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Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules 

would be valuable for vaccine development and cancer immunotherapies. Current computational 

methods trained on in vitro binding data are limited by insufficient training data and algorithmic 

constraints. Here we describe MARIA (major histocompatibility complex analysis with recurrent 

integrated architecture; https://maria.stanford.edu/), a multimodal recurrent neural network for 

predicting the likelihood of antigen presentation from a gene of interest in the context of specific 

HLA class II alleles. In addition to in vitro binding measurements, MARIA is trained on peptide 

HLA ligand sequences identified by mass spectrometry, expression levels of antigen genes and 

protease cleavage signatures. Because it leverages these diverse training data and our improved 

machine learning framework, MARIA (area under the curve = 0.89-0.92) outperformed existing 

methods in validation datasets. Across independent cancer neoantigen studies, peptides with high 

MARIA scores are more likely to elicit strong CD4+ T cell responses. MARIA allows 

identification of immunogenic epitopes in diverse cancers and autoimmune disease.

Major histocompatibility complex class II (MHC-II) is a glycoprotein complex on the 

surface of professional antigen-presenting cells that displays short antigen peptides to CD4+ 

helper T cells. Human antigen-presenting cells, such as dendritic cells and B cells, rely in 

large part on HLA class II (HLA-II) for the presentation of antigens to CD4+ T cells. This 

human form of MHC-II can also be conditionally expressed by many other human cell 

types, including tumor cells. Antigen presentation by these HLA-II molecules on human 

cells involves three loci on chromosome 6 (DR, DQ and DP) which encode the 

corresponding heterodimeric proteins through combinations of alpha and beta chains.

Such HLA-II presentation of endogenous and exogenous antigenic peptides is essential for 

robust immune responses against diverse pathogens, and is also of major significance for 

autoimmunity and antitumor immunity1. For example, recent mass spectrometry (MS)-based 

studies have shown that lymphoma and melanoma cells present somatically mutated cancer 

peptides (neoantigens) in the context of HLA-II2,3. CD4+ T cell recognition of neoantigens 

is commonly observed across diverse human tumor types and in animal models2,4–7, which 

underscores the potential clinical relevance of HLA-II-restricted neoantigens for cancer 

immunotherapy. Furthermore, neoantigens presented by HLA-II elicit potent antitumor 

responses in T cells from immunized patients8,9. Reliably identifying presentation by HLA-

II would allow us to prioritize vaccine candidates and potentially identify likely responders 

to immune therapies10–12.

Owing to the high cost and technical challenge of experimentally testing all possible peptide 

candidates, researchers have attempted to computationally identify HLA-II peptides with 

machine-learning algorithms13. However, nearly all current HLA-II prediction methods rely 

on in vitro binding affinities of recombinant HLA-II molecules as surrogates, and therefore 

ignore other contributing factors including gene expression and protease cleavage 

preferences14,15. When combined with the remarkably variable length of HLA-II peptides 

and their binding promiscuity, this deficiency makes HLA-II antigen presentation prediction 

task especially challenging12,16. For example, the latest benchmarks report average receiver 

operating characteristic area under the curve (ROC-AUC or AUC) of ~0.83 for current 

prevailing HLA-II prediction models, even when validated on in vitro binding data15,17.
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In this study, we present MARIA, a deep neural network trained to accurately predict the 

likelihood of a peptide being presented by HLA-II complexes. Rather than relying on in 

vitro binding affinities alone, MARIA is trained on naturally presented HLA-II peptides 

(ligands) identified from human samples profiled by liquid chromatography-tandem mass 

spectrometry (LC–MS/MS). Despite some inherent limitations of MS methods, peptide 

ligand sequences identified by antigen presentation profiling currently provide the closest 

sample population to the true presented ligands3,18–20. Such training data could enable new 

prediction models to consider multiple relevant features including expression and binding 

affinities. Here we show that MARIA allows robust and more accurate HLA-II prediction, 

and that its performance gains are achieved by combining these improved training data with 

a new supervised machine learning model using a multimodal recurrent neural network 

(RNN).

Results

Performance of binding-based HLA-II peptide prediction methods.

Immunoprecipitation of MHC molecules followed by peptide elution and LC-MS/MS 

analysis enables direct recovery of peptides presented by HLA-II in primary cells2,3. In 

comparison to traditional in vitro binding affinity assays, MS-based profiling methods can 

rapidly yield large datasets of peptides actively presented by cells or tissues. The Immune 

Epitope Database (IEDB), the largest public depository of results of HLA binding assays, 

contains quantitative HLA-DR binding affinities for ~12,000 non-redundant peptide 

sequences21 (as of December 2018). By comparison, two studies employing HLA-DR 

immunoprecipitation and MS analysis2,3 identified >23,000 and >16,000 non-redundant 

peptide sequences, respectively (Fig. 1a).

We tested the performance of the HLA binding affinity prediction tool trained on in vitro 

binding data to identify HLA-DR ligands presented by human antigen-presenting cells. We 

applied NetMHCIIpan16,22, a widely used HLA-II binding prediction method, to predict the 

binding affinity of HLA-DR ligands experimentally identified from 18 mantle cell 

lymphomas (MCLs)2 representing 16 HLA-DR alleles (Supplementary Table 1). We 

assessed the AUC of NetMHCIIpan using MS-identified ligands as true positives and 

randomly selected length-matched human peptide sequences (decoys) as negative examples. 

For each HLA allele and peptide sequence pair, NetMHCIIpan generates a binding affinity 

and binding ranks. Separately using these two values, we obtained average AUCs of 0.64 

and 0.68 for NetMHCIIpan binding affinities and ranks, respectively (Fig. 1b). Consistent 

with previous studies15, binding ranks showed better prediction performance for ligand 

presentation (P = 0.003), but nevertheless had mediocre accuracy in predicting true HLA-II 

ligands.

We next tested the performance of NetMHCIIpan on >6,000 HLA-DR ligands discovered 

through deep profiling of the MCL-derived JeKo-1 cell line2. When using the recommended 

threshold of binding affinities (top 10% ranks)22, NetMHCIIpan labeled only ~22% of the 

ligands as positive (Fig. 1c). To confirm that the MS-identified peptides were indeed true 

ligands despite their weak NetMHCIIpan-predicted binding affinities, we experimentally 

validated binding of a subset of peptides with weak NetMHCIIpan scores along with 

Chen et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positive and negative controls (Supplementary Fig. 1 and Supplementary Table 11). 

Remarkably, nine of ten synthesized peptides strongly bound to one or more cognate HLA-

DR alleles in vitro, confirming the fidelity of the underlying MS data (Fig. 1c and 

Supplementary Fig. 1d). Thus, NetMHCIIpan, the top HLA-II peptide prediction binding 

algorithm15 has limited accuracy for predicting antigen presentation when applied to MS-

based datasets.

Development of MARIA.

We aimed to improve upon previous HLA-II prediction methods by developing a tool 

predicting active HLA-II presentation in vivo, rather than from in vitro binding affinities. We 

therefore examined whether HLA-II prediction could be refined by learning directly from 

MS-based antigen presentation profiling datasets, in addition to traditional HLA binding 

affinity data. Additionally, we tested whether gene expression and protease cleavage 

signatures also have utility in predicting HLA-II peptide presentation. We trained MARIA 

using the HLA-II ligands identified by MS-based antigen presentation profiling, along with 

empirical in vitro HLA binding measurements, and gene expression levels (Fig. 1e and 

Supplementary Fig. 2). Given the challenges associated with the high variability in the 

length of HLA-II peptide ligands (8–26 amino acids), we used a recurrent neural network 

(RNN) framework, a form of deep learning that excels at handling variable-length sequence 

data (Fig. 1e). To prevent model overfitting owing to similarities in the training and 

validation sequences, we filtered out any peptides in the cross-validation set that were a 

substring or highly similar to a training peptide. We evaluated the performance of the full 

model, as well as other models trained on each possible combination of biological features 

(Supplementary Table 2).

Impact of gene expression levels.

We observed that gene expression levels of recovered HLA-DR ligands were significantly 

higher than both non-presented genes and random genes (Fig. 2a and Supplementary Fig. 3). 

Nevertheless, 8.4% of peptide ligands were encoded by genes with extremely low RNA 

expression levels in tumor cells (<0.1 transcripts per million (TPM)). Consistent with the 

known role of HLA-II molecules in sampling and presenting extracellular antigens, the 

presented ligands from these outliers were highly enriched for extracellular proteins and 

blood microparticles (P < 2 × 10−14, FDR-corrected hypergeometrical test; Fig. 2a, 

Supplementary Fig. 3 and Supplementary Table 3). We therefore included gene expression 

levels in our model and applied a correction to address presentation of extracellular proteins 

or blood particles (Supplementary Fig. 3b). When considering gene expression levels alone, 

we achieved an AUC of 0.81 when differentiating presented ligands from random human 

peptides (as detailed below). Not surprisingly, gene expression values had much weaker 

discriminatory power after removing lowly expressed genes in negative decoys 

(Supplementary Fig. 3d).

We were able to obtain RNA sequencing (RNA-seq) gene expression profiles for six patients 

with MCL2. MARIA AUCs did not differ significantly between using patient-specific RNA-

seq and an external RNA-seq profile (Supplementary Fig. 3e). Furthermore, we observed 

only a modest degradation in prediction performance when using tissue-mismatched gene 
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expression values from a generalized reference database as compared to tissue-matched gene 

expression data (Supplementary Fig. 3f; change of AUC < 1%, not significant). 

Supplementary Note 1 contains a detailed discussion for the predictive power of gene 

expression for HLA-II presentation.

Impact of cleavage signatures.

We next assessed whether information from the flanking residues of a peptide could further 

improve predictive performance. We observed both significant enrichment and depletion of 

certain amino acids at specific residues immediately upstream of the ligand N terminus or 

downstream of its C terminus (Fig. 2b). For example, tyrosines were significantly enriched 

in sequences immediately flanking both termini of presented ligands (P < 0.001), whereas 

histidines and prolines were generally absent from these regions (P < 0.001). Among 

peptides presented by HLA-II, we observed significant enrichment of those derived from the 

C termini of the mature proteins (indicated as ‘–’ at +1 to +6 position; average fold change 

>150%; P < 1 × 10−5). As these flanking sequences are not directly involved in HLA 

complex binding of peptide ligands, the observed enrichments likely reflect the cleavage 

preferences of proteases involved in processing proteins for presentation. Of note, these 

cleavage signatures were distinct for HLA-I and HLA-II ligands (Supplementary Fig. 4a–c), 

consistent with their distinct cleavage and processing pathways1,20. Therefore, to capture the 

added predictive information from flanking residues similar to Paul et al.23, we developed a 

dedicated neural network for assigning HLA-DR cleavage scores from a given peptide 

sequence (Supplementary Figs. 2b and 4d).

MARIA data integration framework.

On the basis of the findings above, we developed an integrative strategy to better predict 

HLA-II presentation called MARIA. The model takes in three input values: the query 

peptide sequence, the patient or cell HLA-DR allele(s) and the corresponding gene name 

(Fig. 2c). As an intermediate step, MARIA calculates HLA-DR binding scores and cleavage 

scores using two pretrained neural network models (Supplementary Fig. 2). Gene expression 

values are estimated by either tissue-matched external RNA-seq or patient-specific RNA-seq 

results (Supplementary Fig. 5d–f). MARIA then generates presentation scores for a potential 

antigen by integrating all available information including peptide sequences with a merge 

layer (Fig. 2c). To process variable length peptide sequence inputs, MARIA includes a 

recurrent layer with long short-term memory (LSTM)24. We tested MARIA and models with 

all possible feature combinations using tenfold cross-validation (Supplementary Figs. 2e and 

5b, and Supplementary Table 2). When considering average AUCs, MARIA outperformed 

an RNN model trained on peptide sequences alone with an AUC value of 0.92 versus 0.87 

(Fig. 2d and Supplementary Fig. 5d; P < 1 × 10−5). By contrast, a logistic regression model 

trained using binding scores, gene expression levels and cleavage scores achieved a lower 

AUC value of 0.82 (Supplementary Fig. 5e). MARIA provided higher precision (positive 

predictive values) as compared to alternative models across a broad range of HLA-DR 

ligand prevalences (0.1–10%; Fig. 2e). Assuming 1% prevalence of HLA-II antigens 

(Supplementary Note 2), MARIA achieved 99.5% specificity and 38.7% precision while 

identifying 30% of positive peptides (Fig. 2e–f).
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MARIA benchmarking.

To systematically compare the performance of MARIA with alternative methods, we applied 

antigen presentation profiling2 to directly identify HLA-DR ligands from a human cell line 

(K562) expressing single HLA-DR alleles (DRB1*01:01, DRB1*04:04). Given the myeloid 

hematopoietic origin of this cell line (in contrast to the lymphoid tumors using for MARIA 

training), this allowed us to assess both the effects of HLA-II allelic variation and the cell-

of-origin on performance (Supplementary Fig. 6). We identified ~3,600 non-redundant 

peptide ligands from these two alleles. When allowing substring matching, ~31% of ligands 

were shared (Fig. 3a) and MEME25 identified 15 shared potential binding motifs 

(Supplementary Table 4). This is consistent with known promiscuity of HLA-II binding and 

presentation.

We selected DRB1*01:01 for initial testing in this system, as it has the most abundant 

training data for existing binding prediction methods, including NetMHCIIpan3.122, SMM 

Align26, NN Align27, Sturniolo28, CombLib29 and IEDB Consensus330. We benchmarked 

the performance of MARIA and these six methods when predicting the presentation of 1,331 

DRB1*01:01 ligands empirically and distinguishing them from length-matched decoys (Fig. 

3b and Supplementary Table 5). When compared to the previous MHC-II prediction tools, 

MARIA outperformed the second-best method (SMM Align) by a significant margin (AUC 

0.89 versus 0.64; P < 1 × 10−5). We also tested performance when predicting presentation by 

HLA-II alleles not present in the training data. Specifically, we directly profiled the HLA-

DR ligands from a second monoallelic K562 isogenic line engineered to express HLA-

DRB1*04:04 (Supplementary Table 6), an allele absent from the individuals considered for 

MARIA training. MARIA again outperformed other methods with an AUC 0.89 (Fig. 3c).

We also explored the influence of neural network structure on prediction performance. Using 

the same MCL dataset of HLA-DR ligands used for training MARIA, we trained a shallow 

neural network (SNN) similar to NetMHCIIpan with a single hidden layer, as well a deep 

RNN model (Supplementary Fig. 2c). These two models only considered peptide sequences, 

yet both outperformed NetMHCIIpan on external validation data from K562 (Fig. 3c). This 

is consistent with our hypothesis that directly learning from MS-identified HLA ligands 

substantially boosts prediction power. Importantly, when trained on the same data, deep 

neural networks outperformed single-layer architectures (Fig. 3c and Supplementary Fig. 

5f).

Extension of MARIA to the HLA-DQ locus.

HLA-DQ2.2 (DQA1*02:01 and DQB1*02:02) and HLA-DQ2.5 (DQA1*0501 and 

DQB1*0201) are known to present wheat gluten peptides and to predispose patients to 

celiac disease31. To test our prediction framework in the context of the HLA-DQ locus, we 

trained MARIA on 11,482 HLA-DQ2.2 human peptide ligands identified from previously 

profiled32 cell lines (Fig. 4a and Supplementary Fig. 7a). Similar to the HLA-DR alleles 

profiled above, HLA-DQ2.2 and HLA-DQ2.5 had a large number of shared peptide ligands 

(65%; Fig. 4a) and associated sequence motifs (40; Supplementary Table 4). After cross-

validation (Supplementary Fig. 7b), we first tested MARIA on an independent set of 650 

held-out human DQ ligands (positives) and 650 length-matched decoys (negatives) and 
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observed an AUC of 0.89 (Fig. 4b). To allow comparison between prediction methods on 

HLA-DQ, we normalized both raw MARIA and NetMHCIIpan scores as percentiles, where 

higher scores reflect better predicted binding (Fig. 4b; Methods). Within this comparison on 

an identical test set of HLA-DQ ligands, NetMHCIIpan achieved an AUC of 0.68. 

Therefore, MARIA provides advantages over existing methods across HLA-II loci.

In addition to the presentation of human peptides described above, the presentation of 

diverse gluten peptides by DQ2.2 has also previously been profiled by MS33. We scored 69 

presented wheat peptides and 69 decoys with both NetMHCIIpan and MARIA, which was 

exclusively trained on human peptides. NetMHCIIpan identified 6% of positive gluten 

peptides with 88% specificity at the recommended cut-off (90th percentile). By comparison, 

MARIA identified 49% of positive gluten peptides with 92% specificity (Fig. 4c and 

Supplementary Table 7) with the same cut-off. MARIA also assigned significantly higher 

presentation scores to deamidated gluten peptides (Supplementary Fig. 7c), a result which is 

consistent with increased immunogenicity of gluten peptides upon deamination31.

We also identified a small number of reported natural HLA-DP ligands34–36 (n = 20; 

Supplementary Table 12) and a new dataset of pan-HLA-II ligands37. We trained a pan-

HLA-II model with the same framework of our HLA-DQ model and demonstrated the utility 

of our framework for differentiating them from random human peptides (AUC = 0.82; 

Supplementary Fig. 5g–h). Overall, these results demonstrate that MARIA trained on human 

peptides can predict presentation of exogenous antigenic peptides by distinct HLA-II alleles.

MARIA identifies diverse cancer neoantigens.

Finally, we explored the ability of MARIA to identify immunogenic neoantigens in cancer. 

Ideal antitumor neoantigen candidates should be both presentable by HLA complexes and 

capable of inducing proinflammatory responses by interacting with T cell receptors38. Most 

current cancer vaccine platforms prioritize candidate neoantigens for vaccine production by 

selecting only highly expressed candidates with high predicted binding affinity for self-HLA 

alleles8,9,39,40. Yet, many vaccine peptides do not elicit T cell responses upon vaccination, 

despite rigorous candidate selection. We therefore tested whether MARIA could better select 

those neoantigens that were most likely to induce a corresponding T cell response upon 

vaccination.

Using antigen presentation profiling, we recently reported hotspots within specific 

immunoglobulin (Ig) regions that are presented by HLA-DR and associated with antitumor 

CD4+ T cell responses to lymphoma neoantigens2. We therefore tested whether MARIA 

could accurately identify potential Ig antigens as potential lymphoma-specific targets for 

immunotherapy. For this test, we intentionally excluded all Ig-derived peptides for the 

training. We then applied this Ig-naive version of MARIA to predict presentation of Ig 

sequences in the tumors. The resulting MARIA-predicted presentation scores were 

significantly correlated with MS-identified HLA-DR ligand frequencies across the full-

length heavy and light chains (Fig. 5a; Spearman’s ρ of 0.65 and 0.55). By comparison, 

NetMHCIIpan-predicted hotspots had weaker correlation to observed presentation of 

peptides (Spearman’s ρ of 0.1 and 0.48; Supplementary Fig. 8). MARIA also outperformed 

NetMHCIIpan in precision and recall analysis (Supplementary Fig. 8b). Importantly, 
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consistent with our previous findings from antigen presentation profiling, MARIA identified 

framework region 3 (FR3) as a presentation hotspot for the heavy chain variable region (Fig. 

5b; P < 1 × 10−5). We stimulated patient peripheral blood leukocytes with the corresponding 

patient-specific Ig neoantigens identified by MARIA, and measured induction of T cell 

surface CD137, a previously validated marker for T cell activation2,41,42. We observed 

evidence of ex vivo CD4+ T cell activation upon antigen–peptide simulation in two of three 

patients (Supplementary Fig. 8c–d).

Immunoglobulin heavy chain variable regions represent challenging test examples as most 

HLA ligand prediction algorithms including MARIA were trained on wild-type peptides. To 

further address the utility of MARIA for predicting presentation of mutated peptides, we 

tested MARIA predictions of HLA-II intrinsic ligand (CLIP) with and without specific point 

mutations. For diverse CLIP variants, MARIA scores consistently correlated with stabilizing 

versus destabilizing structural changes, while NetMHCIIpan did not (Supplementary Note 3 

and Supplementary Fig. 9).

Personalized protein-coding somatic mutations are attractive cancer vaccine candidates in 

melanoma owing to the high mutation burden of patients with melanoma. We tested whether 

MARIA could help prioritize vaccine candidates for melanoma. We first analyzed 10,513 

melanoma self-antigens identified by MS3, generated from two bulk melanoma tumors with 

distinct HLA-DR alleles (Mel15, DRB1*03:01 and DRB1*07:01; Mel16, DRB1*13:01 and 

DRB1*08:03). We scored each melanoma-presented ligand or decoy using both 

NetMHCIIpan and MARIA (trained on lymphoma data). Even without patient-specific gene 

expression data (Methods), MARIA outperformed NetMHCIIpan when differentiating 

melanoma HLA-II ligands from decoys (Fig. 6a and Supplementary Fig. 10e; AUC of 0.89 

versus 0.64; P < 1 × 10−5).

After confirming the performance of MARIA in non-hematopoietic tissue, such as 

melanoma, we used MARIA to analyze two sets of personalized melanoma vaccine 

neoantigens with corresponding immune response data8,9 (ex vivo CD4+ T ell enzyme-

linked immunospot (ELISPOT) test; n = 121 and 96). Gene expression levels of neoantigens 

alone for T cell reactive and non-reactive neoantigen candidates were largely 

indistinguishable (Fig. 6b; P > 0.4). MARIA assigned each peptide a percentile score by 

comparing the raw score to scores of 20,000 random human peptides as described (Methods; 

Supplementary Table 8). In each of these independent cohorts, the majority of selected 

neoantigens for vaccination (81% and 62.5%) were scored in the 95th percentile or above of 

MARIA scores (Fig. 6c,d), consistent with the authors’ attempts to select the best HLA 

binders. Neoantigens with lower than 95th percentile MARIA scores (Fig. 6c,d) were less 

likely to successfully induce a T cell response upon vaccination. Specifically, only 26% and 

8.3% of such neoantigens resulted in successful ex vivo CD4+ T cell responses upon 

vaccination.

Conversely, those peptides with highest MARIA scores (>99.5% MARIA percentiles) were 

more likely to elicit a T cell response upon vaccination (Fig. 6c,d; 73% and 38%; P = 0.019 

and P = 0.023). This stringent MARIA cut-off achieved a high positive predictive value 

(PPV) in both trials, and MARIA showed higher than baseline PPVs across a range of cut-
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offs (Supplementary Fig. 10a,b). Of note, ~7% of all melanoma somatic mutations in the Ott 

et al. clinical trial cohort9 scored higher than 99.5% MARIA percentiles (Supplementary 

Fig. 10c), suggesting the availability of many more vaccine candidates for effective 

immunization than were tested. With HLA-DR alleles available in the same trial, we also 

scored each candidate with NetMHCIIpan. NetMHCIIpan scores were weakly correlated 

with T cell responses but did not reach statistical significance (Supplementary Fig. 10d).

To further validate MARIA performance for predicting immune responses, we identified 

seven additional cancer-related CD4+ T cell response studies6,7,42–45. Each of these studies 

individually identified a small number of cancer-associated CD4+ T cell epitopes across 

diverse cancer types. Using a 95% MARIA percentile cut-off (Fig. 6c,d), we identified 74% 

of CD4 epitopes with 67% specificity (Fig. 6e and Supplementary Tables 13–15). Therefore, 

while MARIA was not trained on T cell response data, MARIA scores show promise for 

prioritizing HLA-II neoantigens most likely to induce corresponding CD4+ T cell responses.

Discussion

Historically, tools for prediction of HLA-II interactions have largely relied on in vitro 

peptide-binding data for training15,16,21. However, when using predicted HLA-II binding 

affinities alone, we observed suboptimal prediction performance for identifying naturally 

presented ligands from MS (Fig. 1b and Supplementary Fig. 5c). One potential reason for 

this observation might be the sparsity of binding data for adequate training15, especially for 

human peptide HLA-II ligands (Fig. 1a). Furthermore, as peptide binding by HLA-II is 

known to be more promiscuous than HLA-I28,46, this could make identifying binding motifs 

more challenging. Finally, binding-based methods ignore factors such as levels of gene 

expression and protease cleavage signatures, which play an important role in HLA-II 

presentation (Fig. 2). Given these limitations, tools trained on naturally identified peptide 

ligands might better reflect how prediction scores correlate with physiological HLA-II 

presentation, and the associated benchmarks could help to refine the accuracy of such 

predictions.

HLA-I and HLA-II both play central roles in antigen recognition and adaptive immune 

responses. Our HLA-II gene expression analysis in the Cancer Genomic Atlas (TCGA) 

cohorts suggests abundance of antigen-presenting cells or tumor HLA-II presentation in 

various cancer types (Supplementary Fig. 11). Historically, HLA-I ligand prediction 

algorithms have superior performance as compared to HLA-II16,47. Recent studies in HLA-I 

have shown that prediction accuracy can be improved by learning directly from naturally 

identified ligands and considering non-sequence features20,46,48–52. However, the variable 

length of HLA-II peptide ligands as well as the heterogeneity of other useful features have 

made translating the same framework for HLA-II challenging within conventional neural 

networks. MARIA represents a tool to tackle these two challenges by using multimodal 

RNNs39,53, which are capable of integrating heterogeneous features and variable length 

sequences. Our results suggest that using deep learning methods are superior to shallow 

neural networks (SNNs) for HLA-II prediction (Fig. 3c and Supplementary Fig. 5f). This is 

likely due to the ability of RNNs to consider multiple binding motifs, as SNNs typically rely 

on a single nine-amino-acid binding core27.
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The SysteMHC Atlas51 was recently constructed to consolidate HLA-I and HLA-II ligand 

sequences from a diverse set of studies. We designed MARIA to be capable of integrating 

additional training from emerging sources such as the SysteMHC Atlas and expect its 

performance to improve as such ligand datasets continue to grow. For example, we observed 

recurrent patterns in HLA-II cleavage signatures similar to previous studies20,23,54, including 

the enrichment of ligand flanking sequences for tyrosines and their depletion for prolines. 

However, cleavage signatures from different cell types showed subtle variation in motif 

sequences (Supplementary Fig. 4d–i). Accordingly, additional HLA-II ligand data in the 

SysteMHC Atlas can provide a window to systematically investigate cleavage signatures in 

each cell type, thus allowing better MARIA predictions for distinct tissues. Separately, as 

MARIA was not trained on presented non-human peptides, emerging microbial datasets55 

can be used to further refine MARIA for predictions relevant to infectious disease.

Similar to existing tools, MARIA relies on predicted binding affinities to allow specificity 

for different HLA alleles (Fig. 2c, Supplementary Fig. 2d and Supplementary Table 9). We 

therefore do not expect MARIA to achieve significantly higher discriminatory power for 

resolving binding by different HLA-II alleles than current methods that are based on binding 

affinity (Supplementary Fig. 5c). While the limited availability of allele-specific datasets has 

resulted in validation of MARIA on a relatively small number of HLA-DP and HLA-DQ 

specific ligands (Supplementary Figs. 5h and 7), we expect that the method will become 

more comprehensive as additional allele-specific data become available across HLA loci. 

This can be achieved using high-throughput technologies, such as peptide-binding 

arrays56,57, or by profiling a diverse set of HLA-II monoallelic cell lines for their presented 

ligands20.

Our results also demonstrate how MARIA might allow researchers to better identify 

immunogens relevant to autoimmunity and to antitumor immunity. Given the inherent 

challenges limiting the accuracy of previous methods for characterizing tumor-derived HLA-

II ligands, MARIA should allow researchers to explore less well-studied HLA-II 

neoantigens. Specifically, we expect that MARIA will be useful for directly identifying and 

prioritizing cancer vaccine candidates from patient sequencing data12,51. Nevertheless, many 

peptides with high MARIA presentation scores did not induce CD4+ T cell responses when 

used as cancer vaccines (Figs. 6c–e). This limitation is consistent with the fact that 

presentation of antigens is essential but not sufficient for induction of robust T cell 

responses51,55,58 (Supplementary Note 2). Therefore, by combining deep learning59 and 

large-scale T cell response data, we envision that a future method will provide refined 

predictions for the immunogenicity of HLA ligands, whether autoantigens relevant for 

autoimmunity, alloantigens relevant to transplantation or as vaccine candidates relevant for 

diverse applications.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

statements of code and data availability and associated accession codes are available at 

https://doi.org/10.1038/s41587-019-0280-2.
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Methods

In vitro binding testing for validation of HLA-DR binding.

Candidate peptides were synthesized with N-terminal 2,4-dinitrophenyl (DNP) tags joined 

by a 6-aminohexanoic acid linker (Sigma). Biotinylated HLA-DR recombinant proteins 

(HLA-DRB1*04:03 and HLA-DRB1*07:01) molecules were provided by the NIH tetramer 

core. Intrinsic CLIP peptide was cleaved from the HLA-DR molecules with human 

rhinovirus 3C protease. DNP-tagged peptides were supplied in molar excess to encourage 

efficient exchange of binders and incubated overnight at 32°C or 37°C (pH 4.5). Exchange 

reactions were then neutralized with 1 M Tris, pH 8.0 and biotinylated HLA-DR molecules 

were bound to streptavidin microspheres (Polyscience). Microspheres were washed and 

stained with allophycocyanin (APC)-labeled anti-HLA-DR (clone L243; BD Biosciences, 

340549) and anti-DNP (clone 2–9(4); Abcam, ab6306) followed by rat anti-mouse IgE FITC 

secondary antibody (clone R35-72; BD Biosciences, 553415). Microspheres that were 

positive for HLA-DR and DNP-tagged peptide were detected by flow cytometry. Peptides 

were considered to be binders if both HLA-DR and DNP signals were detectable above an 

HLA-DR unexchanged control (Supplementary Fig. 1). Supplementary Fig. 1d shows full 

benchmarking with reported binders and non-binders.

Development of K562 cells expressing single HLA-DRB1 alleles.

Cell lines expressing single HLA-DR alleles were prepared from K562 cells, which do not 

express surface class I or II HLA, by lentiviral transduction. Sequences for the DR α-chain 

and the relevant β-chain alleles (DRB1*01:01 and DRB1*04:04) separated by a 2A peptide 

sequence were encoded in the N103 lentiviral vector backbone (kindly provided by J. 

Crabtree, Stanford University) and used to produce lentiviruses in HEK293 cells using 

previously published methods61. To enhance expression levels of HLA-DR in our K562 cell 

lines, we selected and expanded the top 1% of cell populations selected on the basis of 

surface HLA-DR signal with fluorescence-activated cell sorting (clone L243; BD 

Biosciences 347367) as described before62. Expression of HLA-DR was confirmed by flow 

cytometry before and after sorting (Supplementary Fig. 6). K562 cells were also monitored 

for surface HLA-I alleles to ensure no endogenous HLA expression was present (anti-HLA-I 

antibody; clone G46-2.6; BD Biosciences, 555555; Supplementary Fig. 6). Cells were 

maintained in DMEM medium (Sigma) supplemented with 2.0 μg ml−1 puromycin (Sigma).

Identification of K562 HLA-DR ligands.

HLA-DR immunopeptidomes were extracted from the K562 HLA-DRB1*01:01 and K562 

HLA-DRB1*04:04 cell lines. HLA-DR molecules were isolated and the associated peptides 

were extracted as previously described2,63. See Supplementary Note 4 for detailed HLA-DR 

immunopeptidome purification and MS analysis.

HLA-II ligand sequence data sources.

Detailed ligand sequence data sources are listed in Supplementary Fig. 5a. MCL HLA-DR 

ligandomes were obtained from our pervious study on MCL samples2. Dendritic cell HLA-

DR ligandomes were obtained from a MUTZ3 cell line study54. HLA-DQ2.2 ligandomes 
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were obtained from a monoallelic B cell line study conducted with the anti-DQ antibody 

SPV-L3 (ref. 32). Melanoma HLA-II ligand sequences were obtained from a previous study 

on primary tissues from patients with melanoma3. HLA-DQ2.2-presented wheat peptides 

were downloaded from the IEDB database21, and the original sequences were identified by 

Dorum et al.33. Pan-HLA-II ligands were obtained from a study of B cell lines and ovarian 

carcinoma using HB-145 anti-HLA-II antibody37. Monoallelic HLA-I ligand sequences 

were obtained from a B cell line study with W6/32 pan-HLA-I antibody20. HLA-DP ligands 

were downloaded from the IEDB database21, and the original sequences were identified by 

three MS studies34–36.

Determination of patient HLA alleles.

HLA alleles of patients with MCL2 were identified with PHLAT64 from patient tumor 

exome sequencing data. HLA alleles of melanoma patients3 were identified with 

HLAVBSeq65 from patient exome sequencing data. When patient alleles were not available 

(for example, the melanoma study by Sahin et al8), HLA-DRB1*07:01 and HLA-

DRB1*01:01 were used as they are the most common alleles in general populations (http://

www.allelefrequencies.net/).

Immunogenicity testing for immunoglobulin neoantigens.

Neoantigen T cell stimulation was performed as previously described with some 

modifications2. All specimens were obtained with informed consent in accordance with the 

Declaration of Helsinki and this study was approved by Stanford University’s 

Administrative Panels on Human Subjects in Medical Research. Samples were collected 

from patients as part of a clinical trial of autologous tumor vaccination (NCT00490529). 

Patient leukocytes were collected by leukapheresis approximately 2 weeks after a series of 

autologous tumor vaccinations. Cells were cultured in a 1:1 mix of AIM-V medium and 

RPMI1640 (Thermo Fisher) with 10% pooled human AB sera (Gemini Bio) and 50 μM β-

mercaptoethanol. Neoantigen peptides were synthesized (ElimBio) and added to a final 

concentration of 10 μg ml−1. In one patient (MCL052), cells were treated concurrently with 

two predicted neoantigen peptides. As a positive control, cells were stimulated with a 

mixture of pathogen-associated peptides, CEFT pool (JPT Peptide Technologies). Cells were 

incubated for 30 h before flow cytometry analysis. CD137 (clone 4B4-1; BD Biosciences, 

561702) and CD69 (clone L78; BD Biosciences 341652) expression was assessed on live 

CD4+ (clone RPA-T4; BD Biosciences, 562659) T cells using a FACS Aria sorter (BD 

Biosciences)41,66. See Supplementary Fig. 8c for gating strategies.

Gene expression data sources.

We observed only minor differences in gene expression profiles when using personalized 

versus inferred gene expression levels with modest impacts on MARIA prediction results 

(Supplementary Fig. 5e,f and Supplementary Note 1). Therefore, when personalized gene 

expression profiles were not available, expression profiles were estimated from the 

corresponding tumor type, using, for example, the median of TCGA RNA-seq results from 

the closest tissue type67. Gene expression profile of patients with MCL and JeKo-1 cell line 

(MCL origin) were obtained from RNA-seq results of a previous study68; MCL patient gene 

expression profiles were estimated as the median value across ten patients with MCL. Given 
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the high correlation when comparing MCL transcriptomes from different tumors, gene 

expression profiles of the L128 cell line (MCL origin) were estimated from JeKo-1 cell line 

RNA-seq values. The gene expression profile of K562 cell lines was obtained from the 

ENCODE database69. Expression values were normalized into TPM to enable direct 

comparison of values across studies.

Gene expression profiles of melanoma in the cancer vaccine studies were provided by the 

original studies8,9 when analyzing how original neoantigen gene expressions correlated with 

responses. A fixed TPM of 50 was used as input for MARIA to evaluate how MARIA scores 

with post-vaccine responses as cancer vaccines made each neoantigen peptide readily 

available to antigen-presenting cells. A fixed TPM of 50 was also used when evaluating how 

HLA-DRB1*01:01 binds to CLIP. Gene expression values were not needed when MARIA 

analyzed HLA-DQ2.2 or HLA-DP peptides, as only peptide sequences were used during 

training.

Gene expression analysis of HLA-II peptides.

We estimated the gene expression value (TPM) of each HLA-DR-peptide-producing gene 

with RNA-seq of samples from patients with MCL or MCL cell lines. We allowed a gene to 

be counted multiple times if multiple peptides were identified from the same gene. Each 

gene expression value was converted into logarithmic space with log10(X + 10−6) and 

represented as a violin plot (Fig. 2a and Supplementary Fig. 3). Peptide sequences not in the 

dictionary or genes with unknown RNA-seq gene expression values were excluded from this 

analysis (<8%).

Using a similar approach, we analyzed the gene expression profiles of all genes in patients 

with MCL and MCL cell lines as a background distribution. Each gene with a known RNA-

seq gene expression value was converted into logarithmic space, and each gene was counted 

once. We calculated the median and conducted a Mann–Whitney U test on gene expressions 

between MCL HLA-DR-presented genes and the background distribution.

To investigate sources of MCL HLA-DR peptides with extremely low gene expression 

values, we conducted Gene Ontology (GO) term enrichment analysis70 on HLA-DR peptide 

genes with TPM < 0.1 (Fig. 2a, Supplementary Fig. 3c and Supplementary Table 3). To 

correct for the presence of extracellular matrix protein and blood protein inside of 

professional antigen-presenting cells (for example, MCL) when these genes were not 

endogenously expressed, we set gene expression values of genes under the following GO 

terms to 50 TPM: extracellular matrix (0031012), blood microparticle (0072562) and 

secretory granule lumen (0034774).

To test the ability of gene expression values to differentiate HLA-II ligands from decoys, we 

built a logistic regression model with gene expression values as a single feature to 

differentiate HLA-DR peptides from a random human peptide decoy. Decoy gene lists were 

generated from a Uniport reviewed human protein list71 and were enriched for expressed 

genes. Specifically, human peptide decoys contain roughly 40% genes with TPM > 10, 10% 

genes with unknown expression levels and 50% genes with TPM < 10. Predictive 
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performance of gene expression values under different assumptions is shown in 

Supplementary Fig. 3d. No regularization was applied because it is a single-feature model.

Neural network implementation.

See Supplementary Note 5 for an overview of neural networks considered and their 

implementation. Neural networks in this study were implemented with Keras 2.0.3 (https://

keras.io/) using the Tensorflow backend and Python 2.7. For training, we utilized an 

NVIDIA Tesla K80 GPU with CUDA 7.5.18 on the Stanford XStream GUP cluster to speed 

up the gradient descent.

Amino acid representation.

Each amino acid in a peptide sequence is represented by a 21-number one-hot vector (20 

common amino acids + X) A one-hot vector is a vector of zeros with a single one that 

indicates the amino acid species in an arbitrary but consistent mapping (for example, 

position one = alanine; Supplementary Fig. 2a). Thus each peptide sequence is represented 

by a (21, L) two-dimensional vector, where L is the length of the peptide. BLOSUM5072 

and ProtVec73 amino acid encodings were attempted but had little influence on the model 

performance.

MARIA model.

The majority of existing HLA-II peptide prediction algorithms use data on the binding of 

recombinant HLA-II protein to peptides as a surrogate to rank potential HLA-II peptides 

presentation or HLA-II neoantigens. MARIA aims to directly predict the probability of a 

given peptide being presented by a HLA-II complex in a cell or patient context. Rather than 

in vitro measurements of the binding of HLA protein to peptides, we use HLA-II ligands 

identified by MS/MS peptide sequencing data from antigen-presenting cells as the ground 

truth.

The MARIA model takes peptide sequences (8–26 amino acids long), patient or cell HLA-

DR alleles and corresponding gene names to predict peptide presentation by the HLA-DR 

complex (Fig. 2c). MARIA estimates HLA peptide-binding affinities and cleavage scores 

with two separate neural network models, which are described in the next section. MARIA 

also estimates the gene expression levels of each input gene with a gene expression profile 

dictionary that is based on external tissue-matched RNA-seq results (gene name and TPM). 

The MARIA model takes in gene expression values (TPM) as log10(TPM + 0.001) to 

prevent neurons that connect to gene expression input from dominating the optimizing 

gradient. Users can also upload their own gene expression profile dictionaries for each 

query. The influence of using patient-matched or external gene expression profile 

dictionaries are explored in Supplementary Fig. 3e,f.

Besides estimating binding affinities, cleavage scores and gene expression values, MARIA 

encodes each ligand peptide sequence using an RNN layer known as LSTM. All of these 

values are integrated with two fully connected dense layers to estimate the probability of a 

peptide–gene pair being presented in a allele- and gene-expression-specific manner (Fig. 
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2c). See Supplementary Note 6 for our models for predicting presentation with peptide 

sequences only.

We explored LSTM networks with 32, 64 and 128 neurons and from one to four layers deep 

with a 9:1 training:validation scheme (Supplementary Fig. 2e). An LSTM network with 64 

neurons and one layer of depth gave the best performance. Dense (fixed-length) layers in 

MARIA use the rectified linear unit activation function74 and 32 neurons. Dropout of 40% is 

applied to each layer for regularization. L1 and L2 regularization were attempted but not 

included in the final model owing to the lack of influence on the model performance. We 

concatenated the LSTM and dense layers to merge their information, followed by two 

additional dense layers (neuron number = 32). The output layer contains two neurons 

representing non-presenting (F or 0) and presenting (T or 1) classes.

MARIA was trained with the Tensorflow GPU backend to enable parallel calculation of 

gradient. For general user applications, the CPU backend is sufficient. Ten thousand peptides 

take ~80 s with a 2.8 GHz Intel Core Xeon CPU or 11.3 s with one NVIDIA Tesla K80 

GPU.

Binding affinity prediction.

MARIA assumes the main influence on HLA-DR allele is from the change in HLA-DR–

peptide binding affinity. We trained a panallele regression model with the publicly available 

IEDB data to estimate binding affinity given a peptide–allele pair21. Training data was 

curated by the authors of NetMHCIIpan3.0 (ref. 75) which includes 33,909 peptide–allele 

pairs for HLA-DR. Each HLA-DR allele is converted into a 19-amino-acid pseudopeptide 

sequence reflecting 19 amino acid residues in HLA-DRB1 interacting with ligand peptides 

in the binding groove76. Each peptide-allele pair has a corresponding binding affinity 

measured in half maximal inhibitory concentration (IC50, in nM). For computational 

efficiency, IC50 was converted into log space with the formula (1 − log50,000(IC50)). The 

model includes an LSTM layer followed by two dense layers and a single output neuron 

(Supplementary Fig. 3d). Mean squared error is used as the loss function.

To evaluate the performance of our LSTM-based binding affinity predictor with 

NetMHCIIpan3.1 (ref. 22), a widely used method, we tested our method on the same held-

out set of in vitro binding as reported by the original author. We report similar ROC-AUC 

scores and Pearson’s correlation coefficients (predicted versus measured) in Supplementary 

Table 9.

Cleavage score estimation.

To understand amino acid preference for HLA-II peptide cleavage, we compared amino acid 

frequency around HLA-II peptide cleavage sties with a background distribution. Cleavage 

sites included six amino acids upstream of the HLA-II peptide N terminus (−6 to −1) and six 

amino acids downstream of the HLA-II peptide C terminus (+1 to +6) assuming a N 

terminus to C terminus direction. We randomly generated an equal number of gene-matched 

and length-matched peptides on the basis of our HLA-II peptides, and the amino acid 

frequency from the same cleavage sites was used as the background distribution. Enrichment 

and depletion level were calculated as HLA-II peptide amino acid i frequency at j position 
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divided by background distribution amino acid i frequency at j position (Fig. 2b and 

Supplementary Fig. 4). The analysis was done for MHC-I as well (Supplementary Fig. 4a).

We built a neural network to quantitatively estimate cleavage scores given the flanking 

regions of a query gene-peptide pair (Supplementary Fig. 2b). The model determines six 

amino acids upstream of the query peptide N terminus and six amino acids downstream of 

the query peptide C terminus with a human proteome dictionary, encodes these 12 amino 

acid sequences, processes them with hidden layers and outputs a probability score between 0 

and 1 (score of the positive output neuron T). The neural network encodes amino acids using 

one-hot encoding as described before and contains two fully connected hidden layers of 32 

neurons. To avoid overfitting when applying this model to lymphoma data, we trained the 

cleavage model on an independent dendritic cell line (MUTZ3) ligandome54 (Supplementary 

Fig. 4d).

Normalization of MARIA output scores to percentiles.

Raw output of MARIA is a score between 0 and 1 indicating how likely a query peptide is to 

be presented by a specific HLA-II. To increase human interpretability and enable 

comparison across different peptide lengths, MARIAs output can be represented as a 

percentile score. A percentile score is generated by comparing the raw output score to a 

score distribution generated from length-matched random human peptides. The higher the 

percentile, the more likely the peptide will be presented by a cell HLA-DR complex.

Specifically, for each peptide length of 8 to 26, we sampled 20,000 random natural peptides 

from the human proteome. We ran MARIA on each set of random peptides and used the 

output as empirical distributions for normalizing query peptides with a certain length. For 

example, MARIA output of a 15-amino-acid query peptide will be compared against the 

scores of 20,000 random 15-amino acid oligomers to obtain a percentile score. 

NetMHCIIpan used a similar approach to generate ranks, and NetMHCIIpan percentiles = 

100% − NetMHCIIpan ranks.

MARIA model evaluation on held-out HLA-II ligand sets.

To fully evaluate the performance of MARIA and related methods, we obtained a set of 

independent HLA-DR ligandomes from various cell types and MS instruments (Fig. 3a). 

Any peptides shorter than 8 amino acids or longer than 26 amino acids were excluded (<1%) 

owing to the setup of our RNN. Because of input limitations of existing methods, we further 

excluded peptides with certain length. When the evaluation involved IEDB-carried methods, 

we excluded peptides shorter than 15 amino acids. When the evaluation involved 

NetMHCIIpan3.1, we excluded peptides shorter than 9 amino acids. For negative examples, 

we used length-matched random human peptides with 1:3 (training) or 1:1 (validation) 

positive:negative ratios (Supplementary Fig. 5a). During cross-validation, we excluded any 

peptides in the validation set that were substrings (A is part of B or B is part of A) of any 

training peptides (Supplementary Figs. 2e and 5b).
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Benchmarking of binding-based methods on MS-identified HLA-DR ligands.

To evaluate how NetMHCIIpan performed on MS-identified MCL HLA-DR ligands, we ran 

NetMHCIIpan3.1 on a set of 18 MCL samples with a minimum of 200 peptides identified 

(Supplementary Table 1). For a patient or cell with heterozygous HLA-DRB1 alleles, the 

better binding score (lower ranking or higher percentile) was used as the predicted score. 

ROC-AUC scores were calculated to evaluate predictive performance of binding models on 

naturally presented peptides (Supplementary Table 1).

We also benchmarked MARIA with six commonly used HLA-II prediction algorithms on 

non-MCL data: NetMHCIIpan3.1 (ref. 22), SMM Align26, NN Align27, Sturniolo/

TEPITOPE28, Comblib29 and IEDB Consensus30. All six algorithms were trained on in vitro 

recombinant protein binding data but differ in allele coverage and machine learning 

algorithms. Held-out data included K562 myeloid cells and primary melanoma patient 

samples. Because IEDB Concensus (Concensus3) is only compatible with 50 HLA-DR 

alleles and peptide sequences longer than 14, we compared MARIA with NetMHCIIpan in 

most cases.

NetMHCIIpan and NN align both use a dense neural network to scan through a given query 

peptide with a 9-amino-acid oligomer sliding window. The best 9-amino-acid oligomer score 

is reported. NetMHCIIpan incorporates important amino acid sequences on HLA-II alleles 

as a part of input features to train a universal algorithm for all HLA-II alleles22. NN Align 

learns binding patterns of each HLA-II allele separately27. SMM Align and Comblib both 

use a stabilized matrix method26,29. Sturniolo/TEPITOPE used a combination of expert rules 

and assembled matrices28. IEDB Consensus (Concensus3) is an ensemble method that is 

based on scores from NetMHCIIpan, NN Align, SMM Align and Sturniolo. Depending on 

the HLA-II allele, IEDB Consensus combines scores from one to three methods to report a 

ranking score30.

Predicting HLA-DQ peptide presentation.

We trained a separate model for HLA-DQ2.2-presented peptide that was based on two 

available HLA-DQ ligandomes for HLA-DQ2.2 and HLA-DQ2.5 (ref. 32). The HLA-DQ 

model neural network architecture is identical to the sequence-only LSTM model for HLA-

DR (Supplementary Fig. 2c), but the model was trained on different datasets (Supplementary 

Fig. 7a,b). The training HLA-DQ2.2 ligandome contains all HLA-DQ ligandome sequences 

from three DQ2.2 cell lines32 (PLH 9047, MOU 9050 and PITOUT 9051). We included 

HLA-DQ2.5 ligandome sequences (CD114, STEINLIN 9087 and PF04015 9088) if the 

peptide sequences were substrings of any known HLA-DQ2.2 ligandome peptides 

(Supplementary Fig. 7a). We held-out 7.5% of DQ2.2 ligandome as the validation set to 

determine model regularization parameters and the training stop point, and another 7.5% to 

determine the ability of the model to predict human HLA-DQ2.2 peptides (Supplementary 

Fig. 7b).

We tested the ability of our DQ model to differentiate DQ2.2-binding wheat gluten peptide33 

(n = 69) from length-matched random human peptide (n = 138). We ran NetMHCIIpan3.1 

on the same test set with the allele input of HLA-DQA10201 and HLA-DQB10202. We 
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compared the performance of these two methods by measuring their sensitivity when the 

specificity was set to 90% (cut-off at the 90th percentile for both MARIA DQ model and 

NetMHCIIpan3.1; percentile = 100% − rank).

Analysis of immunoglobulin HLA-DR presentation heat maps.

We estimated the HLA presentation of Ig from patients with MCL on the basis of how each 

amino acid position was covered by experimentally identified or predicted peptide ligands. 

HLA-presented Ig peptides from 18 MCL samples were obtained from our previous MS-

based study2. All MS-identified peptides were aligned against a standard Ig template 

sequence (Supplementary Table 10) with the Biopython pairwise alignment function77. The 

MS-identified ligand number at each amino acid position is equal to the number of peptide 

ligands covering the position.

To generate predicted HLA-DR ligands, we broke down Ig sequences from 18 MCL samples 

into consecutive 15-amino-acid sliding windows. Each sliding window peptide was scored 

by NetMHCIIpan or MARIA (a version not trained on Ig sequences) with matched patient 

alleles. We aligned high-scoring peptides against the same Ig template sequence as described 

above. Scores (S) for peptide sequences were based on their predicted presentation 

percentiles (p) and the numbers of ligands identified from the corresponding patient samples 

(q):

S p, q = 0, p < 90th percentile

wq p − 90 , p ≥ 90th percentile

where w is a constant to scale the predicted heat map and MS-identified heat map into a 

similar scale for plotting purposes. The predicted ligand number at each amino acid position 

is the sum of scores across 18 MCL samples.

We evaluated the correlation between the MS-identified heat map and predicted heat map 

with Spearman’s correlation. Subregions of immunoglobulin (for example, FR3) were 

determined with IMGT, the international immunogenetics information system (http://

www.imgt.org/)78. We compared the presentation in FR3 regions versus non-FR3 regions 

with a Mann–Whitney U test. Methods for precision–recall analysis are described below.

Analyzing cancer neoantigen candidates with MARIA.

To score each somatic mutation in two cancer vaccine trials with MARIA, we represented 

each somatic mutation by a sequence that includes 14 amino acids upstream and 

downstream of the mutation site, such that the typical sequence length is 29 amino acids (14 

+ 1 + 14). We then took 15-amino-acid sliding windows along these sequences and 

combined each window with the HLA alleles and gene expression values of each patient to 

produce a MARIA score. In therapeutic cancer vaccine studies, we used 50 TPM to reflect 

the high concentration of mutated peptides introduced by vaccines, otherwise median TCGA 

tissue-matched RNA-seq gene expression was used. We used the highest score of all sliding 

windows as the score for a given somatic mutation. Neoantigen examples with known 

unsupported alleles (for example, HLA-DQB1*06:01 (ref. 79)) were excluded from our 
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analysis. We performed the same analysis with the new IEDB CD4 immunogenicity tool80 

for comparison and results are shown in Supplementary Tables 13–15.

Predictive performance metric calculation.

N annotates the number of a group of peptide ligands. Sensitivity (also known as recall) was 

calculated as:

N correctly predicted positive ligands
N all positive ligands

Specificity was calculated as:

N correctly predicted negative or decoy ligands
N all negative or decoy ligands

Positive predictive value (also known as precision) was calculated as:

N correctly predicted positive ligands
N all ligands predicted to be positive

Or

Prevalence × Recall
Prevalence × Recall + 1 − Prevalence × 1 − Specificity

Negative predictive value was calculated as:

N correctly predicted negative or decoy ligands
N all ligands predicted to be negative or decoy

ROC-AUC scores were calculated on the basis of the area under sensitivity and 1 – 

specificity curves and implemented with Python scikit-learn81. To generate precision and 

recall curves, we first calculated pairs of recalls and specificities across a range of MARIA 

cut-offs (70th to 99.9th percentile). We then calculated precision for each recall using an 

assumption of positive peptide prevalence (1%; Supplementary Note 2).

Statistical analyses.

Sequence logo plots and amino acid frequency enrichment were generated with IceLogo60. 

Plotting in this study was done in matplotlib and seaborn82. We used two-tailed paired t tests 

in Fig. 1b for comparing AUC scores with two different methods but on the same set of 

patient data. We determined statistical significances difference between two AUC curves (for 

example, Fig. 2d) using the fast DeLong test83. Unless otherwise stated, statistically 

significant differences between distributions were determined by Mann–Whitney U tests. 

GO term enrichment analysis was conducted with ToppGene70. Except GO term enrichment, 

any statistical P values below 10−5 were denoted as P < 10−5 or P < 1 × 10−5.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Ligandomes are available from the PRIDE Archive under accession numbers PXD004746 

and PXD005704. Data from two K562 ligandomes (Fig. 3) are provided in Supplementary 

Tables 5 and 6. The remaining HLA ligand datasets are publicly available from the provided 

references. All other data are available from the corresponding authors upon reasonable 

request.

Code availability

Researchers can run MARIA online at https://maria.stanford.edu/. Custom software code 

described in this work is available for academic research upon request from the authors or 

through https://maria.stanford.edu/. Commercial entities with interest in the software should 

contact Stanford University’s Office of Technology Licensing and reference docket S19-020.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Rationale and framework for the development of a new method for prediction of HLA-II 
ligands.
a, Comparison of the number of unique HLA-DR ligands identified within two antigen 

presentation profiling studies2,3, each exceeding all HLA-DR in vitro quantitative binding 

measurements from 239 previous studies within the IEDB (as of December 2018)21. b, 

Performance of NetMHCIIpan for discrimination of decoys from bona fide HLA-II ligands 

recovered by antigen presentation profiling. For each patient2, NetMHCIIpan-predicted 

affinities and ranks were separately evaluated (x axis), and performance measured by ROC-
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AUC (y axis, dotted lines represent the median). NetMHCIIpan ranks (mean AUC = 0.68) 

slightly outperformed NetMHCIIpan binding affinities (mean AUC = 0.65, n = 18; two-

tailed paired t test, P = 0.003; Supplementary Table 1). c, Limited sensitivity of 

NetMHCIIpan for classification of HLA-DR ligands. Depicted is the distribution of 

NetMHCIIpan ranks for all 6,063 peptides identified from the JeKo-1 cell line, where 22% 

of HLA-II ligands identified by MS had predicted values worse than the recommended 

NetMHCIIpan rank cut-off for binding (10%). d, In vitro binding assay results for HLA-II 

peptide ligands identified by MS but predicted by NetMHCIIpan not to bind HLA-II. 

Among ten such peptides predicted by NetMHCIIpan not to bind, nine were nevertheless 

confirmed to bind cognate HLA-DR alleles (04:03 and/or 07:01) by two independent flow 

cytometry experiments. Scatter plots depict binding of two exemplar FITC-conjugated 

peptides (x axis) to APC-conjugated HLA-DR proteins (y axis); remaining peptides are 

separately depicted in Supplementary Fig. 1. e, Training and evaluation scheme of MARIA, 

as a new machine learning framework for more accurate prediction of HLA-II ligands. 

Positive examples are HLA-II ligand peptide sequences directly identified by antigen 

presentation profiling of human cells and tissues by immunoprecipitation (i.p.) and MS, and 

negative examples are length-matched random human peptides (decoys). The model 

separately considers binding affinities estimated using in vitro binding data. Patient HLA-II 

allele or genotype and gene expression information are obtained from next-generation 

sequencing. A RNN integrates information and produces a predictor for HLA-II ligand 

presentation by minimizing training errors. Independent test sets determine the final 

performance of the model. See Supplementary Fig. 2 for detailed machine learning schemes.
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Fig. 2 |. Features, model architecture and validation performance of MARIA.
a, Comparison of gene expression levels of HLA-DR ligands and non-ligands. Gene 

expression was estimated by RNA-seq for HLA-DR-presented genes, all protein-coding 

genes and non-presented protein-coding genes, respectively. HLA-DR ligand genes have 

significantly higher gene expression levels than the set of all protein-coding genes (n = 

34,049, 23,165 and 19,464, respectively; **P < 1 × 10−5, Mann–Whitney U test). Some 

HLA-DR ligands (8.4%) had undetectable levels of expression; those in this set were 

enriched for extracellular protein (GO enrichment; Fisher’s exact test, P < 1 × 10−17). Violin 

Chen et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



curves represent the probability distribution function of gene expression, black boxes 

represent middle two quartiles and white dots represent the median. See Supplementary Fig. 

3 for detailed analysis on HLA-I ligands and the predictive power of gene expression levels. 

b, Cleavage signature analysis for HLA-DR ligands. Frequencies of 20 amino acids at 6 

positions upstream (−6 to −1) and downstream (+1 to +6) of HLA-DR ligands (n = 12,150) 

are compared to the background distribution (n = 23,218) to determine amino acid 

enrichment and depletion surrounding HLA-DR ligands. Colors of the heat map and sizes of 

the logo plot letters indicate fold change. The logo plot only includes statistically significant 

enrichment (P < 0.001, two-tailed independent t test by IceLogo60). The minus symbol in 

the top row of the heat map indicates presented peptides that are located at the beginning or 

end of source protein sequences. See Supplementary Fig. 4 for cleavage signatures across 

different cell types. c, Workflow of MARIA for predicting HLA-DR ligand presentation 

score. Two separate models first calculate HLA-DR peptide binding scores and peptide 

cleavage scores. The neural network further integrates peptide sequence and estimated gene 

expression level with two scores, via a recurrent layer and merge layers, to generate a 

presentation score indicating likelihood of HLA-II presentation. d, Performance of MARIA 

and four alternative predictors on 10% of the held-out validation set (true MCL HLA-II 

ligands, n = 3,300; random human decoy peptides, n = 10,000; the same sample set is used 

in e and f). MARIA scores incorporating gene expression levels, peptide sequence, binding 

scores and cleavage scores outperformed methods using each of these features individually 

(DeLong test, P < 1 × 10−5; AUC = 0.92). See Supplementary Fig. 5 for detailed training 

data source and cross-validation performance. e, Comparison of model precision and 

specificity across a range of presented MCL HLA-DR peptide prevalences. Sensitivity for 

each model was controlled at 30% for all calculations, with corresponding specificity 

denoted adjacent to inset legend. The shaded areas represent the 95% confidence interval 

around the mean value, on the basis of tenfold cross-validation. f, Comparison of precision 

and recall for different models for predicting HLA-DR ligands using various types of 

training data. Precision was calculated assuming 1% prevalence of presented HLA-DR 

ligands. The shaded areas represent 95% confidence interval around the mean value (line), 

based on tenfold cross-validation.
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Fig. 3 |. Benchmarking MARIA performance against existing binding-based methods with 
independent HLA-DR test sets.
a, Overlap and sequence motifs of two HLA-DR ligand sets identified from two monoallelic 

K562 cell lines. A proportion (31%) of peptides appeared in both the HLA-DRB1*01:01 (n 
= 2,430) and HLA-DRB1*04:04 (n = 2,072) ligand sets when considering substring 

matches. The sequence motifs with highest statistical significance (P < 1 × 10−7, multiple 

hypergeometric test implemented by MEME) are shown. For full potential motifs, see 

Supplementary Table 4. b, Performance of MARIA and six alternative methods when 

differentiating 1,361 K562 HLA-DRB1*01:01 ligands from 1,361 human decoys. MARIA 

outperformed the second-best method (SMM Align; DeLong test, P < 1 × 10−5). Limited by 

the IEDB Concensus3 package, only ligand sequences ≥15 amino acids are included in this 

comparison. c, Performance of MARIA and four alternative methods differentiating 2,032 

K562 DRB1*04:04 ligands from 2,032 human decoys. MARIA achieved an AUC of 0.89 
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AUC as compared to an AUC of 0.56 for NetMHCIIpan. RNN and SNN trained on MCL 

ligands obtained AUC values of 0.83 and 0.78, respectively.
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Fig. 4 |. MARIA trained on human HLA-DQ ligand peptides identified celiac-related gluten 
antigens.
a, Overlap and sequence motifs of two HLA-DQ ligand sets. A majority (65%) of peptides 

were present in both HLA-DQ2.2 (n = 7,374) and HLA-DQ2.5 (n = 4,249) ligand sets when 

considering substring matches. The sequence motifs with highest statistical significance (P < 

1 × 10−7, multiple hypergeometric test implemented by MEME) are shown. Full potential 

motifs are included in Supplementary Table 4. b, Performance of MARIA trained on HLA-

DQ2.2 ligand sequences and tested on a held-out human HLA-DQ2.2 peptide set (n = 650). 
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MARIA was trained on 90% of the HLA-DQ2.2-associated peptide sequences shown in a. 

MARIA achieves an AUC of 0.89 when differentiating DQ2.2 ligands from length-matched 

decoys. By comparison, NetMHCIIpan percentiles obtained an AUC of 0.68. Dashed red 

lines indicate the 90th percentile, the default cut-off for NetMHCIIpan. See Supplementary 

Fig. 7 for detailed training schemes of MARIA for HLA-DQ2.2. c, Performance of MARIA 

and NetMHCIIpan when identifying immunogenic gluten peptide fragments (n = 69). 

MARIA trained on human DQ2.2 ligands identified 49% of HLA-DQ2.2-binding gluten 

peptides with 92% specificity. By comparison, NetMHCIIpan had 6% sensitivity and 88% 

specificity. Dashed red lines indicate the 90th percentile, the default cut-off for 

NetMHCIIpan. The x axes in b and c capture the percentiles for depicted bins, where higher 

percentiles reflect higher likelihood of presentation, by defining the percentiles as 100% 

minus the absolute rank reported by each method.
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Fig. 5 |. MARIA identifies lymphoma immunoglobulin HLA-DR presentation hotspots in 
patients with MCL.
a, Correlation of MARIA-predicted and experimentally identified HLA-DR-presented 

immunoglobulin antigens. Eighteen MCL immunoglobulin sequences were analyzed by a 

version of MARIA trained on non-immunoglobulin HLA-DR ligands to determine the 

presentation hotspots (left, blue). The same 18 MCL samples were profiled with LC–

MS/MS to determine the regions of immunoglobulin presented by HLA-DR (right, orange). 

Predicted and observed presentation hotspots were significantly correlated on both heavy 

chains and light chains (Spearman’s ρ of 0.63 and 0.55, P = 1 × 10−65 and 7.5 × 10−19; n = 

1,015 and 311, respectively). MARIA-predicted ligand numbers were normalized with the 

MS-identified maximum ligand numbers for visualization purposes. See Supplementary Fig. 

8 for the presentation heat map predicted by NetMHCIIpan. b, MARIA identified HLA-DR 

presentation hotspots in the immunoglobulin heavy chain variable region (IGHV). MARIA-

predicted HLA-DR-presented peptides from IGHV FR3 regions more than the other six 

regions across patients (P < 1 × 10−5, Mann–Whitney U test), consistent with MS findings 

(P < 1 × 10−5, Mann–Whitney U test). Each dot represents predicted or experimentally 

identified ligand coverage in a 15-amino-acid sliding window on the aligned IGHV sequence 

(n = 38 for the FR3 region and n = 87 for the non-FR3 regions).
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Fig. 6 |. MARIA scores predict melanoma HLA-II-presented antigens and are associated with 
post-vaccine CD4+ T cell responses.
a, Performance of MARIA on an independent melanoma HLA-II ligand set3. MARIA 

trained on MCL ligands achieved an AUC of 0.89 when differentiating patient melanoma 

HLA-II peptides from length-matched decoys, as compared to NetMHCIIpan with an AUC 

of 0.64. Shuffling correct training labels diminished the prediction performance of MARIA, 

reducing its AUC to 0.53. b, Neoantigen gene expression in patients with melanoma is not 

associated with postvaccination CD4+ T cell responses. Personalized gene expression values 
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were obtained from tumor RNA-seq in two personalized melanoma vaccine trials8,9. In both 

trials, there is no difference in gene expression values between positive and negative vaccine 

candidates for their ex vivo CD4 cytokine release tests (n = 127 and 97; P = 0.49 and 0.50, 

two-tailed unpaired t test). NS, not significant. c,d, Post-vaccination CD4+ T cell responses 

are associated with MARIA scores. Peptide sequences from the same two clinical trials were 

scored with MARIA (c, n = 127 for Sahin et al.8, and d, n = 97 for Ott et al.9). Each 

candidate was stratified into three categories on the basis of the highest MARIA percentile 

scores among 15-amino-acid oligomer sliding windows: low (<95th), medium (95-99.5th) 

and high (>99.5th). Dashed red lines indicate average response rates of the whole cohort. c, 

A majority (73%) of peptides in the MARIA high category elicited positive CD4+ T cell 

responses after vaccinations as compared to 26% in the low category and 47% in the 

medium category (χ2 test, 2 degrees of freedom, P = 0.019). d, A higher proportion (38%) 

of peptides in the MARIA high category elicited positive CD4+ T cell responses after 

vaccinations as compared to the low category (8.1%) and the medium category (23%) (χ2 

test, 2 degrees of freedom, P = 0.023). See Supplementary Fig. 10 for detailed analysis on 

melanoma cancer vaccines. e, Relationship between MARIA percentile scores and CD4+ T 

cell responses to tumor-associated antigens across cancer types and studies. When 

considering seven different studies of CD4+ T cell immune responses to cancer-associated 

antigens (including this one)6,7,42–45 (rows), we identified immunogenic (positive; n = 27, 

rows 1-7) and non-immunogenic (negative; n = 494, row 8) peptides across diverse tumor 

types. Each of these 521 peptides (dots) were then tested by MARIA, allowing comparison 

of percentile scores (x axis, right) with immunogenicity (blue, immunogenic; green, non-

immunogenic). As depicted by the summarized inset table, 74% of immunogenic peptides 

(20 of 27, blue) scored above the 95th MARIA percentile threshold. Teff, effector T cells.
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