ω denote the complex field received on the hydrophone i, N the num-

ber of hydrophones in the array, and L the number of individual frequencies con-

sidered. The multiple frequency components are incorporated by stacking narrow-

band signal vectors into one “supervector” of length N × L, L being the number

of tones processed and the superscrpt T the transpose operation,

x̆ =
[
x
(1)
1 , x

(2)
1 , . . . , x

(N)
1 , . . . , x

(1)
L , . . . , x

(N)
L

]T
. (3.1)

From this supervector, a “super” CSDM can be constructed by forming the

outer product of the vector by its complex conjugate transpose, R̆ = E{x̆x̆H},
where E{} is the expectyation value. The MFP processor output can then be

formulated as

PMP (r, z) = d̆
H

(r, z)R̆d̆(r, z),

PMP (r, z) = E

∣∣∣∣∣
L∑
k=1

dk
H(r, z)xk

∣∣∣∣∣
2
 , (3.2)

where dk(r, z) is the replica vector at angular frequency ωk from a source at depth

z and distance r from the array and the superscript H is the complex conjugate

transpose operation.
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Note that the position of the absolute value delimiters outside of the sum

over frequencies allows the transfer functions to be treated coherently and generates

cross-frequency terms. In contrast, an incoherent algorithm sums absolute values

of inner products

PIC linear (r, z) = E

[
L∑
k=1

∣∣dHk (r, z)xk
∣∣2] . (3.3)

The complex signal received on the element i can be written as

x(i)ω = S(ω)G(i)(0, zi, Rs, Zs, ω), (3.4)

where S(ω) is the complex source signal at the angular frequency ω, and the

expression G(i)(0, zi, Rs, Zs, ω) the transfer function between the source and the

receiver i, assuming the ideal case of no contamination by noise. Rewriting the

output of the algorithm reveals that the unknown source phase terms remain to

be evaluated, leaving the user with replicas mismatched with respect to the signal,

PMP (r, z) =
L∑
l=1

L∑
k=1

dHl (r, z)xlx
H
k dk(r, z)

=
L∑
l=1

L∑
k=1

S(l)S(k)∗dHl (r, z)GlG
H
k dk(r, z). (3.5)

where the asterisk represents the complex conjugate operation.

The MP method addresses this issue by scaling the phase of each single-

frequency subvector xω by the phase on the first phone, and normalizing the sub-

vector to unit length [20, 21]. This compensation procedure eliminates the un-

known source terms in high signal-to-noise scenarios since, if we denote the new

subvector by xω,

xω =


∣∣∣S(ω)G

(1)
ω

∣∣∣ ej(arg(S(ω))+arg(G
(1)
ω )

)
...∣∣∣S(ω)G

(N)
ω

∣∣∣ ej(arg(S(ω))+arg(G
(N )
ω )

)

 ,
we have,

xω =
1

α


∣∣∣G(1)

ω

∣∣∣ ej0
...∣∣∣G(N)

ω

∣∣∣ ej(arg(G(N )
ω )−arg(G(1)

ω )
)

 , (3.6)
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where α =

√∣∣∣G(1)
ω

∣∣∣2 + . . .+
∣∣∣G(N)

ω

∣∣∣2 is a coefficient of normalization.

When the amount of noise imbeded in the signal is not negligible anymore,

the above-described amplitude and phase normalization scheme does not cancel

the unknown source terms in the noise component. The MP algorithm therefore

carries an inherent mismatch when localizing low signal-to-noise ratio sources. See

section 3.4 for further discussion of the MP algorithm’s performance versus signal-

to-noise ratio.

3.4 Minimum variance and white noise constraint

processing

In this section, the minimum variance and white noise constraint methods

are presented in the context of broadband MFP. Their localization performance,

both in the incoherent and coherent case, is evaluated on experimental data. The

Hudson Canyon experiment[25] , used by Michalopoulou and Porter to test their

algorithms as well[20], was chosen for comparison purposes. It took place in shallow

water (73 m) out of the New Jersey coast. An acoustic source was towed at 36 m

deep over an essentially flat bottom, and the acoustic field was sampled by a 24

element vertical line array.

Data from two source tracks (ten different ranges per track) are provided.

In the first one, the source sent multi-tones at 50, 175, 375 and 425 Hz and moved

up to 4.5 km away from the receivers. The source traveled back toward the receiver

array in the second track, emitting tones at 75, 275, 525 and 600 Hz. Ten obser-

vations are available for each source range, and the average SNR at each element

was approximately 10 dB. The Hudson Canyon environment is illustrated in Fig.

(3.1). A normal mode propagation model [26] is used to create the replica vectors,

and 4, 15, 32, and 36 modes were kept, respectively, at the frequencies of the first

leg, and 6, 24, 30, and 46 modes at the ones of the second leg.
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Figure 3.1: The Hudson Canyon environment features a 24 element vertical array

and an acoustic source towed at 36 m deep from 500 m to 4.5 km away from the

receivers and sent a set of four tones at 50, 175, 375, and 425 Hz. It traveled back

toward the receiver array in a second track, emitting tones at 75, 275, 525, and

600 Hz.
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3.4.1 Minimum variance method

The general formulation of the MVDR matched-field processor in the fre-

quency domain starts with

P (r, z) = wH(r, z)Rw(r, z). (3.7)

where R = E{xxH} is the CSDM at the frequency of interest, and the weight

vector w is determined by solving

min
w

wHRw subject to wHd = 1, (3.8)

d being the look direction steering vector at (r, z).

The well known solution of this optimization problem is

wmvdr =
R−1d

dHR−1d
, (3.9)

which yields:

Pmvdr (r, z) =
1

dHR−1d
. (3.10)

This algorithm enhances the resolution considerably in comparison to a

conventional processor, however, this exceptional resolution capability comes with

an increased sensitivity to slight mismatch between the modeled and actual envi-

ronment.

Michalopoulou and Porter tested the MVDR algorithm on the Hudson

canyon experimental data set [20]. Since only ten snapshots were available per

source position, the cross-spectral density matrix was diagonally loaded ”by adding

a small multiple of the identity matrix to it” [20]. Their study shows that inco-

herently averaging MVDR ambiguity surfaces yields marginal results for that data

set. As expected, the narrowband MVDR is quite sensitive to mismatch, and av-

eraging single-frequency outputs reinforces the maximum constructively in only 10

% of the cases (30 % when each output was normalized to a maximum of one prior

averaging).

In contrast, the broadband coherent MP version of the MVDR shows a

great improvement, now successfully localizing the source in 90 % of the cases,

though with a peak-to-sidelobe ratio of only 2 dB or less.
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Those encouraging results show that frequency coherence does enhance

marginaly the estimation performance, and motivate us to apply an additional

constraint on the white noise gain (WNCM processor) in an attempt to increase

the robustness to mismatch.

3.4.2 White noise constraint method

Cox et al [7] showed that in the presence of uncorrelated noise, the sensitiv-

ity of the algorithm to signal mismatch is equal to the reciprocal of the white noise

gain. This observation led them to introduce an inequality constraint on the gain

against spatially white noise. This modified MVDR, the WNCM algorithm, conse-

quently loses some of its high-resolution characteristics along with its requirement

for very precise knowledge of the environment.

In the frequency domain, the weight vector is the solution of the optimiza-

tion problem:

min
w

wHRw subject to wHd = 1 and wHw ≤ δ−2, (3.11)

where δ2 ia a number less than the maximum possible white noise gain given by

max[1/wHw)] = 1. It yields:

wwncm (r, z) =
(R + εI)−1 d

dH (R + εI)−1 d
. (3.12)

The value of ε is such that the third inequality of Eq. 3.11 is satisfied.

When the environment is well studied, single frequency WNCM usually

succeeds in localizing the source. An incoherent average across frequencies is then

expected to further reduce the sidelobes level, provided that the type of mismatch

present doesn’t provoke a frequency-dependent shift of the maximum.

In an attempt to decrease the level of the sidelobes, a coherent-broadband

white noise constraint processor is implemented. Since the MP algorithm is for-

mulated in the usual quadratic form, PMP (r, z) = wH(r, z)Rw(r, z), and as in

the narrowband case the white noise cross-spectral density matrix is the identity

matrix, the extension to the white noise constraint algorithm is straightforward:

wMP
wncm =

(
R + εI

)−1
d

d
H (

R + εI
)−1

d
. (3.13)
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Figure 3.2: White noise constraint MFP obtained by an incoherent dB average

of four frequencies ambiguity surfaces (50, 175, 375 and 425 Hz). The source is

localized and the first sidelobes appear 10 dB down from the main peak. The

white color corresponds to a level beyond the dynamic range.

This time the amount of loading is determined by the supervector.

The same portion of the Hudson canyon data set used by Michalopoulou

and Porter to test the MVDR version of their coherent algorithm is processed for

comparison purposes. The value of the constraint on white noise being somewhat

arbitrary, a set of constraints ranging from 0.5 to 6 dB down the maximum by steps

of 0.25 dB will be applied. As discussed in section 3.5, the constraint allowing the

maximum dynamic range bias to be visible will be kept. Note that the value of

the constraint does not vary across frequency. The source is considered correctly

localized when the the maximum is within 5 m depth and 200 m range from the

true position.

Figure (3.2) shows the output of the incoherent average of WNCM ambi-

guity surfaces obtained with the constraint showing a maximum bias. The source

location, at Zs = 36 m and Rs = 1.87 km is marked by an ellipse, while the
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Figure 3.3: Output from the MP coherent broadband white noise constraint MFP

using four frequencies (50, 175, 375 and 425 Hz) . The main peak is at the true

source position, and stands 146 dB above the noise. The white color corresponds

to a level beyond the dynamic range. The dynamic range is set to 40 dB for

comparison purposes with Fig. (3.6).

maximum of the ambiguity surface lies in the square. In contrast with the in-

coherent average of MVDR single-frequency outputs, the source is now localized

successfully, with a peak-to-sidelobe level of approximately 10 dB.

Figures (3.3) and (3.4) display the MP coherent-broadband, white noise

constraint, ambiguity surface (with the constraint showing a maximum bias) with

40 and 150 dB dynamic range, respectively. As apparent in Figs. (3.3) and (3.4),

the algorithm is not only robust to mismatch between the experimental and mod-

eled fields since the source is successfully localized, but also discriminating, as

suggested by the absence of any sidelobes up to 40 dB under the peak value. In

fact a large dynamic range of 146 dB was necessary to see the first sidelobes. Since

the actual SNR at each element was around 10 dB and there were only 24 elements

and 4 frequencies processed, it suggests the presence of a bias in dynamic range,
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Figure 3.4: Output from the MP coherent broadband white noise constraint MFP

using four frequencies (50, 175, 375 and 425 Hz) . The main peak is at the true

source position, and stands 146 dB above the noise. The white color corresponds

to a level beyond the dynamic range. The dynamic range is set to 150 dB to see

the sidelobe level.
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discussed for a single frequency by Baggeroer and Cox[8] as well as Song et al [9]

and generalized for multiple frequencies in the Sec. 3.5.

3.5 Dynamic range bias in white noise processing

In a snapshot-deficient scenario, as in the Hudson canyon data set, the

CSDM eigenvalue spectrum is composed mainly of three groups. The highest

eigenvalues correspond to the source and strong interferers, followed by a lower

plateau of eigenvalues associated with noise, and finally non-physical eigenvalues,

usually much lower in magnitude, due to the fact that the matrix is ill-conditioned.

In this case, diagonally loading the CSDM decreases the gap between the noise

eigenvalues and the lowest plateau, and eventually renders the matrix invertible.

But by changing the magnitude of these small eigenvalues, we also change the

amount of bias at the output of the loaded MVDR, such that the apparent power

of the signal and noise will be lower than in reality[8].

Song et al formulated the amount of bias to be expected versus loading γ

[9]. Note that the loading referred to here as γ is a static loading independent of

the look direction, as would be used to invert the CSDM for the MVDR algorithm,

as opposed to the dynamic loading ε involved in the WNCM processor. They found

that when γ was much smaller than the eigenvalues of the CSDM associated with

noise smallest noise, λn, the signal and noise power outputs shifted by 2γ/λn in

decibels. However, when γ is equal or bigger to that smallest eigenvalue, the power

output changes as only γ/λn in decibels. In both cases, the shift in magnitude of

the power output is responsible for the bias in dynamic range observed on the MP

coherent-broadband, white noise constraint, ambiguity surfaces, as explained in

the following.

Figure (3.5) gives a schematic representation of the variation of the eigen-

value spectrum in our example as the CSDM becomes snapshot deficient. In the

Hudson Canyon experiment, the SNR recorded at each element was approximately

10 dB. When introducing an additional 20 dB of array gain (10log(L×N)), the gap

between the signal and noise eigenvalues is expected to be around 30 dB. There-
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Figure 3.5: Variation of the coherent CSDM signal and noise eigenvalues in the

ideal case of (1) sufficient snapshots, (2) 10 snapshots only and (3) 10 snapshots

and a loading of γ/λn = -70 dB. The corresponding expected and obtained peak-

to-background ratios is given for the broadband coherent MVDR and WNCM

algorithms.

fore, with no diagonal loading, and in the ideal case of no environmental mismatch

or snapshot deficiency, the peak-to-background ratio at the output of the MVDR

should be 30 dB.

Since there is not enough snapshots available in our case, a small amount

of loading is chosen in order to invert the cross-spectral density matrix. More

precisely, γ/λn = 10−7 (or -70 dB) was found sufficient to stabilize the matrix

with respect to inversion. This corresponds to the first case of the bias theory

for which γ is much smaller than the eigenvalues of the CSDM associated with
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noise; therefore we can expect the signal and noise power outputs to be shifted by

2 ∗ [γ/λn]in dB = 2 ∗ (−90 + 20) = −140 dB. However, since the ambiguity surfaces

are normalized to have a maximum of 0 dB prior to plotting, and both the signal

and noise are biased in the same way, this 140 dB bias is not visible in the MVDR

plots, as seen in the pictures obtained by Michalopoulou and Porter[20]. One can

also notice that a peak-to-background ratio of about 12 dB was obtained instead of

the theoretical 30 dB. Indeed, the total noise level, expressed as the sum of the noise

eigenvalues, remains the same between the ideal and snapshot-deficient scenarios,

while the number of noise eigenvalues decreases from L × N to 10. We therefore

expect the snapshot-defficient noise eigenvalues to be 10log[(L × N)/10] = 9.8

dB more powerful than the ideal noise eigenvalues. The inevitable environmental

mismatch is responsible for the remaining discrepancy between the theoretical and

experimental coherent MVDR peak-to-background ratios.

As Song also pointed out, the white noise constraint method, in contrast

to the MVDR, takes advantage of this power bias [9]. Indeed the WNCM sets

the white noise gain to that of the MVDR until the norm of the MVDR until

the norm of the MVDR weight vector no longer satisfy the inequality constraint.

When this happens, the CSDM is loaded causing the white noise gain to decrease

and eventually reach a minimum value determined by the constraint δ itself.

Therefore, in our white noise constraint plots, the noise should be 140 dB

lower than its actual physical value everywhere except around the location of the

source for which the MVDR weight vector’s norm becomes very large. The white

noise gain at the peak is then set by the value of the constraint (-3.5 dB for the

coherent case in Figs. (3.3) and (3.4). In other words, the peak to background

ratio is expected to be given by [bias + peak-to-background ratio without loading

- white noise constraint] = −140 − 12 + 3.5 ≈ −148 dB, which is consistent with

the 146 dB dynamic range found experimentally.

To test the hypothesis that the bias present in our results is indeed de-

pendent on the amount of loading, we increased the loading by steps of 2 dB in

Fig. (3.6) and looked at the evolution of the peak-to-background ratio in decibels.

The dot lines correspond to the case previously depicted of γ/λn = −70 dB. For
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Figure 3.6: Effect of the amount of diagonal loading on the bias for broadband

coherent white noise processing in a snapshot deficient scenario. As the theory

suggests, the peak-to-background ratio is varying with respect to the loading with

a slope of 2. The dashed lines correspond to the example previously treated.

γ/λn ∈ [−75,−10] dB, the peak-to-background ratio is reduced by the diagonal

loading with a slope of 2, as is found theoretically. As the loading continues to

increase, the slope of the peak-to-background ratio approaches one, and eventually

reaches the -12 dB ratio of the MVDR processing. When the loading gets very

small in comparison to the noise eigenvalues, γ/λn = −75 dB, the matrix is in-

creasingly ill-conditionned and the effect of loading becomes negligible. Hence the

peak-to-background ratio reaches the machine precision limit of -160 dB.

As seen on Fig. (3.4), the MP broadband coherent white noise constraint

processor localizes the source successfully while reducing the sidelobe level to -146

dB. However such a dynamic range does not imply that it can localize sources at

extremely low signal-to-noise ratio. There is in fact a threshold SNR, discussed by

Baggeroer et al in the single frequency context, under which the algorithm fails to

localize the source [10]. We illustrate the issue by implementing a mismatch-free
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Figure 3.7: Effect of the signal-to-noise ratio on the detectability of the source

using the coherent broadband MP algorithm in a snapshot deficient scenario. A

peak-to-background level of 0 dB corresponds to a failure of the algorithm to

localize the source. For the WNCM algorithms, a set of constraints ranging from

0.5 to 6 dB down the maximum by steps of 0.25 dB is applied, and the largest

peak-to-background ratio obtained for each input SNR is represented. Despite

the large dynamic range provided by the white-noise constraint, it cannot localize

sources at really low SNR.

simulation of the Hudson Canyon environment in a snapshot-deficient scenario for

which the SNR at each receiver was reduced by steps of 2 dB. This was done by

constructing ten individual realizations of signal plus white noise, and implement-

ing the CSDM associated.

Figure (3.7) represents the peak-to-background ratio obtained with the con-

ventional, minimum variance, and white-noise constraint MP coherent broadband

processor as the input SNR varies. A peak-to-background ratio of 0 dB corre-

sponds to cases for which the algorithm failed to localize the source. One can note

that despite having a 20 dB theoretical array plus processing gain, the coherent

white noise constraint algorithm in a snapshot-deficient scenario does not localize a

source with less than -10 dB SNR. This is due to the smaller number of eigenvalues
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associated with noise, discussed previously, effectively lowers the gain to 10 dB.

In contrast, the curves obtained with a full rank CSDM matrix show no bias and

localize sources as weak as -20 dB SNR. While the coherent white-noise constraint

method displays very low sidelobes and a better performance than the other algo-

rithms at low SNR, it nevertheless fails at SNR lower than -10 dB despite its very

large dynamic range.

The excess of dynamic range associated with the broadband WNC proces-

sor is therefore convenient for localization purposes but caution is required when

making any physical interpretation.

3.6 Source tracking in range and depth

In the specific example discussed in Sec. 3.4, both MVDR and WNCM ver-

sions of the broadband coherent algorithm developed by Michalopoulou and Porter

localized the source, but the white noise constraint displayed much lower sidelobes.

How robust is this algorithm when the environmental mismatch is increased and

the position of the source changed? To address this question, we processed each

of the twenty frames present in the outgoing and incoming legs, and introduce a

slight sound speed mismatch. The localization performance in range and depth

of the coherent and incoherent MVDR and WNCM matched-field processors was

then compared.

Figure (3.8) (a) displays the range slices obtained with the incoherent min-

imum variance processor for each source position, and Fig. (3.8) (b) shows the

depth track intersecting those estimated ranges. The known source ranges and

depths are indicated by the black circles. Figures (3.9) (a) and (3.9) (b) are the

corresponding figures obtained using the coherent MP MVDR algorithm. In this

case, the mismatch is sufficient to lose track of the source at most positions for

both incoherent and coherent processors. The sidelobe level is, however, lower in

the coherent case.

Figures (3.10) (a), (3.10) (b) and Figs. (3.11) (a), (3.11) (b) show the

same type of plots using the incoherent and coherent MP white noise constraint
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Figure 3.8: Source track obtained using the incoherent minimum variance al-

gorithm in the presence of mismatch. The black circles indicate the true source

positions. (a) Range track at source depth of 36 m, and (b) depth track along the

estimated range track.
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Figure 3.9: Source track obtained using the coherent MP minimum variance

algorithm in the presence of mismatch. The black circles indicate the true source

positions. (a) Range track at source depth of 36 m, and (b) depth track along the

estimated range track.
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Figure 3.10: Source track obtained using the incoherent white noise constraint

algorithm in the presence of mismatch. The black circles indicate the true source

positions. (a) Range track at source depth of 36 m, and (b) depth track along the

estimated range track.
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Figure 3.11: Source track obtained using the coherent MP white noise constraint

algorithm in the presence of mismatch. The black circles indicate the true source

positions. (a) Range track at source depth of 36 m, and (b) depth track along the

estimated range track.
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algorithms. This time the source is tracked in range and depth in both cases, with a

significantly lower sidelobe level obtained when using the coherent MP processor.

The white noise constraint algorithm is therefore more robust to environmental

mismatch than the MVDR and produces low sidelobes when combined with a

coherent broadband algorithm like the one developed by Michalopoulou and Porter.

3.7 Summary and conclusion

The problem of broadband acoustic source localization in shallow water

has been addressed. As previously shown, exploiting the information across fre-

quency is essential to perform a successful localization in this type of environment.

Two approaches were compared, the first consists in incoherently averaging the

information across frequencies, and the second, developed by Michalopoulou and

Porter, treats the multiple frequencies information coherently. Applying the very

common MVDR estimator to both methods revealed that the MFP discrimination

is indeed improved by the use of a coherent algorithm, but, on the other hand,

that sensitivity to mismatch is still problematic.

To address this issue, the robust white noise constraint estimator has been

applied to the coherent and incoherent approaches. Both methods were able to

track a source accurately and continuously using experimental data, in the pres-

ence of enough mismatch to lead to erroneous MVDR detections. The coherent

white noise constraint processor has also been shown through simulation to per-

form better than the conventional and MVDR estimators at low SNR. Applying

the WNCM algorithm to the MP broadband coherent method allowed us to get a

robust, discriminating, high resolution processor well suited for practical applica-

tions.
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4.1 Abstract

Source localization using matched-field processing (MFP) is typically prob-

lematic when the received sound levels are lower than a threshold signal-to-noise

ratio (SNR). Broadband MFP offers an additional processing gain over narrowband

methods by augmenting the data space, equivalent to increasing the number of hy-

drophones in the array. More specifically, coherent broadband methods which take

further advantage of the temporal complexity of the signal than incoherent ones

provide an added benefit in terms of localization performance. The detectability

of the signal versus input SNR is evaluated for four types of conventional MFP

algorithms using the detection index metric. The first is the narrowband MFP, the

second incoherently averages the information across frequencies, the third treats

the multiple frequencies information semi-coherently and removes the unknown

source phases from the processing, and the fourth incorporates those phases mak-

ing it a fully-coherent method. A technique to extract the source signal spectrum’s

phases from the data is presented and the added processing gain offered by the

coherent methods is validated through theory, simulation and experimental data.

The data derived variation of the detection index versus input SNR is shown to be

consistent with the simulated results.

4.2 Introduction

Matched-field processing (MFP) techniques intend to provide range/depth

localization of acoustic sources and/or information on the propagating media itself.

Matched-field processing typically gets problematic when the signal-to-noise ratio

(SNR) is low. Hence broadband processing, which takes advantage of the temporal

complexity of the signal and therefore offers an additional gain over narrowband

processing by augmenting the dimension of the data space, enhances the local-

ization performance of the algorithm. This chapter quantifies the added benefit

obtained by processing multiple frequencies coherently as opposed to incoherently

using the detection index metric. The effect of canceling versus introducing the

frequency-dependent unknown source phases in the coherent processing scheme
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will be explored.

There typically are two ways to combine information across frequency.

1. One can do an incoherent broadband type of processing [1, 2, 3], where single

frequency power outputs are averaged linearly or in dB in an effort to lower

the sidelobes and increase the robustness of MFP to environmental uncertain-

ties. The sum increases the detectability of the signal and robustness to mis-

match when the environmental uncertainties cause a frequency-independent

shift of the main lobe as opposed to the sidelobes.

2. Or one can exploit the cross-frequency complex information enlarging the

data space and providing an extra-processing gain, with the drawback that

these processors have to deal with the typically unknown complex spectral

properties of the signal sent.

Broadband coherent methods use more information than incoherent ones

by incorporating coherence across frequencies. The complexity of the impulse

response between the source and receivers is therefore enhanced, decreasing the

source localization’s ambiguity. One important drawback of these algorithms is the

need to predict the source phase accurately as a function of frequency, despite the

signal sent by the source usually being unknown. Hence most coherent algorithms

available to date cancel out the source phase by matching cross-correlation outputs

of pairs of hydrophones [4, 5, 6, 7, 8], or by using the phase at one element to

remove the unknown source phase on the remaining ones [9, 10]. Those methods

are therefore better described as semi-coherent techniques, since they discard the

source phase in the localization process.

Broadband coherent matched-field methods were first developed in the time-

domain. The earliest work has been credited to Clay [6], who proposed to match

measured and modeled impulse responses of transmission between the source and

a receiver to estimate the source location. His method however requires knowledge

of the source function. Clay and Li [5, 7] successfully used the technique to locate a

source in an almost ideal laboratory rigid waveguide. Brienzo and Hodgkiss [11, 12]

also localized a short range explosive source. The unknown source spectrum was
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evaluated from the direct path arrival. Frazer and Pecholcs considered different

types of norms and introduced five new single hydrophone algorithms, some of

them requiring no a priori knowledge of the source function, but estimating it

instead along with the source location [13]. Later on, Hursky et al. demonstrated

the feasibility of high frequency time-domain localization [14]. When the source

spectrum is not available, cross-correlating the signals received on two hydrophones

cancelled out the unknown source phase.

Since adaptive MFP methods operate in the frequency domain, coher-

ent broadband processors involving discrete frequencies are of particular inter-

est. Westwood [4] was the first to develop an algorithm matching cross correlated

measured impulse responses between pairs of receivers against modeled ones, the

resulting complex function being summed coherently over frequencies. It differs

from the time domain method introduced by Clay [6] in the sense that the output

is not the maximum of the time-domain cross-correlations anymore, but the coher-

ent summation of the narrowband cross-correlations. The unknown source phases

cancel out by design. The information coming from auto-spectra, or in other words

the diagonal terms of the single frequency cross-spectral density matrices (CSDM)

has been discarded, since it can overpower the off-diagonal complex entries without

contributing positively to the localization. The method was applied successfully to

a shallow water experimental data set characterized by strong multipath. Czenszak

and Krolik [8], on the other hand kept the auto-spectra information and formulated

the algorithm in a quadratic form similar to single frequency MFP. A previously

developed adaptive method, the environmental perturbation constraint [15], was

applied to mitigate the higher sensitivity to mismatch resulting from the increased

number of degrees of freedom.

Michalopoulou and Porter [9, 10] introduced a coherent algorithm based on

matching received and modeled fields rather than cross-correlated pairs of received

and modeled fields. One should note that since the unknown source phases across

frequency do not cancel out anymore, the authors resorted to a normalization and

cancellation scheme to remove the source’s spectrum amplitude and phase, equal-

izing the source level at different frequencies. The resulting processor is therefore
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coherent in the sense that the cross-frequency information is exploited. However

since the information contained in the signal’s spectrum is discarded in the pro-

cess, we will refer to the method as semi-coherent in the rest of the dissertation.

The processor tested on a real data set was shown to significantly improve the

minimum variance distortionless response (MVDR) tracking accuracy in compar-

ison to incoherent broadband techniques. Debever and Kuperman [16] combined

it with the adaptive white noise constraint algorithm to enhance its robustness

to environmental mismatch and snapshot deficiency. Orris et al considered the

unknown source phases as free parameters to be determined using an optimization

method [17]. The increased computational complexity however limits the use of

the technique to a handful of frequencies.

An extensive amount of work has therefore been done to develop methods

using frequencies in a coherent way. Amongst all of them, Michalopoulou and

Porter’s algorithm, herein referred to as the semi-coherent algorithm is chosen

because its formulation builds on standard single frequency algorithms.

This chapter explores the effect of adding the source’s phases information to

the semi-coherent algorithm, making it fully-coherent. In Sec. 4.3, we first provide

an overview of incoherent, semi-coherent and fully-coherent broadband MFP. We

then introduce a phase estimation technique in Sec. 4.4 to evaluate the unknown

source phases from the data itself. Sec. 4.5 presents the detection index theory

[18, 19, 20, 21], used as a metric to study the reliability of the source localization

versus input SNR using simulated data in Sec. 4.6 and data from the SWellEx-96

experiment in Sec. 4.7. Finally, Sec. 4.8 provides a summary and discussion.

4.3 Broadband matched-field models

Typically, a broadband source signal can be decomposed in the frequency

domain into Nb frequency bins defined as Nb = BW
fs/Nfft

, where BW is the signal’s

bandwidth, fs the sampling frequency and Nfft the number of points chosen to

implement the Fourier transform of the signal. The information carried by each

bin might not necessarily be independent from the one carried in adjacent bins,
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and the actual number of degrees of freedom depends on the actual sampling and

length of the emitted signal. In any case, the more information that is used to

match the data on the array against synthetic fields coming from hypothetical

source locations, the more accurate and discriminating the localization will be.

Broadband MFP, a natural extension of single-frequency processing is therefore

helpful in the presence of weak sources. This section describes the different ways

available to combine information across frequency. A theoretical study of the

expected coherent versus incoherent gain at the output of the processor is also

provided.

4.3.1 Incoherent processing

Let x
(i)
ω denote the complex field received on the hydrophone i at angular

frequency ω from a source at (Rs, Zs) .

x(i)ω = S(ω)G(i)(0, zi, Rs, Zs, ω) +Q(i)(ω), (4.1)

where S(ω) is the frequency dependent complex source spectrum, the expression

G(i)(0, zi, Rs, Zs, ω) the ocean waveguide’s Green’s function between the source

location and the element i of the receiving array, and Qi(ω) the complex noise

component corrupting the signal.

Matched-field processing essentially is performing a sum of correlations be-

tween modeled and measured fields over elements. Typically, the complex field

received on each hydrophone at one frequency is stacked in a (Nx1) vector, N

being the number of elements in the array:

xω =
[
x
(1)
ω , x

(2)
ω , . . . , x

(N)
ω

]T
, (4.2)

where the notation T denotes the transpose operator. A modeled field on the

array from a hypothetical source at (r, z) can be written in a (Nx1) vector as well,

commonly called the replica vector, or weight vector wω.

The narrowband matched-field processor output is the correlation between

received and modeled fields at various possible source positions along a grid in

range and depth,

P (r, z) = wH
ω (r, z)Rωwω (r, z) , (4.3)
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where Rω = E{xωxHω } is the cross-spectral density matrix (CSDM) at angular

frequency ω and the superscript H refers to the Hermitian transpose operation.

In the conventional matched-field processor case, the weight vector is just the

normalized Green’s function

wω = dω =
1√(

G
(1)
ω

)2
+ . . .+

(
G

(N)
ω

)2 [ G(1)
ω , . . . , G

(N)
ω

]T
. (4.4)

When the source emits a broadband signal, one can create an ensemble

of single-frequency ambiguity surfaces. Because the position of the sidelobes is

usually frequency dependent as opposed to the main lobe, a common approach

proposed by Baggeroer et al is to incoherently average single-frequency ambiguity

surfaces to suppress ambiguous sidelobes [1]. The conventional incoherent output

can be written as:

PIC (r, z) =
1

L

L∑
k=1

10log
[
|dHk Rkdk

∣∣]. (4.5)

where L is number of frequencies processed.

Note that the frequency dependent phases of the source spectrum S(ω) in

Eq. 4.1 cancel out in the process of forming the narrowband CSDMs, and do not

need to be included in the replica vector for single-frequency and incoherent MFP

in order to properly match the data represented by Rk.

4.3.2 Coherent processing

To create a coherent processor, one can stack the narrowband signal vectors

into one ”supervector” of length N × L.

x̆ =
[
x
(1)
ω1 , x

(2)
ω1 , . . . , x

(N)
ω1 , . . . , x

(1)
ωL , . . . , x

(N)
ωL

]T
. (4.6)

From this supervector, a “super” CSDM can be constructed in the usual

way, R̆ = E{x̆x̆H}. As opposed to incoherent processing, the extended cross spec-

tral density matrix now exploits cross-frequency coherence as well. But because

the signal emitted by the source has a characteristic signature in frequency repre-

sented by the complex term S(ω) in Eq. 4.1, the modeled field is now mismatched
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with respect to the signal. To be fully-coherent, the processor has to first remove

the phases of those complex terms for each frequency of the signal received.

x̆ =
[
x
(1)
ω1 e
−jarg(S(ω1 )), . . . , x

(N)
ωL e

−jarg(S(ωL))
]T
. (4.7)

The conventional MFP processor output can then be formulated as:

PFC (r, z) = d̆
H
R̆d̆,

PFC (r, z) = E

∣∣∣∣∣
L∑
k=1

dHk xke
−jarg(S(k))

∣∣∣∣∣
2
 . (4.8)

where FC stands for fully-coherent.

The position of the absolute value delimiters outside of the sum over fre-

quencies as opposed to inside in Eq. 4.5 makes this algorithm fully coherent and

generates cross-frequency terms.

In practice, the complex source spectrum is unknown, leaving the user with

replicas mismatched with respect to the signal. Michalopoulou and Porter ad-

dressed this issue by scaling the phase of each single-frequency subvector xk by

the phase on the phone displaying the highest SNR, and normalizing the subvec-

tor to unit length [9, 10]. This compensation procedure effectively eliminates the

unknown source terms in high SNR scenarios, but also equalizes the source level at

different frequencies. To allow a comparison with the incoherent and fully-coherent

algorithms, the method is slightly modified to keep the amplitude of the source

terms, foregoing the subvector’s normalization to unit length. The source phase

cancellation is carried out and introduces the extra phase of the phone chosen to

calibrate the other elements in the process. The algorithm is therefore not fully

optimal, and will be referred to as semi-coherent in the rest of the paper.

If we denote the new subvector by xk and assume no contamination by

noise and the first phone having the highest SNR:

xk =


∣∣S(k)G(1)(k)

∣∣ ej[arg(S(k))+arg(G(1)(k))]

...∣∣S(k)G(N)(k)
∣∣ ej[arg(S(k))+arg(G(N )(k))]

 ,
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we have,

xk =


∣∣S(k)G(1)(k)

∣∣ ej0
...∣∣S(k)G(N)(k)

∣∣ ej[arg(G(N )(k)−arg(G(1)(k))].

 , (4.9)

The semi-coherent conventional MFP output is given by:

PSC (r, z) = E

∣∣∣∣∣
L∑
k=1

dk
H
xk

∣∣∣∣∣
2
 . (4.10)

When the amount of noise imbedded in the signal is not negligible, the

phase normalization scheme described above carries an inherent mismatch due to

the presence of the noise components [16]. Section 4.6 and 4.7 further discus the

semi-coherent algorithm’s performance versus signal-to-noise ratio.

4.3.3 Theoretical coherent gain

To better understand how much improvement one can expect from using

the source spectrum’s phases in the coherent processing, the gain obtained at the

output of the diverse algorithms is investigated.

By definition, the processor’s gain is the amount by which the signal is

enhanced over the noise at the output of the processor. It is the ratio of the

output SNR to the SNR at one sensor[21]. One way to estimate it is to divide the

processor’s output in the presence of signal only by its value in the presence of

isotropic noise only and form the ratio of the quantity obtained by the mean input

SNR over frequency at the elements.

In the incoherent broadband case, the individual single-frequency outputs

are averaged:

PIC (r, z) =
1

L

L∑
k=1

| d
H
k

|dk|
xkx

H
k

dk
|dk|
|, (4.11)

where L is the number of frequencies processed.

Equation 4.11 is the same as Eq. 4.5 where the normalization of the weight

vector has been written explicitly.
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When the look position d coincides with the true source position, and as-

suming we can neglect mismatch between modeled and real environments, we have

xω = S(ω)dω in the signal only case.

Equation 4.11 becomes:

PIC,signal only (r, z) =
1

L

L∑
k=1

|S(k)|2|dk|2. (4.12)

When no signal is present in the data, but instead isotropic noise (ie spa-

tially white), E
[
xωx

H
ω

]
= |Q(ω)|2I, where I is the identity matrix.

PIC,noise only (r, z) =
1

L

L∑
k=1

|Q(k)|2. (4.13)

The mean input SNR at the elements is written as:

SNRinput (ω) =
1

N

N∑
n=1

∣∣S(ω)d(n) (ω)
∣∣2

|Q(n)(ω)|2
,

=
|dω|2 |S (ω)|2

N |Q (ω)|2
, (4.14)

where N is the number of receivers. Finally, the mean input SNR over frequency

at the elements takes the form:

S̃NRinput =
1

NL

L∑
k=1

|dk|2 |S (k)|2

|Q (k)|2
, (4.15)

where the operator ã stands for averaging the quantity a over frequencies.

The incoherent broadband gain is given by:

Incoherent gain =
PIncoh,signal only/PIncoh,noise only

S̃NRinput

,

= NL

[∑L
k=1 |S (k)|2 |dk|2

]
/
[∑L

k=1 |Q (k)|2
]

∑L
k=1 |S (k)|2 |dk|2 / |Q (k)|2

. (4.16)

If the noise level is assumed constant over frequencies, Eq. 4.16 reduces to:

Incoherent gain for flat noise spectrum = N. (4.17)

In the particular case of isotropic, flat noise spectrum incoherent broadband

gain is thus the same as the array gain. Averaging the frequency outputs does
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not add any extra processing gain, but does decrease the level of the sidelobes

significantly, rendering the localization more robust.

Similarly, the same type of reasoning can be applied in the fully and semi-

coherent cases. The fully-coherent broadband output is given by:

PFC (r, z) =

∣∣∣∣∣
L∑
k=1

dHk
|dk|

xke
−jarg(S(k))

∣∣∣∣∣
2

,

=
L∑
k=1

L∑
q=1

dHk
|dk|

xke
−jarg(S(k))xHq e

jarg(S(q)) dq
|dq|

. (4.18)

In the absence of noise xω = S(ω)dω, and since the signal is phase corrected,

Eq. 4.18 becomes:

PFC,signal only (r, z) =
L∑
k=1

L∑
q=1

|S(k)||S(q)|dk||dq|. (4.19)

When the signal is white noise, i.e. uncorrelated spatially and over fre-

quency E
[
xkx

H
q

]
= |Q(k)||Q(q)|Iδq,k, where δ is the Kronecker’ function for which

δq,k = 1 if q 6= k and δq,k = 0 if q = k. Hence:

PFC,noise only (r, z) =
L∑
k=1

|Q(k)|2. (4.20)

The fully-coherent broadband gain is given by:

Fully coherent gain =
PFC,signal only/PFC,noise only

S̃NRinput

,

= NL

[∑L
k,q=1 |S(k)||S(q)|dk||dq|

]
/
[∑L

k=1 |Q(k)|2
]

∑L
k=1 |S (k)|2 |dk|2 / |Q (k)|2

.(4.21)

If the noise level is assumed constant over frequencies, Eq. 4.21 reduces to:

Fully coherent gain for flat noise spectrum = N

∑L
k,q=1 |S(k)||S(q)|dk||dq|∑L

k=1 |S (k)|2 |dk|2
.

(4.22)

and

Fully coherent gain for flat noise and signal spectrums = NL, (4.23)
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when the signal’s spectrum is flat as well.

Processing the frequencies coherently brings an extra-processing gain of L

over the incoherent method when the signal’s spectrum is flat.

The semi-coherent broadband output is written as:

PSC (r, z) =

∣∣∣∣∣∣∣
L∑
k=1

(
dke

−jG(1)(k)
)H

|dk|
xke

−j[arg(S(k)G(1)(k)+Q(1)(k))]

∣∣∣∣∣∣∣
2

,

=
L∑

k,q=1

(
dke

−jG(1)(k)
)H

|dk|
xke

−j[arg(S(k)G(1)(k)+Q(1)(k))] (4.24)

xHq e
j[arg(S(q)G(1)(q)+Q(1)(q))]

(
dqe

−jG(1)(q)
)

|dq|
. (4.25)

if the first phone is chosen in the normalization process.

Hence:

PSC,signal only (r, z) =
L∑

k,q=1

S(k)S(q)∗|dk||dq|ejφk,qe−jψk,q ,(4.26)

where φk,q =
[
arg
(
S (q)G (1 )(q) + Q (1 )(q)

)
− arg

(
S (k)G (1 )(k) + Q (1 )(k)

)]
, ψk,q =[

arg
(
G (1 )(q)

)
− arg

(
G (1 )(k)

)]
and the asterix denotes the complex conjugate op-

eration.

For white noise only:

PSC,noise only (r, z) =
L∑
k=1

|Q(k)|2. (4.27)

The semi-coherent broadband gain is given by:

Semi coherent gain =
PSC,signal only/PSC,noise only

S̃NRinput

,

= NL

∑L
k,q=1 S(k)S(q)∗|dk||dq|ejφk,qe−jψk,q/

∑L
k=1 |Q(k)|2∑L

k=1 |S (k)|2 |dk|2 / |Q (k)|2
.(4.28)

In presence of white, flat noise, the two extremes cases of high input SNR

and low input SNR respectively yield:

Semi coherent gain at high SNR = N

∑L
k,q=1 |S(k)||S(q)|dk||dq|∑L

k=1 |S (k)|2 |dk|2
, (4.29)
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which is the same expression as the one obtained in Eq. 4.22 for the fully-coherent

gain, and

Semi coherent gain at low SNR = N

∑L
k,q=1 |S(k)||S(q)||dk||dq|ejφk,qe−jψk,q∑L

k=1 |S (k)|2 |dk|2
.

(4.30)

Thus the semi-coherent gain is between the incoherent and the fully-coherent

gains.

Because of the phase scaling process detailed in Sec. 4.3.2, the semi-coherent

processor’s gain implicitly is a function of the input SNR, as opposed to the inco-

herent and fully-coherent techniques. Indeed, at SNRs such that the noise is not

negligible compared to the signal, the noise at the receiver used to calibrate the

other elements is introduced on all hydrophones via the phase correction scheme.

At low input SNR, the replica therefore becomes mismatched with respect to the

data, and in effect the expected gain at the output of the semi-coherent processor

decreases.

Those theoretical considerations suggest that there is indeed an additional

processing gain obtained by incorporating the source spectrum’s phases into the

coherent processing scheme. The rest of the paper will explore this assumption

using simulated and experimental results.

4.4 Estimation of the source phases

As apparent in Eq. 4.7, the fully-coherent method requires knowledge of

the frequency dependent source spectrum phases in order to fully match the replica

field to the received one. In this section, a technique is proposed to estimate those

unknown phases without any a priori information on the source’s position.

The received field xω and conventional replica vector dω at the frequency

ω are expressed as:

xω =


S(ω)G(1)(0, z1, Rs, Zs, ω) +Q(1)(ω)

...

S(ω)G(N)(0, zN , Rs, Zs, ω) +Q(N)(ω)

 , (4.31)
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and

dω (r, z) =
1

β


G(1)(0, z1, r, z, ω)

...

G(N)(0, zN , r, z, ω)

 , (4.32)

where β =
√
|G(1)(0, z1, r, z, ω)|2 + . . .+ |G(N)(0, zN , r, z, ω)|2 is a coefficient of

normalization.

If the noise is assumed negligible compared to the signal level, the phase of

the inner product between the signal and replica at frequency ω is given by:

arg
(
dHω xω

)
= arg (S(ω)) + arg

(
N∑
i=1

G(i)(0, zi, r, z, ω)∗G(i)(0, zi, Rs, Zs, ω)

)
.

(4.33)

Note that when the replica vector corresponds to a simulated signal coming

from the true source position, ie (r, z) = (Rs, Zs), the phase of the inner product

reduces to the desired phase of the signal’s spectrum at frequency ω.

We now modify the fully-coherent algorithm in Eq. 4.8 by phase-correcting

the signal by the phase of the inner product between the signal and the replica at

(r, z) instead of the (in fact unknown) source phases.

Phase corrected coh (r, z) = E

∣∣∣∣∣
L∑
k=1

dHk (r, z)xke
−jarg(dH

k (r ,z )xk)

∣∣∣∣∣
2
 . (4.34)

The data matched to the bank of replica vectors is now different for each

grid point in range and depth. When (r, z) = (Rs, Zs), the data is phase-corrected

by the frequency-dependent source phases, yielding a maximum in the output. The

source phase estimate is therefore given by the phase of Eq. 4.33 at the range and

depth of the maximum output of the phase estimator.

Note that the algorithm in Eq. 4.34 provides an estimate of the source

location as well. But because the phase compensation introduced is a function of

range and depth, it will affect the structure of the sidelobes. For comparison pur-

poses with the incoherent and semi-coherent methods we will determine the source
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phase from the peak of the ”phase-corrected” coherent processor and implement a

fully-coherent ambiguity surface with the estimated phase according to Eq. 4.8.

When the noise level is not negligible with respect to the signal, the phase of

the inner-product at the appropriate range and depth is not just the source phases

anymore, but a combination of the source, Green’s function and noise phases.

Two scenarios can happen:

1. The contamination of the signal by noise is not significant enough to change

the position of the peak of the phase estimator given by Eq. 4.34. In that

case, the phase obtained from Eq. 4.33, despite being somewhat different

from the source phases still allows maximum coherence over frequencies.

Indeed, if we denote dHk (r, z)xk as Tk(r, z), the ”fully-coherent” algorithm

given by Eq. 4.8 becomes:

PFC est (r, z) = E

∣∣∣∣∣
L∑
k=1

Tk(r, z)e−iarg(Tk(Rs,Zs))

∣∣∣∣∣
2
 (4.35)

When (r, z) = (Rs, Zs), the terms in the sum of Eq. 4.35 are real and sum

optimally.

2. The power of the noise is such that the peak of the phase estimator if even

existent is not at the true source position. In that case the output of the

fully-coherent processor will give a wrong estimate of the source position.

The method of estimating the source phases is of interest from a practical

standpoint only if it works at SNR sufficiently low to offer an advantage in using

the fully-coherent processor versus the semi-coherent algorithm.

4.5 The detection index performance metric

Section 4.3 introduced different broadband algorithms exploiting cross fre-

quency coherence to various degrees. We would like to quantify the benefit of

using broadband versus narrowband, and coherent versus incoherent broadband

methods as a function of input SNR at each element. The detection index metric

is chosen as a measure of a processor’s detection performance.
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Detection theory literature addresses the question of whether the signal is

present or not in an observation, and how to implement an optimum detector for

a certain detection criterion [18, 19, 21]. Typically, if we call x(n), n ∈ [1, Nsamples]

the received data we assume that there are two hypothesis:

H0 : x(n) = w(n), (4.36)

H1 : x(n) = s(n) + w(n).

H0 is the null hypothesis of noise only present in the observation, and H1 the

hypothesis of signal present in noise.

The test statistic λT is defined as the ratio of the likelihood of x given that

H1 is true over the likelihood of x given that H0 is true. The higher λT , the more

detectable a signal will be. This ratio is commonly used in detection theory to

maximize the probability of detection over the probability of false alarm. The

deflection coefficient df is a measure of the change in the expected value of the

test statistic when the signal is present as opposed to the noise-only case:

d2f =
(E [λT |H1]− E [λT |H0])

2

var(λT |H0)
. (4.37)

When the observation is a power I(n) =
1

Nsamples

|x(n)|2 as is the case for the MFP

processor output, the deflection coefficient becomes:

d2f =
E
[
λIT |H1

]
− E

[
λIT |H0

]√
var(λIT |H0)

, (4.38)

where λIT is the ratio of the likelihood of I given that H1 is true over the likelihood

of I given that H0 is true.

The detection index D = 10log(d2f ) gives a metric to compare the different

processor’s performance as the signal gets weaker and weaker. Simulated and

experimental results are presented in Sec. 4.6 and 4.7 respectively.

4.6 Simulated detection index versus SNR

In this section, the localization performance of narrowband, broadband in-

coherent, semi-coherent and fully-coherent conventional MFP is investigated using
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simulation. Specifically, the importance of incorporating the source term informa-

tion into the coherent processing and the extra-processing gain associated with it

is examined.

The SWellEx-96 experiment data set [22] has been chosen for use in this pa-

per in part because of the extensive study of the environment conducted, providing

us with an accurate description of the media, but also because of the low ocean

variability over the duration of the experiment. The experiment also featured a

source broadcasting tonals of various power level, allowing a study of the proces-

sor’s performance versus input SNR. The SWellEx experimental environment is

used in this section to create a synthetic signal for which the complex source terms

are known exactly and can be exploited. Results from processing the data itself

will be provided in Sec. 4.7.

The experiment took place in shallow water (216 m) off San Diego, Califor-

nia. Two acoustic sources were towed along an isobath, transmitting multitonal

components at various strengths between 50 and 400 Hz, and the acoustic field

was sampled by a vertical, tilted and two horizontal arrays. The acoustic signal

received from the deep source (54 m) on the 21-element vertical array will be used

in the rest of the paper. The SWellEx environment is illustrated in Fig. (4.1).

A simulated signal on the array consisting of 42-snapshots is created using a

normal mode propagation model [23], such that SNR=-5dB at each element. The

signal is composed of thirteen tones of frequencies 49, 64, 79, 94, 112 130, 148,

166, 201, 235, 283, 338 and 388 Hz, each associated with a known signal spectrum

phase. The synthetic source is positioned 54 m deep, 4475 m away from the array.

Figure (4.2) displays the single-frequency conventional MFP output ob-

tained at 49 Hz. The source is correctly localized, but the presence of high side-

lobes renders the localization ambiguous. Incoherently averaging the ambiguity

surfaces from 13 tonals shown in Fig. (4.3) lowers the sidelobes level to 5 dB

below the main lobe, allowing for successful source localization. In Fig. (4.4), the

cross-frequency coherence is now exploited in the processing, but the source spec-

trum’s information in assumed unknown and cancelled out from the algorithm,

as described in the semi-coherent case in Sec. 4.3.2. The extra processing gain
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Figure 4.1: The SWellEx environment features a 21 element vertical array and

an acoustic source towed at 54 m deep from 1 km to 9 km away from the array.
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associated with the cross-frequency data space lowers the sidelobes to 6 dB below

the maximum. The source’s detectability over noise is greatly improved. Finally,

adding the true source phase information to the processing significantly lowers the

level of the sidelobes to 12 dB below the main-lobe level, as shown on Fig. (4.5)

and (4.6).

The phase estimation technique described in Sec. 4.4 is now applied, and

the fully-coherent MFP output obtained with the estimated source phases as in

Equation 4.8 is presented in Fig. (4.7). Figure (4.6) shows the fully-coherent

output with true source phases with an increased dynamic range of [-22 dB 0 dB]

for comparison purposes. The ambiguity surfaces obtained with an estimate of the

source phase versus knowledge of the true phase are similar.

The validity of the the theoretical gain predictions in Sec. 4.3.3 is now

investigated. The basal noise level of an ambiguity surface is estimated in this

study by averaging the lowest values of the surface. The main lobe level minus

basal noise level obtained is referred to as peak-to-background level in the rest of

the Chapter. Figure (4.8) shows the simulated peak-to-background output of the

incoherent, semi-coherent, fully-coherent using the true source phases and fully-

coherent using estimated source phases processors divided by the mean input SNR

over elements and frequencies and the array gain as the number of frequencies

included in the processing is varied. In other words, the plot’s vertical axis shows

the magnitude of the processor’s gain due to using multiple frequencies. Fifteen

iterations of 42 snapshots at 20, 5 and -5 decibels input SNR were created, and

the average peak-to-background ratio over iterations computed. The noise added

to the signal is white.

According to Eq. 4.17, 4.23 and 4.28, we expect the incoherent MFP out-

put’s dynamic range to be invariant with the number of frequencies used, and the

fully-coherent case to be linearly increasing with frequency. The semi-coherent al-

gorithm doesn’t quite take advantage of the full cross-frequency information and is

expected to show an extra gain versus number of frequencies processed somewhere

in between the incoherent and fully-coherent cases. The lower the input SNR,

the closer the gain to the incoherent processor. The simulated results confirm the
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Figure 4.2: Simulated output

from the single-frequency conven-

tional MFP at 49 Hz, SNR=-5 dB.
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Figure 4.3: Simulated output from

the incoherent broadband conven-

tional MFP using 13 frequencies be-

tween 50 and 400 Hz, SNR=-5 dB.
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Figure 4.4: Simulated output from

the ”semi-coherent” broadband con-

ventional MFP using 13 frequencies

between 50 and 400 Hz, SNR=-5 dB.
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Figure 4.5: Simulated output from

the ”fully-coherent” broadband con-

ventional MFP using 13 frequencies

between 50 and 400 Hz, SNR=-5 dB.

The true complex source phases are

incorporated into the processing.
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between 50 and 400 Hz, SNR=-5 dB.
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theoretical predictions.
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Figure 4.8: Function showing the evolution of each processor gain as a function

of number of frequencies used in the algorithm. Three averaged input SNRs over

frequencies and elements were compared; 20 dB, 5 dB and -5 dB at each element.

As expected, the incoherent MFP does not display any extra gain as the number of

frequencies utilized increased, the ”fully-coherent” MFP coherent gain is propor-

tional to the number of frequencies and the ”semi-coherent” MFP coherent gain is

close to the incoherent one at low SNR and ”fully-coherent” one at high SNR.

This simple simulated case illustrates the improvement in detectability ob-

tained when incorporating the source’s spectrum information to the semi-coherent

algorithm. Those results suggest that an extra processing gain over incoherent and

semi-coherent methods is obtained when matching the frequency components cor-

rected by the true source phases to the modeled pressure fields. Does this however

imply that the fully coherent algorithm is able to detect weaker sources than the

other types of broadband processors?
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To answer this question, a comparison of the different processor’s simulated

performance as a function of input SNR at each element is performed using the

detection index metric presented in Sec. ??. The input SNR averaged over fre-

quencies and elements is varied from -25 to 5 decibels in increments of 1 decibel.

For each SNR, 20 iterations of 42 signal plus noise and noise only snapshots are

created. The output of the processors at the correct source’s range-depth obtained

from a CSDM formed with signal plus noise snapshots gives the expected value of

{λIT |H1}. {λIT |H0} is given by the output of the processors at the same location

using a noise-only CSDM. Likewise, var(λIT |H0) is given by the variance of the

outputs in the noise-only case over the 20 iterations.

Figure (4.9) displays the simulated detection index obtained. As expected,

the bigger the input SNR, the more detectable the signal is at the output of

all processors. Broadband processing also improves detection over narrowband

methods for all input SNRs. Interestingly, the semi-coherent algorithm displays a

detection index lower than the incoherent one at all negative SNRs, despite the

contrast between main lobe and sidelobe levels being larger on Fig. (4.4) than Fig.

(4.3). This is due to the variance of the noise in the denominator of Eq. 4.38 being

bigger at the output of the semi-coherent broadband processor than at the output

of the incoherent processor. On the other hand, the detectability of the signal in

the fully-coherent broadband processor case is the highest at all input SNRs, and

its detection index is about 5 dB above the incoherent processor one, and 10 dB

above the single-frequency and semi-coherent algorithms.

Those results suggest that the phase estimation technique provides us with

estimates of the source phases good enough to implement a fully-coherent method,

and that incorporating those phases into the semi-coherent algorithm, making it

fully-coherent brings a noticeable improvement to the main lobe to sidelobe ratio

and detectability of the signal.
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4.7 Experimental detection index versus SNR

Theory and simulation both show that incorporating the source phase in-

formation to the coherent processing scheme provides an additional ”coherent”

gain over the semi-coherent method. Is the phase estimation technique introduced

in Sec. 4.4 robust enough to environmental mismatch to take advantage of the

coherent gain using experimental data?

The SWellEx-96 experiment, described in Sec. 4.6 is well suited for broad-

band coherent algorithms comparison as a function of input SNR. The source

transmitted 5 sets of 13 tonals at various levels spanning the frequencies between

49Hz and 400Hz. The first set of 13 tonals was projected with transmitted levels

of about 158 dB for each tonal, the second set at approximately 132 dB, and each

subsequent set 4 dB down from the previous set.

The source was towed along an isobath from 1 to 9 km away from the array.

Despite each set of tonals being transmitted at a fixed level, the transmission loss

occurring during the propagation in the waveguide provides us with incoming data

at various input SNR on the receiver array, depending on the distance between the

source and the array at the time of transmission.

The first step in creating an experimental detection index curve versus

input SNR is to estimate the averaged SNR over frequencies and elements along

the source track. The highest set of tones is loud enough (around 10 to 20 dB at

each element depending on the source/array distance) to assume that the noise is

negligible and we obtain an estimate of the signal and noise levels from the received

field’s spectrum every two minutes. Once the input SNR is estimated along the

track for the powerful tones, the corresponding SNR for the weaker sets of tones

is calculated knowing that the second set was projected 26 dB down the first one,

then 4 dB down for each subsequent set.

The data is then grouped by input SNR and the single frequency, incoher-

ent, semi-coherent and fully coherent with estimated source phase processors are

implemented using the ”signal plus noise” data and the ”noise-only” data for those

times. The ”noise-only” data is obtained from the frequencies 62, 77, 92, 107 125,

143, 161, 179, 214, 248, 296, 351 and 401 Hz. An estimate of the experimental
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detection index for each input SNR can then be determined.

Figure (4.10) shows the experimental curves obtained in dots. As expected,

the fully-coherent algorithm with the estimated source phase integrated into the

cross-frequency processing displays the highest level of detection index by 5 to

10 decibels above the next processor. The estimate of the source phase becomes

inaccurate as the noise increases and the fully-coherent processor’s detection index

suddenly drops down to the level of the other processors around SNR=-10 dB. For

SNR between -5 and -10 decibels, only the fully-coherent and incoherent processors

successfully detect the source, with the fully-coherent detection index being 10

decibels above the incoherent one. The semi-coherent method shows a higher

detectability than the incoherent one by a couple decibels for SNR above 10 dB,

but drops 2 decibels below the incoherent one under 10 dB SNR. Incorporating the

source phase to the processing therefore improves the detectability of the source

over the semi-coherent method.

Note that a comparison between Fig. (4.9) and (4.10) shows that the sim-

ulated detection index curves in Fig. (4.9) are about 10 dB higher than the ex-

perimental ones. This is due to the nature of the noise added to the signal in the

simulation. Indeed, snapshots of isotropic white noise at various SNR were imple-

mented to create Fig. (4.9), however a closer inspection of the experimental noise

cross-spectral density matrices showed the presence of spectrally and spatially col-

ored noise in addition to white noise. To be consistent with the experimental

environment, a new simulation was performed using noise snapshots which repro-

duced the experimental noise CSDM using the Cholevsky decomposition method

[24], and varying the power of those noise snapshots to obtain the input SNR

desired.

The new simulated detection index curves are superimposed to the experi-

mental ones on Fig. (4.10). A number of differences between the curves obtained

with white-noise snapshots in Fig. (4.9) and colored-noise snapshots in Fig. (4.10)

are noticed. While the slopes of detection indexes versus input SNR remain mostly

unchanged when changing from white to colored noise, the detection index curves

obtained with colored noise are about 10 decibels lower than the corresponding
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Figure 4.10: Experimental detection index of the single-frequency at 49 Hz,

incoherent, semi-coherent and fully-coherent with estimated source phase matched-

field processors as a function of the averaged input SNR over frequencies and

element in dots, using data from the SWellEx-96 experiment. Simulated curves

using noise snapshots created from the experimental noise CSDM are superimposed

in plain lines.
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white noise ones. This is because the variance of the noise apparent in the denom-

inator of the detection index’s formulation in Eq. 4.38 is larger for colored than

white noise.

The discrepancy between the simulated semi-coherent and fully-coherent

curves and the experimental ones for positive SNRs is likely due to the presence

of environmental mismatch. Indeed, the experimental points between 5 and 20 dB

input SNR were obtained from the highest level of tones along the source track.

The closer the source was to the array, the higher the input SNR recorded. In

the presence of mismatch between the environment used to create the synthetic

field and the real ocean, we expect the simulated fields far from the array to be

more affected by the mismatch present than close to the array. We also expect the

coherent methods to be more sensitive to environmental fluctuations and modeling

parameters errors than the narrowband and incoherent processors.

To validate the presence of environmental mismatch, we progressively add

more and more data-derived colored noise to the signal obtained when the source is

the closest to the array, corresponding to an averaged input SNR over frequencies

and elements of 18 dB. According to our assumption that the slopes of experimen-

tal and simulated detection index versus SNR differ because of mismatch being

more and more problematic as the source range increases, we expect that adding

synthetic noise to the least affected by mismatch data recording should give re-

sults similar to the mismatch-free simulation. Figure (4.11) shows the experimental

fully-coherent detection index curve versus SNR in dots, the mismatch-free sim-

ulated one in dotted line, and the one obtained by adding synthetic noise to the

data of highest SNR in plain line with square markers. Two cases are considered

for the fully-coherent method: (1) the source phase is estimated from the highest

SNR data only, shown in grey and (2) the source phase is estimated from the noisy

data at each SNR in black. The new hybrid curves do agree with the mismatch-

free simulated ones, suggesting that there is indeed a non negligible amount of

inaccuracies between our model of the environment and the true ocean. The fully-

coherent detection index using source phases derived from the highest SNR data

is a couple dB higher than the one using an estimate of the phase at each SNR. It
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Figure 4.11: Experimental detection index of the fully-coherent with estimated

source phase matched-field processor as a function of the averaged input SNR

over frequencies and elements in dots, using data from the SWellEx-96 experi-

ment. The simulated curve using noise snapshots generated from the experimental

noise CSDM is superimposed in dotted line. The plain line with square markers

represents the detection index obtained from gradually augmenting the amount

of colored noise added to the data at 18 dB at mean input SNR. Tow cases are

pictured: (1) the phase is evaluated from the noisy data shown in black, (2) the

phase is evaluated from the data at 18 dB input SNR in grey.
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also doesn’t show a sudden drop around -8 dB SNR due to the phase estimation

technique becoming problematic at low SNR, as expected.

Simulation and experimental results suggest that there is indeed an extra-

processing gain and added detectability obtained by incorporating the source phase

into the semi-coherent processor previously discussed in the literature. Does the

fully-coherent broadband algorithm also exhibit better localization performance

than the other processors?

Data from the two highest sets of tonals is processed along the source track,

and the main lobe minus highest sidelobe level is determined for cases when the

source was localized with an accuracy of 250 m in range and 15 m in depth.

Figure (4.12) displays the results obtained using the single-frequency, incoherent,

semi-coherent and fully-coherent with estimated source phase processors. Only

successful localization are represented. These results show that the fully-coherent

method displays the highest peak-to-sidelobe ratio for all mean input SNR (be-

tween 4 and 8 dB main lobe to sidelobe level). The incoherent and semi-coherent

methods peak-to-sidelobe levels decrease with input SNR at a faster rate than

with the fully-coherent processor (from 5 to 1 dB for the semi-coherent and 4 to 0

dB main lobe to sidelobe level for the incoherent processor). The single-frequency

processor displays sidelobes nearly as high as the main lobe, and is therefore not

suited for practical purposes. Moreover, for input SNR lower than 0 dB, only

the fully-coherent and incoherent methods localize the source correctly, but the

incoherent processor’s sidelobes are less than a dB below the main-lobe, rendering

localization ambiguous.

Adding the source phases into the processing therefore improves not only

the signal’s detectability, but also its localization at the right place.

4.8 Summary and conclusion

The benefit of broadband versus narrowband processing on acoustic source

localization and detection has been evaluated for different input SNRs. As pre-

viously shown, exploiting the information across frequency is essential to detect
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Figure 4.12: Experimental main lobe versus first sidelobe level in dB of the single-

frequency at 49 Hz, incoherent, semi-coherent and fully-coherent with estimated

source phase matched-field processors as a function of the averaged input SNR

over frequencies and elements, using data from the SWellEx-96 experiment. Only

the frames localizing the source with an accuracy of 250 m in range and 15 m in

depth are displayed.
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the source at low input SNR. Three broadband conventional MFP techniques were

compared. The first consists in incoherently averaging the information across fre-

quencies, the second, developed by Michalopoulou and Porter, treats the multiple

frequencies coherently but removes the unknown source phase information making

it a semi-coherent method, and the third is a fully-coherent technique where the

source spectrum’s phase is incorporated in the processing. The processing gain as-

sociated with each method was formally derived, and the semi-coherent processor’s

performance was shown to approach the fully-coherent one only for very high in-

put SNRs. The detectability of each method versus input SNR was assessed using

the detection index performance metric on simulated data. It was shown through

theory and simulation that broadband methods were more proficient at detect-

ing a source than single-frequency processing, and that processing the frequencies

coherently provided an additional gain in source detectability.

Detection index curves versus SNR were obtained using the SWellEx-96

experiment. The unknown source phase first was estimated from the data using

a somewhat exhaustive search procedure. Simulated curves were matched to the

experimental ones using colored noise snapshots extracted from the noise part of

the data itself. As in the simulated case, the fully-coherent method was shown to

perform best at all SNRs, and allow source localization at input SNRs for which

the semi-coherent technique failed to localize the source.
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5.1 Abstract

Matched-field processing is typically problematic in the kHz frequency regime.

Higher frequencies require an accurate, finely sampled knowledge of the environ-

mental parameters involved in the signal’s propagation model. The design of a

processor robust to sound speed fluctuations is investigated using 3.5 kHz data to

construct both the cross-spectral density matrices and the weight vectors. Conven-

tional, minimum variance distortionless response and white-noise constraint weight

vectors are produced as a function of time measured around the cross-spectral

density matrix construction time. If source and receiver arrays are assumed mo-

tionless, the only parameter changing over the course of the experiment is the

water channel sound speed. Therefore a comparison of each processors’ sensitivity

to fluctuations can be performed. Broadband and principal component methods

are investigated to increase MFP’s robustness to environmental uncertainties. The

results obtained using data-derived weight vectors are applied to the traditional

model-based matched-field techniques in an effort to successfully locate the source

at high-frequency.

5.2 Introduction

Matched-field processing (MFP) techniques provide range/depth localiza-

tion of acoustic sources and/or information on the propagating media itself by

correlating or ”matching” the data received on an array to modeled pressure fields

coming from an hypothetical source position [1, 2]. While simple in concept, suc-

cessful source tracking requires the use of an adequate propagation model along

with the knowledge of acoustical environmental parameters of interest, and a source

signal sufficiently loud to be detected over the noise. Because low-frequency sig-

nals are usually minimally affected by model inaccuracies, matched-field processing

(MFP) has been successfully applied experimentally to locate a source in range and

depth, despite a somewhat simplified knowledge of the propagating environment

[3, 4, 5]. Higher frequency MFP on the order of the kHz, however, is much less

forgiving to model mismatch and requires a detailed characterization of the en-
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vironmental parameters involved in the generation of synthetic fields. Indeed, a

100 Hz signal will be sensitive to features roughly the size of its fifteen meters

wavelength, while a 3500 Hz signal will be affected by changes on the order of

half a meter. For the same reason, sound speed fluctuations are problematic and

usually prevent adequate reproduction of the measured pressure field. While the

ultimate MFP’s goal is the characterization of the source range and depth, on a

practical standpoint however, the ability to differentiate between submerged and

non-submerged targets, along with an estimate of the distance between the source

and receivers is already an important achievement.

Recently, et al [6] investigated the performance of time domain MFP at

high frequency (above 1 kHz). They showed that tracking the source successfully

required averaging successive experimental impulse responses, using the envelope

of the data (discarding the phase information) and articially increasing the band-

width of the synthetic signal to minimize the effect of mismatch. Soares et al [7]

experimentally localized a source transmitting a 800 to 1500 Hz broadband signal

up to 10 km away from the receivers, using frequency domain MFP. However, this

required prior estimation of the environmental parameters giving the best fit be-

tween received data and modeled replicas using a genetic algorithm optimization

procedure.

Single-frequency literature provides a class of matched-field processors de-

signed to increase the signal’s detectability and/or robustness to model inaccu-

racies. Adaptive methods involve a constrained optimization problem and are

often preferred to conventional ones because of the higher resolution ensued, bet-

ter peak-to-background levels and cancellation of potential interferers. However,

such techniques as the minimum variance distortionless response (MVDR) are ex-

tremely sensitive to environmental mismatch[3, 8, 9]. A considerable amount of

work has been done to mitigate the sensitivity of matched-field adaptive processors

to modeling errors [9, 10, 11, 12, 13]. These adaptive methods were shown to be

efficient in localizing sources in challenging environments and robust to presence

of environmental mismatch. On the other hand, they are more computationally

intensive and require a threshold SNR under which the output isn’t improved over
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conventional methods[14].

High-frequency tracking ability of the conventional, minimum variance and

white-noise constraint methods [13] will be investigated in this paper.

Localization performance can also be enhanced by implementing broadband

as opposed to narrowband processing. Indeed, broadband methods take advantage

of the temporal complexity of the signal and therefore offer an additional gain over

single-frequency processing by augmenting the dimension of the data space.

There typically are two ways to combine information across frequency.

1. One can do an incoherent broadband type of processing [14, 15, 16], where

single frequency power outputs are averaged linearly or in dB in an effort

to lower the sidelobes and increase the robustness of MFP to environmental

uncertainties. The sum increases the detectability of the signal and robust-

ness to mismatch when the environmental uncertainties cause a frequency-

independent shift of the main lobe as opposed to the sidelobes.

2. Or one can exploit the cross-frequency complex information enlarging the

data space and providing an extra-processing gain, with the drawback that

these processors have to deal with the typically unknown complex spectral

properties of the signal sent.

Broadband coherent matched-field processing was first developed in the

time domain [17, 18, 19]. Since adaptive MFP methods operate in the frequency

domain, coherent processors involving discrete frequencies are of particular inter-

est. Westwood [20] developed an algorithm matching cross correlated measured

impulse responses between pairs of receivers against modeled ones, the resulting

complex function being summed coherently over frequencies. The unknown source

phases cancel out by design. The information coming from auto-spectra, or in

other words the diagonal terms of the single frequencies cross-spectral density

matrix (CSDM) was discarded, because potentially overpowering the off-diagonal

complex entries without contributing positively to the localization. The method

was applied successfully to a shallow water experimental data set characterized

by strong multipath. Czenszak and Krolik [21], on the other hand kept the auto-

spectra information and formulated the algorithm in a quadratic form similar to
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single frequency MFP. A previously developed adaptive method, the environmental

perturbation constraint method [11], was applied to mitigate the higher sensitivity

to mismatch obtained from the increased number of degrees of freedom.

Michalopoulou and Porter [22, 23] introduced a coherent algorithm based on

matching received and modeled fields rather than cross-correlated pair sof fields. It

is chosen in this paper because its formulation builds on standard single frequency

algorithms. Since the unknown source phases across frequency do not cancel out

anymore, the authors resorted to a normalization and cancellation scheme to re-

move the source amplitudes and phases. The resulting processor is therefore better

described as semi-coherent. The method tested on a real data set was shown to sig-

nificantly improve the minimum variance distortionless response (MVDR) tracking

accuracy in comparison to incoherent broadband techniques. Debever and Kuper-

man [24] combined it with the adaptive white noise constraint algorithm to enhance

its robustness to environmental mismatch and snapshot deficiency.

This paper evaluates the extent of high-frequency MFP’s sensitivity to en-

vironmental variability and explores the possibility of designing a robust processor

in the frequency domain, able to locate the source experimentally without use of

a focalization technique. The issue is whether simplified range and time indepen-

dent environmental models can be sophisticated enough to reproduce the received

signal somewhat accurately. In Sec. 5.3, we first provide MFP tracking results

obtained using a single-frequency conventional processor on two high-frequency

data sets, the Focused-Acoustic Field (FAF) experiments 2003 and 2005. Because

reproducing an accurate ocean channel to construct synthetic fields is problem-

atic at such frequencies, 3.5 kHz data is used to construct both the cross-spectral

density matrices and the weight vectors in Sec. 5.4. This way, model mismatch is

nonexistent, and assuming source and receiver arrays motionless, the only variabil-

ity comes from the water channel sound speed. The robustness of conventional,

minimum variance and white noise constraint methods for the single-frequency,

broadband incoherent and broadband semi-coherent cases is investigated in ab-

sence of mismatch, but presence of sound speed fluctuations. A singular value

decomposition method is also introduced in the construction of the ”data weight
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vector” in an effort to further mitigate the effect of fluctuations. Sec. 5.5 builds

on the mismatch-free results of Sec. 5.4 to improve model-based MFP in high-

frequency scenarios. Finally, Sec. 5.6 provides a summary and discussion.

5.3 Narrowband conventional matched-field pro-

cessing at high frequency

High frequency sources on the order of a kHz or more are notoriously hard to

locate accurately because of the temporal and spatial variability of the environment

[25, 26, 7]. Data from two experiments conducted in 2003 and 2005 North of Elba

Island, the Focused Acoustic Field (FAF) 03 and 05 are processed to illustrate

the effect of oceanic variability on the localization’s performance of narrowband

conventional MFP.

5.3.1 The FAF 03 experiment

The FAF 03 experiment was conducted in 2003 by the SACLANT Under-

sea Research Centre and the Marine Physical Laboratory, Scripps Institution of

Oceanography North of Elba Island, Italy [27]. A series of 3.5 kHz chirps with

1.4 kHz bandwidth were sent successively by each of the 29 sources deployed in

a vertical array (SRA). The emitted signals were recorded on a 32-element verti-

cal receiver (VLA) array located 1.3 km away from the source array. The VLA

spanned the water column between 32 m and 98.2 m by increments of 2 m, and the

SRA between 23.4 m and 101.8 m by increments of 2.7 m. The water depth was

110 m, and the bathymetry and deployment setup is schematized in Fig. (5.1).

Conductivity-temperature-depth (CTD) measurements were performed over the

course of the experiment. Sound speed variability obtained in a 14 hour window

around the data recording time is represented on Fig. (5.2). The biggest fluctu-

ations (+/- 2m/s) were found in the first 15 m of the water column, the rest of

the water column exhibiting +/- 0.5 m/s at most. The mean sound speed profile

obtained is chosen to model the pressure field using the KRAKEN normal mode
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package [28].

Sediment layer 1 
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Figure 5.1: The FAF 03 environment, featuring a 29-element source line array

(SRA) and 32-element receiver line array (VLA) about 1.3 km appart.

Let x
(i)
ω denote the complex field received on the hydrophone i at angular
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Figure 5.2: Sound speed variability over 14 hours during the FAF 03 experiment

obtained from conductivity-temperature-depth (CTD) casts.
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frequency ω from a source at (Rs, Zs) .

x(i)ω = S(ω)G(i)(0, zi, Rs, Zs, ω) +Q(i)(ω), (5.1)

where S(ω) is the frequency dependent complex source spectrum, the expression

G(i)(0, zi, Rs, Zs, ω) the ocean waveguide’s Green’s function between the source

location and the element i of the receiving array, and Qi(ω) the complex noise

component corrupting the signal.

Matched-field processing is essentially performing a sum of correlations be-

tween modeled and measured fields over elements. Typically, the complex field

received on each hydrophone at one frequency is stacked in a (Nx1) vector, N

being the number of elements in the array:

xω =
[
x
(1)
ω , x

(2)
ω , . . . , x

(N)
ω

]T
, (5.2)

where the notation T denotes the transpose operator. A modeled field on the

array from a hypothetical source at (r, z) can be written in a (Nx1) vector as well,

commonly called the replica vector, or weight vector wω.

The narrowband matched-field processor output is the correlation between

received and modeled fields at various possible source positions along a grid in

range and depth,

B (r, z) = wH
ω (r, z)Rωwω (r, z) , (5.3)

where Rω = E{xωxHω } is the cross-spectral density matrix (CSDM) at angular

frequency ω and the superscript H refers to the Hermitian transpose operation.

In the conventional matched-field processor case, the weight vector is just the

normalized Green’s function

wω = dω =
1√(

G
(1)
ω

)2
+ . . .+

(
G

(N)
ω

)2 [ G(1)
ω , . . . , G

(N)
ω

]T
. (5.4)

The narrowband conventional matched-field processor is implemented using

the center frequency 3505 Hz and one data snapshot only to form the CSDM. As

seen on Fig. (5.3), the source 29 is successfully localized in range and depth despite

using a simple range/time independent environment and a single frequency.
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Figure 5.3: Narrowband conventional MFP output at 3505 Hz. The circle rep-

resent the position of the source, and the square the position of the conventional

algorithm’s maximum. The source 29 is correctly localized despite using a simple

range/time independent environment and a single frequency.
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Higher frequency MFP seem practical when the source array is relatively

close to the receiver array (around 1 km). However, a study of the evolution of

the MFP’s localization performance over time would be necessary to confirm this

hypothesis. Also, the question of whether MFP’s performance would degrade at

larger ranges is of importance, and the main motivation to apply MFP to the FAF

05 data set.

5.3.2 The FAF 05 experiment

The FAF 05 experiment was conducted two years later around the same

location, with a comparable experimental setup but this time the distance between

the source and receiver arrays was increased to 4 km [29]. The receiver vertical line

array (VLA) spanned the water column between 34 m and 112.6 m by increments

of 2.5 m and the source vertical line array (SRA) between 48 m and 110 m by

increments of 2.1 m. A series of 3.5 kHz chirps with 1 kHz bandwidth were sent

successively by each of the 29 sources with a 200 ms channel to channel delay. The

process was repeated every 20 s. This time, the signal was recorded over 9 hours,

allowing the environment to change during the scope of the experiment. Figure

(5.4) shows a schematic representation of the experimental environment. As in

FAF 03, CTD measurements were performed over the course of the experiment.

Sound speed variability obtained in a 14 hour window around the data recording

time is represented on Fig. (5.5), as well as the output of a CTD chain over 70

min. The largest fluctuations of about +/- 5 m/s happened around the 40 m deep

thermocline.

Note that the sound speed profile’s shape changed considerably between

the FAF 03 and FAF 05 experiment, and the FAF 05’ s conditions exhibit the

presence of a sub channel in the first 40 m of the water column. Fig. (5.6) displays

the spread of arrival of each mode on the array, evaluated from the minimum and

maximum group speeds associated with each mode. It reveals that in FAF 03,

the lowest modes arrive first, while in FAF 05 the first arrivals are modes 54 to

100, who travel predominantly through the surface sub-channel. Modes 1 to 53

are delayed by 20 ms. The sound propagation process is therefore more complex
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Figure 5.4: The FAF 05 environment, featuring a 29-element source line array

(SRA) and 32-element receiver line array (VLA) about 4 km appart.
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Figure 5.5: Sound speed variability over 14 hours during the FAF 05 experiment

obtained from conductivity-temperature-depth (CTD) casts.
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in FAF 05 medium than in FAF 03.

Figure 5.6: Modal spread of arrival on the array for the FAF 03 and FAF 05

experiments in s.

As done with FAF 03 experiment, the narrowband conventional matched-

field processor is implemented using the center frequency 3505 Hz and one data

snapshot only to form the CSDM. This time, as seen on Fig. (5.7), the source 29 is

incorrectly localized. Increasing the source-receiver distance from 1.3 km to 4 km

is enough to destruct the match between synthesized and received fields. Larger

propagation distance scenarios are more sensitive to environmental uncertainties

than shorter range ones.

Since each source sent a chirp every 20 s, successive recordings can be pro-

cessed to study the narrowband 3.505 KHz conventional matched-field processor’s

tracking performance over a 6 hour-long time window. For each frame, the ambi-

guity surface is computed and the position of the maximum determined. Figures

(5.8) (a) and (b) represent the depth and range slices obtained at the main-lobe
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Figure 5.7: Narrowband conventional MFP output at 3505 Hz. The circle rep-

resent the position of the source, and the square the position of the conventional

algorithm’s maximum. The source 29 is incorrectly localized due to the increase in

source-receiver distance rendering the algorithm more sensitive to model mismatch.



132

position as a function of time. The position of the source 29 is represented by

the arrows, at 112 m deep and 4 km in range. The single-frequency conventional

processor does not localize the source at all, not counting the two successful frames

around the five hour mark.
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Figure 5.8: Narrowband conventional MFP’s variability over 6 hours from suc-

cessive recordings of chirps sent by the source 29 every 20 s. (a) and (b) represent

the depth and range slices respectively obtained at the main lobe’s position as time

evolved. The position of the source at 112 m deep and 4 km in range is given by

the arrows. Environmental uncertainties prevent the single-frequency conventional

method from localizing the source.
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The issue is to know whether a range and time independent model is just

too simplified to give a good localization result at such ranges and frequencies, or if

it could be sufficient if combined with robust broadband methods and introduction

of the sound speed variability in the creation of the replica vector.

5.4 Investigation of MFP’s sensitivity using data

derived replica vectors

5.4.1 Narrowband results

Since modeling the propagating environment accurately is problematic in

the 3.5 kHz regime at 4 km ranges, a study of the processor’s sensitivity to sound-

speed fluctuations is performed using the data itself to construct the replica vectors.

A bank of 1600 recorded transmissions from each of the 29 sources spanning a 9

h time window is available. If we choose the deep source at time to to construct

a 1-snapshot CSDM, and the recordings at to obtained from the other sources to

create replica vectors, we can evaluate the mean sidelobe level at to. We can also

use transmissions from each sources at to+∆t to create the replica vectors, and get

the corresponding mean sidelobe level at to + ∆t. Therefore, this method allows

us to study the evolution of the mean sidelobe level obtained by different types of

processors as a function of time around the CSDM’s construction time.

Note the absence of environmental mismatch since the data itself is used to

match data at a different time. The only variability in the system comes from the

source and receiver arrays’ motion and the sound-speed fluctuations. Hence, the

results obtained can be considered to be the best-case scenario, for which we could

somehow model an accurate range-dependent environment but introduce various

levels of sound-speed variability.

Also, the value of the side-lobe level is only available at the position of

the sources along the array, which gives a partial picture of the sidelobe level’s

evolution over time. Nevertheless, it constitutes a great tool to study various

algorithm’s robustness to environmental fluctuations.
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For ease of representation, the mean sidelobe level is evaluated with respect

to a 0 dB main lobe. Hence positive values of the sidelobe level mean that the

source would be incorrectly localized. Figure (5.9) represents the mean sidelobe

level obtained using the the single-frequency (at 3505 Hz) conventional MFP. The

horizontal axis represents the time offset between the data used to create the CSDM

and the one used to construct the replica vector. The vertical axis represents the

CSDM’s construction time. The algorithm yields a successful source localization

(ie sidelobes lowers than - 4 dB) over a 15 min window.
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Figure 5.9: Mean sidelobe level in dB obtained with the single frequency conven-

tional MFP at 3505 Hz. The horizontal axis represents the time offset between the

data used to create the CSDM and the one used to construct the replica vector.

The vertical axis represents the CSDM’s construction time.
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5.4.2 Broadband results

Four frequencies are now processed (3.1, 3.3, 3.5 and 3.7 KHz) in an effort

to increase the conventional algorithm’s robustness to fluctuations.

Because the position of the sidelobes is usually frequency dependent as

opposed to the main lobe one, a common approach proposed by Baggeroer et al is

to incoherently average single-frequency ambiguity surfaces to suppress ambiguous

sidelobes [14]. The conventional incoherent output can be written as:

PIC (r, z) =
1

L

L∑
k=1

10log
[
|dHk Rkdk

∣∣]. (5.5)

where L is number of single tones processed.

Coherent broadband processing is also investigated using the algorithm de-

veloped by Z-H. Michalopoulou and M. Porter [22, 23].

The narrowband signal vectors are stacked into one ”supervector” of length

N × L.

x̆ =
[
x
(1)
ω1 , x

(2)
ω1 , . . . , x

(N)
ω1 , . . . , x

(1)
ωL , . . . , x

(N)
ωL

]T
. (5.6)

From this supervector, a “super” CSDM can be constructed in the usual

way, R̆ = E{x̆x̆H}. As opposed to incoherent processing, the extended cross

spectral density matrix R̆ now exploits cross-frequency coherence as well. But

because the signal sent by the source has a characteristic signature in frequency

represented by the complex term S(ω) in Equation 5.1, the modeled field is now

mismatched with respect to the signal. To be fully-coherent, the processor has to

first remove the phases of those complex terms for each frequency of the signal

received.

x̆ =
[
x
(1)
ω1 e
−jarg(S(ω1 )), . . . , x

(N)
ωL e

−jarg(S(ωL))
]T
. (5.7)

The conventional MFP processor output can then be formulated as:

PCoh (r, z) = d̆
H
R̆d̆,

PCoh (r, z) = E

∣∣∣∣∣
L∑
k=1

dHk xke
−jarg(S(k))

∣∣∣∣∣
2
 . (5.8)

where FC stands for fully-coherent.
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In practice, the complex source spectrum is unknown, leaving the user with

replicas mismatched with respect to the signal. Michalopoulou and Porter ad-

dressed this issue by scaling the phase of each single-frequency subvector xk by

the phase on the phone displaying the highest SNR, and normalizing the subvec-

tor to unit length [22, 23]. This compensation procedure effectively eliminates the

unknown source terms in high SNR scenarios, but introduces the extra phase of

the phone chosen to calibrate the other elements in the process. The algorithm is

therefore semi-coherent.

If we denote the new subvector by xk and assume no contamination by

noise and the first phone having the highest SNR:

xk =


∣∣S(k)G(1)(k)

∣∣ ej[arg(S(k))+arg(G(1)(k))]

...∣∣S(k)G(N)(k)
∣∣ ej[arg(S(k))+arg(G(N )(k))]

 ,
we have,

xk =
1

α


∣∣G(1)(k)

∣∣ ej0
...∣∣G(N)(k)

∣∣ ej[arg(G(N )(k)−arg(G(1)(k))]

 , (5.9)

where α =
√
|G(1)(k)|2 + . . .+ |G(N)(k)|2 is a coefficient of normalization.

Figures (5.10) and (5.11) represent the mean sidelobe level obtained using

the the incoherent and coherent broadband conventional MFP respectively.

Applying a broadband type of processor, especially the coherent one in-

creases the contrast of the output. Localization is good in a 15 minute-long win-

dow around the CSDM’s construction time, and features lower mean sidelobe levels

than obtained using narrowband or incoherent processing (-17 dB for the single

frequency and incoherent broadband outputs and -20 dB for the incoherent and co-

herent broadband algorithms). However, the mean sidelobe level is bigger outside

of the window, and the coherent broadband method isn’t robust to fluctuations

occurring over a longer period of time than the narrowband method.
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Figure 5.10: Mean sidelobe level in dB obtained with the incoherent broadband

conventional MFP at 3.1, 3.3, 3.5 and 3.7 KHz. The x-axis represents the time

offset between the data used to create the CSDM and the one used to construct

the replica vector. The y-axis represents the CSDM’s construction time.
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Figure 5.11: Mean sidelobe level in dB obtained with the coherent broadband

conventional MFP at 3.1, 3.3, 3.5 and 3.7 KHz. The horizontal axis represents

the time offset between the data used to create the CSDM and the one used to

construct the replica vector. The vertical axis represents the CSDM’s construction

time.
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5.4.3 Application of the singular value decomposition over

environments

In an effort to increase robustness to sound speed fluctuations in the medium,

a matrix is formed with replicas vectors obtained from continuous recordings as

column vectors. A singular value decomposition (SVD) of the replica matrix is

performed and the resulting singular vector corresponding to the highest singular

value, herein referred as the ”first singular vector” is kept as the new replica vec-

tor. Indeed, performing a singular value decomposition extracts the most stable

features of the columns or lines of a matrix. The first singular vector is therefore

representative of the set of replicas over the time window considered and likely to

be more robust to fluctuations occurring over that time period.

This method is related to the minimum variance environmental perturba-

tion constraint technique developed by Krolik [11], where a set of linear constraints

is applied to modeled fields obtained from randomly perturbed environments. The

main difference with what is proposed here is the type of algorithm applied to

the environmentally averaged replicas. Krolik used a multiple constraint method,

while this paper investigates the conventional, minimum variance and white noise

constraint algorithms.

To understand the effect of using the SVD technique on the conventional

MFP’s robustness to sound speed variability, replica matrices encompassing an in-

creasingly larger number of replica vectors from continuous recordings are formed,

decomposed into singular values and vectors, and the first singular vector obtained

is matched to the data used to create the CSDM. Note that the CSDM is con-

structed using the data at the center of the ensemble of consecutive replicas, so

that the environment has not drastically changed from the CSDM’s construction

time to the multiple replica times. However, the actual chirp recording used to

create the CSDM is removed from the replica matrix to avoid any effect due to

matching the data by its exact self. The format of the figures presented in previ-

ous sub-sections 5.4.1 and 5.4.2 is modified such that the horizontal axis represents

the width of the replica matrix centered on the CSDM’s construction time. For

instance, an x-value of ± 20 min means that the first singular vector of a replica
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matrix composed of successive transmissions received 20 minutes on either side of

the CSDM’s construction time (minus the center one used to create the CSDM) is

matched to the CSDM.

Figures (5.12), (5.13) and (5.14) represent the mean sidelobe levels obtained

by combining SVD to single-frequency, incoherent and coherent broadband con-

ventional algorithms. A comparison with Figs. (5.9), (5.10) and (5.11) show that

the SVD technique did increase considerably the conventional method’s robustness

to sound-speed variability. The main-lobe is at the right position for most of the

whole hour window as opposed to 15 minutes only on either side of the CSDM’s

construction time. As mentioned in the last section, broadband/SVD yields lower

mean sidelobe levels than the narrowband/SVD method.

5.4.4 Adaptive methods results

The previous subsections showed that applying a singular value decompo-

sition over changing environments efficiently stabilized the conventional replica

vector with respect to sound speed fluctuations, and that broadband processing

further lowered the mean sidelobe level obtained. In this subsection, we would

like to investigate the robustness of the minimum variance distortionless response

[30, 1] (MVDR) and white noise constraint adaptive methods [13] (WNCM).

The MVDR weight vector is determined by solving

min
w

wHRw subject to wHd = 1, (5.10)

where d is the conventional weight vector at (r, z).

This optimization problem can be interpreted as a filter which passes the

look direction signal undistorted while rejecting noise and interferers.

Using the method of the Lagrange multiplier, we obtain the well known

solution:

wmvdr =
R−1d

dHR−1d
. (5.11)

and the MVDR power output is:

Pmvdr (r, z) =
1

d (r, z)H R−1d (r, z)
. (5.12)
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Figure 5.12: Mean sidelobe level in dB obtained with the singular-value-derived

single frequency conventional MFP at 3.5 KHz. The horizontal axis represents

the time offset between the data used to create the CSDM and the one used to

construct the replica vector. The vertical axis represents the CSDM’s construction

time.
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Figure 5.13: Mean sidelobe level in dB obtained with the singular-value-derived

incoherent broadband frequency conventional MFP at 3.1, 3.3, 3.5 and 3.7 KHz.

The horizontal axis represents the time offset between the data used to create

the CSDM and the one used to construct the replica vector. The vertical axis

represents the CSDM’s construction time.
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Figure 5.14: Mean sidelobe level in dB obtained with the singular-value-derived

coherent broadband frequency conventional MFP at 3.1, 3.3, 3.5 and 3.7 KHz. The

horizontal axis represents the width of the replica matrix centered on the CSDM’s

construction time. The vertical axis represents the index of the received signal

used to create the CSDM.
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This algorithm enhances the resolution considerably in comparison to the

conventional processor, however this exceptional resolution capability comes with

an increased sensitivity to slight mismatch between the modeled and actual envi-

ronment [3, 9, 8].

Figure (5.15) represents the mean sidelobe level obtained using the nar-

rowband, incoherent and coherent broadband MVDR processors. As expected,

the MVDR algorithm is extremely sensitive to mismatch. Narrowband MVDR

is problematic as soon as the ocean channel changes, while broadband MVDR

remains stable over a 5 minutes-long time window.
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Figure 5.15: Mean sidelobe level in dB obtained with the narrowband, incoherent

and coherent broadband MVDR processors. The horizontal axis represents the

width of the replica matrix centered on the CSDM’s construction time. The vertical

axis represents the index of the received signal used to create the CSDM.

Applying a singular decomposition to a set of MVDR replicas obtained from
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consecutive chirp recordings, as detailed in the previous section and shown on Fig.

5.16, renders the algorithm robust to sound speed fluctuations occurring over a

8 min window. In any case, this adaptive method is just too sensitive to ocean

variability to be practical for high frequency scenarios.
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Figure 5.16: Mean sidelobe level in dB obtained with the singular-value-derived

narrowband, incoherent and coherent broadband MVDR processors. The hori-

zontal axis represents the width of the replica matrix centered on the CSDM’s

construction time. The vertical axis represents the index of the received signal

used to create the CSDM.

The white noise constraint adaptive method developed by Cox et al [13]

builds on the MVDR formulation and introduces an inequality constraint on the

gain against spatially white noise. This extra-constraint relaxes the super-resolution

characteristic of the MVDR along with its requirement for very precise knowledge

of the environment.
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The new optimization problem is written as:

min
w

wHRw subject to wHd = 1 and wHw ≤ δ−2, (5.13)

which yields:

wwncm (r, z) =
(R + εI)−1 d

dH (R + εI)−1 d
. (5.14)

The value of ε is such that the third inequality of Eq. 5.13 is satisfied.

Figure (5.17) represents the mean sidelobe level obtained using the white

noise constraint algorithm. A comparison with Figs. (5.9), (5.10) and (5.11) show

that the WNCM’s robustness to fluctuations is comparable if not better than the

conventional one, but the mean sidelobe level is also 10 to 15 decibels lower.

The SVD technique applied to the WNCM algorithm, shown in Fig. (5.18)

surpasses the conventional method by generating a replica vector robust to fluc-

tuations occurring over the whole hour-long window on either side of the CSDM’s

construction time, in addition to very low sidelobe levels (less than -35 dB).

5.4.5 Investigation of the singular value decomposition method

over larger environmental variations

Since the replicas vectors were obtained from recordings on either side of the

CSDM’s construction time, one can wonder if the same level of robustness could

be expected from ”averaging” replicas from data not centered on the CSDM’s

construction time.

To answer this question, the replica vectors used to create the matrix are

chosen further and further away from the CSDM’s construction time. This time,

ten frequencies were used in the study, spanning 2.8 KHz to 3.34 KHz by steps of

60 Hz. The lowest frequency is chosen for the narrowband algorithm.

Figures (5.19) and (5.20) display the mean sidelobe level obtained using

narrowband and broadband conventional and WNCM matched-field processors.

The CSDM was created from data recorded at time 2h 15 min. The horizontal

axis represents the center of the replica window in hours, and the vertical axis the

duration of that window. The area on the left of the black dotted line represents
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Figure 5.17: Mean sidelobe level in dB obtained with the narrowband, incoherent

and coherent broadband WNCM processors. The x-axis represents the width of the

replica matrix centered on the CSDM’s construction time. The y-axis represents

the index of the received signal used to create the CSDM.
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Figure 5.18: Mean sidelobe level in dB obtained with the singular-value-derived

narrowband, incoherent and coherent broadband WNCM processors. The hori-

zontal axis represents the width of the replica matrix centered on the CSDM’s

construction time. The vertical axis represents the index of the received signal

used to create the CSDM.
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cases for which the CSDM’s construction time is contained in the replica time

window.
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Figure 5.19: Mean sidelobe level in dB obtained with the singular-value-derived

narrowband, incoherent and coherent broadband conventional processors.The hor-

izontal axis represents the center of the replica window in hours, and the vertical

axis the duration of that window. The area on the left of the black dotted line

represents cases for which the CSDM’s construction time is contained in the replica

time window.

Inspection of the figures shows that for most cases, the SVD technique yields

a replica vector robust to sound speed fluctuations even when the ”right” ocean

is not included in the average. The bigger the replica window, the more stable

the result is. As noticed in the previous section, the WNCM is much more stable

to ocean’s variability than the conventional algorithm. In fact, forming the aver-
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Figure 5.20: Mean sidelobe level in dB obtained with the singular-value-derived

narrowband, incoherent and coherent broadband WNCM processors.The x-axis

represents the center of the replica window in hours, and the y-axis the duration

of that window. The area on the left of the black dotted line represents cases for

which the CSDM’s construction time is contained in the replica time window.
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age of replicas spanning a 2 hour-long window ensures correct localization at any

point in time for the broadband methods. An interesting result was obtained with

the coherent broadband processor. Indeed, it seems like the replica vectors must

be chosen around the CSDM’s construction time for the conventional broadband

coherent method to successfully localize the source, making it the least robust of

the three options, while at the contrary, the coherent broadband WNCM proved

to be the most stable of the three to fluctuations.

Using data-derived replica vectors is thus a valuable tool for comparing

different algorithm’s robustness in scenarios for which creating accurate synthetic

replicas is not an option. The coherent broadband WNCM averaged over environ-

ments seem to be the most promising technique for high frequency MFP. Would

this technique be robust enough to localize a high-frequency source in presence of

sound-speed fluctuations and model mismatch?

5.5 High frequency MFP using model derived

replica vectors

The FAF-05 data set introduced in Sec. 5.3.2 is used to test the five con-

ventional algorithms. Ten frequencies are processed from 2.8 KHz to 4.14 KHz by

increments of 70 Hz. Narrowband results are obtained by processing the lowest

frequency.

Conductivity-temperature-depth casts over six hours are used to infer the

empirical orthogonal functions (EOF) of the water sound speed. These eigenfunc-

tions provide a description of the spatial and temporal variability of the sound

speed profile [31]. They allow us to create eleven sound speed profiles by perturb-

ing the mean profile according to the EOFs of the data. A set of replica fields is

then synthesized on the array for each sound-speed perturbed environment. For

each grid point in range and depth, the eleven modeled fields on the array incom-

ing from an hypothetical source placed at that grid point are stacked in a replica

matrix. A singular value decomposition of the matrix is performed, and the sin-

gular vector associated with the highest singular value is kept as the conventional
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SVD-derived replica vector.
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Figure 5.21: Narrowband, SVD-derived conventional MFP’s variability over 6

hours from successive recordings of chirps sent by the source 29 every 20 s. (a)

and (b) represent the depth and range slices respectively obtained at the main

lobe’s position as time evolved. The position of the source at 112 m deep and

4 km in range is given by the arrows. Environmental uncertainties prevent the

single-frequency svd-derived conventional method from localizing the source.

As in Section 5.3.2, successive recordings are processed to study the narrow-

band, SVD-derived conventional matched-field processor’s tracking performance

over a 6 hour-long time window, at 3.5 kHz. Figures (5.21) (a) and (b) represent

the depth and range slices obtained at the main lobe position as a function of time.
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The position of the source 29 is represented by the arrows, at 112 m deep and 4

km in range. Both traditional in Fig. (5.8) and SVD-based single-frequency in

Fig. (5.21) conventional processors do not localize the source at all.

The broadband incoherent and coherent conventional MFP are now imple-

mented, and the results obtained are displayed in Figs. (5.22) and (5.23). Process-

ing multiple frequencies, especially coherently is essential to high-frequency MFP,

since the source is now localized 14 % of the time for the incoherent case (corre-

sponding to 50 minutes) and 29 % of the time (or 1h 45 minutes) for the coherent

broadband one.

The last step consists in combining broadband methods with the SVD tech-

nique. Figures (5.24) and (5.25) respectively show the incoherent and coherent

SVD-derived MFP’s output. Performing a singular value decomposition over repli-

cas from perturbed environments enhances conventional incoherent MFP’s track-

ing performance at high frequency. The source is localized 32% of the time (or in

other words for 2 hours out of the 6 hours processed) versus 14% (or 50 minutes)

without application of the SVD technique. In the coherent broadband case, the

percentage of successful localization did not vary between the SVD and non-SVD

derived conventional algorithms.

It is interesting to note that the data frames leading to successful source

localization are not necessarily contiguous. Indeed, in the incoherent broadband

SVD-derived case, presented on Fig. (5.24), the source is localized over most of

the first hour, then again twenty-five minutes later for another twenty minutes,

and finally four hours later for a little more than half an hour. This suggest the

presence of cyclical perturbations in between which the ocean returns to its original

state. Extending the study over longer periods of time would be necessary to gain

more insight on the nature of the sound-speed fluctuations.

While still problematic, MFP’s localization performance at high-frequency

is improved by the use of robust broadband processing techniques and by per-

forming a singular value decomposition over replicas coming from sound speed

perturbed environments.

However, another more forgiving but of importance application of MFP is
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Figure 5.22: Incoherent broadband conventional MFP’s variability over 6 hours

from successive recordings of chirps sent by the source 29 every 20 s. (a) and

(b) represent the depth and range slices respectively obtained at the main-lobe

position as time evolved. The position of the source at 112 m deep and 4 km in

range is given by the arrows. The source is successfully localized 14% of the time,

which corresponds to 50 minutes.
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Figure 5.23: Coherent broadband conventional MFP’s variability over 6 hours.

(a) and (b) represent the depth and range slices respectively obtained at the main

lobe position as time evolved. The position of the source at 112 m deep and 4 km

in range is given by the arrows. The source is successfully localized 29% of the

time, which corresponds to 1h 45 minutes.
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Figure 5.24: Incoherent broadband SVD-derived conventional MFP’s variability

over 6 hours from successive recordings of chirps sent by the source 29 every 20 s.

(a) and (b) represent the depth and range slices respectively obtained at the main

lobe position as time evolved. The position of the source at 112 m deep and 4 km

in range is given by the arrows. The source is successfully localized 32% of the

time, which corresponds to 2 hours.
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Figure 5.25: Coherent broadband SVD-derived conventional MFP’s variability

over 6 hours from successive recordings of chirps sent by the source 29 every 20 s.

(a) and (b) represent the depth and range slices respectively obtained at the main

lobe position as time evolved. The position of the source at 112 m deep and 4 km

in range is given by the arrows. The source is successfully localized 29% of the

time, chich corresponds to 1h 45 minutes.
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the classification of sources into the categories submerged versus non-submerged,

along with an estimate of the distance between receivers and sources. Apply-

ing simple narrowband, incoherent or coherent conventional MFP shown on Figs.

(5.8), (5.22) and (5.23) is enough to confirm that the source sits deeper than 80

m in the water column, but not enough to get a range estimate of the target.

In contrast, the SVD-derived technique shown in Figs. (5.21), (5.24) and (5.25)

exhibits considerably better ranging capability since the source is shown at 4 km

away from the receiver over most of the six hour-long window, along with the fact

that it is submerged deeper than 80 meters.

5.6 Summary and conclusion

Source localization at high frequency is typically problematic because of

the increased sensitivity of processors to model inaccuracies and environmental

variability. The performance of various frequency-domain matched-field process-

ing techniques was evaluated on experimental data in the best case scenario of

mismatch-free environment. Because the experimental setup featured 29 sources

emitting chirps successively over an 8 hour-long window while an array of hy-

drophones 4 km away recorded the signal continuously, it was possible to use the

data emitted from various sources at different times to construct replica vectors,

and investigate the processor’s mean sidelobe level as a function of time. Hence,

the only variables fluctuating in the system between the replica and cross-spectral

density matrix’s construction time were the source and receiver elements posi-

tion and the water sound speed between the arrays. It was found that exploiting

the information across frequency, especially in a coherent way and using a robust

adaptive technique like the white noise constraint method is essential to perform

a successful localization at high frequencies. Replicas obatined from successive

recordings were also ”averaged” using a singular value decomposition technique to

extract the most stable features of the ensemble of replicas. Doing so increased

considerably the robustness of algorithms to sound speed fluctuations, rendering

the coherent broadband white noise constraint processor robust to fluctuations
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occurring during a several hour-long time window.

The same techniques were then applied to traditional model-based conven-

tional matched-field processing. A set of replica vectors was generated using a

simplified range-independent environment and sound-speed profiles perturbed ac-

cording to the EOF of the data. The results obtained are consistent with those

provided by data-derived replica vectors. The combination of incoherent broad-

band processing and the SVD technique localizes the source 32% of the time, or

two hours over a six hours long window, while the narrowband equivalent fails

to localize it on the entire window. Most techniques were found to differentiate

between surface or submerged targets, but only application of the SVD technique

gave an accurate range estimate over most of the window. However, this enhance-

ment in performance comes at the cost of processing time, since each degree of

complexity (adaptive versus conventional, broadband versus narrowband, coher-

ent versus incoherent, multi-environments versus single-environment) increases the

number of calculations to perform.
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6.1 Conclusions

Matched-field processing (MFP) is a promising passive technique to localize

and track submerged acoustic sources in complex, noisy environments. However, its

lack of robustness to an assortment of important scenarios has made it problematic.

In this thesis we have extended the viability of MFP for some of these difficult

scenarios. Further, an alternative but important metric for MFP is its potential

ability to find the range of a source while simultaneously determining whether or

not it is submerged. For this latter, relaxed requirement, the results of this thesis

indicate that MFP is a viable processing method for operational applications.

While known to be successful in favorable scenarios, the technique’s per-

formance is impaired by a number of factors. Experimental data featuring these

characteristic have been isolated for the purpose of studying and improving MFP’s

performance. These limiting factors can be summarized as follows:

1. Presence of environmental mismatch. A good knowledge of the water chan-

nel and sediment properties, array elements’ location, sufficient aperture and

use of adequate propagation model are essential to reproduce the signal re-

ceived on the array with enough accuracy to allow a coherent summation of

the complex fields at the output of the processor. This is especially impor-

tant in high-frequency scenarios for which the sound propagation becomes

increasingly sensitive to smaller features or variability in the waveguide.

2. Snapshot deficiency. When the target of interest or loud interferers are mov-

ing across resolution cells faster than the time required to accumulate a

sufficient number of snapshots (at least twice the number of elements), the

cross-spectral density matrix (CSDM) is not full rank, hence not invertible.

This is problematic for adaptive algorithms whose formulation involves the

CSDM’s inverse matrix.

3. Low signal-to-noise ratio. A certain amount of gain dependent on the num-

ber of elements in the array and the processor implemented is available to

localize weak sources buried in noise. When the signal’s power drops below

a threshold, MFP’s detection performance declines abruptly.
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4. Higher frequencies. As the emitted signal’s frequency increases, so does the

sensitivity of the algorithm to model inaccuracies or environmental fluctua-

tions, like sound-speed profile’s perturbation by internal waves for example.

The sound propagation is altered by features roughly the size of its wave-

length.

The contributions of this dissertation can be classified broadly into the

following three parts.

6.1.1 Localizing low signal-to-noise ratio sources

Most of this thesis work from Chapter 2 to 4 is devoted to the development

of a processor able to localize weak sources buried in noise. The main contributions

and accomplishments are listed below:

• Investigating ways to increase the gain at the output of the processor without

increasing the size of the array led to the use of coherent broadband MFP.

The coherent methods available in the literature were reviewed and the semi-

coherent one developed by Michalopoulou and Porter was chosen as basis for

this Ph. D. work.

• Localization and tracking performance of the semi-coherent processor com-

bined with conventional, minimum variance and white-noise constraint meth-

ods was compared to the narrowband and incoherent broadband processors,

using simulated and experimental data. It was found that processing the

frequencies coherently increased the dynamic range between the main lobe

and the background level at the output of the processor.

• A technique was developed to extract the unknown frequency-dependent

phases of the source’s signal spectrum from the data itself. The semi-coherent

algorithm was then modified to include those phases in the reconstitution of

the pressure fields, making it a fully-coherent algorithm.

• The extra processing gain provided by the fully-coherent method versus semi-

coherent and incoherent as a function of number of frequencies included in



166

the processing was evaluated using theory and simulation. The fully-coherent

algorithm was found to have an extra processing gain equal to the number

of frequencies over the incoherent one. The semi-coherent algorithm, on the

other hand provides a gain in between the incoherent and fully-coherent’s

one, depending on the value of the SNR at each element. The higher the

input SNR, the closer the semi-coherent gain is to the fully-coherent one.

• The detection index metric was introduced to compare the processors’ abil-

ity to detect a weak source. Its evolution versus input SNR at each array

element was computed using simulated and experimental data. The fully-

coherent algorithm displayed a detection index ten decibels larger than the

narrowband one at all input SNRs, five decibels larger than the incoherent

one and between zero and ten decibels larger than the semi-coherent one. The

fully-coherent method was also found experimentally to detect and localize

sources up to ten decibels weaker than the other broadband algorithms.

6.1.2 Mitigating model mismatch and snapshot deficiency

Chapters 2, 3 and 5 introduce the adaptive white noise constraint processor

to enhance MFP’s robustness to model mismatch, environmental fluctuations and

mitigate the snapshot deficiency issue.

• The increased sensitivity of coherent broadband processing to model mis-

match and sound speed variability was recognized. The larger data space

due to the incorporation of cross-frequency terms also comes with a bigger

snapshot requirement. The white noise constraint method, typically used for

narrowband processing, is applied to the semi-coherent algorithm to mitigate

those two issues.

• When the sources and interferers’ motion prevent the acquisition of a suf-

ficient number of snapshots, the semi-coherent white noise constraint algo-

rithm was shown to exhibit a dynamic range bias. This bias was shown to

be consistent with that previously presented in the literature for a single-

frequency.
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6.1.3 Improving higher frequency matched-field processing

Chapter 5 is considering the extreme case of MFP at high frequency (above

1 kHz), for which small environmental fluctuations and model mismatch are usually

problematic.

• A technique is developed to compare algorithms’ robustness to fluctuations

in the propagation medium using experimental data only, implementable

whenever multiple sources are emitting a signal successively and a receiver

array is recording them over an extended period of time. Data itself is used

to create replica vectors, allowing a study of the mean sidelobe level as a

function of time between the data used to create the replica vector and the

cross-spectral density matrix’s construction time.

• The data-derived weight vector technique confirmed the fact that the white

noise constraint method is considerably more robust to environmental fluc-

tuations than the minimum variance one since it successfully localizes the

source for about twenty minutes on either side of the cross-spectral density

matrix’s construction time, versus a couple minutes in the minimum variance

algorithm’s case. A comparison with the conventional algorithm shows that

the white noise constraint is a little more robust to sound speed fluctuations,

and features a better detectability of the signal by lowering the mean side-

lobe level by ten to fifteen decibels. Using a semi-coherent type of processor

increased the dynamic range between main lobe and sidelobe levels, but did

not provide an improvement in robustness to environmental variability in

the conventional and minimum variance case. However the combination of

semi-coherent processing and white noise constraint method decreases the

sensitivity of the algorithm to fluctuations in comparison to narrowband and

incoherent broadband processing. Localization is found stable over thirty

minutes on either side of the cross-spectral density matrix’s construction

time.

• A singular value decomposition method over perturbed environments is also

introduced in the construction of the ”data weight vector” in an effort to
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further mitigate the effect of fluctuations. It involves concatenating replicas

vectors obtained from continuous recordings into a replica matrix, evaluating

the singular value decomposition of the matrix, and extracting the singu-

lar vector corresponding to the highest singular value as the ”perturbation-

averaged” replica vector. Doing so was found to considerably increase the

robustness of the conventional and white noise constraint algorithms. Its

application to the semi-coherent broadband white noise constraint algorithm

was especially beneficial since the localization was found stable over more

than four hours.

• The results obtained with the data-derived weight vector approach are ap-

plied to the traditional model-derived one. It was found that incoherent

broadband processing combined with the SVD technique improved localiza-

tion at high frequency. The source is now localized 32% of the time, or two

hours out of the six hour-long window, while the narrowband processor does

not localize the source at all.

6.2 Future Work

This section contains some of the possible extensions to the work done

throughout this dissertation.

• The white noise constraint method combined with the semi-coherent pro-

cessing technique was shown to increase the dynamic range at the output of

the processor, enhancing the source’s detectability over noise and interfer-

ers. Also, extracting the signal’s spectrum phases and incorporating them

in the semi-coherent processing allowed detection of weaker sound sources.

Combining both methods by implementing a fully-coherent broadband white

noise constraint processor, not done in this study because of the larger pro-

cessing time associated would be of interest.

• In this dissertation, various promising modifications are applied to the basic

MFP algorithm as going from narrowband to broadband processing, from
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incoherent broadband to semi-coherent then fully-coherent broadband pro-

cessing, from conventional to adaptive methods and finally implementing a

singular value decomposition technique over perturbed environments. Each

of those additions comes with an extra computational burdens, rendering the

combination of all too computationally intensive for practical applications.

Therefore a useful if not necessary addition to this work would be to increase

the computational efficiency of the processing to make it more applicable to

near real time source tracking.

• Additional investigation of the optimal number and spread of frequencies

versus input signal-to-noise ratio and bandwidth available would improve

the efficiency of coherent broadband methods. Indeed, selecting too few

frequencies or closely spaced frequencies would not take full advantage of the

coherent method’s added processing gain. Selecting too many frequencies

would eventually decrease the spread between frequencies such that little

additional information would be inputted in the processor per frequency.

• The technique developed in this dissertation to extract the frequency-dependent

source’s spectrum phases from the data involves a slow alteration of the cross-

spectral density matrix for each grid point in range and depth. Investigating

a more efficient or elegant way to access those phases would make the tech-

nique more suitable to near real-time applications.

• Finally, the computationally expensive assessment of the ”singular-value de-

rived” coherent broadband white noise constraint processor’s robustness to

environmental fluctuations in high frequency scenarios could be performed

using a synthetic environment to generate the replica vectors.




