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OPEN

ORIGINAL ARTICLE

Brain structure in pediatric Tourette syndrome
DJ Greene1,2,7, AC Williams III3,7,8, JM Koller1, BL Schlaggar1,2,4,5,6, KJ Black1,2,4,5 and The Tourette Association of America Neuroimaging
Consortium9

Previous studies of brain structure in Tourette syndrome (TS) have produced mixed results, and most had modest sample sizes. In
the present multicenter study, we used structural magnetic resonance imaging (MRI) to compare 103 children and adolescents with
TS to a well-matched group of 103 children without tics. We applied voxel-based morphometry methods to test gray matter (GM)
and white matter (WM) volume differences between diagnostic groups, accounting for MRI scanner and sequence, age, sex and
total GM+WM volume. The TS group demonstrated lower WM volume bilaterally in orbital and medial prefrontal cortex, and greater
GM volume in posterior thalamus, hypothalamus and midbrain. These results demonstrate evidence for abnormal brain structure in
children and youth with TS, consistent with and extending previous findings, and they point to new target regions and avenues of
study in TS. For example, as orbital cortex is reciprocally connected with hypothalamus, structural abnormalities in these regions
may relate to abnormal decision making, reinforcement learning or somatic processing in TS.

Molecular Psychiatry (2017) 22, 972–980; doi:10.1038/mp.2016.194; published online 25 October 2016

INTRODUCTION
Tourette syndrome (TS) is a developmental disorder of the central
nervous system defined by the chronic presence of primary motor
and vocal tics.1 Tics are repeated, nonrhythmic, unwanted but
usually suppressible movements or vocalizations.2 TS usually
involves one or more additional feature, most often obsessions,
compulsions, distractibility or impulsivity.3 A clear neurobiological
explanation for TS is not yet available, but research has provided
many relevant clues.4,5

A number of studies have now examined the structure of the
living brain in TS and have found significant changes in various
brain regions compared with tic-free healthy control subjects.6,7 The
largest studies were reported by Peterson et al., with over 100
children and adults with TS and a similar number of control
subjects. However, substantial questions remain about the struc-
tural anatomy of the brain in TS because methods and results have
varied widely across studies, and because most studies were from
small samples. A multicenter collaborative approach to brain
imaging in TS might address these and other concerns.
Here we believe we report the first analysis from such a

collaboration, the Tourette Association of America Neuroimaging
Consortium, applying structural magnetic resonance imaging
(MRI) to large, well-matched groups of children and adolescents
with and without TS.

MATERIALS AND METHODS
This study was approved by the Washington University Human Research
Protection Office (IRB), protocol # 201108220. Most MRI and clinical
information were originally collected under different IRB protocols
(independent of this study) at the four imaging sites: Washington University

School of Medicine (WUSM), New York University (NYU), Kennedy Krieger
Institute at Johns Hopkins University School of Medicine (KKI), University of
California, Los Angeles (UCLA). Subjects’ guardians gave informed consent
for participation in the original studies. Herein we call these ‘legacy’ data.
The WUSM, KKI and UCLA sites enrolled additional new subjects specifically
for this study. The transmission of any human subjects data to the
consortium was approved by each site’s respective IRB. Some data were
provided anonymously to the consortium under code-sharing agreements.
Imaging data were stripped of personal identifiers such as name and

date of birth and archived at the Central Neuroimaging Data Archive
(CNDA) hosted at https://cnda.wustl.edu.8 REDCap electronic data capture
tools hosted at Washington University were used to manage the clinical
data collected at WUSM.9

Subjects
Existing and newly acquired T1-weighted MPRAGE images were collected
in 2007–2014 from over 400 children of age 7–17 years, including 230 with
a chronic tic disorder (DSM-IV-TR TS or chronic tic disorder). Authors ACW,
DJG or KJB visually reviewed each structural MRI and excluded images with
any visible artifact in the brain; KJB was the final arbiter and was blind to
diagnosis at this review. After excluding scans with visible artifact, MPRAGE
images were available from 109 TS and 169 control subjects of age 7–17
years. Of the 109 TS subjects, 103 could be matched one to one with a
control subject for age (within 0.5 years), sex and handedness (Figure 1).
MPRAGE (3D T1-weighted) data were acquired on several magnetic

resonance (MR) scanners with varying parameters. The most common
structural image protocol was an MPRAGE with total scanning time 6–
10 min and voxel size 1.0–1.25 mm3. In all, eight different scanner/sequence
combinations were used to acquire the images (Supplementary Table 1).

Image processing
If a subject had more than one MPRAGE image of adequate quality, these
images were averaged after mutual rigid-body alignment using a validated
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method.10 All subsequent image analyses were performed with SPM
software v.12b using the method of J. Ashburner.11,12

Each subject’s image was nonlinearly normalized to Montreal Neurolo-
gical Institute space, and the atlas-aligned images were averaged to create
an MPRAGE template specific to this study (https://irc.cchmc.org/software/
tom.php).13 For each subject, segmented images were created to reflect
the probability that each voxel was composed of gray matter (GM), white
matter (WM) or cerebrospinal fluid. This computation used a Bayesian
approach, with prior probabilities established by population templates for
GM, WM and cerebrospinal fluid to inform interpretation of the subject’s
MR signal at each voxel. Alignment and segmentation were then refined
by tissue-specific realignment.14 The tissue density images were multiplied
by the local volume in the subject image corresponding to each voxel in
the atlas template to produce images showing at each atlas voxel that
subject’s GM, WM and cerebrospinal fluid volume contributing to that
voxel. The GM volume image from one subject is shown in Supplementary
Figure 1. A three-dimensional Gaussian filter (full-width at half-maximum
6 mm) was applied to the GM and WM images and the smoothed images
were submitted to SPM analysis.

Analysis
SPM software v. 12b (http://www.fil.ion.ucl.ac.uk/spm/software/) computed at
each voxel a general linear model with dependent variable GM volume; factors
diagnostic group, MRI scanner and sequence (Supplementary Table 1), and
sex; age at scan as a covariate; and interactions of group×sex and sex×age.
Proportional scaling by each subject’s total GM+WM volume corrected for
global brain volume. The GM analysis was limited to voxels at which GM
concentration was 420%. The WM analysis used the same methods.
One-tailed contrasts were used to generate t images comparing TS and

control groups, without assuming equal variance. Statistical significance
was determined by the volume of clusters defined by contiguous voxels
with |t|43.0, corrected to a false discovery rate of 5%. Peak voxel locations
in Montreal Neurological Institute space were transformed to Talairach
atlas coordinates using MNI2TAL (http://bioimagesuite.yale.edu/mni2tal).15

Total GM and total WM were modeled similarly, that is, with diagnostic
group, MRI sequence and sex as factors, age at scan as a covariate and
interactions of group× sex and sex × age, but of course omitting the global
volume correction, using R statistical software v. 3.1.2.16

Secondary analyses focused on the key findings from the SPM analyses.
For each significant cluster from the SPM analyses of GM, the sum of each
subject’s GM volume over all voxels in that cluster was corrected for the

subject’s total brain volume (GM+WM) by division. The same was done for
the significant WM clusters. These relative cluster volumes for each subject
were the dependent variables to test for effects of scanner and sequence,
age, attention deficit hyperactivity disorder (ADHD), intelligence quotient
(IQ), Yale Global Tic Severity Scale total tic score (YGTSS) and medication
status, either in the entire TS group, in a subset that had complete data for
the analysis at hand, or in the subjects scanned with sequence 3 from
Supplementary Table 1 (the largest group of subjects scanned using the
same scanner and sequence).

RESULTS
Subjects
Demographic and illness variables are summarized in Table 1.

Figure 1. Subject flow diagram. MRI, magnetic resonance imaging;
TS, Tourette syndrome.

Table 1. Demographics and illness variables

TS group Control group P

N, total→used 230→ 103 216→ 103 1.00
N by site, total→used o0.001a

WUSTL 141→ 78 156→ 70
UCLA 51→ 13 0→ 0
NYU 25→ 8 38→ 21
KKI 13→ 4 22→ 12

Age (years, mean± s.d.)b 11.9± 2.1 11.9± 2.1 0.96
Sex (M: F) 81: 22 81: 22 1.00
Handedness (# right-handed) 103 103 1.00
YGTSS Total Tic Score 18.1± 8.3 (N= 91)c n/a —

ADHD clinical diagnosis 55% (43 out of 78)c —
d

—

CY-BOCS score (mean± s.d.) 5.3± 6.8 (N= 65)c —
d

—

OCD clinical diagnosis 47% (15 out of 32)c, e —
d

—

Medication statusf Adrenergic agonists (N= 25) n/a —

Stimulants (N= 21)
Antidepressants (N= 7)
Antipsychotics (N= 5)

Norepinephrine reuptake inhibitors (N= 2)
None of the above (N= 36)

IQ (mean± s.d.) 108± 13 (N= 80)c 119± 12 (N= 39)c o 0.001g

Abbreviations: ADHD, attention deficit hyperactivity disorder; CY-BOCS, Children's Yale-Brown Obsessive-Compulsive Scale; IQ, intelligence quotient; KKI,
Kennedy Krieger Institute; NYU, New York University; OCD, obsessive compulsive disoreder; UCLA, University of California, Los Angeles; TS, Tourette syndrome;
WUSTL, Washington University in St. Louis; YGTSS, Yale Global Tic Severity Scale total tic score. aχ2= 56.4, 3 df. bStarting with this row, data describe only the
final 206 subjects. cNot available for all subjects. dNot available for most control subjects. e45% (35 out of 78) had CY-BOCS score40. fMedication information
available for 75 TS subjects. gt= 4.53, 81.9 df (two-sided t-test, unequal variance, Welch df modification).
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Global volumes
Total GM volume was significantly correlated with age (Po0.001),
but no other factors, covariates or interactions were significant in
the analysis of total GM or total WM (P⩾ 0.30).

Regional differences in WM volume in TS
Table 2 summarizes the VBM results. Two fairly symmetric WM
clusters showed lower volume in TS, each corrected P= 0.001,
located in WM deep to orbital and medial prefrontal cortex
(Figure 2, Supplementary Figure 2).
Two additional symmetric clusters of decreased WM volume are

of interest, though they did not remain statistically significant after
multiple comparisons correction (each P=0.2). These clusters
include parts of posterior putamen and insula bilaterally
(Supplementary Figure 3).

Regional differences in GM volume in TS
Two clusters showed statistically significant increased GM volume
in TS after correction for multiple comparisons (Table 2). The

largest suprathreshold cluster had peak t-value = 4.62 (193 d.f.) in
the pulvinar nucleus of the left thalamus (Figure 3a). A
homologous cluster in the right pulvinar was below the
significance threshold (corrected P= 0.07). The second largest
cluster (corrected P= 0.011) included the hypothalamus bilaterally
and the ventral midbrain (Figure 3b).

Secondary analysis: scanner and MR sequence
The statistical model included a factor to account for different
scanners or MR sequences, but such statistical control may be
imperfect. Accordingly, we checked whether the findings from the
overall group would still be present if the different-scanner
concern were eliminated. One site acquired images from 46 TS
subjects and 27 control subjects on one scanner using the same
sequence. For the left thalamus SPM cluster, for instance, the
question is whether GM volume was higher in TS, as it was in the
overall analysis, in these subjects who were all scanned on the
same scanner with the same MR sequence. This question was
tested using analysis of covariances (ANCOVAs) with relative GM
volume in the SPM cluster as the dependent variable, diagnosis

Table 2. VBM results

pFDR Volume (ml) Peak t Peak (MNI) Peak (TT) Description

x y z x y z

TSocontrol: white matter
0.001 5.2 5.95 − 13.5 31.5 − 22.5 − 14 27 − 20 L medial orbital gyrus, BA13a

4.83 − 12.4 9.5 − 16.5 − 12 44 − 17 L medial orbital gyrus, BA11
4.75 − 15 22.5 − 21 − 15 18 − 17 L medial orbital gyrus, BA11
4.07 − 19.5 51 9 − 19 47 7 L medial frontal gyrus, BA10
3.93 − 19.5 43.5 − 12 − 20 39 − 11 L OFPFC, BA11
3.91 − 13.5 36 15 − 14 33 14 WM deep to L BA32
3.9 − 15 55.5 9 − 15 52 7 WM in L anterior PFC
3.78 − 16.5 46.5 3 − 16 43 2 WM in L anterior PFC
3.59 − 18 51 − 7.5 − 18 46 − 8 WM deep to L BA 11/12a

3.54 − 27 55.5 − 10.5 − 27 51 − 10 L OFPFC, BA12a

3.19 − 22.5 36 21 − 21 34 20 WM, middle of PFC
0.001 4.6 4.6 7.5 49.5 − 19.5 6 44 − 20 WM deep to R BA11

4.45 18 42 3 17 38 3 WM deep to R anterior cingulate, BA32
4.03 16.5 55.5 − 15 15 50 − 15 R BA11
4.02 15 63 7.5 14 58 5 R BA10, medial frontal gyrus
3.93 21 43.5 − 7.5 20 38 − 5 WM deep to R BA47/12a

3.69 7.5 58.5 − 13.5 6 52 − 14 R medial PFC, BA10a

3.59 30 49.5 − 12 29 44 − 10 WM deep to R BA47/12a

3.24 13.5 42 − 19.5 12 36 − 18 R olfactory sulcus, BA11m/la

0.196 1.2 3.98 30 − 10.5 4.5 29 − 11 7 R posterior putamen
3.46 31.5 − 13.5 − 4.5 30 − 14 0 R posterior putamen
3.41 34.5 − 15 12 33 − 15 14 R posterior insula
3.39 28.5 0 9 27 − 1 11 R putamen

0.223 1.1 3.89 − 28.5 − 10.5 4.5 − 27 − 11 6 L posterior putamen
3.5 − 33 − 6 13.5 − 32 − 7 14 L posterior insula
3.46 − 25.5 1.5 10.5 − 24 − 1 11 L putamen

TS4control: gray matter
0.001 4.4 4.62 − 13.5 − 30 9 − 12 − 30 11 L thalamus, pulvinar n.

4.26 − 15 − 28.5 − 4.5 − 14 − 29 0 L thalamus
3.75 0 − 33 − 4.5 0 − 33 0 Dorsal edge of midbrain
3.46 0 − 34.5 − 13.5 0 − 35 − 7 Dorsal edge of pons / midbrain

0.011 2.7 4.06 9 − 3 − 16.5 8 − 5 − 11 Ventral edge of basal forebrain / midbrain
3.93 − 1.5 − 6 − 7.5 − 2 − 8 − 3 L hypothalamus
3.76 0 − 15 − 10.5 0 − 16 − 5 Ventral midbrain, near supramammillary commissure

0.07 1.6 4.13 16.5 − 28.5 − 4.5 15 − 29 0 R thalamus, posterior edge
3.9 12 − 30 12 12 − 30 14 R thalamus, posterior edge

Abbreviations: BA, Brodmann area; FDR, false discovery rate; L, left hemisphere; MNI, Montreal Neurological Institute template brain coordinates;
OFPFC, orbitofrontal prefrontal cortex; PFC, prefrontal cortex; R, right hemisphere; TS, Tourette syndrome; TT, Talairach and Tournoux atlas coordinates;
WM, white matter. pFDR, FDR corrected p value for a suprathreshold cluster of this size in the t image. For each local maximum (peak) in the cluster, the table
lists the t statistic at that voxel (193 df ) and the atlas coordinates of that voxel’s location. TS 4control: white matter, no significant clusters. TSocontrol:
gray matter, no significant clusters. aDescription taken from (Öngür and Price50).
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and sex as factors, age as a covariate and interactions of sex with
diagnosis and age. As in the full SPM analysis, this cluster was
larger in TS (Supplementary Figure 4a, diagnosis factor P= 0.004),
as was the hypothalamus GM cluster (Supplementary Figure 4b,
diagnosis Po0.001, with a significant diagnosis x sex interaction
P= 0.009). The orbitofrontal cortex (OFC) WM clusters were smaller
in TS (Supplementary Figure 4c,d, left WM diagnosis Po0.001,
right Po0.001).

Secondary analysis: age, tic severity, IQ, comorbidity and
medication status
We investigated whether or not differences in regional volume
depended upon age, using ANCOVA for each of the significant GM
and WM clusters, with relative volume as the dependent variable,
diagnosis as a factor, age as a covariate, and the diagnosis × age
interaction. The main effect of age was significant, with WM
volume increasing with age (left OFC Po0.001, right OFC
Po0.001) and GM volume decreasing with age (left thalamus
P= 0.03, hypothalamus P= 0.02) regardless of diagnosis. No
diagnosis × age interactions were significant (all p’s 40.3),
indicating similar diagnosis effects across the age range.
Past-week tic severity as measured by the YGTSS17 was available

for 91 out of the 103 TS subjects. In a multiple regression analysis
for the relative volume in each significant cluster, we modeled
YGTSS and age as factors and their interaction. The YGTSS effect
and the YGTSS × age interaction were not significant in any of the
models (all p’s 40.6), suggesting our results reflected diagnosis
rather than cross-sectional tic severity.

We had IQ estimates for all but one subject from the single-
sequence group discussed in the previous section. IQ differed
between diagnostic groups (TS 107.5 ± 11.9, control 117.8 ± 13.1,
Po0.002, unpaired t-test), so we checked whether IQ explained
any of the primary group differences by modeling relative cluster
volume by ANCOVA with sex as a factor, age and IQ as covariates,
and all interactions. Neither IQ nor interactions with IQ were
significant for any of the four significant clusters (p for IQ was 0.08
for right OFC WM, 0.27 for left OFC WM, 0.10 for left thalamus and
0.51 for hypothalamus).
ADHD was recorded for all TS subjects in that same subgroup. In

an ANCOVA with sex and ADHD diagnosis as factors, age as a
covariate, and all interactions, neither ADHD nor interactions with
ADHD were significant for any of the four clusters. Obsessive
compulsive disorder (OCD) diagnosis was not recorded in this
subgroup, but as a loose proxy we dichotomized TS subjects
based on OCD symptom severity (CY‑BOCS scores, zero vs greater
than zero). This OCD factor was not significant, nor were any
interactions with this factor.
Medication status was available for 75 out of the 103 TS subjects

(Table 1). Of these subjects, 39 were taking psychoactive
medications and 36 were not. Since the number of subjects on
any one medication was relatively small, but about half were
unmedicated, we ran ANCOVAs with medication status (medicated
vs unmedicated) as a factor, age as a covariate, and their
interaction. There was no significant main effect of medication
status or its interaction with age (p’s 40.3 in all four clusters).

Figure 2. The largest cluster from the contrast showing where WM volume is lower in TS than in the control group (5.2 ml, pFDR = 0.001; see
Table 2). The t statistic is shown in color (thresholded at t⩾ 3.0), laid over the average MP‑RAGE image from the entire sample (in grayscale).
The crosshairs show (−12, 49.5, − 16.5)MNI, left medial orbital gyrus, BA11. The peak t-value from this contrast, t193= 5.95, is at (−13.5, 31.5,
− 22.5)MNI in left medial orbital gyrus, BA13, near the red ‘X’ in the sagittal image. Supplementary Figure 2 shows the other significant cluster
from this contrast, the homologous area on the right side of the brain. FDR, false discovery rate; MNI, Montreal Neurological Institute template
brain coordinates; TS, Tourette syndrome; WM, white matter.
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DISCUSSION
Here we present the largest study of brain structure ever reported
in children with TS. We matched control subjects strictly for age,
sex and handedness, and the statistical analysis used conservative
methods to minimize type I error. Our main findings were that the
TS group had lower WM volume than the control group deep to
orbital and medial prefrontal cortex, and greater GM volume in
the posterior thalamus and hypothalamus.

Lower WM volume in prefrontal cortex in TS
The finding of decreased WM in orbital cortex is consistent with
several previous TS studies that showed decreased GM volumes in
this region. Studies of adults with TS found reduced GM volume in
OFC,18 a negative correlation between OFC GM volume and tic
severity,19 and cortical thinning in OFC.18,20 A study of adolescents
and adults with TS (10–25 years) found increased cortical thinning

with age in the right OFC compared with controls.21 A study that
focused on WM identified 10 tracts with decreased WM integrity
(scaled fractional anisotropy) in unmedicated adults with TS.22

Four out of the 10 tracts involved the OFC, connecting OFC with
pre-SMA, ventral premotor cortex, primary motor cortex, and
supplementary motor cortex. Thus, there is converging evidence
for altered OFC gray and WM in adults with TS. Since TS is a
developmental disorder; however, it is difficult to make direct
comparisons between our results in children and previous findings
in adults. Investigations of OFC volume in children with TS have
been much more limited. In an earlier, large structural MRI study in
TS, sub-analyses of child subjects demonstrated decreased volume
(including GM and WM) in a predefined orbital frontal area.23 Our
results suggest that this decreased OFC volume may be
attributable to WM, and lead to questions about developmental
changes in OFC in TS.

Figure 3. Largest clusters showing greater GM volume in TS compared with controls. (a) Largest cluster from GM4control contrast, in left
pulvinar nucleus of thalamus (see Table 2 and legend to Figure 2). (b) The second largest cluster from the GM4control contrast, with the
crosshairs at (4, 6, − 6)MNI in hypothalamus. In this figure, all voxels with t⩾ 3.0 are highlighted in color to better visualize the underlying
anatomy. GM, gray matter; MNI, Montreal Neurological Institute template brain coordinates; TS, Tourette syndrome.
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The orbitofrontal regions identified in the present study have
been linked to a wide range of functional processes, yet many roles
commonly attributed to OFC have been called into question.24

There is evidence showing that the OFC codes economic value,
having a key role in decision making and reward.25–27 Specifically,
the medial OFC, where we found reduced WM volume, is involved
in the weighing of options that leads to decisions. Economic
decision making has not been well-investigated in TS, but a small
number of studies have examined reinforcement learning,28

showing evidence specifically for impaired negative reinforcement
learning in youth and adults with TS. Perhaps this impairment is a
functional consequence of reduced WM volume in the OFC, but
such a hypothesis deserves further study.
Alternatively, altered OFC may be involved in the sensory aspects

of tics. Most TS patients report that tics are often responses to
uncomfortable internal sensations, like a tickle in the throat before a
cough; some experts conclude that these premonitory sensations
may be the primary phenomenon rather than the observed tics.29

Premonitory sensations in TS are correlated with sensory
hypersensitivity30 and interoceptive awareness,31 yet peripheral
sensation is normal,32,33 so any sensory abnormality must be
central. Since the OFC receives input from most sensory systems
and projects to regions involved in visceral function,34 abnormal
WM connections with OFC fit well with a sensory model of TS.
The clusters of decreased WM volume also extended to

pregenual WM and WM deep to medial frontal gyrus (BA 10). A
previous study that examined WM integrity in men with TS found
that greater current tic severity was associated with decreased
WM fractional anisotropy deep to superior frontal gyrus.35 While
consistent with our results, this previous finding was in adults and
the specific location of the region was 10mm superior to the BA 10
peak in the current study.

Putamen
The paired clusters of decreased WM volume in posterior putamen
are interesting given the posterior putamen’s prominent role in
movement. Previous studies in TS have yielded mixed results
regarding putamen volume, mostly focusing on GM. Although
some found evidence for smaller putamen in children and adults
with TS,36,37 others have shown increased volume in children with
TS.38,39 Putaminal WM has also been implicated, as apparent
diffusion coefficient in the putamen was highly correlated with tic
severity in unmedicated men with TS,35 though the most
significant voxels in that study were 16–17 mm anterior and
inferior from the peaks reported here. However, the clusters in the
present study were not significant after correction for multiple
corrections, and a WM difference might be more easily interpreted
as referring to the external capsule or extreme capsule than to the
putamen itself.

Other
Several previous TS studies in adults and children found larger
volume or reduced measures of WM integrity in the corpus
callosum,18,40–43 but otherwise, previous WM findings in TS have
been variable.6

Greater GM volume in pulvinar nucleus, midbrain and
hypothalamus in TS
Pulvinar. Several imaging studies have examined thalamic
volume in TS.6 The largest of these found increased total thalamic
volume in children and adults with TS (~5%), with outward
deformation (bulges) compared with thalamic shape in control
subjects.44 The most prominent differences were found on the
ventral, lateral and posterior surfaces, corresponding to several
motor nuclei and the pulvinar. Thus, that study’s results are quite
consistent with the present finding of greater GM volume in the

pulvinar in a large group of children and adolescents. Its authors
posit several possible explanations for enlargement in these
thalamic regions, including hyperactive motor circuitry, compen-
satory mechanisms derived from years of attempting to control
tics, or secondary GM changes in the face of WM alterations.
The medial pulvinar nucleus is widely connected to cortex,

including prefrontal, orbital and cingulate cortical areas; the lateral
pulvinar projects to parietal, temporal and extrastriate regions;
and the inferior pulvinar has bidirectional connections with visual
cortex.45,46 Given these widespread projections and innervations,
we speculate that increased GM volume in TS may relate to
multisensory integration in the thalamus, or to the linking of
sensory input to cognitive-, motivational- and movement-related
areas of cortex. As noted above, higher-order sensory processing
has been hypothesized to be important in TS, and there is
evidence for a role of the pulvinar nucleus in spatial attention and
attention to salient stimuli.47,48

Midbrain. Part of the thalamus GM cluster includes dorsal
midbrain. Interestingly, a VBM study of 31 adult patients and 31
controls also identified a significant increase in GM volume in
midbrain,49 though that statistical peak was inferior and anterior
to the one identified in the present study.

Hypothalamus. One cluster of increased GM volume included
hypothalamus. We are not aware of previous studies linking TS to
this structure. The hypothalamus does receive inhibitory innerva-
tion from the ventromedial OFC via the central nucleus of the
amygdala.50 This anatomical connection is intriguing given the
OFC WM changes in this study, as it has been posited that
hypothalamic projections to OFC may be involved in
reinforcement26 and reward signals.51 Future work may study
the hypothalamus in TS more specifically.

Comparison to ADHD and OCD
Given the high comorbidity rates of ADHD and OCD in TS,52 it is
worth comparing our results to previous findings in these
conditions. Large volumetric studies and meta-analyses of VBM
data have demonstrated reduced striatal volume in children with
ADHD that normalized with increasing age.53–56 The present study
found only a trend for reduced WM putamen volume in TS. There
is also evidence for decreased thalamic volume in ADHD,57–59

whereas we found increased volume in TS. Larger thalamic
volumes have been reported in OCD using volume-of-interest60

and VBM approaches;61 the VBM study also found increased GM
volume in bilateral hypothalamus.
As for the OFC, a recent large study in 307 children and adults

with ADHD found lower GM volume in several frontal regions,
including OFC.62 However, a number of ADHD studies found
alterations in other frontal regions, but not OFC.63,64 A meta-
analysis examining both ADHD and OCD found reduced GM
volume in ventromedial OFC in both groups.56 OFC alterations are
commonly reported in OCD, yet the specific results have been
quite mixed, including both decreased60 and increased
volume,61,65 as well as more complex lateralized results.65,66 Of
course, our OFC findings were specific to WM volume, making
direct comparisons difficult.
Overall, there are more similarities between our results and

those in OCD than in ADHD, perhaps consistent with the recent
demonstration that TS shares greater genetic variance with OCD
than with ADHD.67 Nevertheless, TS with comorbid OCD may be
distinct from OCD without tics.68 In any case, ADHD and OCD are
unlikely to explain the results in the present sample given null
results in the secondary analyses based on ADHD diagnosis and
current OCD severity. This conclusion should be confirmed in a
sample with prospective, systematic psychiatric diagnosis.
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The dog that did not bark in the night
A word is due about previous volumetric findings that were not
replicated here. The most notable is decreased caudate volume in
TS reported by Peterson et al.36 in a study of 154 children and
adults with TS and 130 controls (including a total of 173 children),
and by two other groups.19,35,69–71 Smaller caudate volume in
childhood predicted worse tic severity in young adulthood,
showing that decreased caudate volume could not be just a
consequence or adaptation of the brain to tics.37 Conceivably our
caudate non-finding may reflect type II error.
On the other hand, several other studies did not find significantly

smaller caudate in TS (reviewed in Williams et al.72), the largest of
which included 49 boys with TS and 42 controls.39 The present
study adds to these null findings, and has particular merit due to its
large sample, exclusion of adults, and use of one-to-one age and
sex matching in addition to statistical accounting for linear effects
of age. Furthermore, the caudate is a relatively small structure,
surrounded by WM and cerebrospinal fluid, and hence especially
susceptible to partial volume effects and, presumably, to the
artifactual reduction in volume with frequent small-amplitude head
movements demonstrated with other techniques.73,74

Limitations
The most important limitation is the use of different scanners,
different sequences and possibly different recruitment sources or
diagnostic methods across sites. However, the results in the
largest single-sequence subgroup suggest strongly that the key
findings are not driven by differences in scanner, sequence or site.
A second limitation is that phenotypic data are limited for many

of the ‘legacy’ subjects. For instance, history of phonic tics is
missing for some TS subjects, and for many subjects we have
limited information on comorbid diagnosis. In the available data
our key findings are not significantly linked to IQ, ADHD, OCD or
medication status, but of course future studies will benefit from
adequate prospective assessment of all these variables.
Recently, small head movement not detected by visual

inspection of MR images has been shown to artifactually lower
GM volume in VBM analyses, presumably by a mechanism similar
to partial volume effect.73,74 Fortunately, group differences in
residual head movement cannot easily explain the decreased WM
volume or the increased GM identified in this study, since the TS
group would be expected to show more head movement.

Future directions
Here, we identify several brain regions that can serve as new
targets for further study. A prospective study design with
additional clinical information can test whether the posterior
thalamic finding in fact relates to sensory symptoms in TS,
whether the OFC finding relates to decision making or reinforce-
ment learning in TS, and to what extent the severity of tics and
comorbid symptoms52 explain these findings. Future structural
imaging studies can help elucidate at what age the regional
differences in GM and WM volume in TS first manifest and
whether they persist into adulthood, helping to clarify whether
these volumetric differences represent failures of maturation or
alterations after a period of normal development.
Studies with different methodology will be required to elucidate

the mechanism responsible for the volumetric abnormalities.
Postmortem studies in TS have not typically focused on the
regions identified here.75 Thus it is not clear whether, for example,
increased GM volume in posterior thalamus reflects increased
neuronal cell number, glial cell number, neuropil (for example,
deficient pruning) or increased water content. On the other hand,
this reflects a potential strength of the present study: an unbiased,
whole-brain analysis identified regions of brain that have hardly
been studied at a cellular level in TS.
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