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Abstract

Enhancing Grasping in Robotic and Human-robot Systems by Leveraging Intrinsic
Functionality

by

Jungpyo Lee

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Hannah Stuart, Chair

Robotic grasping and manipulation are essential for applications ranging from industrial au-
tomation to assistive technologies. In this dissertation, I address the challenges of improving
these capabilities through advancements in gripper design by leveraging intrinsic function-
ality in the systems. The first focus is on developing a smart suction cup system with
pressure-based tactile sensors that detect contact status, enabling real-time adjustments for
enhanced grasp success rates. A developed suction cup and its haptic search algorithm lever-
age suction airflow into tactile feedback to achieve robust robotic grasping. The second focus
is on regaining grasping function through the development of an assistive Dorsal Grasper
designed for individuals with spinal cord injuries at cervical levels. This device enhances
grasping capability by leveraging residual motor functions and providing additional mechan-
ical support, thus improving the ability to perform daily tasks. By leveraging the inherent
functions of systems, the dissertation offers a simple but effective approach to advancing
robotic and human-robot systems, contributing novel insights and solutions.
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Chapter 1

Introduction

Grasping and manipulation are not only among the most fundamental capabilities that
enable robots to perform a wide range of tasks, from industrial automation to assistive
technologies for individuals with disabilities, but also among the most challenging tasks in
robotic systems [1, 2]. Considering the infinite variability and uncertainty of the real world,
physical interactions and changes in the environment make robust robotic grasping extremely
difficult [3]. The pipeline of robotic grasping comprises a series of steps: decision, perception,
planning, and grasp execution [4]. For example, in a simple pick-and-place task, the process
begins with the decision phase, where the robot identifies the object to be grasped and the
goal location. In the perception phase, sensors (usually vision-based) gather information
about the environment and the object’s properties, such as shape and orientation. Next, in
the planning phase, the data from the perception phase is used to determine the optimal
grasp strategy, including grasp pose estimation and path planning. Finally, during the grasp
execution phase, the robot physically performs the grasp. In this phase, additional feedback
control can be used to make adjustments and ensure stability by real-time tactile sensing
and observation [5]. This dissertation primarily focuses on the grasp execution phase.

In addition to the steps above, gripper design plays a crucial role in robotic grasping,
since it significantly influences the strategies for decision, perception, planning, and partic-
ularly execution. Several types of grippers are commonly used in robotic systems with their
own strengths/limitations and applications (Fig. 1.1). These include parallel jaw grippers,
anthropomorphic multi-finger hands, vacuum suction cups, and other types of grippers, such
as the universal gripper with a particle jamming[6] and filament gripper[7]. Parallel jaw
grippers are simple and the most common gripper type for various applications involving
small and uniform objects, though they may struggle with more complex motion such as
in-hand manipulation[2]. Anthropomorphic multi-finger grippers, designed to mimic the
human hand, offer greater dexterity and adaptability, making them suitable for tasks re-
quiring fine manipulation, including in-hand manipulation, although many of these hands
do not have as many controllable degrees of freedom as the human hand[8]. Suction grip-
pers, which rely on vacuum suction, are specialized for handling smooth, flat surfaces but
are less effective on porous or textured objects[9]. One example case of a suction gripper is
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Figure 1.1: Various gripper design in Robot systems. (a) Parellel jaw gripper [10]. (b)
Anthromorphic hand from [2] (originally from Learning Algorithms and System Laboratory,
EPFL). (c) Vacuum suction cup from [11]. (d) Universal gripper from [6]. (e)Filament
gripper [7].

industrial pick-and-place operations in warehouses. Other types of grippers are specialized
for specific applications. For example, universal grippers, which use granular materials with
particle jamming, provide versatility by conforming to various object shapes through their
shape-adaptive mechanisms.

All of these grippers face challenges in determining the robustness of a grasp or even
whether the grasp is successful. One way to check the grasp status is to use a force/torque
sensor in the wrist of a robot arm, which measures the increased load on the gripper. How-
ever, this on/off state measurement does not guarantee grasp quality and can eventually
result in a failed grasp. Therefore, real-time feedback from sensor information, such as
tactile sensors and vision, is required to achieve robust grasping [12]. Tactile sensing is par-
ticularly effective in detecting real-time interactions with objects, such as local contact status
or dynamic events like slipping [5]. Consequently, over several decades, many researchers
have been developing tactile sensors for robotic end-effectors using a variety of methods
[13, 14].

In parallel to fully robotic systems, gripper design also plays a critical role in human-
robot systems. These systems leverage human inherent functionality rather than relying
solely on robotic manipulators, such as 6 DOF robotic arms or delta robots. Instead, they
utilize the human body, including the trunk, arm, and hand, to perform tasks. In terms of
sensing, robotic systems primarily use vision and require the development of advanced vision
algorithms for perception and planning. In contrast, humans have exceptional multi-modal
sensing capabilities, including vision, proprioception, mechano-cutaneous sensors, and even
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Figure 1.2: Various gripper design in human-robot systems. (a) Motorized wrist-driven
orthosis from [15]. (b) Exo-Glove Poly II from [16]. (c) Assistive device with supernumerary
fingers from [17]. (d) Fabric-based soft robot glove from [18]. (e) Myoelectric prosthetic hand
from [19]. (f) Body-powered prosthetic hand from [20]. (g) T-GRIP thumb exoskeleton from
[21].

sound, which enable seamless, adaptive, and real-time interactions with the environment.
Grippers in human-robot systems are particularly relevant for augmenting or restoring func-
tions in normative individuals or ones with disabilities, such as those who have experienced a
stroke, spinal cord injury, or amputation (Fig. 1.2). These systems aim to restore or enhance
the user’s ability to perform everyday tasks by complementing their natural movements with
robotic assistance. In addition to functional aspects, other considerations are crucial for the
success of human-robot systems. These include weight, as the device must be lightweight
to prevent fatigue; aesthetics, to ensure that the device is visually acceptable to the user;
comfort, to allow for long-term use without discomfort; and donnability, to ensure the device
is easy to put on and take off by themselves.

The overall goal of this dissertation is to design grippers that utilize the intrinsic functions
of systems to improve grasping efficiency and adaptability. Intrinsic functions refer to the
inherent properties and capabilities that a system already has without the need for additional
external mechanisms. Leveraging these intrinsic functions has several advantages. First, it
leads to more efficient and adaptable solutions compared to integrating extra sensors or
actuators. Second, using intrinsic functions reduces the need for complex and expensive
components, making the technology more cost-effective and reliable. Also, it results in more
intuitive and natural interactions, enhancing user experience and system usability. Thus, by
leveraging the intrinsic functions of systems, the designed gripper will effectively adapt to
the system and improve its capabilities.

In this dissertation, I introduce two new grippers designed to enhance grasping capabil-
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ities in both robotic and human-robot systems by leveraging the intrinsic functionality of
these systems. The first gripper, called the Smart Suction Cup, is a vacuum suction gripper
specifically designed to address and fine-tune errors arising from the perception and planning
phases. By utilizing inherent suction airflow during actuation, additional transducers do not
need to be integrated into the suction cup structure in order to gather contact information
between the cups and objects. The second gripper, called the Dorsal Grasper, is an assistive
wearable device to restore grasping capabilities for individuals with impaired motor func-
tion. Since people with disabilities still have significant sensory modalities such as vision,
proprioception, and sound, as well as some degree of motor function, the Dorsal Grasper
leverages these residual sensorimotor abilities and provides additional mechanical support
to help users regain independence and improve their quality of life through enhanced hand
functionality.

The Smart Suction cup

Autonomous robot systems often do not have perfect vision systems. Unlike humans, who
can rapidly perceive and process visual information, robotic vision systems require extensive
training and struggle with dynamic situations and disturbances such as direct light, which can
cause significant performance issues. Additionally, during contact, robotic systems cannot
see the contact surface, making it difficult to ensure a secure and stable grasp based solely
on visual feedback. Traditional suction grasp planners often rely heavily on vision systems,
which can fail to capture fine object details, leading to suction failures. To overcome these
challenges, Huh et al. integrated tactile sensors into the Smart Suction Cup [22], featuring
four internal chambers connected to pressure sensors, enabling us to measure its internal
airflow. In this dissertation, I introduce haptic search algorithms with the Smart Suction
cup guided by flow-based tactile sensors, allowing real-time monitoring of internal airflow to
detect subtle changes in the contact surface so that the robot can adjust its pose to achieve
better sealing.

The Dorsal Grasper

Humans, in particular, have an exceptional ability to grasp, owing to the advanced dexterity
of our hands [2]. Additionally, our bodies are equipped with a multi-modal sensing system.
These systems work together seamlessly, allowing us to adjust and compensate even if one
sensory function is impaired. For example, in a dark room, we can still perform grasping and
manipulation tasks using only proprioception, sound, and cutaneous sensing on the body.
However, the loss of motor function severely impacts our grasping ability, dramatically re-
ducing our capacity to perform everyday tasks. This loss of motor function is a critical factor
that significantly affects the quality of life and the most desirable function to restore over
other body functions [23]. To address this issue, I introduce the Dorsal Grasper, an assistive
wearable device, designed to restore and enhance the grasping capabilities of individuals with
impaired motor function. Designed from the perspective of human-robot collaboration, the
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Dorsal Grasper augments the user’s grasp strength and expands the graspable workspace,
enabling them to perform daily tasks with greater ease and independence.

1.1 Dissertation Overview

The structure of this dissertation is as follows. Chapter 2 introduces the concept of haptic
search algorithms with the Smart Suction Cup in an automated pick-and-place demonstra-
tion with adversarial objects. A state-of-the-art vision-based algorithm initiates suction
grasping; however, when the vision system fails, the proposed haptic search algorithm ad-
justs the suction cup poses on objects. Consequently, our haptic search algorithm with
the Smart Suction Cup demonstrates an increased grasping success rate through physical
interactions with objects. Next, Chapter 3 focuses on one of the key applications of the
Smart Suction Cup, which is haptic regrasping on Printed Circuit Boards (PCBs) using a
new control method. This demonstrates the feasibility of the Smart Suction Cup and haptic
search algorithm in an industrial application. From those chapters, I show the Smart Suction
Cup and haptic search algorithm successfully enhanced grasping capability in suction cup
grasping

Chapters 4 and 5 present the Dorsal Grasper, designed for people with Spinal Cord Injury
(SCI) to restore the grasping capability of their hands. Specifically, Chapter 4 introduces
the first version of the Dorsal Grasper, highlighting the effects of key components such as
wrist extension and an artificial palm, and presents the results of the Grasp and Release
test with subjects. In Chapter 5, I present the next version of the Dorsal Grasper and
discuss how the device affects the grasping workspace and its influence on grasping and
manipulation scenarios, using a motion capture system to evaluate these changes with an
extended number of subjects. Overall, the Dorsal Grasper successfully leverages the residual
sensorimotor functions of individuals with disabilities to enhance their grasping capabilities,
addressing the challenges they face. Finally, in Chapter 6, I describe the conclusions of the
dissertation and outline future work for the projects.

1.2 List of Publishcation

The results presented in this dissertation are drawn from several publications first-authored
or co-first-authored by the dissertation’s author. Specifically:

• Chapter 2 contains the full text of a co-first-authored publication as from:

– J. Lee, S. D. Lee, T. M. Huh, and H. S. Stuart, “Haptic search with the smart
suction cup on adversarial objects,” IEEE Transactions on Robotics, 2024 vol.
40, pp. 226–239. ©2024 IEEE

– This work was done in collaboration with graduate student Sebastian Lee. Sebas-
tian Lee focused on the characterization of rotational alignment and experimental
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setup, while Jungpyo Lee concentrated on the characterization of lateral position-
ing and conducted bin-picking experiments.

• Chapter 3 contains the full text of an accepted paper from:

– J. Lee, Z. Sun, Z. Dong, F. Chen, H. S. Stuart, “Regrasping on Printed Circuit
Boards with the Smart Suction Cup,” IEEE International Conference on Robotics
and Automation (ICRA), 2024. [Accepted]

• Chapter 4 contains the full text of a publication from:

– J. Lee, L. Yu, L. Derbier, and H. S. Stuart, “Assistive supernumerary grasping
with the back of the hand,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). 2021, pp. 6154–6160. ©2021 IEEE

• Chapter 5 contains the full text of a preprint (in revision) from:

– J. Lee, A. I.W. McPherson, H. Huang, L. Yu, Y. Gloumakov, and H. S. Stuart,
“The Supernumerary Dorsal Grasper for people with C5-C7 spinal cord injury,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering. [In revi-
sion, DOI (preprint): 10.36227/techrxiv.171625805.56926586/v1]

https://doi.org/10.36227/techrxiv.171625805.56926586/v1
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Chapter 2

The Smart Suction Cup: Haptic
search introduction

Suction cups are an important gripper type in industrial robot applications, and prior lit-
erature focuses on using vision-based planners to improve grasping success in these tasks.
Vision-based planners can fail due to adversarial objects or lose generalizability for unseen
scenarios, without retraining learned algorithms. We propose haptic exploration to improve
suction cup grasping when visual grasp planners fail. We present the Smart Suction Cup,
an end-effector that utilizes internal flow measurements for tactile sensing. We show that
model-based haptic search methods, guided by these flow measurements, improve grasping
success by up to 2.5x as compared with using only a vision planner during a bin-picking task.
In characterizing the Smart Suction Cup on both geometric edges and curves, we find that
flow rate can accurately predict the ideal motion direction even with large postural errors.
The Smart Suction Cup includes no electronics on the cup itself, such that the design is
easy to fabricate and haptic exploration does not damage the sensor. This work motivates
the use of suction cups with autonomous haptic search capabilities in especially adversarial
scenarios.

2.1 Introduction

Vacuum grippers, or suction grippers, are widely used in industry for simple pick and place
operations. Relying on negative internal pressure that forms when sealed against a surface,
the suction gripper can gently handle an object without applying squeezing force, which
allows an astrictive handling of various types of objects. If the item to be grasped is smooth
and well modelled, as in manufacturing lines, the gripper can repeatably and predictably
handle it with high reliability. However, for grasping in unstructured environments, e.g., in
e-commerce warehouses, objects vary dramatically and present many different surface con-
ditions that may or may not be easy to visually perceive or grip with a suction cup. Careful
planning of grasp contact location is therefore important, and methods for doing so have been
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Figure 2.1: The multi-chamber Smart Suction Cup grips an adversarial object. The cup has
four internal chambers, each connected to a pressure transducer that provides a measure
of internal flow rate. It is able to localize small breaks in the seal due to, for example,
the rugosity (e.g., wrinkles, bumps, etc.) of the object surface. Haptic search can allow
for successful gripping even when the initial grasping point fails, important for visually-
adversarial objects.
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widely studied for the past few years. While there have been successful demonstrations of
versatile suction grasp planners, these methods often rely on vision, which may not capture
fine object details of the geometry and lead to suction failure. Moreover, pre-trained models
are typically specific to certain suction cup and camera configurations, making it challenging
to transfer these methods to different hardware setups without retraining. Time-consuming
retraining currently presents a barrier to adoption.

To address these challenges, we propose the use of autonomous haptic search – or the repo-
sitioning of the cup using contact measurements – to supplement vision in suction grasping.
This new approach leverages pre-trained vision-based grasp planners to obtain an approxi-
mate solution before then fine-tuning the pose after contact occurs until the grasp succeeds.
For this method to be effective, we assume that a successful grasp point is close to the
pre-trained planner’s solution even when errors emerge, as the planner already considers key
factors of graspability such as the object’s weight distribution and the suction seal formation
of a similar suction cup. To adjust the contact location, we use haptic exploration driven
by flow-based tactile sensors on our Smart Suction Cup, first presented in [22]. This design
has the advantage of no electronics embedded in the cup itself, but remote sensors can still
provide valuable information about local suction leakages to overcome grasp failures.

Overview

Section 2.2 provides a review of related works. In Section 2.3, the Smart Suction Cup is
described along with computational fluid dynamics models to demonstrate the expected sig-
nals; this design and flow analysis was previously presented in our prior work [22]. In the
current work, we evolve this concept substantially beyond the prior work by now introducing
and implementing autonomous haptic search. Section 2.4 presents our new proposed haptic
search algorithm that utilizes the flow readings to improve grasping on adversarial objects.
Experimental setup and procedures are described in Section 2.5, including both sensor char-
acterization on primitive fixed objects and a bin-picking task with loose adversarial objects.
Section 2.6 presents the results of these experiments; overall, we find that the use of the
Smart Suction Cup haptic algorithm provides useful controller estimates and more success-
ful grasping. Discussed in Section 2.7, the model-based haptic exploration encounters failure
modes that can be further improved in future work.

The contributions of this paper are as follows:

1. Presentation and characterization of the first Smart Suction Cup that can sense local
suction seal leakage on flat and curved surfaces by using remote pressure sensors.

2. Design of a suitable model-based haptic search controller using tactile sensing feedback
to improve suction seal in real time.

3. Bin-picking experiments to evaluate performance across adaptive control algorithms
with comparison to an existing vision-based grasp planner.
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2.2 Related works

Suction grasp planning using vision

One major challenge in suction grasping is how to plan a contact location. Examples of
planning methods include the heuristic search for a surface normal[24] and neural network
training of grasp affordance using binary success labels[25]. Wan et al. (2020) use CAD
model meshes to plan a grasp resisting gravitational wrench[26], and Dex-Net 3.0 learns
the best suction contact pose from a point cloud considering both suction seal formation
and gravitational wrench resistance[27]. Using a similar approach to Dex-Net, Cao et al.
(2021) built a larger suction grasp dataset including RGB images and annotations of a
billion suction points[28]. Using physics simulation, Shao et al. (2019) demonstrated a
self-supervised learning method that finds suction grasp policies from RGB-D images for
cluttered objects[29], and Cao et al. (2022) improved it by implementing dense object
descriptors[30]. These aforementioned methods rely on RGB or depth sensors, which may
not perceive fine details critical to suction success, e.g., texture, rugosity, porosity, etc. Vision
can also become occluded in cluttered environments and heavily distorted with reflective or
transparent objects.

Suction cup tactile sensors

Prior tactile sensors designed for use in suction cups provide partial information about object
properties and vacuum sealing state. Researchers employ strain sensors on a suction cup by
coating PEDOT [31] or carbon nanotube [32], or by installing microfluidic channels filled with
carbon grease [33]. These strain sensors measure suction deformation during surface contact,
estimating the compression forces and load distributions of suction cups [31], surface angles
and stiffness [33], and object weight and center of gravity [32]. Alternatively, the contact of
the suction cup can be measured indirectly by proximity sensors, including a capacitive base
plate [34], inserted fiber optic cable [35], and micro-LIDAR [36]. However, these methods
provide information about the cup deformation and surface proximity, which may not always
correspond to a suction seal formation that is subject to fine local geometry and porosity.
For direct contact sensing, Muller et al. (2017) report a thin pressure sensor array attached
to the suction cup lips, measuring the distributed contact pressures [37]. However, the sensor
film on the contact layer may weaken the suction seals.

Another straightforward approach is to monitor the internal vacuum pressure of the
suction cup as a discrete measure of suction sealing, as in [38]. However, this prior imple-
mentation method does not localize the source of a leak around the lip’s edge or measure
local surface geometry, which is critical for adaptive haptic exploration for a better grasp.
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Adaptive Regrasping using Tactile Sensing

Robust grasping in real-world scenarios has driven research in adaptive regrasping using tac-
tile sensing. Due to uncertainties in vision systems and difficulties capturing detailed object
features, tactile sensors are employed to detect contact information and guide improvements
in response to unsuccessful grasps. Adaptive regrasp research has predominantly focused on
friction-based grippers rather than suction grippers. Simple regrasping approaches include
increasing grasp forces or grasp impedance upon detection of perturbations, such as external
forces causing slips[5, 39]. For multi-finger grippers, researchers have demonstrated finding
better grasping points through finger gaiting [39]. These methods primarily aim to improve
handling or increase the stability of objects already held by the gripper. In object-picking
processes, deep learning or reinforcement learning techniques have been employed to process
complex tactile sensor data. Chebotar et al. (2016) used a multi-finger gripper with a Bio-
Tac sensor to demonstrate regrasping of a simple cylindrical object; they analyzed complex
spatiotemporal tactile sensor information with PCA and learned a regrasp policy to update
the pose[40]. Reinforcement learning was also used to learn hand grasping and regrasping
policies in simulation, which are then effectively transferred to real robots [41]. For parallel
jaw grippers, vision-based tactile sensors, such as Gelsight, have been used[42, 43]. In [42],
the researchers trained a grasp quality metric from a given tactile image and simulated pos-
sible image shifts to guide the best regrasping policy. In [43], they directly trained for the
best action to achieve the highest grasp success, which could be either a regrasp or pick.

The majority of the approaches mentioned above rely on tactile sensing information
processed by deep learning or reinforcement learning algorithms. These methods can be un-
intuitive and may require significant training data for generalization. These approaches may
involve fully reopening the gripper during regrasp actions, which can be time-consuming.
Moreover, theses approaches may not be applicable to suction grasping due to differences in
grasping mechanisms. In the following sections, we will present a physics- or intuition-based
regrasping controller for suction cup grippers, enabling generalization without requiring ex-
tensive training data. Our controller operates without losing contact, potentially reducing
operation times. To our knowledge, no existing literature addresses adaptive regrasping for
suction cup grippers.

2.3 The Smart Suction Cup

The Smart Suction Cup utilizes internal airflow estimates to monitor local contact conditions.
Internal wall structures separate the internal cavity of the suction cup into four chambers
(Fig. 2.1) – one for each cardinal direction. Overall suction airflow is therefore separated
between each chamber and the pressure sensor connected to each chamber provides an esti-
mate of the local flow rate. We implement the wall structure inside a single-bellows suction
cup for its versatility on different curvatures and orientations of objects. The internal wall
structure only spans the proximal portion of the suction cup, in order to maintain typical
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Figure 2.2: Design of the end effector and the suction cup. (a) The end effector integration
with the suction cup. (b) A close up of the suction cup shows how it is connected with a
vacuum connector and hoses to the pressure sensors. (c) Cross-sectional view of the suction
cup shows internal and outer dimensions.

flexibility, deformation and seal formation at the distal lip. As shown in Fig. 2.2a-b, the
suction cup is mounted to an end effector fixture piece and connected with pressure trans-
ducers and a single vacuum hose with pressure regulation. For experimental trials, this end
effector is integrated with a universal robot arm. Dimensions and internal geometry of the
compliant cup are shown in Fig. 2.2c. A single prototype is used throughout experimental
testing, without incurring damage or needing replacement.

Fabrication

We fabricate this 3D rubber structure including the chamber walls as in Fig. 2.3, with a
single-step casting of silicone rubber. The casting mold comprises three parts, two outer
shells and one core, that are 3D printed using an SLA 3D printer (Formlabs, Form2). These
are assembled together using stainless steel dowel pins and bolts. To ensure the clean casting
of the thin internal wall structures (0.8 mm thick), we used a syringe with a blunt needle
(gauge 14) to inject uncured RTV silicone rubber (Smooth-On, MoldMax 40) and then
vacuum-degassed it. After curing, the outer shells are removed and the silicone suction cup
is stretched and peeled off of the inner core mold. Tearing of the silicone can occur during
this step, especially with harder rubbers. Cast flashing around the lip of the cup can occur
at the interface between the core and outer shells; deflashing is performed manually after
demolding using a razor blade.
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Figure 2.3: Casting mold and fabrication of the suction cup. (a) The casting mold has three
parts (2 Outer shells and 1 core). Molds are aligned and fixed by pins and bottom bolts.
(b) The fabrication process of the suction cup.

CFD Simulation

Using Computational Fluid Dynamics (CFD) simulation (COMSOL Multiphysics, k − ϵ
turbulence model), we evaluate the gripper in two example suction flow cases: vertical and
horizontal flow (Fig. 2.4a and b, respectively). The vertical flow case emulates when the
suction cup only partially contacts a surface, or when the surface’s shape inhibits sealing.
However, when the suction cup engages with a smooth flat surface, flow can only move
inward from the outer edges of the cup, as in the horizontal flow case. This horizontal leak
is common as the suction cup is wrenched from the surface after a suction seal is formed.
Although the suction cup will deform under vacuum pressure, we use modeled rigid geometry
in the CFD simulation. For each case, we approximate the leak flow direction with a small
pipe (D = 1 mm, L = 7 mm) intersecting with one of the internal chamber volumes as shown
in Fig. 2.4a-b. The boundary conditions of the vacuum pump pressures and flow rates match
the experimental setup.

The simulation results suggest that the gripper can detect leakage flows using differences
between the four pressure transducers. We defined vacuum pressure (Pvac) as

Pvac = Patm − Pchamber (2.1)

where Patm is atmospheric pressure. In the vertical leakage flow case, Pvac close to the
leaking orifice shows the least vacuum pressure than the others (Fig. 2.4c). On the other
hand, the horizontal leakage causes the diagonally opposite channel to have the lowest Pvac

(Fig. 2.4d). These trends are supported by the flow results in Fig. 2.4e-f, where the vertical
and horizontal orifices produce the highest flow rate in opposite chambers. The simulation
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Figure 2.4: (a-b) Two cases of CFD simulation. Light yellow blocks are engaged objects
and the cross-sectional view shows leak flow into channel number 1. (c-d) CFD result of
the vacuum pressure measured at the sensor locations of each chamber. The bar graphs are
from the maximum of the four vacuum pressures. (e-f) Cross-sectional view of the pressure
distribution. The arrows inside represent the relative logarithmic scale of airflow velocity.

result also shows an estimate of the pressure difference between chambers (∼0.4kPa) which
must be differentiated by the selected pressure sensors.

System integration

Four ported pressure sensors (Adafruit, MPRLS Breakout, 24 bit ADC, 0.01 Pa/count with
an RMS noise of 5.0 Pa) connect with the four chambers of the smart suction cup via
polyurethane tubes. The suction cup and the pressure sensors attach to a 3D printed fixture
(Fig. 2.1a) and this fixture is attached to the wrist F/T sensor (ATI, Axia80, sampling
rate 150 Hz) on the robot arm (Universal Robots, UR-10) as in Fig. 2.5. A microcontroller
(Cypress, PSoC 4000s) is fixed to the arm proximal to the load cell and communicates with
the four pressure sensors via I2C at a 166.7 Hz sampling rate.

A vacuum generator (VacMotion, VM5-NA) converts compressed building air to a vac-
uum source with a maximum vacuum of 85 kPa. A solenoid valve (SMC pneumatics, VQ110,
On/off time = 3.5 / 2 ms), commanded by a microcontroller, regulates the compressed air
as a means of moderating vacuum intensity. The vacuum hose that applies suction to the
cup is attached at both the suction cup vacuum connector and proximal to the load cell to
reduce tube movement and subsequent F/T coupling.

The experiments are conducted on a desktop computer running Ubuntu 20.04 with a
3.00-GHz Intel Core i5-7400 quad-core CPU and an Intel HD Graphics 630 GPU. The UR-
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Figure 2.5: System integration of the Smart Suction Cup. (a) the smart suction cup system
integrated on UR-10 robotic arm with a 6 DOF F/T sensor and a microcontroller. (b) Close
up of end-effector, including the depth camera.

10 controller is responsible for moving the robot to the target pose, while communication
between the desktop computer and the UR-10 robot uses Real-Time Data Exchange (RTDE)
over a standard TCP/IP connection. We used ROS (Noetic) to collect both pressure sensor
and wrist force/torque (F/T) sensor data during experiments. An RBG-D camera (Intel,
RealSense D435) is additionally mounted to the robot arm wrist such that it does not apply
any wrenches on the F/T sensor. It takes photos (640x480 RGB resolution, 0.1 mm depth
resolution), which are used in the bin-picking experiments.

2.4 Autonomous Haptic Search

The control goal is to enable the robot arm to make small end-effector pose adjustments
in the direction that will eventually seal the suction cup, in other words bring the vacuum
pressure of all channels closer to the maximum vacuum–85kPa for the fully sealed condition.
We decompose autonomous haptic search motions into three direction unit vectors defined
in the tool basis, shown in Figure 2.6: (1) lateral positioning or translation along v̂ in the x̂-ŷ
plane, (2) rotational alignment or rotation about ω̂ in the x̂-ŷ plane, and (3) axial movement
or movement along ẑ. The lateral positioning assumes partial contact of the suction cup
with an object or the presence of small holes underneath the cup. The rotational alignment
assumes a misalignment between the suction cup and the surface normal of the object contact
point. In both situations, we assume there is significant misalignment or the existence of
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Figure 2.6: The reference frame associated with the tool end is shown, including the origin
point (O) located relative to the unloaded cup lip. The cardinal directions of the cup are
oriented along the walls of the inner chamber, shown in the bottom view.

bottom holes, resulting in vertical leak flows as depicted in Fig. 2.4(a). The axial movement
ensures a consistent normal force, or ẑ-force, that is necessary to engage the suction with an
object and maintain contact.

Both lateral positioning and rotational alignment search for a better grasping pose using
smart suction cup pressure signals. To do so, pressures are first calculated for each cardinal
direction by taking the average of the two chambers that correspond to that direction:1

PE = (P1 + P2)/2 (2.2a)

PN = (P2 + P3)/2 (2.2b)

PW = (P3 + P4)/2 (2.2c)

PS = (P4 + P1)/2. (2.2d)

Pressure differentials across cardinal directions are then calculated as:

∆PWE = PW − PE (2.3a)

∆PNS = PN − PS. (2.3b)

Using these values, the vectors v̂ and ω̂ are calculated at each time step, in real time at a
control rate of 125Hz.

Pressure Signal to Lateral Positioning

The lateral direction vector, v̂, is defined to move the suction cup towards the channels with
less leakage flow, i.e., higher vacuum pressure, as follows:

1This first step aligns the cardinal points with the wall interfaces of the cup. Alternatively, one can
directly assign chambers to cardinal directions, e.g., PE = P1; this would result in a tool basis rotation of
45◦ about the ẑ direction compared to our implementation.
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v⃗ = −∆PNSx̂tool +∆PWE ŷtool (2.4a)

v̂ = v⃗/||v⃗||. (2.4b)

Then the lateral repositioning increments, ∆Lx and ∆Ly, are defined as follows:

∆Lx(v̂,∆L) = ∆Lv̂ · x̂tool (2.5a)

∆Ly(v̂,∆L) = ∆Lv̂ · ŷtool (2.5b)

where ∆L = 0.5 mm, is the overall lateral positioning step size per control loop.

Pressure Signal to Rotational Alignment

The rotational direction vector (axis of rotation), ω̂, is defined to close the gap between the
object and channels with high leakage flow, i.e., low vacuum pressure, as follows:

ω⃗ = −∆PWEx̂tool −∆PNS ŷtool (2.6a)

ω̂ = ω⃗/||ω⃗|| = [ω1, ω2, 0]
T . (2.6b)

Given an overall rotational alignment step size of ∆θ = 0.5◦, the rotation matrix R is
calculated as follows:

R(ω̂,∆θ) = e∆θS(ω̂) ∈ SO(3), (2.7)

where S is the skew-symmetric operator,

S(ω̂) =

 0 0 ω2

0 0 −ω1

−ω2 ω1 0

 (2.8)

Rotations are applied about the axis of rotation, along ω̂, which is always in the x̂-ŷ plane
and always intersects point O.

Force Signal to Axial Motion

The axial step size ∆Lz, is calculated as follows,

∆Lz =


−∆z, if Fz ≤ Fz,min = 1.5N
0, if Fz,min < Fz < Fz,max

∆z, if Fz ≥ Fz,max = 2.0N

 (2.9)

where ∆z = 0.1 mm is the axial step size per control loop.
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Composition of Motion Primitives

To test different combinations of lateral and rotational motion in experiments, step sizes in
the lateral and rotational directions are scaled as:

∆θα = ∆θα (2.10a)

∆Lα = ∆L(1− α) (2.10b)

where ∆θα and ∆Lα are new step sizes weighed by α, which in turn change ∆Lx, ∆Ly, and
R, producing an overall transformation matrix, T :

T =


∆Lx(v̂,∆Lα)

R(ω̂,∆θα) ∆Ly(v̂,∆Lα)
∆Lz

0 0 0 1

 ∈ SE(3) (2.11)

If α = 0, then ∆θα = 0 and ∆Lα = 1, which results in pure lateral positioning. If α = 1,
then ∆θα = 1 and ∆Lα = 0, which results in pure rotational alignment. For any α, axial
force control remains unchanged to ensure contact with a surface.

2.5 Experimental Methods

Sensing Characterization for Haptic Search

To characterize the Smart Suction Cup sensing performance relevant for (1) lateral posi-
tioning and (2) rotational alignment, we perform two characterization experiments, one for
each. We swept lateral and rotational offsets from known reference points and analyzed the
resulting pressure signals. From these pressure signals in each experiment, we compute mea-
sured v̂ = v̂meas and ω̂ = ω̂meas, respectively. Based on the physical experimental setups, we
know the ground truth v̂true and ω̂true that would move the suction cup towards a successful
suction grasp with the shortest displacement. As shown in Fig. 2.7a-b, we report direction
error as the unsigned angle between the measured and true direction vectors:

ev = cos−1(v̂true · v̂meas) (2.12a)

eω = cos−1(ω̂true · ω̂meas) (2.12b)

for lateral positioning and rotational alignment, respectively, where ev, eω ∈ [0◦, 180◦].

Lateral Positioning characterization procedure

In the lateral haptic characterization experiments, we positioned and oriented the suction
cup relative to the edge of a flat plate, as shown in Fig. 2.7c-d. We define the lateral offset δ
as the exposed lip length, and the orientation is parameterized by the yaw angle ϕ ∈ [0◦, 360◦]
to test for asymmetry in the pressure sensor response. A yaw angle of ϕ = 0◦ corresponds to
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Figure 2.7: Schematic image of direction error for (a) lateral positioning and (b) rotational
alignment. (c) Experimental image of the suction cup with lateral offset, defined as the
exposed lip length δ, and (d) yaw angle ϕ about the symmetric axis of the cup. (e) Experi-
mental image of the suction cup with a rotational offset angle γ on a dome. (f) Four different
radius domes for characterization of rotational alignment.
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v̂true = −ŷtool. To maintain a constant vertical distance between the flat plate and suction
cup across all trials, we apply a normal force of 1.5 N at a lateral offset of 0 mm and fix
this height of the suction cup. We sweep the lateral offset from 0 to 23 mm with a 1 mm
increment, noting that an offset of 11.5 mm is when the point O is vertically aligned with
the edge of the plate, and sweep the yaw angle from 0◦ to 360◦ with a 5◦ increment. In each
test pose, we average the sensor data over a measurement period of 2 seconds.

Rotational Alignment characterization procedure

In rotational haptic characterization, the suction cup was placed on and oriented relative
to a sphere, as in Fig. 2.7e, such that the point O is vertically aligned with the highest
point of the dome. We define the rotational offset γ as the angle between the true surface
normal at this highest point (vertically upward) and −ẑtool. Domes with different diameters
(15 mm, 20 mm, 40 mm, and flat plate) are selected, as in Fig. 2.7f, with the 15mm radius
dome representing the smallest sphere that the suction cup can grasp in this study. In this
experimental setup, ω̂true = x̂tool. To initialize an experiment, we use force control to reach
a target 1.5±0.1 N normal load2, with γ = 0. We record the position of O in space at this
moment, and then pivot about it while regulating the force along ẑtool. We sweep γ from
45◦ to 0◦ with 1◦ steps. At each offset, we average pressure measurements for 2 seconds of
steady state readings.

Bin-picking

We set up a bin-picking task similar to that of [44] to evaluate the functional performance of
the proposed haptic search algorithms. The robot system was programmed to pick objects
up from a bin and transport them to a designated container, as shown in Fig. 2.8. For a given
trial, the robot was first set with a particular controller. The system was then presented with
19 adversarial objects in a bin. Five of the objects were 3D-printed objects taken directly
from the list of Adversarial objects from [27]. Eight of them were taken directly from the
Level 3 object set in [44], which includes both 3D-printed and commercial objects. The rest of
the objects were picked based on difficulty for a vision-based planner, specifically adversarial
objects with imperceptible features like transparency, reflectivity, and small surface features.

Before the start of each trial, the operator placed the complete set of objects into the
bin by first shaking them loosely in the container, inverting that container to drop them
into the bin, and manually adjusting objects only to ensure that they were below the rim of
the bin. The robot then continuously attempted to perform the pick-and-place task until an
end-trial condition was met, and the number of successfully grasped objects was recorded.
In each trial, 57 attempts (three times the number of objects) were performed, and the trial

2This type of force control to an exact value often leads to system vibrations. For the parameters used
in our controller, with the tolerance of ±0.1 N and control rate of 125 Hz, we did not observe substantial
vibrations.
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Figure 2.8: Tabletop setup for bin picking experiments. Inset: a dataset of 19 adversarial
objects, showing eight 3D printed objects, six real objects with packaging, and five real
objects without a package.

Figure 2.9: Flow chart of robotic behavior during bin picking experiments.3

stopped when 10 consecutive grasp attempts failed or no feasible grasping points remained
available. We conducted five bin-picking trials for each tested control method.

The process for each trial is shown in Fig. 2.9. On each grasp attempt within a given trial,
a point cloud of the bin state with objects is inputted into the Grasp Quality Convolutional

3Visual renderings are used for illustrative purposes only. All characterization and bin-picking experi-
ments were done with physical hardware, and not in simulation.
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Neural Networks (GQCNN) [45] to generate 30 grasp point candidates with a grasp quality
value ranging from 0 to 1 and corresponding suction cup pose. Among the candidates, the
pose with the highest quality value and no previous failures is attempted. We implement a
simple memory system to avoid repeated failures at the same grasp point. When a grasp
is unsuccessful, the grasp point is stored and any points within 3 cm of previous failure
points are considered non-feasible. The system stores up to three previous failures and is
reset when the suction cup successfully grasps an object. Note that we have not re-trained
this algorithm for our particular robot system or object set. The robot approaches the
selected grasp point with a 15 mm offset in the estimated surface normal direction. Then,
it approaches the surface along the estimated normal until normal force reaches 1.5 N. The
suction cup then initiates vacuum suction and checks the vacuum pressure of all channels
to determine whether it has successfully grasped an object. We define a grasp success if the
mean vacuum pressure is greater than Psuccess =15 kPa, equivalent to holding ∼350 g with
our suction cup. This estimate assumes the seal ring diameter is at the midpoint of the
suction cup lip, or 17 mm across. The heaviest object lifted in experiments weighs less than
200 g, providing a safety margin of at least 150 g.

If a successful grasp is not detected after the initial grasp attempt with GQCNN, then the
robot starts its specified search strategy to adjust the cup pose. During this search phase,
a grasp is considered a failure if the suction cup moves away from the initial grasp point by
more than 3 cm, rotates by more than 45◦ from the initial pose, or if the search time exceeds
15 seconds.4 If the robot fails to grasp an object, it returns to the initial position and starts
a new attempt. However, if at any point during the search procedure a successful grasp is
detected, the robot then attempts to lift and move the object. Grasp failure is recorded if
the object is dropped prior to the intentional release of the object into the container.

We evaluate eight total experiments: six with different haptic searching methods and
two experimental controls. We implement five haptic search strategies by modifying the
value of α from 0 to 1 in increments of 0.25. Specifically, we denote the values of α1, α2,
α3, α4, and α5 as an α of 0, 0.25, 0.5, 0.75, and 1, respectively. Also, we include a haptic
search strategy which alternates a weight value between α1 and α5 every 0.5 s, denoted as
α1&5 in order to test the decoupling of motion between lateral positioning and rotational
alignment. The first control condition is the application of GQCNN without any additional
search method applied. As another experimental control case, we conduct a random search
with Brownian motion (BM), or Weiner process, in the lateral direction; the lateral scalar
step sizes in Eq. (2.11) , ∆Lx and ∆Ly, are chosen to make the standard deviation of the
distance to be 3 cm from the initial grasp point after 15s of searching time.

4This maximum search time of 15 seconds was selected after preliminary experiments yielded diminishing
grasp success after this time frame. In applications where speed is important, it would be impractical to
search for an un-ending amount of time without a successful grasp.
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Figure 2.10: The pressure sensor readings for a sweep of lateral offset, δ, and yaw angle,
ϕ, for the lateral positioning. (a) Vacuum pressure for a sweep of lateral offset from 0 to
23 mm at 0◦ yaw angle. (b) Vacuum pressure reading for a sweep of yaw angle from 0◦ to
360◦ at the center of the suction cup by averaging pressure reading at 11 and 12 mm lateral
offset. (c) The direction error of various lateral offset. (d) Direction error data and mean.
(e) Results from thresholding pressure readings by 10 Pa. i. The indistinguishable rate for
a sweep of lateral offset. ii. The direction error at 14 mm and 15 mm lateral offset without
indistinguishable data by thresholding pressure readings. iii. Direction error data and mean
before and after thresholding pressure readings at 14 mm and 15 mm lateral offset. Dashed
lines in the figure represent 45◦.

2.6 Results

Lateral Positioning sensor characterization

The characterization results of lateral positioning are presented in Fig. 2.10. In Fig. 2.10a,
the vacuum pressures from all channels are shown as lateral offset changes while yaw angle is
held constant at ϕ = 0◦. All four channels remain over 60 kPa until the lateral offset reaches
6 mm; at these offsets, less than 7 mm, the suction cup seals completely with the plate and
no haptic search is needed to grasp successfully. Note that the entire lip of this cup design
does not necessarily need to be in full contact to generate a seal. Vacuum pressures decrease
starting from a 7 mm lateral offset. The figure inset shows the region of offsets in which
notable pressure differences exist between different chambers. Between 16 mm and 23 mm
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lateral offset, pressure readings remain at 0 kPa across all chambers. It is therefore expected
that directional signals will be most informative between 7 and 15 mm of offset.

To demonstrate how the pressure readings vary with the yaw angle, we vary ϕ from
0◦ to 360◦ with the edge of the plate located at the center of the suction cup (11.5 mm
offset); we average the pressure readings at 11 mm and 12 mm lateral offset to estimate
this cup alignment. As shown in Fig. 2.10b, the vacuum pressures in each chamber vary
periodically with the change in yaw angle. At 0◦ yaw angle, chambers 1 and 2 overlap with
the plate, showing higher vacuum pressure than the pressures from chambers 3 and 4. At
every 90◦ of yaw angle, two chambers seal on the plate’s surface, causing vacuum pressures
to show peaks of two chambers. Given the chamber geometry of the cup, there will be higher
overall vacuum pressure applied to the cup when more of the 4 chambers become sealed.
This explains why we see two peaks per chamber, rather than just one, as the two adjacent
chambers simultaneously break seal between local maxima. Variability between chambers is
also seen, for example the maxima at ϕ = 90◦ is smaller than the others. Small variation
could be caused by fabrication and assembly, as well as compliance in the suction cup,
leading to asymmetric buckling deflections of the internal chamber dividers upon contact, as
observed in prior work [22]. Regardless of chamber-to-chamber interaction and nonidealities,
at each tested yaw orientation the 4 chambers provide a unique combination of readings to
support the estimation of the ϕ state.

In order to understand the interpretation of these signals in our control algorithm, across
both δ and ϕ, we visualize direction errors ev with pressure sensor readings using Eq. (2.12a)
in Fig. 2.10c-d. Direction errors from lateral offsets between 7 mm and 15 mm with 4 mm
increments are shown in Fig. 2.10c. The 45◦ boundary indicates the directions that would
enable faster haptic search for a better grasping point, by moving the cup towards the plate
at a rate faster than along the edge of the plate. At 7 mm and 11 mm lateral offset, the
direction errors show that all data is below the 45◦ boundary line. At a 15 mm lateral
offset, some errors go above the boundary. The result shows that direction errors have a
cyclic pattern every 45◦, reflecting the internal wall structure of the suction cup with four
chambers.

In Fig. 2.7d, we report the direction error for all trials between 7 and 15 mm offset.
Each lateral offset has 73 data points, where we sweep yaw angles from 0◦ to 360◦ with a
5◦ increment. The result shows box plots with the means of the data. No data exceeds
the 45◦ boundary from 7 mm to 13 mm lateral offset. However, within this range, error is
greatest at 7 mm. It makes sense that direction error increases as the offset approaches 6
mm, as the suction cup becomes fully sealed and flow stops altogether. For the 7 mm case,
as demonstrated in Fig. 2.4d-f, flow can become predominantly horizontal at the transition
to the fully-sealed state, thereby decreasing the pressure difference between the exposed and
covered chambers. At both 14 and 15 mm lateral offset, where pressure differences become
small, several data points show error over 45◦, yet the mean of the direction error remains
below this threshold.

At large offsets, greater than 15 mm, the pressure approaches 0 Pa and ev increases fur-
ther, meaning that all four channels are open and not forming effective differential pressures.
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We therefore apply a threshold condition of 10 Pa during controller implementation such
that, when all chambers are below this level, the direction estimate is set to 0̂ (no motion).
The rate at which this condition is met, which we call the indistinguishable rate, at different
lateral offsets is shown in Fig. 2.10e i. The indistinguishable rates from thresholding are
found to be 2.7% and 39.73% at 14 mm and 15 mm lateral offset, respectively, while no
data are indistinguishable between 7 mm and 13 mm lateral offset. Fig. 2.10e ii shows the
corresponding result of direction errors ev at 14 mm and 15 mm lateral offset, where the
indistinguishable data points are eliminated. Fig. 2.10e iii shows the change in ev resulting
from the threshold condition. Before thresholding, the mean of direction error at 14 mm lat-
eral offset is 16.99◦, which decreases to 15.70◦ after thresholding. At a 15 mm lateral offset,
the mean direction error changes from 42.42◦ to 34.71◦. In practice, motion will only occur
when at least one channel measures a degree of flow restriction – if there is no measurable
suction contact the cup will remain stationary.

Rotational Alignment sensor characterization

The characterization results of rotational alignment are presented in Fig. 2.11. Since the
suction starts without a seal, we read the plot with decreasing rotational offset from left
to right. The cup initially starts at γ = 45◦ and all channels read close to 0 kPa. The
critical rotational offset, where the vacuum seal is formed, is seen by a rapid increase in the
vacuum pressure (Fig. 2.11a). This critical offset angle becomes smaller as the radius of the
dome decreases, indicating that smaller radius domes require more precise alignment with
the surface normal to successfully grasp. At rotational offsets smaller than the critical offset
angle, the vacuum pressures are consistently near 60 kPa across all channels. The control
condition for successful grasping, P > Psuccess, is shown as the horizontal dashed line. The
region of interest for haptic search occurs when there is the presence of pressure differentials
within the cup, detailed in the figure, comparing PW and PE. The difference is directly
plotted as ∆PWE in Fig. 2.11b after removing data points where P > Psuccess. For the 15
and 20 mm radius domes, signals rise as high as 1.5 and 1.2 kPa, respectively, over larger
rotational offset ranges than the 40 mm dome or flat plate. The pressure differential for
the flat plate in particular never even reaches a ∆PWE of 20 Pa, because the compliant lip
rapidly deforms and pulls itself into the surface before substantial differential flows can occur
inside the cup due to chamber occlusion. We therefore expect tactile sensing to provide more
useful prediction of ω̂ on higher curvature objects, where smaller domes can better occlude
chambers before the critical angle is reached and more careful alignment with surface normal
is required.

As shown in Fig. 2.11c, the test results indicate that the direction error (eω, Eqn. 2.12b)
is lower for objects with smaller radii. Each subplot i-iv represents a trial on a different
object and data for which P > Psuccess is omitted. When we add a dashed boundary line of
45◦, similar to in lateral search characterization, we see that errors consistently drop below
45◦ at rotational offsets of 30◦, 31◦, 23◦ for domes with radii of 15 mm, 20 mm, and 40
mm, respectively. On the other hand, the flat plate error does not fall below this threshold
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Figure 2.11: Vacuum pressure and pressure differential measurements for a sweep of rota-
tional offsets γ, and direction error, eω, for four different objects - a flat plate and spheres
with 40 mm, 20 mm, and 15 mm radii. (a) Vacuum pressures for γ ∈ [45◦, 0◦]. Pressure
increases sharply at different critical offset angles as the vacuum seals on the surface, points
numbered 1-4. Before sealing occurs, differences between PW and PE are visible, especially
for the 20 mm and 15 mm objects. (b) Pressure differential between west and east cham-
bers for each curved surface. Differential signals rise faster for high curvature objects. (c)
i-iv. Direction error data and mean for the four objects. Included is the 45◦ direction error
boundary line. The shaded regions indicate the rotational offsets at which the suction cup
passively grasps the object, smaller than the critical offset angle. Direction error past 90◦

corresponds to motion perpendicular to the true desired direction.

consistently on the flat plate because ∆PWE remains small up to the critical angle. The
smaller radii objects (R=15mm and 20mm) show the most accurate predictions (eω < 10◦)
close to the critical rotational offset. This result suggests that the proposed haptic search
method can successfully grasp objects with small critical offset angles (e.g., 8◦ in R=15mm
object), even with high visual perception error of surface normal up to 30◦.

Bin-picking

We evaluate the bin-picking test conditions defined in Section 2.5, with results shown in
Fig. 2.12. The picks-per-attempts mean average from across five independent trials for each
condition is reported in Fig. 2.12a; the six haptic search conditions are in shades of red while
the the two experimental control cases are in shades of blue. All trials are reported for each
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Figure 2.12: Results of bin picking experiments. (a) The average number of successful picks
across all grasping methods. (b) The individual results for each grasping strategy, with solid
colored lines indicating the average and colored areas representing the standard deviation.
The grey lines within each grasping method indicate the results of individual trials. As a
reference, a dashed black line is used to represent the optimal performance, which is defined
as successfully picking every attempt in the bin until it is completely empty.

test condition experiment in Fig. 2.12b. The dashed lines on all plots indicate the ideal case
where every grasp attempt is successful without any failures.

The control case “GQCNN” or “NON,” which has no search phase, shows an average
of 5 ± 1.58 successful picks. This means the robot system was able to successfully pick-
and-place these objects from the bins without any haptic search assistance. The control
case “GQCNN + BM,” which includes random Brownian motions in lateral direction during
the search phase, results in an average of 5.8 ± 2.39 successful picks. This shows that
the introduction of non-haptically-driven motion after the initial grasp attempt can provide
minor improvements. Comparing the two control cases with this ideal performance, we see
the difficultly of the selected adversarial pick-and-place task. Of the two control cases, we
propose that it is more appropriate to compare haptically-driven results with the “GQCNN
+ BM” control case because it represents baseline benefits from the presence of a search
phase.

The proposed haptic search methods are labeled α1 to α5 and α1&5. Results show that
α2 provides the highest number of successful picks per trial, with an average of 12.6 ±
4.16. Lateral positioning (α1) and rotational alignment (α5) show reduced results similar
to one another, with 8.2 ± 5.17 and 8.8 ± 3.70 successful picks, respectively. α3 results in
an average of 8.2 ± 3.83 successful picks and α4 provides successful picks (9 ± 6.86), but
with the largest standard deviation. For the performance of the alternating haptic search
method α1&5, it shows the lowest successful picks of 6.8 ± 1.92 among all the haptic search
methods evaluated. Overall, these results demonstrate the effectiveness but also the between-
trial variability of the proposed haptic search methods. Out of these methods, α2, which
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predominantly performs lateral search but with some rotational alignment, best improves the
success rate of bin picking by the robot system. However, between trial variability indicates
that the potential benefits of haptic search is sensitive to initial bin state.

We can then compare the autonomous haptic search methods with the experimental
control cases. In the region between 0 and 5 pick attempts, there is little difference between all
eight methods. This indicates that success is driven by the GQCNN method, mostly because
we attempt the grasping pose with the highest quality value first. The methods diverge in
performance after 5 attempts, where the GQCNN and α1 methods show lower performance
than the other six methods. At 25 or more bin pick attempts, all six haptically-driven
methods outperform the two experimental control methods. This indicates that autonomous
haptic search methods are helpful to expand achievable grasp points, to now include those
that GQCNN alone is unable to accurately predict.

Here, we quantify how much fine-tuning is executed through haptic search on average.
Among the successful haptic search trials, across all six haptically-driven methods, the mean
cartesian displacement from the initial pose was 4.8 mm with a maximum of 13.9 mm. Mean
path length was 8.7 mm with a maximum of 32.7 mm. Mean angular displacement was 5.9◦

with a maximum of 25.2◦. Mean angular distance traveled was 6.8◦ with a maximum of
39.1◦.

2.7 Discussion

Sensor characteristics

Through varying the lateral displacement and yaw of the cup against a flat plate edge and
varying orientation with domes of different sizes, we characterized the scale and types of
pressure signals that the Smart Suction Cup produces. We also demonstrated how these
raw signals are interpreted using our proposed haptic search procedure. However, plates
and domes represent primitive shapes. The complexity of object geometries in real-world
scenarios, with a combination of vertical and horizontal flows, will likely impact the haptic
search effectiveness of the suction cup, making it challenging to identify suitable direction
vectors. This may help us to understand why, at times, we observed certain unproductive
haptic behaviors emerge during the bin-picking task.

We found in sensor characterization tests that thresholding reduced direction error, by
eliminating cases where pressure differential measurements are too low to produce reliable
estimates when sensor noise starts to dominate. At the same time, it is unlikely that perfect
prediction accuracy is essential in effectively deploying Smart Suction Cup haptic search.
Specifically, the prediction accuracy appears to improve as the cup gets closer to a successful
grasp. During haptic search, if, as a result of noisy signals due to low pressures, the cup
randomly reaches any state where a more accurate prediction can be better made, then the
behavior will converge on a successful grasp over time. We posit that this will be especially
true if, on average, predictions start from a place that are within 90◦ of the true direction
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Figure 2.13: Representations of the failure modes for the Smart Suction Cup observed during
the bin-picking experiments.

vector. In future work, conducting closed-loop control experiments, rather than stationary
sensor characterization, would identify the highest possible offsets for which haptic search
still yields a successful grasp, including on a wider variety of object shapes.

In the lateral search case and especially the rotational alignment case, we find that the
compliant material and the bellows of the suction cup allows it to engage with objects even
with postural errors to some extent. However, for objects with high curvature and critical
features such as holes, the inherent tolerance of the suction cup may not be sufficient. In such
cases, our proposed haptic search method is expected to enhance the operational tolerance
even when the vision system fails to capture those features accurately.

Bin-picking observations

Bin-picking experiments suggest that a physical search phase after contact is made can
improve grasp success, especially when employing autonomous haptic search methods that
respond to measured contact conditions. The fact that all haptic search methods tested
provided some increase in picking success rate as compared with experimental controls,
including with random searching, shows how responding to contact pressures, even with
a simple model-based controller, holds potential thus motivating ongoing investment in the
Smart Suction Cup capability. We used a single suction cup prototype throughout all of these
bin-picking-experiments, representing at least 1316 autonomous grasp attempts, without
incurring damage to the cup or needing replacement. The Smart Suction Cup design, where
the cup is fabricated in a single-step casting process and electronics are remote from the cup,
thus appears to provides reliable and physically robust performance.

We saw the biggest performance increase with the α2 haptic search method, whose motion
is a mix of lateral positioning with a bit of rotational alignment. Though it matches our
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expectations that a coupled motion would yield better results than purely sliding (α1) or
rotating (α5), because most objects have both edges and curves, it is less obvious why α2

outperforms α3 and α4. A possible theory is that the rotational alignment search counteracts
the lateral search, so finding the optimal tuning between them is required. When the suction
cup has partial contact, the lateral search attempts to reinforce contact on the contacted side
by moving towards it, while the rotational alignment loosens the contact side and attempts
to make balanced contact over all channels. Therefore, an appropriate balance between the
two modes should be adjusted. We believe that α2 provides the best balance among the five
presets in general, but each geometry may require a different optimal balance between the
two modes. We leave this local, object-specific controller optimization as a future work.

During the bin-picking trials with autonomous haptic search, we observed different com-
mon grasp failure modes. We classify them into seven categories, as shown in Fig. 2.13:

(a) Unfeasible surface: Haptic search starts at an infeasible surface, where possible grasp
poses are beyond the searching boundary.

(b) Haptic oscillation: Haptic search oscillates in a region where haptic information makes
the cup move back and forth without converging to a graspable point.

(c) Broken seal: The contact wrench applied to the cup is too large to lift an object. This
typically occurs when the suction cup tries to grasp a heavy object from the edges, also
reported in [9].

(d) No haptic information: The suction cup cannot get any distinguishable haptic data from
a surface, such as the bristles of the brush (P<10 Pa).

(e) Ineffective haptic search: A surface is feasible and haptically searchable, but the system
uses an ineffective behavior. The example shows a case where the suction cup is using
lateral positioning but would benefit more from rotational alignment.

(f) Ghost geometry: Reflective and/or transparent materials yield artifacts, resulting in
ghost geometries in a depth image. The example in the figure shows the suction cup is
trying to grasp in the air because the light from the ceiling is reflected on the bin surface.

(g) Constant relative pose: During haptic search, a loose object can be pushed such that the
relative position between the cup and object remains unchanged despite robot motion.
Given the new position of the object, the next attempt may consider the same grasp
point as a valid candidate as its pose in the world frame changed.

Several of these error types occur because the vision-based grasp planner initializes the
grasp at a point in which a suction grasp is locally impossible. The cases in Fig. 2.13 (a), (c),
and (f) are not recoverable using contact condition condition sensing. To combat these, the
camera and/or visual planner performance would need to be improved. However, for cases
in Fig. 2.13 (b), (d), (e), and (g), new adaptive haptic search controllers designed to identify
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Figure 2.14: An example of lateral haptic search, α1, on a stationary PCB adhered to a
surface. 1○ “GQCNN” guides to the pose where there are several via holes. 2○ The suction
cup adjusts its lateral pose given its pressure readings. 3○ The haptic search succeeds in
grasping the PCB within 2 seconds.

and overcome such failure cases could further improve grasping in future work. For instance,
the failure mode (g) may be effectively addressed through a jumping haptic search approach.
In this approach, the suction cup retracts from an object and then re-approaches with an
adjusted pose. This prevents the suction cup from exerting continuous pressure on an object
while making pose adjustments. We recommend also coupling vision with the haptic search
process. For example, camera information could be used to select appropriate haptic search
methods in response to case (e). Or vision could identify object movement in (g) to adapt
behavior on the fly; for example, in [22], we propose that one could dynamically reduce the
suction pressure of the vacuum in order to achieve more gentle sliding over objects.

In the present work, we made the deliberate choice not to re-train the GQCNN algorithm
for our particular robot system, resulting in overall low planner performance. In our case,
we use a different camera, robot arm, object set, room/lighting, gripper, and bin from the
ones used in training. The purpose of this choice is to generate a scenario that emulates
a quick-adopt case for such technology, since generalizability is an ongoing challenge for
such planning algorithms [46]. The present work therefore shows that the use of a Smart
Suction Cup can be one tool in ameliorating errors that arise specifically in previously unseen
systems. Future work will investigate how planner optimization and hardware selection (e.g.,
higher spatial resolution camera) affects the role of autonomous haptic search.

Printed Circuit Board demonstration

In the bin-picking experiment, the tested objects all had at least one smooth graspable
surface for the suction cup to grip. However, some real-world objects have bumpy surfaces
without any obvious continuously-smooth regions. For example, a Printed Circuit Board
(PCB) with Integrated Circuits (IC) soldered on it and via holes might prevent the use of a
suction cup, if the cup would fail to grasp at most surface locations. However, haptic search
behaviors can still enable the grasping of such surfaces, adapting around local features to
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achieve a seal. To demonstrate this behavior, we fix a printed PCB to the table and allow
the cup to search for a grasp point using only lateral positioning, or α1. Fig. 2.14 shows
how the cup is able to find a successful grasp point over one of the IC’s. Future work will
measure to what extent the cup can respond productively on surfaces with different types of
porosity and rugosity profiles for real-world applications.

In Fig. 2.10, the directional errors in lateral search on a flat, smooth plate commonly reach
almost 20◦ for the best case lateral offsets between 8 and 13 mm. These errors may appear
unsatisfying and at times result in longer searching paths than desired. This directional
error provides one reasonable explanation for the edge-following behavior that emerges at
Grasp point 3 in Supplementary Video. However, the PCB demonstrations show how this
error does not necessarily result in overall failure during smart suction haptic search; the
controller continues to adjust its directional estimate every 0.5 mm as it moves, ultimately
leading to a successful grasp. Regardless, future work should investigate how performance –
such as time and distance to successful grasp – may be optimized through cup and algorithm
design.

2.8 Conclusion

The four-chamber cup design of the Smart Suction Cup, with remote pressure transducers,
provides a reliable solution for generating differential airflows and protecting sensitive elec-
tronics from physical damage. In this work, our proposed autonomous haptic search method
– a model-based approach for estimating lateral positioning and rotational alignment – en-
ables the suction cup to adjust to a successful pose for suction grasping, effectively increasing
tolerance to positioning or misalignment error induced by errors from a vision-based grasp
planner. The Smart Suction Cup holds the potential to improve gripping in various scenarios
that already deploy vacuum grippers, such as recycling facilities, warehouses, manufacturing,
and logistics robots.

Future work

This study presented a single implementation of the Smart Suction Cup and one particu-
lar model-based approach to generating haptic searching behaviors in response to pressure
readings. In future work, we seek to explore new soft cup designs to both improve gripping
performance while studying how parameters, like the number of chambers, affect sensing.
Next steps include optimization and learning-based approaches for sensor characterization
and mixing lateral positioning and rotational alignment. These adaptive methods may be
informed by visual and haptic information, for example. Finally, the ultimate goals of this
line of work is to explore the adoptability and lifetime of such technology in real-world
application.
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Chapter 3

The Smart Suction Cup: PCB
regrasping

The disposal of waste electrical and electronic equipment (WEEE) presents a sustainability
challenge, particularly for waste printed circuit boards (PCBs). PCBs are challenging to sort
out from other waste materials in part because traditional industrial end-effectors struggle to
reliably grip these irregularly shaped objects with unmodeled surface-mounted components.
Vision-based separators, while effective for object categorization, face challenges with identi-
fying precise grasp points on PCB surfaces. This paper studies regrasping control to enhance
suction cup grasping performance on PCBs, addressing issues arising from uneven surfaces
and intricate features that interfere with suction sealing. We categorize PCBs into two re-
cycling levels – with large surface features intact or removed – and conduct experiments on
both stationary and conveyor belt setups with realistic vision-based grasp planners. Results
show that jumping regrasping improves pick-and-place success rate. Haptically driven jump-
ing – using the Smart Suction Cup – is especially useful for unprocessed waste PCBs with
large surface mount parts. The proposed method offers a promising solution to enhance the
efficiency and reliability of robotic grasping in recycling applications.

3.1 Introduction

As of now, many waste printed circuit boards (PCBs) are not recycled[47, 48] and the rapid
global growth of electronics industries has led to a surge in electronic waste[49, 50]. Resulting
pollution harms both local ecosystems and the human populations residing in proximity to
primary recycling facilities[51, 52]. PCBs present especially intricate designs with high metal
contents and potential toxicity, making automated high-volume PCB recycling both difficult
and important. The irregular shapes and sizes of PCBs with unmodeled surface mounted
components makes reliable gripping difficult with conventional industrial end-effectors. Thus,
sorting PCBs out from other waste materials using a pick-and-place process remains a bot-
tleneck. Modern robotic manipulation technology suitable for PCB handling therefore has
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Figure 3.1: The multi-chamber Smart Suction Cup – equipped with four internal chambers,
each linked to a pressure transducer for monitoring internal flow rate [22, 53] – touches a
PCB on the edge of a surface mounted integrated circuit. The gripper can detect minor seal
disruptions caused by physical interaction with such surface irregularities.

the potential to improve waste management practices.
Suction cups, also known as vacuum grippers, play a crucial and versatile role in vari-

ous industrial robot applications[54][55]; they are fast, reliable, affordable, and effective on
smooth, flat, and/or lightweight objects. Suction cups already enable the pick-and-place of
some recyclable items[56], and facilitate the integration of robots into industrial recycling
sorting applications [57, 58]. For objects that are too bumpy or difficult for suction cups
to grip consistently, opposable grippers and multi-fingered hands enable fine adaptation to
varied object shapes [44, 59]. However, suction grippers are typically simpler and cheaper
in comparison to other articulated end-effectors. Our goal is to expand the capabilities of
suction cups to grip irregular surfaces so that more complex end-effector hardware is not
required.

Vision-based separator technology enables the identification of different mixed waste for
sorting [60]. While vision-based planners have proven effective for object grasping, challenges
arise when dealing with uneven surfaces and intricate features on objects [27]. PCBs, in
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particular, pose difficulties for vision-based systems due to their complex array of small
electronic components and vias, rendering suction performance difficult to predict accurately.
This is especially true for fast-throughput conveyor systems, where the constantly moving
belt may not provide enough time for the vision system to fully capture and process all the
intricate features on the PCBs that affect suction cup gripper success. We therefore aim to
provide fast, successful suction cup gripping on PCBs without accurate visual predictions or
models of surface geometry.

Prior Work

In our previous work, Huh et al. (2021) introduced a custom-molded multi-chamber smart
suction cup gripper capable of measuring four distinct pressure values corresponding to the
sealing of individual chambers [22]. This cup is depicted in Fig. 3.1 with four sensor hoses
each corresponding to its own chamber. We then introduced and tested continuously sliding
and rotating control strategies to haptically search for graspable object locations in [53]; we
found that this strategy can improve grasping of adversarial objects by up to 2.52x during
bin picking. However, the sliding haptic search method was shown to fail when the object
moves along with the gripper, such that the relative position with the suction cup remains
unchanged as depicted in Fig. 3.2(a). While we demonstrated continuous sliding haptic
search with a PCB in this prior work, the PCB was rigidly fixed to the table to prevent it
from moving with the cup. We now introduce and test the use of jumping haptic regrasp
as a viable alternative for preventing sliding failure with loose PCB handling – this involves
releasing and regrasping the object at a new location, as seen in Fig. 3.2(b). In the present
work, we also update the implementation of the end-effector assembly for easier mechanical
integration with existing robotic manipulation systems.

Overview

Section 3.2 provides a description of the Smart Suction Cup with an updated end effector
implementation. We also define the tested jumping haptic regrasping method that utilizes
the pressure readings from each chamber to improve grasping on PCBs. In Section 3.3,
we categorize PCBs into two levels according to their recycling status and perform two
discrete experimental pick-and-place tests with this system – one test is for PCB’s on a
stationary table and the other is on a moving conveyor belt system and a realistic vision-
based grasp planner. Section 3.4 presents the results of these experiments; we find that
the use of jumping regrasping increases the success rate in both pick-and-place applications,
and that haptically-guided regrasping is useful especially in non-processed waste PCBs with
the largest surface features. Discussed in Section 3.5, transfering the haptic regrasping to
real application encounters emerging issues that can be further improved in future work.
We conclude that the jumping haptic method exhibits promising capabilities as corrective
reflexes that complement traditional vision-based grasp planning approaches.
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Figure 3.2: (a) In sliding haptic search, the object can slide with the gripper, making the
strategy ineffective at leading to a successful grasp. (b) We study the utility of jumping
haptic regrasping to find a better grasp location without sliding continuously across the
object’s surface.

3.2 Jumping Haptic Regrasp Implementation

End-Effector Hardware

In our prior work [22, 53], we provided comprehensive details regarding the fabrication,
internal structure, and dimensions of the suction cups. To briefly summarize, these suction
cups are fabricated using a customized mold, resulting in a specialized design with an internal
structure comprising four identical chambers for the purpose of airflow monitoring. The
manufactured suction cup is integrated into the underside of a 3D-printed fixture, as shown
in Fig. 3.3(a). In this paper, we have made slight updates to the end-effector for the Smart
Suction Cup to simplify its integration onto various robot arms. These updates include a
newly designed fixture, a new microcontroller, and a multiplexer for communication with
sensors. All electronic components required for pressure measurements are newly enclosed
within this fixture, including four pressure sensors (MPRLS, Adafruit) securely affixed to
the internal space facing the bottom. These sensors are connected to the four chambers
through polyurethane tubes. Also updated in the current design, the pressure sensors are
linked to an I2C multiplex (PCA9546, Adafruit), which interfaces with the microcontroller
(ESP32-S3 feather, Adafruit). The microcontroller is securely fastened to the fixture, and
positioned on the opposite side of the main vacuum hose. The vacuum hose is attached to a
barbed tube fitting positioned on the fixture’s side wall, with a hose extending through the
fixture’s guide hole to the suction cup, completing the integrated system.
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Figure 3.3: CAD images for the suction cup system. (a) Sectional view of the system
showing four pressure sensors and a microcontroller for data acquisition. Assembled system
showing vacuum hose and pressure sensor hoses. (b) Configuration of four channels and the
coordinate of tool frame. (c) Axes are aligning with the inner chamber’s walls, as illustrated
in the bottom view.

Jumping Haptic Regrasping Algorithm

The aim of the haptic search controller is to adjust the end-effector pose of the robot arm
until the suction cup becomes sealed against the surface. When this occurs, pressure sensors
reach vacuum pressure levels, i.e. no flow conditions. We assume that the vacuum force is
enough to lift any of the lightweight PCBs used in this study. During the haptic search, the
robot conducts lateral pose adjustment to find a ‘good’ spot for grasping.1 The direction for
adjustment is calculated by the pressure difference between 4 channels, as seen in Fig. 3.3(b),
at each grasping point. In order to calculate the pressure difference, we first define the
vacuum pressure of each chamber as where N = [1, 2, 3, 4] is the chamber number, Patm is
atmospheric pressure, and PCh.N is the pressure reading from chamber N . A motion direction
vector, v, is calculated as:

v⃗ = ((P1 + P4)− (P2 + P3))x̂tool

+ ((P3 + P4)− (P1 + P2))ŷtool (3.1)

to move towards the chambers with more vacuum pressure. We only consider the direction,
not magnitude, of the pressure differences to move in the direction of the unit vector v̂ =
v⃗/ ∥v⃗∥. We apply a threshold condition during the unit vector calculation, representing the

1While a smooth surface without via holes provides a suction seal, there are also good locations were
chips or vias remain under the gripper.
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Figure 3.4: Schematic CAD image of jumping haptic regrasp.

noise floor of the pressure readings.2 If the vacuum pressures from all chambers are below
the threshold, the direction vector is set to v⃗ = 0⃗.

We employ a technique which we call “jumping haptic regrasp” (Fig. 3.4), during which
the vacuum source is always ON. In this algorithm, the suction cup first approaches the
object in an attempt to grip the PCB (I); it collects pressure information when in the target
grasp position3 to compute v̂.4 The robot arm then attempts to lift the PCB (II). Once the
height of the gripper is lifted to ∆H above the grasp position, the pressure is again measured
to detect whether the grasp was successful or not.5 If unsuccessful, then the cup moves to a
new position above the PCB, with a lateral step size ∆L (III), such that:

(xk+1, yk+1) = (xk, yk) + ∆Lv̂(k) k = 0, 1, 2... (3.2)

where v̂(k) is the unit direction vector. For haptic search driven by the pressure readings of
the Smart Suction Cup, we compute v̂(k) using the measurements at (xk, yk) and Equation
3.1. As an alternative experimental control case, we also conduct a random jumping search
in which the unit direction vector v̂(k) in Equation 3.2 is chosen at random.

In the experiments conducted for this paper, we set ∆H to 15 mm and ∆L to 5 mm as
selected through pilot testing. ∆H is selected in order to avoid interference with protruding
components on PCBs. ∆L is selected in order to adjust the suction cup pose with the size
of a single chamber. In order to find the initial grasp point (x0, y0), we use a vision system
where to segment PCBs from the image and calculate a center point.

2The threshold is 10 Pa for the tabletop test, and 18 Pa for the conveyor belt system.
3The target grasp height is constant across all grasp attempts, a hardcoded value selected to make the

cup lip flush with a flat PCB surface.
4The arm pauses for 50 ms to collect this data.
5Unsuccessful grasps are detected when the average of all chamber vacuum pressures is < 2000 Pa.

Likewise a successful grasp is when average pressure is > 2000 Pa in the lifted pose.



CHAPTER 3. THE SMART SUCTION CUP: PCB REGRASPING 39

Figure 3.5: PCB detection using mechanical learning: We used 440 fully annotated PCB
images as the dataset to train the PCB object detection model. We use it to achieve the
PCB real-time detection. The PCB’s location and its initial grasping point are predicted by
the model.

3.3 Experimental Methods

Initial Grasp Position With Visual Segmentation

Data-driven vision approaches have been successfully applied to robot grasping planning[61].
The object recognition task involves object detection and semantic segmentation parts[62].
Beginning with the Swin Transformer architecture[63], transformer-based models have be-
come the state-of-the-art object detection model. Hence, we utilize MMLab’s MMDetection
toolbox[64] to help us train a Swin Transformer object detection model to localize and seg-
ment PCB objects for the subsequent grasping point estimation (Fig. 3.5). We use 440 fully
annotated RGB images of PCBs as the dataset to train the model. This dataset is designed
to recognize different types of PCBs and predict their segmentation area and accurate edge
with minimal error[65]. To annotate PCBs, we first use the Segment Anything Model (SAM)
[66] to segment a rough area and use coco-annotator [67] to refine and accurately annotate
them. The initial grasping point is derived from the segmentation results. Upon obtaining
the predicted semantic segmentation mask, we can acquire its contour line points set X,
composed of n points, with the assistance of OpenCV library[68]. The empirical mean of
the contour line points set X is selected as the initial grasping point (x0, y0):

(x0, y0) =
1

n

n∑
i=1

X. (3.3)
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Figure 3.6: PCB categories according to difficulty levels

PCB Categories

To assess the effectiveness of our jumping haptic search method, we classify PCBs into two
distinct difficulty levels based on their recycling status and surface complexity [47, 69], as
illustrated in Fig. 3.6:

1. Level 1: Disassembled PCBs. These PCBs are processed using a mechanical disman-
tling machine, resulting in baseplate PCBs with little or no surface features. Baseplates
may be warped by the dismantling process.

2. Level 2: Raw waste PCBs. These non-processed PCBs retain electronic components
and are expected to pose a challenge for gripping using a suction cup.

Because Level 1 objects have been pre-processed, they have already been sorted out from
other waste types at an earlier stage. However, we include both Levels in the current work
because both may be present across varied applications, and Level 1 PCBs may still have
surface features – vias, residual solder, warping, etc. – that hinder suction picking.

Tabletop Evaluation for PCB Haptic Regrasping

We establish a tabletop task involving the picking-up of PCBs to assess the performance of
our proposed jumping haptic regrasping, as depicted in Fig. 3.7. The tabletop experiments
are conducted using a desktop computer running Ubuntu 20.04, equipped with a Ryzen
5700X CPU and NVIDIA RTX 3090 GPU. We employ Robot Operating System (ROS,
Noetic) to gather pressure sensor data and command the UR-10 robot to reach target poses.
An RGB-D camera (Intel RealSense D435) is mounted on the robot arm’s wrist, capturing
photos at a resolution of 640x480 RGB, which are utilized for PCB segmentation. Addi-
tionally, we introduce a 3D-printed shock absorber made of TPU, strategically positioned
between the robot arm and the suction cup system. This shock absorber serves to prevent the
suction cup from exerting excessive force on electronic components as the height of surface
mount components varies.
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Figure 3.7: Experimental setup for the pick and place test on the tabletop system.

The robot system is programmed to employ either the haptic or random regrasping.
Prior to commencing each grasping trial, the operator places a PCB on the tabletop with a
random orientation. Subsequently, the robot attempts to grasp the PCB without researcher
interference. First, the robot moves to an initial location to capture a photograph of the
tabletop. After obtaining positional information from the visual segmentation, the robot
approaches the target pose with a 15 mm height offset. It then starts the process of jumping
regrasping, as described in Fig. 3.4. The robot continues to jump until either a successful
grasp is achieved or the time limit of 10 seconds is reached. Following each trial, regardless
of success or failure, the researcher removes the PCB and replaces it with a new PCB for
the next trial.

Demonstration on Conveyor Belt System

To emulate an industrial recycling setup, we test PCBs grasping on a miniaturized industrial
conveyor belt system, as illustrated in Fig. 3.8. The conveyor belt, measuring 0.4 meters
in width and 1.5 meters in length, is placed on a table and powered by a 220V DC motor
(120RGU-CF, TAITUO Technology). We integrate a 6-axis robotic arm (MZ-04, Nachi
Robotics) to perform pick-and-place. The input end of the conveyor belt features a vision
system comprising a photo booth equipped with white lights and an RGB camera (MV-
SUA501GC-T, MindVision).6 The open-loop speed of the conveyor belt is set to 94 mm/s

6The camera captures images at a rate of 5 Hz.
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Figure 3.8: Experimental setup for tests on a miniaturized conveyor belt system.

at all times, without pause. Thus, to monitor the speed and absolute movement distance
of the conveyor belt, we employ an encoder (E6B2-CWZ6C 2000PR, OMRON). The smart
suction cup is attached to the robotic wrist. We establish a workspace measuring 0.53
meters in length, considering the robot arm’s graspable area on the conveyor belt plane.
Our computational setup consists of a desktop PC running Ubuntu 20.04, equipped with an
NVIDIA 3060 graphics card, all managed by the Robot Operating System (ROS, Noetic) for
model inference and robot control. Prior to conducting experiments, we perform calibration
to determine the camera’s position and orientation relative to the end-effector, adjusted for
the conveyor belt’s position using hand-eye calibration methods [70].

For each trial, the operator first places a PCB at the input of the conveyor belt with a
random orientation. As the PCB traverses the belt and becomes visible to the camera, its
segmentation mask and initial grasp point are predicted.7 Once the initial grasping point is
estimated, the robot moves to the starting line of the workspace with the predicted location,
waiting for the PCB to pass directly beneath the suction cup. Subsequently, the robot
commences jumping search on the PCB surface and continues until it successfully grips the

7If a segmentation result indicates that the same PCB detected in the previous image is still present,
the robot system disregards the result.



CHAPTER 3. THE SMART SUCTION CUP: PCB REGRASPING 43

PCB or reaches the end of the workspace on the conveyor belt. If the suction cup successfully
grasps the PCB, the robot moves it to a designated location and released the PCB into a
container.

Throughout the pick-and-place task, the robot continuously monitors the conveyor belt’s
speed and absolute location to ensure that the updated pose accurately reflects the relative
location on the belt. The jumping search algorithm is modified from Equation 3.2 to include
a compensation term representing the relative movement of the conveyor:

∆D = dk+1 − dk k = 0, 1, 2... (3.4)

(xk+1, yk+1) = (xk+1, yk+1 +∆D) (3.5)

where dk represents the conveyor’s absolute location when the robot is approaching the
location (xk, yk). During system setup, we aligned the direction of the conveyor with the
robot’s y-axis, such that we add the ∆D on the yk+1 to ensure accurate pose updating.

3.4 Results

Table-Top Pick and Release Test

The tabletop pick-and-release results are conducted for Level 1 PCBs (28 PCBs, 4 trials each)
and Level 2 PCBs (21 PCBs, 4 trials each), presented in Fig. 3.9. For Level 1 PCBs, the
random regrasping increases the success rate from 75.9 ± 4.5% to 91.1 ± 4.6% (Fig. 3.9a).
The haptic regrasping exhibits a similar result with the success rate increasing from 75.0
± 8.7% to 92.9 ± 5.1%. For the Level 2 PCBs (Fig. 3.9b), the initial attempts show lower
success rates on the order of only 10%. While the random regrasping method only improved
performance to 22.6 ± 2.4%, the haptically-driven regrasping increases success to 50.0 ±
4.8% representing a 370% performance increase.

Histograms depict the number of jumps required to achieve a successful grasp in each
scenario (Fig. 3.9c, d). For Level 1 objects, the initial grasp is usually successful, and the
grasp is likely to succeed with few additional grasps whether random or haptic control is
used. However, in the case of Level 2 objects the chance of randomly finding a good grasp
point is lower. Thus, only 4 cases are successfully gripped by random jumping within the
first two regrasps. In contrast, haptic regrasping achieves 13 successes on the first regrasp
and 8 cases on the second regrasp.

The overall trial success rate changes with respect to the number of jumps, depicted
in Fig. 3.9e, f. For Level 1 PCBs, the success rate changes are nearly identical between
random and haptic regrasping. However, as shown in Fig. 3.9f, haptic regrasping exhibits a
logarithmic increase up to about 4 jumps, while random jumping shows a linear increase as
the number of jumps increases. The effect of using haptically-driven direction estimation, as
compared with random, appears most consequential for the first couple jumps.
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Figure 3.9: The results of pick-and-release from the table top experiment. The success rates
for random and haptic regrasping with (a) level 1 and (b) level 2 PCBs. Lighter gray bars
are the success rate from an initial attempt and darker grey bars are the increased success
rate with subsequent jumping regrasping. Histograms for the number of cases according to
the number of jumps for each type with (c) level 1 and (d) level 2 PCBs. The success rate
changes according to the number of jumps with (e) level 1 and (f) level 2 PCBs. Data are
presented as the mean ± s.d.

Demonstration on Conveyor Belt System

The results of the pick-and-place tests conducted on the conveyor belt system for Level 1
(52 PCBs, 4 trials each) PCBs and Level 2 PCBs (21 PCBS, 4 trials each) are presented in
Fig. 3.10. For Level 1 PCBs (Fig. 3.10a), the random regrasping shows the success rate at
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Figure 3.10: The results of pick and place tasks on the conveyor belt system. The success
rate for random and haptic regrasping for each type with (a) level 1 and (b) level 2 PCBs.
Histograms for the number of cases according to the number of jumps for random and haptic
regrasping for each type with (c) level 1 and (d) level 2 PCBs. The success rate changes
according to the number of jumps for each type with (e) level 1 and (f) level 2 PCBs. Data
are presented as the mean ± s.d.

the initial attempt is 68.6 ± 5.5%, which increases to 78.4 ± 5.5%. The haptic regrasping
demonstrates a success rate increase from 67.8 ± 4.8% to 84.6 ± 6.8%. While the random
regrasping shows a 14.4% performance increase, a 25.0% performance increase is achieved
with the haptically-driven regrasping. For the Level 2 PCBs Fig. 3.10b), the initial attempt
presents a success rate of 9.5 ± 5.5%, which increases to 22.6 ± 7.3% with the random
regrasping method. The haptically-driven regrasping increases the success rate from 9.5 ±
6.7% to 26.2 ± 4.8%. Performance increases by 134% and 176% for the random and haptic
regrasping, respectively.
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Histograms of successful grasping cases with respect to the number of jumps for each
type are depicted in Fig. 3.10c, d. For the Level 1 PCBs, most successful grasps occur in the
early stages of jumps in both cases, resulting in histograms that exhibit a plateauing trend.
While, haptically-driven jumps show a higher number of successful cases, the difference with
random search is small. In the case of Level 2 objects, both the random and haptic search
show evenly distributed chances of finding a good grasp point. These trends are also shown
in success rate changes (Fig. 3.10c, d); the success rate increases slightly faster in haptic
regrasping, and keeps increasing slowly after the first three jumps for the Level 1 PCBs,
while the success rate gradually increase in the case of Level 2 PCBs.

3.5 Discussion

We evaluated the performance of the proposed jumping haptic regrasping on the tabletop
experimental setup. For table-top tests, we observed that the difficulty of the object to
be gripped correlated with a more substantial performance improvement achieved through
haptic regrasping, as compared with random search. In other words, haptic information is
beneficial for the suction cup to regrasp more complex objects, like Level 2 PCBs. Interest-
ingly, obstacles that prevent the suction cup from engaging with surfaces can help the system
discern pressure differences between chambers, enabling the suction cup to know where to go
for a better grasp. For instance, some PCBs have flat components such as microprocessors,
which represent an ideal point for the suction cup to grip. If the suction cup touches the
edge of the microprocessor, it tends to move in the direction of the microprocessor, even
though this obstacle prevents it from grasping initially. In comparison, random jumps do
not guarantee finding this prospective grasp point.

Although our regrasping algorithm enhances the probability of successful grasp on PCBs,
the success rate doesn’t reach 100% even for level 1 PCBs. This can be explained by failure
cases discussed in the prior work [53]. One common failure mode is that an initial grasp
point can be located in an area where there are a lot of electronic components, thereby it is
impossible to be gripped in that region by the suction cup. The other common failure case
is haptic oscillation, where the suction keeps moving back and forth without a successful
grasp. One possible solution for this haptic oscillation is to use various step sizes (∆L) from
the pressure readings. Future work will include an adaptive choice of this parameter, which
could be informed by further understanding of air flows on complex PCB surfaces.

Conducting robotic demonstrations in an industrial setup is crucial to translate manip-
ulation methods initially developed in a laboratory environment. Thus, we evaluated our
system using a scaled-down industrial conveyor belt setup. In these trials we find the null
result: inconsequential differences between random and haptic regrasping methods on both
Level 1 and 2 PCBs. The positive results from Level 2 table-top tests do not translate to
the conveyor application in the current implementation. As of now, jumping haptic regrasp
is only helpful when the object remains stationary.

Transitioning robotics technology from research labs to industrial settings faces challenges
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due to the lab-to-industry gap[71]. This transition often involves adapting experimental se-
tups with strictly controlled conditions to real-world industrial environments, which can
introduce new complexities and uncertainties. We suspect the null outcome is in part due
to relative motion between the cup and conveyor that unintentionally displaces the object,
negating haptic information. In the tabletop experiment, the suction cup only moves ver-
tically relative to the PCB during grasping. However, a short pause of the suction cup at
the target grasp position to collect pressure data was observed to result in unwanted pose
changes of PCBs due to the conveyor belt’s motion. These disturbances likely decrease hap-
tic regrasp direction estimate effectiveness. This essentially led to a haptic regrasp attempt
resembling a random jump. To address these challenges, future work will incorporate real-
time tracking of PCB orientations with a wrist-mounted camera to enable haptic regrasping
between jumps that compensate for PCB motions.

3.6 Conclusion

In this study, we presented a jumping haptic regrasping for determining a searching direction
with the Smart Suction Cup. This approach enables the suction cup to adjust its pose for
more successful suction grasping of stationary Level 2 PCBs, with surface features difficult
to capture by a vision-based planner. With ongoing development, the Smart Suction Cup
is a promising tool for recycling sorting applications involving objects with intricate surface
features, like PCBs.
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Chapter 4

The Dorsal Grasper: Supernumerary
grasping

The Dorsal Grasper, an assistive wearable grasping device, incorporates supernumerary fin-
gers and an artificial palm with the forearm and back of the hand, respectively. It enables
power wrap grasping and adduction pinching with its V-shaped soft fingers. Designed with
C6/C7 spinal cord injury in mind, it takes advantage of active wrist extension that remains
in this population after injury. We propose that allowing the operator to actively participate
in applying grasp forces on the object, using the back of the hand, enables intuitive, fast and
reliable grasping relevant for the execution of activities of daily living. Functional grasping
is tested in three normative subjects and a person with C6 SCI using the Grasp and Re-
lease Test. Results indicate that this device provides promising performance on a subset of
objects that complements the existing compensatory strategies used by people with C6/C7
SCI. We find that the addition of the artificial palm is important for increasing maximum
grip strength, by increasing

4.1 Introduction

Spinal cord injury affects an estimated 40 million people worldwide every year[72]. Cervical-
level spinal cord injury (SCI) results in tetraplegia, or paraplegia, and can dramatically
reduce a person’s ability to perform common activities of daily living (ADL), e.g., manip-
ulating and grasping objects in the home necessary for cooking, donning cloths, inserting
a catheter, etc., ultimately leading to loss of independence. When surveyed, people with
cervical SCI report that hand and arm use has the highest functional importance in terms
of research prioritization for improving quality of life [73], ranking above pain relief and
walking.

People with SCI at the C6/C7 cervical levels generally lose voluntary flexion of the
wrist and fingers [74], however wrist extension typically remains [75]. Active wrist exten-
sion elicits passive thumb-to-forefinger and finger-to-palm flexion, called “tenodesis” [76], as
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demonstrated in Fig. 1. This flexion of the fingers enables passive tenodesis grasping [77],
which is most effective for picking up light and small objects. However, tenodesis grasp is
typically unsuitable for larger and heavier objects [78]. Empowering more dexterity with
assistive devices, in this work through enabling power grasping, has the potential to improve
psychosocial and economic outcomes after injury [79].

Related Work

Several assistive devices have been designed to support hand function for people with cervical
SCI. One commonly prescribed device is the wrist-driven orthosis (WDO), which uses a
mechanical linkage to assist tenodesis grasping [80, 81, 82]. Despite being body-powered
and consequently lightweight, physically resilient and low cost, patients tend to abandon
WDOs over time as they get used to unassisted tenodesis and opt to use a set of more
specialized tools [83]. Constraining the hand to always use tenodesis grasping is problematic
for the full set tasks required for ADL [84]. There are a wide number motor-articulated
investigational devices [85], though few are commercially available. Recently, a number of
new devices based on soft materials have received attention due to the potential benefits of
creating compliant and light-weight structures, such as fabric-based actuators [86, 87] and
soft linkages [88, 89, 90].

Instead of assisting the person to move their own fingers, another option is to add extra-
fingers to the hand. Wu and Asada (2015) introduced a supernumerary robotic (SR) finger
to perform “hold-and-manipulate” tasks for stroke survivors and other patients with limb
impairments[17]; extra fingers are mounted on a wrist brace and primarily oppose the palm.
Hussain, et al. (2016) separately reported on a soft-sixth finger for grasp compensation in
chronic stroke patients [91]; the soft-sixth finger is worn like a bracelet and largely opposes
the radial side of the hand during grasping. We explore how this supernumery finger concept
may be adapted to grasping with the back of the hand.

Overview

We are expanding the concept of supernumerary fingers, taking into account the pathology
of people with C6/C7 SCI. We expect that adding a set of supernumerary fingers on the
opisthenar, or the back of the hand, can provide grasping on larger objects in a way that takes
advantage of active wrist extension for intuitive and fast operation (Fig. 4.1). Importantly,
by using the dorsal side of the hand, the device does not impede common use of the hand
for other purposes such as palmar tenodesis grasping or the use of specialized tools. Often
individuals with cervical SCI can extend the wrist, e.g., subjects with C5/C6 SCI can extend
the wrist with approximately 1 N of force [92]. Thus, we expect dorsal grasps to be relatively
gentle compared with normative power grasping.

Section 4.2 describes how the supernumerary fingers are constructed and how they func-
tion. These fingers are controlled via a joystick for initial testing with human subjects. The
palm plays a role in human and animal grasping [93, 94], while the skin on the back of the
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Figure 4.1: (a) The Dorsal Grasper includes a set of soft flexible fingers and an artificial
palm on the dorsal part of the hand. Here, a water-bottle is grasped using both operator
wrist extension and artificial finger flexion. (b) A tenodesis demonstration shows active wrist
extension elicits passive finger flexion, from [82].

hand is thin, highly elastic and has little underlying tissue [95]. The opisthenar thus pro-
duces less friction and contact area with objects compared with the palm, and an artificial
supernumerary palm is added to the back of the hand. We perform three discrete experi-
mental tests with this system, described in Section 4.3: the grasping of different sized boxes,
maximum grasp force, and a modified Grasp and Release Test. As described in Section 4.4,
we find that the Dorsal Grasper enables both adduction pinching and palmar grasping, and
that human subjects change grasp strategy depending on the object. The artificial palm,
combined with active wrist extension, increases power grasp strength. Trials performed by a
person with SCI indicate this device holds the potential to support the execution of ADLs,
discussed in Section 4.5.

4.2 The Dorsal Grasper

The Dorsal Grasper is a compliant wearable device capable of grasping objects of various
shapes and sizes. The mechanism is made of 3D printed plastic (PLA) and rubber (Ninjaflex)
parts and a thermoplastic (Worbla sheet, TAP Plastics) cuff that provides a lightweight and
flexible interface with the forearm. As shown in Fig. 4.2, the tendon-driven flexible fingers
fit into a hinged finger-holder. The fingers rest two states: (1) the storage-stage, when
the fingers lay back flat against the forearm, not in use, and (2) the ready-stage, when the
fingers sit upright perpendicular to the forearm. A releasable latch holds the fingers in the
storage-state, shown in Fig. 4.3.

When grasping, finger flexion is driven by a 0.4-mm-diameter rope (PE Braided line) on
a 12 mm diameter winch with a DC motor (12V with a 156:1 metal gearbox). The brace
and motor base are both fastened onto the soft cuff and the tendon is routed over a polished
fixed pulley between these two elements.
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Figure 4.2: CAD images of the Dorsal Grasper: (a) exploded, (b) assembled, and (c) tendon
routing details.

Soft Tendon-driven Finger

The soft tendon-driven fingers are 130 mm in length and the angle between the two fingers
is 35.5 degrees (Fig. 4.2 and 4.4), which provides a balance between finger spread, for
resisting object moments, and portability. V-shaped fingers were previously introduced for
supernumerary applications in [96, 97]. Each finger consists of four equally sized phalanges
with 4 mm gaps in between. A 2 mm diameter hole in the upper part of each phalanx (11.5
mm from the back of the finger) allows the tendon to route through each then terminates
at the distal tip. The thickness of each interphalangeal flexure linearly increases from 2.5
to 4 mm, from proximal to distal, to generate a slight base-to-tip curling order. In order
to increase the frictional coefficient between an object and the finger, rubber (Multipurpose
rubber, Plasti-Dip) is coated onto the surface of each phalanx.

The V-shaped finger configuration in the Dorsal Grasper enables two separate grasp types:
power palmar grasping (Fig. 4.1a) and gentle adduction pinching (Fig. 4.5c). In palmar
grasping, the fingers press the object into the back of the person’s hand. Alternatively, the
user can pinch small objects as the fingers wrap inward towards the finger holder, approxi-
mating finger adduction. These two grasp classifications are qualitatively similar to grasping
strategies of the human hand, defined in grasp taxonomies [98, 99] and demonstrated in Fig.
4.5a-b.
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Figure 4.3: Deployment from “storage” (a) to “ready-to-grasp” (c). (a) The finger housing
is held down with a releasable latch. (b) The user can deploy the fingers to the ready stage
by pushing the positioning bar with his or her opposite hand. The base of the latch pushes
the fingers forward towards the hand. (c) The Dorsal Grasper reaches its “ready” stage once
the motor pulls the finger tendon taut in the upright position.

Artificial Palm

This device uses the back of the hand as a grasping surface. In the human hand, the skin of
the opisthenar is relatively thin and fragile as compared to the palm, that regularly resists
scratching and bruising. In contrast to the palmar surface, the skin of the opisthenar is
also highly pliable and hairy [95]. In order to increase comfort, strength and friction during
dorsal grasping, an artificial palm is attached to the opithenar using an elastic band. The
palm is fabricated with a silicone rubber (Dragon Skin 10) molded onto Velcro1 using a 3D
printed negative. This artificial palm interfaces with the body using a soft cuff made of

1We find the loop side of the Velcro provides strong bonding with the silicone, while the hook side of the
Velcro de-laminates easily and is not recommended.
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Figure 4.4: CAD images of the flexible fingers, artificial palm, and structure of the cuffs.

Figure 4.5: (a) Palmar grasping and (b) adduction pinching of the human hand. (c) Abduc-
tion pinching a credit card with the Dorsal Grasper.

thermoplastic shaped to fit the back of the hand. The compliant silicone pad is intended
to conforms to various object shapes during grasping. The concave shape of the artificial
palm (Fig. 4.4) is roughly inspired by the structure of the human hand, which has three
interdigital pads positioned in between the thenar and hypothenar eminences on its palm
[100].
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Attachment to the body

In order to provide reliable grasping, the forearm attachment must be secure on the body,
yet comfortable. The thermoplastic forearm cuff wraps around the ulna of the arm, allowing
it to resist torsional forces. We use soft foam on the inside of the thermoplastic forearm cuff
(Fig. 4.4) to protect the skin and distribute contact pressure. The flexible property of the
thermoplastic allows it to fit onto forearms of various sizes. Velcro loops allow the wearer to
fasten the device tightly to his or her own forearm. While the cuff can resist the forces due
to grasping and lifting, and stays stationary on the skin, there is some motion of the device
due to the soft nature of the underlying tissue of the forearm. The cuff for the artificial palm
is fabricated in the same way as the forearm cuff. The elastic band attached to the artificial
palm wraps around the person’s palm and holds it in place on the back of the hand, visible
in Fig. 4.3.

Control interface and data acquisition

Grasping commands are input by the wearer using their opposite hand through a control box
fixed to the test-bench. The box is comprised of: i) a large arcade joystick, ii) an emergency
stop button, iii) two LED indicators, and iv) the motor control electronics (Fig. 4.6). The
left and right toggling of the joystick triggers grasping (finger flexion) and opening (finger
extension) motions. A motor encoder measures finger actuation while a distance sensor,
installed in the finger holder, measures the distance between the base of the finger and the
object. An accelerometer on the artificial palm observes the motions of the hand. The wires
for these on-board sensors are routed to the control box, but these signals are used only for
data recording and not yet as inputs for control behavior.

4.3 Experimental Methods

We test the performance of the Dorsal Grasper under the University of California at Berkeley
IRB-approved human subject protocol #2019-07-12348.

Grasping type comparison: block test

Anticipating that the ease of performing power grasping and adduction pinching with the
Dorsal Grasper might change with object size, we prepare 3D printed cubes with a variety
of sizes, from 10 to 60 mm length scale (Fig. 4.7a). Two normative subjects are asked to
pick up the cube from an initial location on the table, 40 cm from the front edge of the table
and in-line with person’s shoulder. They then place it on a target location in-line with the
opposite shoulder shown in Fig. 4.6. The time to complete the maneuver is recorded for
both grasp methods over all cube sizes for 5 trials each. Since the experiment is conducted
with light-weight cubes, results may vary if conducted with heavier objects.
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Figure 4.6: The experimental setup for the block test and the Grasp and Release Test,
including the control box, object starting location and target area.

Maximum palmar grip strength

The artificial palm plays a role in both shielding the skin and increasing friction. Thus,
we test the effect of the palm on the lift strength of the device. Three normative subjects
are asked to grasp cylindrical objects then a hand-held force gauge (Mark-10 M4-50, MSI
Viking) is used to pull the object out along the cylinder’s axis, perpendicular to the finger
plane of motion. The peak force needed to initiate any slip on the surface of either the
artificial palm or the finger is recorded (Fig. 4.7b). Cylinders with 40, 50, and 60 mm
diameters are each tested 10 times, both with and without the artificial palm. This entire
set of trials is conducted (1) with the subject applying maximum wrist extension and (2)
holding the wrist steady in a neutral pose.

The Grasp and Release Test

We utilize a modified Grasp and Release Test (GRT), which is specifically designed to quan-
titatively measure the grasping abilities in tetraplegic patients [101], to measure versatility
and reliability of the Dorsal Grasper. Participants are asked to grasp, move, and release
different objects, as shown in Fig. 4.6. If the subject completes the goal for a given object
within 30-seconds, it is considered a success, otherwise it is considered a failure. We use five
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Figure 4.7: (a) Experimental objects for Dorsal Grasper testing include a cylinder with 50
mm diameter, cubes of 10, 35, and 60 mm edge length, and objects replicating the standard
Grasp and Release Test kit. (b) The strength test setup uses a handheld force gauge to pull
the object out of the grip.

objects from the original GRT, pictured in Fig. 4.7a, excluding the fork because the size
does not fit the designed device. Object specifications are listed in Table 4.1. The objects are
presented in the order: can, videotape, weight, block, and peg. The researcher first places
the object on the start area in a random orientation. Then the subject is video recorded
and timed during their attempts. For the block and peg, the object can be dropped into
the target area with any orientation. For the can, paperweight, and videotape, the object
must be placed in an upright orientation on the target area to be counted as a success. The
participant is allowed to attempt the tasks as many times as possible within the 30-second
time. Data is collected from four human subjects: two normative subjects are accustomed to
using the device while one normative subject and one subject with C6 SCI are not familiar
with using the device. Subjects unfamiliar with the device perform 10-minutes of grasping
practice prior to data collection.

Table 4.1: Objects specification of The Grasp and Release Test

Test object Object weight (N) Object size (cm)

Can 3.48 12.3 x 6.6 (dia)
Videotape 1.28 19.3 x 10.9 x 2.8
Paperweight 2.32 5 x 1.4 (th)

Block 0.102 2.5 x 2.5 x 2.5
Peg 0.041 8.0 x 0.6 (dia)
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Figure 4.8: Comparison of completion time between palmar grasping and adduction pinching
with the Dorsal Grasper on cubes of various sizes. Data is presented as the mean ± s.d.
across all trials with two normative subjects.

4.4 Results and Discussion

Block test

Mean and standard deviation data from the block test is shown in Fig. 4.8, and indicates
that the two different grasp types – palmar and adduction – provide different benefits based
on object size. The 10 mm cube was too small to conduct the task with palmar grasping and
the 60 mm cube was too large for adduction pinching, thus these data-points are excluded.

For cubes of size 25 mm to 35 mm, palmar grasping and adduction pinching have similar
task completion times. For the small 15 mm and 20 mm cubes, palmar grasping requires
more time to complete (7.6 ± 1.6 s & 6.9 ± 4.7 s respectively) than adduction pinching
(5.3 ± 1.8 s & 3.7 ± 0.7 s respectively). Difficulty in performing palmar grasps on small
objects occurs when the object is smaller than the fingers can curl; the object must be
carefully pinched between the fingertip and the palm. Adduction pinching also becomes
increasingly difficult as object size decreases because of limited adduction range of motion.
For objects larger than 20 mm, palmar grasp completion times decrease monotonically from
25 mm (3.9 ± 1.1 s) to 60 mm (2.8 ± 0.2 s), and standard deviation diminishes. Palmar
grasping outperforms adduction pinching for 40 mm cubes (4.6 ± 2.0 s) and bigger. Difficulty
in performing adduction pinch with large objects emerges from limited adduction range of
motion and curling behavior; when the finger starts to flex, the gap between the adjacent
fingers closes rapidly and requires careful control to succeed.
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Figure 4.9: The lift force of the Dorsal Grasper both with and without the artificial palm
and wrist extension over varying cylinder diameters. Statistical significance for all paired
t-test comparisons for each object are ****p < 0.0001, as shown only for 60 mm. The only
exception is the comparison between extended wrist with and without the palm with the 50
mm cylinder, which is ***p < 0.001. Data are presented as the mean ± s.d. (n = 30, 3
normative subjects for 10 trials each).

Grip strength

As shown in Fig. 4.9, there is a significant positive effect on lifting force with both the use
of the artificial palm and wrist extension. For all three object diameters, holding the wrist
neutral without the artificial palm is weakest while extending the wrist with the artificial
palm is strongest. During trial observations, initial slip occurred at either the back of the
hand or the fingers. One subject noted discomfort on the back of the hand when extending
the wrist without wearing the artificial palm, caused by the fingertips of the device pushing
into the dorsal skin, and this may have caused them to limit their wrist extension force. Re-
gardless of whether the benefit is due extension strength or friction coefficient, wearing the
artificial palm allows the operator to achieve greater grasp lifting forces. The difference be-
tween neutral pose and extended wrist trials indicate that an operator can actively moderate
their maximum lift force using wrist extension, even after the fingers are fully actuated.

There appears to be a minor trend with object size. Cases that extend the wrist are
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Table 4.2: Success rate of the Grasp and Release Test

Subject number Can Videotape Paperweight Block Peg

Subject 1 7/9 8/9 9/9 9/9 0/9
Subject 2 9/9 8/9 9/9 9/9 2/9
Subject 3 9/9 9/9 8/9 9/9 8/9
SCI subject 5/5 5/5 4/5 5/5 2/5

maximized for the 50 mm cylinder, for both the bare hand (18.11 ± 5.39 N) and artificial
palm (20.49 ± 5.58 N). Whereas, the results from the neutral wrist pose show gradual
increases of lift force with cylinder size. This is likely caused by changes in soft finger pose
with wrist pose.

The Grasp and Release Test

As shown in Fig. 4.10, the Dorsal Grasper enables grasping of all 5 GRT objects tested.
Success rates out of 9 trials for each of the three normative subjects and 5 trials for the
subject with C6 SCI are listed in Table 4.2. Examples of successful trials performed by
the subject with SCI are included in the paper video extension. The soda can (b) and the
paperweight (d) are grasped in approximately the same palmar method every time. One
subject reported that the paperweight required maximum wrist strength due to its heavy
weight and particular shape. For the videotape, subjects vary their palmar grasp orientation,
shown in (c). The block is typically gripped in a palmar fashion, even though adduction
pinch is possible, described in Sec. 4.4. The peg has the largest grasp strategy variability.
While most successful trials are performed using adduction pinching (e), a couple successful
trials are achieved using a palmar pinch with one finger (f). Only one subject consistently
succeeds at the peg tasks (8/9 success rate) by orienting the hand as pictured in (e). Task
failures occur if: (1) the paperweight is too heavy to lift, (2) the videotape or soda can is
accidentally knocked over or dropped so it is no longer upright and isn’t re-grasped, or (3) it
takes too long to secure the peg in either a palmar or adduction grip. Completion times for
each object across all subjects and successful trials are reported in Fig. 4.11. The subject
with C6 SCI takes longer on average to complete tasks, except with the block. Observed
grasping strategies and grasp success rates for the subject with SCI are otherwise similar to
the normative subjects.

Recordings from the motor encoder, object distance sensor and palm accelerometer are
plotted in Fig. 4.12 for a single representative grasp trial with the soda can. We divide the
GRT trial into multiple steps: a coarse approach to the object, a fine approach, grasping
and opening. During the coarse approach, the accelerometer captures the typical reaching-
to-grasp acceleration and deceleration curves [102, 103]. During fine approach, the distance
between the device and object closes gradually. The user then grasps and releases the object
by operating the motor to flex the finger. Fluctuation of the acceleration during grasping



CHAPTER 4. THE DORSAL GRASPER: SUPERNUMERARY GRASPING 60

Figure 4.10: The Dorsal Grasper is used to perform the Grasp and Release Test on five
objects: (a) a block, (b) a can, (c) a videotape, showing an inset image of an alternative
object orientation, (d) a paperweight, and (e)-(f) a peg. (e) Pinching a peg is possible with
finger-adduction and the inset shows the body pose of one subject’s pinching strategy, where
they place their opisthenar on the table with their fingers pointing toward their trunk. (f)
Grasping a peg is also possible with a single finger against the palm.
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Figure 4.11: Completion times for successful trials in the modified Grasp and Release Test,
showing the difference between the three normative subjects and a subject with C6 SCI.
Data are presented as the mean ± s.d.

Figure 4.12: Representative real time recorded data during the execution of the Grasp and
Release Test with the can. The black dotted line indicates the start time of fine approach.
The red and green dotted lines indicate the start and end time point of the motor operation,
respectively.
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Figure 4.13: The subject with SCI picks up a water-bottle and pours water into a mug
without spilling.

and opening phases may occur from the action of the person or vibrations of the motor. We
aim to use these types of on-board readings to automate device behavior in future work, in
lieu of the joystick.

ADL demonstration

To test the utility of the Dorsal Grasper in a more realistic ADL, the subject with SCI is
asked to pour water from a 500 ml bottle into a mug (Fig. 4.13). The subject performs the
task without spilling water, and a recording is included in the video extension associated
with this paper. The extension also demonstrates the grasping of various ADL objects by a
normative subject; it shows that the device can rapidly grasp different shapes.

4.5 Conclusion

The Dorsal Grasper enables operators to grasp objects with the opisthenar, using a set of
supernumerary flexible fingers combined with an artificial palm. For strong palmar grasping,
it benefits from extension of the wrist, which is commonly maintained in people after C6/C7
SCI. In addition to palmar grasping, adduction pinching exploits the V-shape of the fingers
that adduct while curling. In part because this device empowers a number of different
grasping strategies, preliminary data suggests that each person may demonstrate different
preferences and performance when using it. Regardless, it provides intuitive operation for
both experienced and inexperienced users, and both people with and without SCI.

We envision the Dorsal Grasper could serve as a candidate tool for people with SCI in
performing activities of daily living, especially for larger objects that are difficult to secure
in a tenodesis grasp. Because the device requires wrist extension to get the highest gripping
forces, it may produce wrist fatigue with prolonged use, or encourage the strengthening
extensor muscles. Future work should expand subject sample size and measure muscle
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activation over longer periods during ADL. Prior supernumerary grasping works monitor
muscle activation with EMG sensors [96] and finger movements with stretch sensors [104].
Future work will also incorporate wearable control input methods, by replacing the table-
mounted controller box for more streamlined on-board inputs.
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Chapter 5

The Dorsal Grasper: Enlarged
workspace

Spinal cord injuries (SCI) substantially affect sensory, motor, and autonomous functions
below the level of injury, reducing the independence and quality of life for affected individuals.
Specifically, people with SCI between C5 and C7 cervical levels encounter limitations in
voluntary finger and wrist flexion, reducing grasp capability. Compensatory strategies like
tenodesis grasp, whereby wrist extension passively closes the fingers, remain; this is effective
for lighter objects but insufficient for heavier ones. Typically, wearable assistive exoskeletons
are designed to actuate a person’s fingers, however, such devices are sensitive to anatomical
variability, such as hand size and joint contractures. Addressing this challenge, here we
present a new version of the Dorsal Grasper, a wearable device designed for those with
voluntary wrist extension, providing human-robot collaborative grasping capabilities with
underactuated supernumerary fingers on the back of the hand. We show that the Dorsal
Grasper expands the graspable workspace and reduces trunk motion, especially in situations
where the use of a wheelchair restricts the individual’s posture. Our experiments with SCI
participants demonstrate the Dorsal Grasper ’s potential as a versatile assistive solution for
enhancing grasping capability in individuals with distinct SCI profiles.

5.1 Introduction

Spinal cord injury (SCI) causes dysfunction of the body’s sensory, motor, and autonomic
systems below the level of injury[105]. This generates challenges for the individual and their
care providers due to reduced function, high cost of treatment, and prolonged recovery period
[106]. Individuals with SCI also often endure a concurrent impact on their psychological and
social well-being, as well as an overall decrease in quality of life[107]. According to estimates,
there are between 10.4 and 83 cases per million people every year[108], and the incidence of
SCI is gradually increasing [106].

The most common category of SCI is at the cervical level, causing tetraplegia[109]. People
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Figure 5.1: (a) Demonstration of tenodesis finger motion from [15]. Active wrist extension
causes passive finger flexion. (b) The Dorsal Grasper includes a set of underactuated fingers
and an artificial palm on the back of the hand. Here, a water-bottle is grasped using both
active wrist extension and supernumerary finger flexion.

with SCI between C5 and C7 cervical levels generally lose the ability to voluntarily flex their
fingers and wrist, thus reducing grasp function[110]. Studies of individuals with cervical level
SCI found they believed restoring arm and hand function would considerably enhance their
quality of life; they scored hand and arm function above all other functions (e.g., walking,
bowel/bladder control, etc.) as the primary research priority [23, 111].

People with SCI below C5 are commonly able to actively extend their wrist (extensor carpi
radialis longus and brevis), which, fortunately, can elicit passive thumb-to-forefinger motion
for lateral gripping and finger-to-palm flexion for whole hand gripping due to shortening
of the muscles (flexor pollicis longus, flexor digitorium superficialis and profundus)[110].
This compensatory hand skill is called “tenodesis grasp,” as demonstrated in Fig. 5.1(a).
Tenodesis grasp allows for picking up light and small objects, however it is less suitable
for heavier and larger ones[112]. In addition, compensatory strategies like tenodesis grasp
may lead to overuse injury[113] and limit the reachable workspace[114]. For heavier and
larger objects, bimanual manipulation is often used, however, this limits the workspace even
further. A limited workspace may lead to increased body compensation, posing challenges for
tetraplegic individuals whose body motion and orientation are constrained by their kinematic
limitations and the use of essential tools, such as a wheelchair.

To address these challenges, we explore a potential expansion of the tenodesis grasp
using a supernumerary device that expands the range of graspable objects while mitigating
exertion. The device is specifically designed to complement the limitations of the tenodesis
grasp by performing power grasping for heavier and larger objects, thereby reducing reliance
on bimanual grasping and extending the graspable workspace. Consequently, the use of the
device can reduce body compensation and enhance overall functionality in individuals with
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SCI.

Background: Re-enabling grasp function

Several methods have been proposed to restore lost grasping function in the SCI popula-
tion. Functional electrical stimulation (FES) [115] is a non-invasive method that artificially
stimulates peripheral nerves to restore contraction of the paralyzed muscle [116]. However,
FES faces several ongoing challenges, such as skin discomfort [117], low muscle selectivity
[118], and muscle fatigue [119]. More invasive approaches have included nerve transfer [120]
and tendon transfer [121]. Although these surgeries have shown positive results, they are
nonetheless underutilized [122, 123]. On the other hand, wearable assistive orthotics provide
a practical non-invasive pathway to improve daily function [124] as well as enabling rapid
prototyping for early studies on normative populations [125].

Over the past several years, various wearable devices for the upper extremities have been
developed, reviewed in [126, 127, 85]. Rigid exoskeletons benefit from a precise analysis of
power transmission to various joints. One common device is the wrist-driven orthosis (WDO)
with a mechanical linkage to enhance tenodesis grasping[15, 114]. However, difficulties as-
sociated with these devices include comfort and fitting to different individuals [128, 129].
Thus, SCI patients frequently abandon these devices over time as they get accustomed to
doing tenodesis without assistance and instead choose to utilize a set of more specialized
instruments[130]. Soft devices with compliant, lightweight structures provide more comfort
and adaptability. Recent soft wearable research aims at developing soft actuators, such as
fabric-based actuators[18, 131] and elastomeric chambers[132, 133]. Others develop interfaces
taking advantage of compliant properties. Soft-linkage or hybrid devices [16, 134, 135] are
relatively easy to align with humans anatomy, enabling users to wear them for long periods
in various environments [136, 137]. All of these devices – rigid or soft – actuate or support
the person’s fingers to enable prehensile gripping. Nonetheless, all of these approaches have
their drawbacks. Instead of harnessing the user’s body power, they may unintentionally re-
strict it. Additionally, they have the potential to constrain the wearer’s remaining dexterity
and present challenges in adapting to individuals with substantial anatomical variations in
their joints.

Supernumerary devices offer another solution, where the user/device is not required to
actuate the person’s fingers[138]. One such device, developed for stroke survivors and other
patients with limb impairment, included supernumerary robotic fingers mounted on a wrist
brace that oppose the palm [17]. Another device applied to chronic stroke patients consisted
of a soft-sixth finger that opposed the hand’s radial side for grasp compensation [139]. We
propose that supernumerary grasping with the back of the hand may be helpful for people
with C5-C7 SCI who maintain voluntary wrist extension but limited or no finger function.
This dorsal format works independently of the finger state, such that users’ fingers can be
either soft or stiff and passively either open or close due to variability in muscle stiffness
and contractures [140, 128], as well as changes in daily activity. Such dorsal grasping would
mimic power palmar grasping, and could therefore replace bimanual grasping for heavier
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and larger objects, thereby expanding the reachable workspace. Additionally, the user can
utilize residual dexterity, as this format doesn’t constrain the hand.

Overview

A preliminary version of the device, hereby referred to as the Dorsal Grasper, was presented
in [141]. In the present work, we perform a design iteration and a comprehensive analysis of
device performance. Notably, we expand on the subject population to include SCI partici-
pants, in hopes of translating the device to a more real-world setting. Analysis is expanded
to include both quantitative kinematic performance across different device conditions during
Grasp and Release testing, as well as post hoc qualitative device perception that includes
device usage with real-world objects.

In Section 5.2, we present the implementation and performance characterization of the
updated Dorsal Grasper (Fig. 5.1(b)). Then, in Section 5.3, we describe the experimental
methods used to measure body kinematics during reach-to-grasp trials in human subjects,
both with and without SCI. Experimental results presented in Section 5.4 include both
qualitative and quantitative device assessments. Observations are discussed in Section 5.5,
followed by a conclusion in Section 5.6.

5.2 The Dorsal Grasper

The Dorsal Grasper is capable of grasping objects of various shapes and sizes through super-
numerary grasping with the back of the hand by taking advantage of the user’s active wrist
extension; while complete SCI at C5 prevents wrist extension, people with SCI at C6 or C7
can extend their wrists up to 1.92 ± 0.82Nm at 29.4◦ ± 11.5◦ [124]. The device is comprised
of 3D printed plastic (PLA) base situated on top of a soft cuff that is both lightweight and
flexible, and holds the motor, electrical components, and updated finger design. The brace
and motor base are securely fastened with L-brackets to reduce the bending force applied to
the cuff during grasping. Dowel pins (2mm) are used throughout the design for cable routing
to reduce friction and wear.

Tendon-driven Supernumerary Finger

In the design of the Dorsal Grasper, one of the key components is the supernumerary fingers.
These tendon-driven fingers are 156mm in length and 12mm in width, arranged in a parallel
configuration with a 40mm distance between the finger centers. Each finger consists of
a proximal, middle, and distal phalanx, with lengths of 64, 50, and 42mm, respectively
(Fig. 5.2). These dimensions were chosen following pilot testing to ensure that fingers can
effectively grasp objects ranging in diameter from 4 to 10 cm.

The fingers are driven by tendons and are positioned upright, perpendicular to the fore-
arm for grasping. A 0.4-mm-diameter rope (PE Braided line) on a 12mm diameter winch
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Figure 5.2: Tendon driven fingers. (a) Two three-phalanx fingers in a parallel position.
(b) Tendon routing (orange) and rubber band (green). (c) Proximal joint details, showing
tendon and rubber band for flexion/extension of the finger joint. The geometrical hardstop
to prevent the joint from overextending.

with a DC motor (12V with a 391:1 metal gearbox) drives finger flexion during the grasping
motion. In order to increase the frictional coefficient and compliance between an object and
the finger, finger pads made of silicone rubber (Dragon Skin 10) are integrated onto the
surface of each phalanx through casting. The thickness of each phalange is 13mm including
the finger pad.

The Dorsal Grasper utilizes a hinge mechanism for its joints, with two phalanges being
connected by a dowel pin. Unlike the preliminary version [141], the new hinge design ensures
the fingers are more rigid laterally and will not deflect when lifting heavier objects. Rubber
bands (Sonic Dental Supply, Bradenton, FL, USA) are preloaded across each joint to keep the
fingers passively open. The shape of the fingers has been designed to prevent overextending1,
and the rubber band preloads are selected to generate a slight base-to-tip, proximal to distal
curling order.

1This iteration of the Dorsal Grasper is designed for the test in laboratory conditions. The ‘stow-ablity’
function in [141] weakened the grasp, so it has been removed from the current version of the Dorsal Grasper.
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Figure 5.3: The image of the Dorsal Grasper while wearing the device. (a) The front side
of the fingers, brace, and drive-train. (b) The right side of the device, showing the bending
sensor is located on the palm side of the wrist (white dotted line) embeded within the brace.

Attachment to the Body

The attachment of the device to the forearm must be secure and comfortable to ensure
effective grasping. To achieve this, as described in our previous study[141], a thermoplastic
(Worbla sheet, TAP Plastics) forearm cuff is used with soft foam padding to protect the skin
and distribute contact pressure. The cuff is secured onto the wearer’s forearm using Velcro
loops for a tight fit. The two bones (radius and ulna) in the forearm provide the capability to
resist torsional rotation, thereby enhancing stability and support. The device should remain
stationary on the skin, resisting the forces associated with grasping and lifting, though some
slight motion may still occur due to the soft nature of the underlying tissue of the forearm
and the torsional motion during supination or pronation.

Our device utilizes a commercially available wrist brace (HiRui, Xiamen, China) to in-
tegrate both an artificial palm and 1-axis flexible bending sensor (Nitto Bend Technologies,
Inc., Farmington, UT, USA). The artificial palm features Velcro hooks that attach to the
surface of the wrist brace (Fig. 5.3), and protects the opisthenar while increasing grasp
friction. The bending sensor is embedded inside a small pocket on the palm of the wrist
brace and measures the angle of wrist extension for both data acquisition and device control
(Fig. 5.4). In order to compensate for individual hand shape and size variability, we calibrate
the bending sensor at 0◦ and 45◦ for each participant.

Control Interface and Data Acquisition

The Dorsal Grasper uses a control box to collect data and control the device. This box
includes a large arcade joystick, an emergency stop button, two LED indicators, and an
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Figure 5.4: The image of the Dorsal Grasper system, showing the device and wrist brace with
the artificial palm and bending sensor. The test bed includes the control box, synchronizing
pedal, and E-Stop button.

ESP32 microcontroller (Adafruit, New York, NY, USA). A DB9 serial connector enables
two-way communication between a PC, the device, and the control box.

The Dorsal Grasper provides two control methods – joystick control and wrist angle
control – manually selected by the researcher during the experiment. In the joystick control
mode, the wearer inputs the grasping commands using an arcade joystick (Adafruit, New
York, NY, USA) on the control box attached to the test-bench. The joystick can be toggled
left and right to initiate finger flexion (grasping) and finger extension (opening), respectively,
to move at a predefined speed.

In the wrist angle control mode, the device is equipped with various sensors that serve as
inputs. First, the bending sensor in the palm is used to detect wrist angle. The fingers begin
to close at a predefined speed when the user extends their wrist past the close-threshold
angle (20◦). In addition, a VL53L0X distance sensor (Adafruit, New York, NY, USA),
placed at the base between the two supernumerary fingers, is used to prevent unexpected
finger motion by determining when an object is within 60mm of the gripper that the user
may be attempting to grasp (Fig. 5.3a). To avoid detecting the back of the user’s hand as
an object, the sensor is angled away by 15◦. Finally, the motor’s magnetic encoder (part
#3499, Pololu, Las Vegas, NV, USA) is used to measure motor speed and, during stall, to
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determine if grasping is complete, during which the device stops the motor to maintain the
grasp with a non-backdrivable transmission. When the user relaxes their wrist extension
below the open-threshold angle (10◦), the supernumerary fingers move toward their original
open position.

5.3 Experimental Methods

To assess the effect of the Dorsal Grasper, we compare its performance to conventional
unassisted tenodesis (unimanual) and bimanual grasping. We administer two experiments
involving normative subjects (control group) and subjects with SCI. First, we measure their
graspable workspace. Then, we ask subjects to perform a series of grasp and release tasks
aimed at emulating real-world conditions. We evaluate the performance of each grasping
strategy with and without the device in terms of success rate, task completion time, and wrist
travel distance. As the altered grasp workspace by the device could affect body kinematics,
we also measure three distinct torso rotations: Flexion/Extension in the sagittal plane,
transverse rotation in the transverse plane, and lateral bending in the coronal plane. It
takes participants approximately 2 hours to complete the study over a single session.

Population

Four participants with SCI are recruited in the experiment group; all four had SCI between
C5-C6 level. Three of the four participants are female and all are right handed. The
ages of the subjects are 64, 35 (male), 62, and 42, later referenced by S1-S4, respectively.
They are initially screened to have active wrist extension capability and use of tenodesis
grasping. Six right-handed normative participants (5 males), aged 22-30, with unimpaired
hand function, are included in the control group. All experiments with human subjects were
conducted under the IRB-approved protocol #2019-07-12348 (approved 10/04/2019) from
the University of California at Berkeley. Informed consent was received from all human
subjects before experimentation.

Motion Capture System and Markers

Three-dimensional kinematic analysis of the upper-limb and body movements are made using
the Impulse X2 motion capture system (PhaseSpace Inc., San Leandro, CA, USA), sampled
at 60Hz. Five motion cameras around an experimental area capture the body’s and an
object’s motion by tracking the position of light-emitting diodes (LEDs). LED markers are
placed on the following locations (Fig. 5.5): a body harness, a strap around the upper-arm,
on the Dorsal Grasper around the forearm, the experiment table, and the experimental
objects. One LED marker on the table is electrically connected to the synchronizing pedal
in order to sync the motion capture system to the Dorsal Grasper.
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Figure 5.5: The table setup and LED markers for the experiment. LEDs are attached to the
body and the table.

For accurate capture of markers during the experiment, motion capture recordings are
reviewed using Recap2 post-processing software (PhaseSpace Inc., San Leandro, CA, USA).
The body’s neutral posture is determined by calculating averages from a calibration trial.

Graspable Workspace

We define a graspable workspace as the distance from the origin on the table in which the
person can grasp and lift an object (Fig. 5.6a); the user’s sitting position is fixed. We
use a cylindrical object with 15 cm height, 5 cm diameter, and 80 g in weight; its edges are
additionally tapered to make the object easier to slide into the hand. We put the object
in a specific direction and distance from the reference origin point on the table and ask
participants to grasp and lift the object. If the participant successfully performs the task,
we increase the object’s distance until they can no longer grasp and lift it, thus defining the
graspable workspace in 2-dimensional space. Workspace measurements are performed in six
directions within the extended first quadrant.
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Figure 5.6: Diagram of experiments. (a) Graspable workspace measurement, showing six
different directions from the origin. (b) The experimental setup for the modified Grasp and
Release Test, showing two different tasks: front GRT and side GRT.

Modified Grasp and Release Test

We design a modified Grasp and Release Test (GRT) to quantitatively evaluate the Dorsal
Grasper ’s grasping success rate and how the device influences users’ motion at two different
points of the workspace (Fig. 5.6b). Participants are asked to grasp, lift, transfer, and release
the experimental object from one of the two start areas to the target area. When the subjects
are asked to grasp the object from start area 1 and release it on the target area, we call this
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task front GRT. When an object is grasped from the start area 2 to the target area, we
call that task side GRT. This later setup specifically places the objects on the right side of
the bodies to emulate the scenario where the wheelchair cannot access the table from the
front. The subjects are asked to place the objects in an upright orientation on the target
area. They are also asked to push the synchronizing pedal before and after performing each
task. The task is considered successful if it is completed within 30 seconds, otherwise it is
considered a failure; failed tasks are not repeated. We use two 3D-printed cylindrical objects
for the modified GRT. The small object is 15 cm in height, 5 cm in diameter, and 150 g in
weight; the large object is 15 cm in height, 8 cm in diameter, and 500 g in weight. While
the large object is only suitable for bimanual grasping, the small object can be grasped
unimanually (using tenodesis grasp) by some; both objects can be unimanully grasped by
the normative participants. Both objects have self-adhesive bandages wrapped around the
middle to increase friction between the plastic material and the hand. All tasks are repeated
three times, self-paced, and performed after pre-training prior to trial recordings.

Experimental Condition

For both evaluations, we prepare a height-adjustable L-shaped desk so that participants’
upper limbs are at a comfortable elevation from the table. They are asked to fix their
wheelchair position during the experiment after adjusting their body position. However,
they are allowed to rotate and lean their body in their chair. In both workspace and GRT
experiments, participants are asked to perform the tasks with four different grasping methods
(Fig. 5.7): unimanual (one hand) and bimanual (two hands) grasping without the device;
joystick and wrist angle control mode with the device. After completing the tasks using
the device, participants are then asked to repeat unimanual and bimanual GRT while now
wearing the device (but not using it) to evaluate how the device’s weight and presence
influence a non-device functional outcome in terms of success rate. Normative participants
are not asked to perform bimanual grasping in the workspace experiment, while they are
asked to do so in the GRT experiment to allow us to compare body kinematics between the
two populations.

Interview Analysis

Following the completion of all tasks, we conduct semi-structured interviews with each par-
ticipant with SCI. The interview guide covers a range of topics, including the participants’
perceptions of and experiences with the Dorsal Grasper, their preferences regarding control
modes, the comfort and usability of the device, as well as its potential for commercialization
and adaptability.
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Figure 5.7: Four different grasping methods performed by the subject with SCI. (a) Uni-
manual (one hand) and (b) bimanual (two hands) grasping without the device. (c) joystick
and (d) wrist angle control mode with the device.

5.4 Results

Graspable Workspace

The graspable workspace measurements are shown in Fig. 5.8. The participants with SCI
exhibit diverse tendencies across individuals and grasp methods, while normative partici-
pants show more consistent workspaces across methods, whether with or without the device.
Participant S1, whose fingers are substantially flexed, displays no graspable workspace data
for unimanual grasping, rendering it impossible to grip even the 50mm object. Notably, this
subject utilized the left hand (device not worn) on the table for body balance, resulting in
a larger workspace for the wrist angle control mode compared to the joystick control mode,
which necessitates using the left hand to operate the device.

Participant S2 exhibits the largest graspable workspace among participants with SCI
in both unimanual and device-assisted grasping. For the S3 subject, the results indicate
that unassisted grasping yields a larger workspace in certain directions compared to device-
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Figure 5.8: Results of graspable workspace. (a-d) Workspace results from individuals with
SCI S1-S4, respectively. Average graspable workspace area from subjects with SCI (e) and
normative subjects (f).
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assisted grasping. Interestingly, subject S3 exhibits the largest workspace in bimanual grasp-
ing when reaching in front (120◦ and 90◦). This participant leaned forward substantially and
used their elbows to support their body, allowing them to reach and grasp objects over 60 cm
from the origin. However, other participants with SCI show that bimanual grasping generally
has the smallest workspace among all the grasping methods tested. Subject S4 exhibits the
smallest workspace among all participants with SCI across all grasping methods measured.

On average (Fig. 5.8e), individuals with SCI demonstrate similar results between uni-
manual grasping and device-assisted grasping, while bimanual grasping yields the smallest
workspace. In general, graspable workspaces with one hand grasping (unimanual grasping,
joystick, and wrist angle control mode) tend to increase as the reaching angle decreased,
which is expected considering that a lower reaching angle corresponds to reaching to the side
of the body. This trend is also observed in the normative subjects’ results (Fig. 5.8f). In
contrast, bimanual grasping shows a tendency to decrease its workspace with lower reaching
angle. Thus, the difference between bimanual grasping and the other methods increases as
the angle decreases.

Modified Grasp and Release Test

Success rate

Fig. 5.9 presents the success rates of the modified GRT for subjects with SCI; normative
participants achieved success in every task and are thus omitted. The average success rate
for conditions without the device, representing grasping with the participants’ own hand(s),
is 64.7± 17.3%. Most notably, upon wearing the device, no failures occur in performing the
GRT using the ‘Device assisted’ modes. However, in ‘Device unassisted’, unimanual grasping
success rate drops significantly from 41.7± 31.2% to 12.5± 25.0% while bimanual grasping
success rate remains the same. This difference is attributed to subjects S2 (87.5% dropping
to 50%) and S4 (45.8% dropping to 25%); the participants fail to grasp the large object in all
tasks when wearing the device but using their own hand, despite successfully performing the
front GRT task with the large object using unimanual grasping in the ‘No device’ condition.
Subjects S1 and S3 success rates for both ‘No device’ and ‘Device unassisted’ remain the
same at 50% and 75%, respectively. Thus, for some subjects and objects, the device (possibly
the wrist brace) may impede the tenodesis grasp.

Completion time and travel distance

The results for the completion time and wrist trajectory of the GRT, along with the mean
difference between the two populations, are presented in Fig. 5.10. The normative popula-
tion demonstrates more consistent completion times and travel distances across the different
grasping methods than subjects with SCI; mean standard deviations of 0.84 compared to
3.30 s for completion times and 81.1 compared to 294.7mm for travel distances, respectively.
Unimanual and bimanual grasping methods exhibit shorter completion times compared to
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Figure 5.9: Success rate of the grasp and release test from SCI population. Unassisted
grasping includes both unimanual and bimanual grasping without assistance from the worn
device. Asterisks denote statistical significance after paired t-tests with Bonferroni correction
for multiple comparisons (*p < 0.05).

the joystick and wrist angle control modes in normative subjects; this can be attributed to
the fact that using the device requires additional time to operate fingers with fixed speeds,
whereas bare hands can accomplish a grasp very quickly. In normative participants, uni-
manual grasping without a device exhibits the shortest wrist travel distance, while bimanual
grasping displays the largest, despite similar completion times. From observation, partici-
pants maintained an unusually rigid posture during bimanual grasping; their elbows were
largely extended and they rotated the whole torso rather than just their arms as in unimanual
grasping, leading to the observed longer distances.

The results obtained from subjects with SCI exhibit greater variability across participants
and grasping methods. Specifically, when attempting to grasp the large object using uni-
manual grasping (i.e. without the device), only one SCI subject successfully, though slowly,
performed the front GRT, while none of the participants could perform the unassisted uni-
manual side GRT. On the other hand, the utilization of the Dorsal Grasper resulted in
successful grasps across all participants during the ‘large object Side GRT’ task, indicating a
performance improvement and normalization across subjects. This suggests that the device
is beneficial even for individuals with severe and varied hand dysfunction due to SCI im-
pairment. However, device-assisted grasping did not consistently lead to reduced completion
times. In addition to needing to first orient the gripper around the object and then operate
the fingers, SCI participants in particular also face mobility challenges that require them to
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spend more time rotating their bodies towards the object. Conversely, device-assisted grasp-
ing did result in the shortest travel distances. Although time is not significantly affected,
the device enables a more efficient grasping action for the SCI participants.

To compare the two subject groups, we calculated the mean differences between them
(Fig. 5.10, bottom row). Notably, the differences in completion times and wrist travel dis-
tance exhibit a decreasing trend across the grasping methods, with unimanual, bimanual
grasping, and device-assisted modes, in that order. While participants with SCI display
substantial variability across grasping methods, the mean difference results, for both travel
distance and completion time, suggest that performance in GRT using the device is approach-
ing that of normative participants. However, the observed diminishing differences are also
in part due to a worsening grasp performance with the device in the normative population.

Figure 5.10: Results of the (a) completion time and (b) wrist travel distance of the GRT.
The results include data from the normative population, subjects with SCI, and the mean
differences between the two populations, shown from top to bottom, respectively. The mean
differences are presented as the mean difference ± standard error of the mean. Asterisks de-
note statistical significance after two-sampled t-tests with Bonferroni correction for multiple
comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Torso rotation

The results of torso rotations during the GRT are presented in Fig. 5.11. We defined the range
of motion as the angular difference between the maximum and minimum angles during each
GRT task. Due to kinematic constraints, during side GRT with bimanual grasping, both
subject populations exhibit notably larger ranges of motion compared to front GRT. Among
normative subjects, unimanual grasping consistently exhibits the least body rotation across
all task configurations, even when comparing side GRT tasks to front GRT. In contrast,
among SCI subjects, device-assisted modes often result in significantly lower torso rotation
compared to modes without the device. Therefore, the device assisted modes consistently
provide significant reductions in transverse and lateral compared with bimanual grasping,
and sometimes unimanual grasping as well. While normative subjects tend to show larger
ranges of motion with bimanual grasping than with unimanual grasping, SCI subjects during
the ‘large object Front GRT’ task exhibit median values for unimanual grasping larger than
those for bimanual grasping. For both populations, differences between the joystick and
wrist angle control modes are not substantial, except for the ‘large object Side GRT’ task in
flexion/extension from the SCI subjects.

The mean difference of the range of motions between SCI and normative subjects is shown
at the bottom of Fig. 5.11c-e. In unimanual grasping, SCI subjects exhibit a larger range
of motion across all torso rotations. Due to weaker arm and hand strength, SCI subjects
may require further body adjustments to successfully perform the tasks. During bimanual
grasping for side GRT, both subject groups rotated their torsos to face the start area, but
likely owing to greater body mobility, normative subjects had greater flexion/extension and
transverse rotations than that of SCI subjects. On the other hand, subjects with SCI had
to leverage more lateral bending for these tasks. However, with device-assisted modes,
subjects with SCI are able to reach objects without large lateral bending resulting in smaller
differences (<5◦) between the two populations.

Common Interview Theme from Subjects with SCI

All subjects expressed a preference for using the device over their own hand(s) for GRT
tasks. Subject S3 specifically noted, “This [the device] is definitely better for things that
are super heavy.” Also, subject S4 commented, “I felt like I didn’t have to extend my body
as much and I didn’t have to use as many muscles with the device. So that’s the benefit.”
Regarding comfort, subjects S1, S2, and S4 rated the device a 4 out of 5, while subject S3
rated it 2.5 out of 5, with 0 being uncomfortable and 5 being very comfortable. Subject S4
mentioned that the weight of the device was the only complaint, and subject S3 remarked,
“It’s not the most comfortable thing, but now I don’t know if it was the device or the sensors
and the vest [body harness].” Generally, subjects preferred using the joystick control mode
for the heavier object, stating that it felt less dependent on their wrist and stronger, as they
could apply grasp force from the device toward the object and back of the hand. However,
they found the wrist angle mode easier to learn, with subject S1 commenting, “The wrist
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Figure 5.11: Torso rotation results during the GRT. (a) Three torso rotations and their
sign convention. (b-c) Representative torso rotation during GRT with the large object using
bimanual grasping, with solid colored lines indicating the average and colored areas repre-
senting the standard deviation. Data represented here are from all three trial repetitions
from one subject with SCI. (d-f) The average range of torso rotations during the GRT. As-
terisks denote statistical significance after two-sampled t-tests with Bonferroni correction for
multiple comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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angle was more intuitive than the joystick.”

Observations of Onboard Device Sensor Data

Throughout the study, we observed variations in the grasping phase between the test objects
in the wrist angle control mode. To further investigate, we segmented the GRT data into five
distinct phases: approach, grasp, transport, release, and return. We illustrate one subject
performing the front GRT in Fig. 5.12). Following the hand’s approach to the start area,
the subject extends the wrist to close the supernumerary fingers around the object, then
transports it to the target area, releases the object, and finally returns to the origin. In
the case of the smaller object, the subject completed the grasping phase when the motor
stopped and moved the object to the target area. However, for the larger object, the subject
attempted further wrist extension (indicated by the red arrow) after the motor stopped,
before starting the transport phase. This second wrist extension effort was observed in two
subjects with SCI in the GRT with the larger object. From this observation, we hypothesize
that some subjects can perceive and intuitively increase grasp security as needed while using
the device.

Figure 5.12: Representative sensor readings from front GRT. Dotted lines show transitions
between grasping phases: I. approach, II. grasp, III. transport, IV. release, and V. return.
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5.5 Discussion

For individuals with SCI, unimanual and bimanual grasping have complementary strengths
and weaknesses. Unimanual grasping provides a larger graspable workspace (Fig. 5.8e) but
is largely limited to small and light objects (Fig. 5.9). In contrast, bimanual grasping can
handle larger and heavier objects but has a smaller workspace. The Dorsal Grasper combines
the strengths of both approaches, offering a large graspable workspace and the capability
to grasp large and heavy objects, making it a versatile option for a wide range of tasks.
In this work, we quantify the efficiency of the movement by tracking completion times and
wrist travel distances (Fig. 5.10) and trunk movements (Fig. 5.11), comparing ‘no device’
to ‘device assisted’ test conditions. All three measures confirm that the Dorsal Grasper
provides either neutral outcomes – unchanged completion times – or benefits – reduced wrist
travel distances and trunk motions – for subjects with SCI. In comparing these measures
from subjects with SCI to subjects with normative hand and arm function, we find that
these groups perform more similarly when using the device; while this is associated with
improved performance in subjects with SCI, it also amplified by a reduction in performance
by normative subjects.

One of the goals of the device is to enable supernumerary grasping for heavier and larger
objects without limiting people from using tenodesis grasping for small, light objects. How-
ever, according to the results of the GRT, using tenodesis grasping under ‘Device unassisted’
shows decreased success rate compared to ‘No device’ (Fig. 5.9), specifically for S2 and
S4. The added weight of the device requires more effort for individuals with reduced arm
strength. The material around the wrist may also impede wrist extension motion, and the
resulting grasp aperture control. Regardless, we note that device presence had no measured
negative effect on S1 and S3, thus some individuals can still perform typical unimanual ten-
odesis grasping with the device on. Future work will explore device customization to reduce
weight and minimize interference with tenodesis grasping across individual variability.

Both the joystick and wrist angle control modes of the device show similar results in
terms of workspace and GRT performance. Despite this similarity, these control modes
offer distinct functionalities tailored to different user requirements, with each appealing to
SCI subjects for different applications. The joystick control mode allows for precise manual
control over the device, enabling users to adjust their grasp according to the object’s shape
and size. The wrist angle control mode offers an intuitive approach, using wrist extension
like in tenodesis grasp. One of the advantages of wrist angle mode over joystick mode is
the liberation of the opposite hand; the left hand can brace the body during reaching tasks,
for example. In some cases, the joystick mode exhibited a larger workspace than the wrist
control mode, which motivates future work generating adaptable user inputs.

The supernumerary fingers squeeze an object against the back of the hand, thus, both the
user and device simultaneously act on the object with opposing grasp forces. As a result,
we observe that people with SCI can perceive and respond to changes in object mass to
improve grasp security with additional wrist extension (Fig. 5.12). As opposed to devices
that constrain the fingers, people now compensate for grasp state with body-power without
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latency or physical resistance. Further study of user participation in such collaborative
grasping is left to future work.

5.6 Conclusion

Supernumerary grasping with the back of the hand enables people – with varied hand muscle
stiffness or contracture in the fingers resulting from SCI – to grasp more objects across a
larger workspace. It is not uncommon for tables to be wheelchair inaccessible, highlighting
the Dorsal Grasper ’s important capability to expand the reachable workspace of users while
avoiding the need to perform large torso movements. This laboratory study motivates future
device development for translation and testing of utility in the home. This will provide valu-
able insights into the device’s performance and usability in real-world settings, potentially
uncovering new challenges and opportunities for improvement.



85

Chapter 6

Conclusion

The overarching research goal for the dissertation is to design efficient grippers for robotic
and human-robot systems by leveraging the intrinsic functions of the systems. To achieve this
goal, I introduce two different grippers for robotic and human-robot systems, addressing sig-
nificant challenges in both fields. Both grippers leverage intrinsic functionality within these
systems, thereby reducing the need for supplementary components such as actuators, sen-
sors, or complicated control algorithms. I demonstrate how this strategy, despite differences
in application, provides intuitive control methods in both cases. The main contributions of
this work are as follows:

The design of model-based haptic search algorithm with the Smart Suction Cup

I highlight how a simple and intuitive model-based algorithm, where the suction cup ad-
justs its pose toward higher vacuum pressure, successfully enhances robotic grasping that
previously relied solely on vision-based methods.

Enhancement of robotic grasping in industrial pick-and-place applications

In Chapter 2, the Smart Suction Cup shows a performance increase of 2.5 times in a bin-
picking application compared to state-of-the-art vision-based algorithms, although there are
still many failure cases with the proposed control method. In Chapter 3, I demonstrate the
feasibility of industrial transfer of the developed technology despite the lab-to-industry gap.

Development of a new assistive wearable device

The Dorsal Grasper utilizes the remaining wrist extension capabilities of individuals with
SCI as well as various sensory modalities in the body. By maximizing and utilizing inherent
functionality, the device provides intuitive and effortless control methods for users. Addi-
tionally, due to the device’s form factor, which enables supernumerary grasping with the
back of the hand, it is versatile enough to accommodate the variability among individuals
with disabilities, allowing every subject to operate the device effectively.
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Evaluation of the device with targeted population

In Chapter 4, this new form factor (supernumerary dorsal grasping with the back of the hand)
is evaluated, demonstrating its potential as an assistive wearable device for the targeted pop-
ulation. Chapter 5 expands on the Dorsal Grasper with an updated design and experiments
for real-world scenarios. The results show that the device successfully increases the graspable
workspace, thereby reducing body compensation in scenarios where the object’s location is
offset.

Future work

In the era of the recent AI boom, there is a growing trend to apply data-driven approaches to
high-dimensional data spaces. Researchers often gather extensive data from various sensors
and train models to perform desired robotic actions. However, by simply leveraging intrinsic
capabilities, we can reduce the system’s dimensionality and the amount of data required.
This approach not only reduces computational effort but also lowers the overall cost of the
robotic system. Future work will include how to integrate embodied intelligence into the
system. By embedding mechanical intelligence, we can further enhance the system’s effi-
ciency and effectiveness, allowing for more intuitive and adaptive robotic actions, ultimately
leading to more cost-effective and efficient solutions.

The Smart Suction cup

The design aspects of the Smart Suction Cup offer extended possibilities for further explo-
ration. Currently, the Smart Suction Cup uses four internal chambers. Future research
could investigate the impact of varying the number of chambers, such as increasing to eight
or reducing to three. This variation could affect the direction error and deformation proper-
ties, providing insights into optimal configurations or design requirements for multi-chamber
suction cups.

As shown in our experiments, the current haptic search method exhibits several failure
modes. While some issues may be mitigated by the jumping haptic search introduced in
Chapter 3, many other failure modes persist. For example, the current method employs
fixed weight values between lateral positioning and rotational alignment, leading to inef-
fective haptic searches in certain scenarios. A more sophisticated approach would involve
adaptable weight values based on various factors, such as the curvature of the contact point.
Additionally, the fixed step size and yaw angle used in experiments could be refined through
more adaptive control methods.

The current model-based haptic search cannot fully utilize all sensor information. So far,
only normalized direction vectors from pressure differences have been utilized. However, in-
corporating more information from data, such as the amplitude of the vacuum pressure, and
time-series pressure changes, could provide further control inputs. For instance, the ampli-
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tude could indicate the distance of the suction cup from the object, allowing for adjustments
in step size during the haptic search.

Additionally, the Smart Suction Cup will be able to further leverage suction airflow by
integrating mechanical intelligence into the system. By utilizing the pressure difference be-
tween chambers and a fluidic computation circuit [142], an adaptive haptic response can
be achieved. This system will be capable of dynamically adjusting to varying conditions,
enhancing its effectiveness in complex environments without requiring additional computa-
tional effort or even reducing it.

The Dorsal Grasper

Currently, the Dorsal Grasper has only been evaluated in laboratory setups. To ensure its
effectiveness for actual users in real-world scenarios, it is essential to evaluate the device in
a fully unstructured environment, such as the user’s home. This would involve testing the
device during actual daily living tasks, providing insights into its practical usability and effec-
tiveness. By examining how the device influences the user’s grasping patterns compared to
their natural grasping taxonomy without the device, we can identify its strengths and weak-
nesses. This will guide further refinements and improvements, enhancing its functionality as
an assistive technology.

The current active version of the Dorsal Grasper, while effective, has limitations due
to its electronics and drive trains, which contribute to its bulk and weight. Considering
that the device is intended for individuals with spinal cord injuries, it needs to be compact
and lightweight. Active components also introduce potential failure points, such as sensors
and motors, complicating long-term use without professional supervision. One solution for
addressing these issues would be to develop a fully passive version of the Dorsal Grasper
that does not use active components like sensors and motors. The supernumerary fingers
remain in position on the back of the hand, and users perform grasping actions by extending
their wrists. Although this passive version may offer lower grasping strength compared to the
active version, its form factor ensures that it is easy to don and doff, lightweight, and suitable
for prolonged use. Additionally, this passive Dorsal Grasper can be further reinforced with
a mechanical system that magnifies grasping force. For example, when the user extends
their wrist, the tendon connected to the wrist can flex the supernumerary fingers with a
mechanical advantage, thereby achieving additional grasp force with the device.
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