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Abstract

Rule-based learning is an important aspect of language acqui-
sition. Yang (2005, 2016) proposed the Tolerance Principle
(TP) to predict when a rule will be formed by the language
learner. We present the derivation of the TP as originally pro-
posed and test it on both hypothetical data and corpus data
from 8 children. Results for the hypothetical data contradict
the TP’s predictions, as do the data from 7 of the 8 children.
We conclude that the original form of the TP does not explain
rule-learning.

Keywords: Tolerance Principle; Corpus Analysis; Past
Tense Overregularization

Introduction

Rule-based learning, such as past-tense acquisition, is an im-
portant feature of language acquisition. For example, chil-
dren form the regular past tense for a novel verb in an ex-
perimental setting, e.g. wug - wugged (Berko, 1958) and
make overregularization errors on irregular verbs, e.g. hold -
*holded (Marcus et al., 1992; Pinker & Ullman, 2002). Such
evidence indicates that the rule is productive since the rule
produces word forms that children have not previously en-
countered in their input. But what leads to development of
rules in the first place?

Yang (2005, 2016) has proposed the Tolerance Principle
(TP) to predict when a productive rule will be deployed
by the language learner. The cognitive motivation for rule-
generation is a reduction in lexical access time. According to
Yang’s derivation, lexical access time depends on the number
of exceptions (e) in the data. When the number of exceptions
(e) is smaller than the total number of items (N) divided by the
natural log of N, e ≤ N

lnN , the rule will be deployed. Experi-
mental studies of rule-learning with both children and adults
have supported the predictions of the TP (Schuler, Yang, &
Newport, 2021; Emond & Shi, 2021).

Our studies do not address the cognitive motivation of the
TP, but test the predictions of the original formulation. We
first present the derivation of the TP. We then use the for-
mula to test hypothetical data and children’s corpus data. We
conclude that the original formulation yields unexpected in-
consistencies and does not fully account for children’s first
(detected) over-regularization errors.

Deriving the Tolerance Principle
First Steps
A productive rule will be deployed when it delivers a more
efficient result than not using a rule. Yang (2016) used lex-
ical access time to measure efficiency and hypothesized that
a productive rule will reduce the average time required to re-
trieve the target form, e.g., the past tense form. He proposed
two different models, one for rule-based processing and one
for no-rule processing. A rule will be used when the time
complexity of rule-based processing is smaller than that of
no-rule processing.

In the no-rule model, all the lexical forms (e.g., the past
tense forms) are retrieved from memory using a serial search
process (Forster, 1976, 1992). The lexical items are stored in
a ranked list based on their frequency, with the most frequent
items at the top. In order to retrieve an item at position i, the
model sequentially searches all the i-1 items ranked higher
than i until it reaches position i. The average time complexity
(T ) for the whole list is calculated as the sum of the each
word’s lexical access time (ti) multiplied by its probability

(pi), T =
N

∑
i=1

(pi · ti).

The ti is approximated as its rank, ti = ri (Murray & Forster,
2004).1 The pi is approximated based on the assumption that
the frequencies of the items in the ranked list follow a Zipfian
distribution (Zipf, 1949). In a Zipfian distribution, the prod-
uct of a word’s frequency ( fi) and its rank (ri) is a constant C,

i.e. fi · ri = C. By replacing fi with
C
ri

, pi can be expressed

as: pi =
fi

N

∑
k=1

fk

=

C
ri

N

∑
k=1

C
rk

=

1
ri

N

∑
k=1

1
rk

.

Therefore, by substituting for pi and ti, the average time
complexity for the no-rule model (TNoRule) for the list can be

expressed as: TNoRule =
N

∑
i=1

(
1

∑
N
k=1

1
rk

). This value, ∑
N
k=1

1
rk

, is

the Harmonic number HN , so TNoRule =
N

HN
.

1Yang (2018) simplified Murray and Forster (2004)’s rank hy-
pothesis as ‘the i-th ranked item takes i units of time to be retrieved’.
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The rule-based model adds an implementation of the Else-
where Condition (Anderson, 1969; Halle & Marantz, 1993)
to the no-rule model. When a productive rule is deployed, all
the items are divided into rule-based items and exceptions.
The exceptions are retrieved from memory and stored in a
frequency-ranked list, as in the no-rule model.

The rule-based items are generated by a rule-applying pro-
cess and concatenated into an unordered set at the end of the
exceptions list. To access the target form of an item wi, the
model first sequentially searches the list of exceptions for a
match for wi. If wi is found, meaning that wi is an exception
(e.g. go), the target form (went) is retrieved. If, however, wi is
not found through an exhaustive search of the exceptions list,
because wi is a rule-based item (e.g. want), the rule is applied
to wi (wanted). In sum, the rule is applied after an exhaus-
tive search of the exceptions. As the number of exceptions
increases, the time to apply the rule will increase.

Calculation of the average time complexity of the rule-
based model consists of two parts, the TE for the exceptions
list, which is the same as the no-rule model, and TR for the
rule-based set. Yang assumed that the exceptions also follow
a Zipfian distribution, like all the items in a list. Therefore,
TE is calculated by substituting the number of exceptions e
for N, TE =

e
He

. Since the rule-based items are reached after

a complete search of the e exceptions, the time complexity for
all the rule-based items is TR = e. The overall time complex-
ity of the rule-based model is the weighted sum of TE and TR,
TRule =

e
N
· e

He
+(1− e

N
) · e.

A productive rule will be deployed when TRule ≤ TNoRule.
The maximum value of e is derived by solving this inequa-
tion:

e
N
· e

He
+(1− e

N
) · e ≤ N

HN
(1)

Approximation and Simplification
To solve the inequation above, Yang first approximated the
Harmonic number with the natural log ln, i.e. HN ≈ lnN,
He ≈ lne. Inequation (1) thus becomes (2):

e
N
· e

lne
+(1− e

N
) · e ≤ N

lnN
(2)

Further, Yang solved inequation (2) by substituting e
N with x

and treating inequation (2) as a function of x:

f (x) = x · e
lne

+(1− x) · e− N
lnN

(3)

= x2(
1

lnN + lnx
)+(1− x) · x− 1

lnN
(4)

It is observed that when x = 1
lnN , f (x)≈ 0 for large N. There-

fore, by substituting x= 1
lnN = e

N , the results of the inequation
(2) is simplified as e ≤ N

lnN .
After approximation and simplification, the Tolerance

Principle is stated as:

Let R be a rule application to N items, of which e
are exceptions. R is productive if and only if e ≤
θN , where θ =

N
lnN

(Yang, 2016).
We examine the effects of the approximation and simpli-

fication of the inequation on the model output. As noted by
Yang (2016), the approximation only works for large N. For
small Ns, the differences might be substantial. For exam-
ple, when N = 20, e ≤ 20/ln20 (6.8), e ≤ 20/H20 (5.6), and
x = 0.43 for f (x) in equation (3), which yields e ≤ 8.6. In
addition, the approximated results e ≤ N/lnN actually sim-
plified the inequation (1) from a quadratic function to a linear
function2, which might be inappropriate in numerical calcu-
lations.

Our first experiment tests the effects of the approximation
and simplification across three sample sizes: N = 10, 100 and
1,000. We solve inequation (1) to calculate the numerical θ

and we compare its predictions with the approximated θ using
N/lnN. As summarized in Table 1, as N increases, the numer-
ical difference between the approximated θ = N/ln(N) and
the numerical θ remains. We thus question whether N/lnN
is a proper approximation of the maximum number of ex-
ceptions, since even a large sample shows a difference in the
number of allowed exceptions.

Figures 1a - 1c plot the TRule and TNoRule for different num-
bers of exceptions. As Fig. 1 shows, the function of TRule is
quadratic with two solutions, e ≤ θ or e ≥ N. When e = N,
Rule and NoRule are identical processes, and e > N is not
possible.

Table 1: Approximated θ and Numerical θ for different Ns

N
Approximated θ

θ = N
lnN

Numerical θ

by solving θ

N · θ

Hθ
+(1− θ

N ) ·θ = N
HN

10 4.34 4.53
100 21.71 23.24
1,000 144.76 152.77

The Effects of Rank Permutation
In the derivation of the TP, time complexity was first calcu-
lated based on each item’s probability and rank. The probabil-
ity itself is approximated with frequency and rank ( fi ·ri =C),
on the assumption that the items (including exceptions) fol-
low a Zipfian distribution. This approximation eliminates
rank as a variable in the formula. Although all the items in
a no-rule list would be expected to follow a Zipfian distri-
bution, the same may not hold for the exceptions, especially
for a data set with a small N. However, the time complexity
of the exceptions TE ≈ e

He
in the model is derived under the

assumption that the exceptions also follow a Zipfian distribu-
tion.

In order to test if rank affects the calculation of time com-
plexity, we calculated TRule and TNoRule using the probability

2In Yang(2016) page 63, he noted and plotted the quadratic func-
tion for inequation (1).
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(a) N = 10

(b) N = 100 (c) N = 1,000

Figure 1: The plot of the time complexity for different values
of N and e with lnN and HN

and rank to determine when TRule < TNoRule. We created a hy-
pothetical list of 10 items whose frequencies follow a Zipfian
distribution, with the highest frequency as 100 and the lowest
as 10. In the baseline scenario all the items are exceptions;
thus, no rule can be derived. The total average time complex-
ity is TNoRule = 3.42, as calculated in Table 2.

Table 2: Baseline Scenario: 10 exceptions, 0 regulars

Item Frequency rank
Time Complexity
T = ∑

N
i=1(pi · ti)

Excep. 100 1 0.34 = 100/293 x 1
Excep. 50 2 0.34 = 50/293 x 2
Excep. 33 3 0.34 = 33/293 x 3
Excep. 25 4 0.34 = 25/293 x 4
Excep. 20 5 0.34 = 20/293 x 5
Excep. 17 6 0.35 = 17/293 x 6
Excep. 14 7 0.33 = 14/293 x 7
Excep. 13 8 0.35 = 13/293 x 8
Excep. 11 9 0.34 = 11/293 x 9
Excep. 10 10 0.34 = 10/293 x 10
Total 293 3.42

Based on the TP’s prediction, the approximated θ = 4.34,
and the numerical θ = 4.53, meaning that the rule should be
derived only if there are 4 or fewer exceptions. In the first
experimental scenario, we randomly placed 7 exceptions and
3 regulars (ranked 2nd, 5th and 6th) in the list. Since 7 > 4,
no rule should be derived: TRule > TNoRule. The TNoRule = 3.42
is the same as the baseline scenario. However, TRule = 3.29 <
3.42, as calculated in Table 3, which is inconsistent with TP’s
prediction, whether we use approximated θ or numerical θ.

The frequency rank of the regulars substantially affects the
value of TRule. In the second experimental scenario, if the

Table 3: 7 exceptions, 3 regulars ranked 2nd, 5th and 6th
No Rule

Item Frequency rank Time Complexity
Excep. 100 1 0.34
Regular 50 2 0.34
Excep. 33 3 0.34
Excep. 25 4 0.34
Regular 20 5 0.34
Regular 17 6 0.35
Excep. 14 7 0.33
Excep. 13 8 0.35
Excep. 11 9 0.34
Excep. 10 10 0.34
Total 293 TNoRule 3.42

With a Rule

Excep. Freq. rank
Time Complexity
TE = ∑

N
i=1(pi · ti) · e

N
Excep 100 1 0.24 = 100/293 x 1 x 0.7
Excep 33 2 0.16 = 33/293 x 2 x 0.7
Excep 25 3 0.18 = 25/293 x 3 x 0.7
Excep 14 4 0.13 = 14/293 x 4 x 0.7
Excep 13 5 0.16 = 13/293 x 5 x 0.7
Excep 11 6 0.16 = 11/293 x 6 x 0.7
Excep 10 7 0.17 = 10/293 x 7 x 0.7
Total 1.19
Regular Time Complexity
Regular 50 TR = e · (1− e

N )
Regular 20
Regular 17
Total 2.1 = 7 x 0.3
TRule 3.29 = 1.19 + 2.1 < 3.42

three regulars are ranked 8th, 9th and 10th and TRule = 3.77 >
3.42, as calculated in Table 4, the results confirm the TP’s
prediction. Depending on the frequency rank of the regulars,
the TP’s prediction will be confirmed or disconfirmed in a
dataset with the same number of exceptions.

Table 4: 7 exceptions 3 regulars ranked 8nd, 9th and 10th
No Rule

Verb Frequency rank Time Complexity
Excep. 100 1 0.34
Excep. 50 2 0.34
Excep. 33 3 0.34
Excep. 25 4 0.34
Excep. 20 5 0.34
Excep. 17 6 0.35
Excep. 14 7 0.33
Regular 13 8 0.35
Regular 11 9 0.34
Regular 10 10 0.34
Total 293 TNoRule 3.42

With a Rule
Excep. Freq. rank Time Complexity
Excep. 100 1 0.24 = 100/293 x 1 x 0.7
Excep. 50 2 0.24 = 50/293 x 2 x 0.7
Excep. 33 3 0.24 = 33/293 x 3 x 0.7
Excep. 25 4 0.24 = 25/293 x 4 x 0.7
Excep. 20 5 0.24 = 20/293 x 5 x 0.7
Excep. 17 6 0.24 = 17/293 x 6 x 0.7
Excep. 14 7 0.23 = 14/293 x 7 x 0.7
Total 1.67
Regular Time
Regular 13
Regular 11
Regular 10
Total 2.1 = 7 x 0.3
TRule 3.77 = 1.67 + 2.1 > 3.42
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Figure 2: Time complexity of all rank permutations with 1-9
exceptions

In order to comprehensively compare TRule and TNoRule
with different rank permutations, we created data sets with
10 items having 1 to 9 exceptions. For each data set, we ex-
haustively tested all the rank permutations for the exceptions
and regulars by calculating TRule for each permutation. As
shown in Figure 2, time complexity varies depending on the
rank permutation, rather than being constant. When the reg-
ulars are in the highest ranks, time complexity is smallest.
When the regulars are in the lowest ranks, time complexity is
largest.

Further, given some permutations, the minimum TRule for
all numbers of exceptions is smaller than TNoRule, yielding a
rule no matter how many exceptions there are. The number
of permutations where TRule < TNoRule are labeled in Figure
2. Even in an extreme scenario with nine exceptions and one
regular item, where it is impossible to derive a rule, following
the TP will provide a rule in four of the possible permutations
where TRule < TNoRule.

We tested two larger N conditions (100, 1000) to determine
whether rank would continue to play a role. The item fre-
quencies in both data sets follow a Zipfian distribution, with
the lowest frequency set at 10. Given the large N, it is impos-
sible to exhaustively calculate the TRule for all permutations3.
Instead, we calculated the minimum TRule where the regulars
are all the top ranked items and the maximum TRule where
the regulars are all the bottom ranked items4. Figure 3 shows
the TRule(MIN) and TRule(MAX) for N = 100, 1000 with different
numbers of exceptions.

The time complexity shows a quadratic pattern and inter-
sects with TNoRule at two points: at the rising part of the
function in purple (e = θmin) and at the end of the function
in yellow (e = θmax), suggesting that a rule will be derived
(TRule ≤ TNoRule) when e ≤ θmin or e ≥ θmax. The summary of
θmin and θmax is listed in Table 5.

For TRule(MAX), θmax > N, therefore only θmin is valid.

3When there are 100 items with 20 regulars, there are 5.36×1020

rank permutations.
4When there are 100 items and 20 regulars, TRule(MIN) is derived

when 20 regulars are ranked from 1-20; TRule(MAX) is derived when
the regulars are ranked from 81-100.

(a) N = 100

(b) N = 1000

Figure 3: The maximum and minimum TRule plot for N = 100,
1000 with different number of exceptions

Table 5: The θmax and θmax for TRule(MIN) and TRule(MAX)

N = 100 N = 1000
TNoRule 19.28 133.59
θ = N/ln(N) 21.71 144.76
TRule(MAX) (with integer θ)
θmin 23 154
θmax NA(> 100) NA(> 1000)
TRule(MIN) (with integer θ)
θmin 25 158
θmax 97 997
A rule is derived when e ≤ θmin or e ≥ θmax

However, for TRule(MIN), θmax < N: θmax= 97 when N = 100;
θmax = 997 when N = 1000. This result suggests that when
there are only 1, 2, or 3 regulars in 100 and 1000 items, a
rule can still be derived since TRule < TNoRule, which is im-
plausible. In addition, the θmin is different for TRule(MAX) and
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Table 6: Summary of the corpus data for each child.

Age range files
Total Verb
Types (N)

Irregular
Types (e)

Total Verb
tokens

Irregular
tokens Corpus

Adam 2;3 - 2;11 18 306 62 6,747 3,632 Brown (1973)
Eve5 1;6 - 1;8 5 93 36 564 337 Brown (1973)
Sarah 2;3 - 2;10 33 189 48 1,759 1,035 Brown (1973)
Peter 1;3 - 2;6 14 424 67 7,532 3,647 Bloom (1973)
Naomi 1;3 - 1;11 20 128 43 1,240 757 Sachs (1983)
Allison 1;5 - 2;11 6 88 36 612 335 Bloom, Hood, and Lightbown (1974)
April 1;10 - 2;1 2 50 19 128 62 Higginson (1985)
Fraser 2;0 - 2;5 90 371 78 13,924 9,903 Lieven, Salomo, and Tomasello (2009)

TRule(MIN). When N = 100, if the regulars are ranked at the
top of the frequency list, a rule could be derived when there
are fewer than 25 exceptions; if the regulars are ranked at the
bottom, there can be fewer than 23 items. When there are 24
and 25 exceptions, a rule might be derived given the proper
permutation.

Similarly, when N = 1000, if the regulars are all the most
frequent items, a rule can be derived when there are fewer
than 158 exceptions; if the regulars are all the least frequent
items, a rule can be derived when there are fewer than 154
exceptions. When there are 155-158 exceptions, some per-
mutations allow a rule to be derived while others do not.

Summary
In summary, we have shown that the frequency rank of the
regulars substantially affects the time complexity, thus influ-
encing the TP’s prediction. Data sets with the same number
of exceptions but different rank permutations lead to incon-
sistent results. We conclude that using fi · ri =C in a Zipfian
distribution to eliminate rank as a variable in the TP’s deriva-
tion for TRule is not appropriate.

Because the TRule is quadratic, two sets of data will fit the
rule-deriving criterion TRule < TNoRule: e ≤ θmin or e ≥ θmax.
That result casts doubt on whether the cognitive motivation
for the TP can be maintained. The cognitive motivation is
that a rule reduces lexical access time by minimizing the ac-
cess time of the regulars. The more the regulars (or the fewer
the exceptions), the less lexical access time. That assumes
that lexical access time is linearly related to the number of
exceptions, but in our simulations, the relationship between
lexical access time and the number of exceptions is quadratic.
This leads to some unlikely predictions, such as derivation of
a rule when there are 97 exceptions in 100 items and 997 ex-
ceptions in 1000.

Testing the TP on Corpus Data
Our hypothetical data have demonstrated inconsistencies in
the TP and unlikely predictions. Here we test corpus data,

5Eve’s data are different from Yang’s count because Yang made
an error. Yang counted Eve’s data from 1;6 to 1;10. How-
ever, Eve made the first overregularization error at the age of 1;8
(Brown/Eve/010800.cha), when she said ‘I *seed it’.

since many of our hypothetical scenarios may never exist.

Yang (2016)’s Tests
Yang (2016) applied the TP to Adam’s and Eve’s data from
the Brown corpus (Brown, 1973). The first instance of an
over-regularization in a child’s longitudinal corpus can be
seen as an unambiguous marker for the presence of a pro-
ductive ‘-ed’ rule for the past tense. The child may have
formulated the rule earlier, but has definitely formulated it
by the time of the first over-regularization. For both Adam
and Eve, there were more exceptions than predicted before
the first over-regularization error, discrepancies that Yang at-
tributed to sampling error.

New Tests
We replicated Yang’s method on eight children’s longi-
tudinal data, including Adam and Eve, from CHILDES
(MacWhinney, 2000). We tabulated the number of irregu-
lar verbs (e). We computed several values: the approximated
θ = N/lnN, the numerical θ (by solving inequation (1)), TRule
and TNoRule via the verbs’ probability and rank. The eight
children’s past tense acquisition has been extensively studied
in the previous literature6, and their data are shown in Table
6.

Adopting Yang’s method, we included all the files from
the first recording to the file where the child made her/his
first over-regularization error and counted all verb forms. The
sample age and density vary across the children. The average
age range is about 8 months, with a minimum of 2 months
(Eve) and maximum of 18 months (Allison). The average file
number is 23.5, with a minimum of 2 files (April) and max-
imum of 90 files (Fraser). All the verbs were first automati-
cally extracted from the annotated corpora in CHILDES using
the NLTK python package (Bird, Klein, & Loper, 2009), and
were hand-checked by a human annotator.

We compare the number of irregulars (e) with the approxi-
mated θT P = N/lnN and the numerical θn, as shown in Table
7. θT P and θn are confirmed only for Peter, whose irregular
verbs (e = 67) are fewer than the TP’s approximated θa = 70.1

6Adam. Eve, Sarah, Peter, Naomi, Allison and April were stud-
ied in Marcus et al. (1992). Fraser was studied in Lieven et al.
(2009).
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Table 7: Results of comparing e vs θ and TRule vs TNoRule

N e θT P e < θn θn e < θn TNoRule TRule TRule < TNoRule
Adam 306 62 53.5 ✕ 57.0 ✕ 33.80 51.33 ✕
Eve 93 36 20.5 ✕ 22.9 ✕ 17.51 25.11 ✕
Sarah 189 48 36.1 ✕ 38.1 ✕ 25.65 37.81 ✕
Peter 424 67 70.1 ✓ 74.8 ✓ 43.82 57.74 ✕
Naomi 128 43 26.4 ✕ 28.2 ✕ 19.63 31.23 ✕
Allison 88 36 19.7 ✕ 21.0 ✕ 18.24 34.72 ✕
April 50 19 12.8 ✕ 13.7 ✕ 14.64 14.29 ✓
Fraser 371 78 62.7 ✕ 66.5 ✕ 26.34 60.03 ✕

θT P = N/lnN is the approximated θ. θn is the numerical θ calculated by solving θn/N(θn/Hθn −θn)+θn = N/HN

and the Harmonic N-based θn = 74.8. The other seven chil-
dren’s data do not confirm the TP’s prediction that e ≤ θ.

We also use each child’s data to compare TNoRule and TRule
with each verb’s probability and rank. That is, we rank all
the verbs according to their frequencies and calculate the time
complexity based on their probabilities and ranks. The results
are summarized in Table 7. The TP predicts that, for all the
children, TRule < TNoRule, since they have already applied the
rule. That holds only for April. For the other seven children,
TRule is larger than TNoRule, suggesting that no rule should be
derived for these children.

In summary, most children’s data do not conform to the
TP’s prediction. For the eight children we tested, only Pe-
ter’s actual number of exceptions is smaller than the thresh-
old and only for April is TRule < TNoRule. The data are not
definitive, for at least three reasons. The children may have
already acquired the rule before making over-regularization
errors. Children’s first errors may have occurred outside of
taping sessions. The sample of children’s speech might be a
small fraction of children’s vocabulary.

Discussion
Our tests of the TP on hypothetical data and corpus data sug-
gest that the original the TP makes inconsistent predictions
on hypothesized data and is not confirmed by empirical cor-
pus data. We have shown that the approximated θ = N/ln(N)
yields a smaller number of permissible exceptions than the
numerical θ ranging from 10 to 1000. We have also shown
that the approximated and simplified result of inequation (1)
(e ≤ N/lnN) changes a quadratic function of e to a linear
function; the quadratic function for criterion TRule < TNoRule
leads to two different θ thresholds instead of a single thresh-
old.

Our main theoretical contribution is to show much rank
permutation affects the TRule. For example, with ten items,
depending on the rank permutation, TRule < TNoRule even if
there are nine exceptions. Our main empirical contribution is
to show that only one child (Peter) of the eight we examined
has fewer exceptions than those predicted by both forms of
the model, and for only one child (April) is TRule < TNoRule.

These discrepancies could stem from the inconsistency be-
tween the TP’s cognitive motivation (a rule is derived to save

time by compressing the lexical access time of the regulars)
and its calculation of time complexity in inequation (2). The
cognitive motivation presumes that the time complexity with
a rule has a linear relationship with the number of exceptions,
that TRule increases as e increases. However, the formula of
the TRule has a quadratic relationship with e. To retain more
of the original model and resolve the inconsistencies we have
described, one can either modify the time complexity calcu-
lation or the cognitive motivation underpinning its use. If we
want to keep the idea that a rule is derived to save time, and
use the number of exceptions to predict when a rule is de-
ployed, time complexity should be at least a monotonically
increasing function of the number of exceptions. The current
time complexity is calculated based on the Zipfian distribu-
tion and serial search hypothesis, which yields a quadratic
relationship with the number of exceptions and is affected by
the rank permutation. Alternately, the time complexity can be
calculated based on a uniform distribution, which would get
rid of the rank influence; or based on another retrieval model,
instead of serial search, that could produce a linear relation-
ship between time complexity and the number of exceptions.
On the other hand, the cognitive motivation could be modified
to incorporate other motivations for a rule to be derived, such
as optimizing both time complexity and memory space. Al-
though the current version of the TP is not adequate enough
to explain the rule-deriving process, it provides some insight
into how we can approach the rule-deriving process compu-
tationally. With some theoretical and mathematical modifi-
cations, the TP can still be a plausible hypothesis to explain
when a rule is used.
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